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Abstract. While federated learning is the state-of-the-art methodology
for collaborative learning, its adoption for training segmentation models
often relies on the assumption of uniform label distributions across par-
ticipants, and is generally sensitive to the large variability of multi-centric
imaging data. To overcome these issues, we propose a novel federated im-
age segmentation approach adapted to complex non-iid setting typical
of real-life conditions. We assume that labeled dataset is not available to
all clients, and that clients data exhibit differences in distribution due
to three factors: different scanners, imaging modalities and imaged or-
gans. Our proposed framework collaboratively builds a multimodal data
factory that embeds a shared, disentangled latent representation across
participants. In a second asynchronous stage, this setup enables local
domain adaptation without exchanging raw data or annotations, facili-
tating target segmentation. We evaluate our method across three distinct
scenarios, including multi-scanner cardiac magnetic resonance segmen-
tation, multi-modality skull stripping, and multi-organ vascular segmen-
tation. The results obtained demonstrate the quality and robustness of
our approach as compared to the state-of-the-art methods.

Keywords: Missing Labels · Domain Adaptation · Federated Learning
· Image Segmentation.

1 Introduction

In recent years, the use of deep learning has become prevalent in medical image
segmentation. Nevertheless, while supervised learning models necessitate large
collections of labeled data to prevent overfitting and achieve high quality re-
sults, in practice they are often trained on small datasets provided by single



2 F. Galati et al.

data centers. This limitation is primarily due to the high costs associated with
acquiring medical images, and the tedious expertise-demanding effort needed for
their annotation. Moreover, while the sharing of medical data is essential to train
more robust models, in real-life scenarios it is often complex to gather data from
different hospitals in a centralized repository, due to privacy constraints and
current regulations. To address this issue, Federated Learning (FL) is a promis-
ing collaborative learning approach enabling multiple clients to jointly train a
model by sharing partially optimized model parameters instead of private data.
In the context of supervised learning for medical image segmentation, current
FL schemes are mostly based on the assumption of homogeneous, independent
and identically distributed (iid) data across centers. For example, fully labeled
data must be available at each site to perform the distributed learning task. This
constraint implies that unlabeled data should be discarded, entailing a loss of
potential relevant information. Additionally, heterogeneity in data distributions
across clients is often neglected, leading to models prone to distribution shifts,
i.e., with dropping performance when applied to other clients.

In this work, we propose a novel federated image segmentation approach
adapted to complex non-iid setting typical of real-life conditions. We first as-
sume that labeled dataset is not available to all clients, but only to a few ones
(e.g. only one) considered as the source domain. Clients data exhibit substantial
differences in distribution due to three factors, i.e., different 1) scanners, 2) imag-
ing modalities and 3) imaged organs. To achieve a robust segmentation model in
this complex non-iid scenario, we propose a federated learning framework based
on two main modeling steps. First, clients collaboratively build a multimodal
data factory to create a shared and disentangled data latent representation. Sec-
ond, individual clients can tailor this common knowledge to adapt their data
distribution to the one of the labeled source domain. This second step is per-
formed asynchronously and addresses target segmentation with minimal labeling
effort and without the need to exchange images or annotations between clients,
thus enhancing efficiency and data governance. We apply our method on multi-
scanner cardiac segmentation, multi-modality skull-stripping, and multi-organ
vascular segmentation, achieving improved dice scores up to 13.4% as compare
to competing segmentation methods from the state-of-the-art.

The paper is organized as follows: Section 2 reviews relevant research on the
problems of federated learning and domain shift. Section 3 presents our approach
to handle label scarcity and distribution shifts in federated learning. Section 4
evaluates our method using three test scenarios.

2 Related Work

Federated Learning. Several federated approaches have been proposed to
address the setting of multiple domains and unlabeled data centers for medi-
cal image synthesis [24,3] and segmentation. While [25] accounts for weak and
pixel-wise annotations, this setting does not apply when labels are fully absent
in a client. Multiple federated semi-supervised learning models deal with la-
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bel scarcity by using pseudo-labeling strategies [21], combined with contrastive
learning [26] or knowledge transfer [17]. While effective in certain segmenta-
tion tasks, these works do not address the issue of domain shift across sites.
FedDG [15] proposes federated domain generalization exploiting episodic fre-
quency learning across multi-source data distributions. Our work considers the
more general problem of federated domain adaptation [27], better suited to han-
dle large distributional shifts.
Domain shift and Foundation Models. Domain Adaptation (DA) and Do-
main Generalization (DG) are the main techniques used to address the problem
of domain shift in medical image segmentation. DA techniques transfer knowl-
edge from fully-labeled source domains to a target domain with limited or no
labels. In centralized settings, they have been applied to a multitude of or-
gans [4,20,8]. DG typically concentrates on data augmentation [28,7] to mimic
changes in intensity and geometry across scanners, protocols, or populations.
Overall, DA and DG tend to develop specialized networks that are trained on
datasets confined to a single image modality and organ.

Foundation models are trained on massive and diverse datasets, exhibiting
remarkable zero-shot generalizability. Their deployment in actual clinical set-
tings is hindered by the need to assemble vast labeled datasets, which is often
unfeasible. Furthermore, they require fine-tuning or prompting [16], which is
problematic when annotations are scarce or full automation is desired. Uni-
verSeg [1] overcomes these limitations by producing segmentation maps from a
query image and an example set of few image-label pairs, but it relies on train-
ing with more than 22,000 scans from 53 publicly available datasets, highlighting
how data-greedy these methods are. In contrast, our framework involves training
with very few labels and without the need for data centralization.

3 Method

We formulate a collaborative learning scheme that involves a group of K clients,
each owning a dataset Dk from a unique domain Dk, with k = 1, ...,K. Initially,
these datasets lack annotations. Operating in an unsupervised manner, we train
a multimodal data factory F , which serves multiple functions: 1) performing
conditional image synthesis to generate images x̂ that resemble those from the
clients; 2) providing a disentangled latent space W which supports the repre-
sentation and translation of domains with significant differences; 3) allowing for
customization through the addition of domain-specific segmentation branches.
This design allows the clients to exchange the necessary knowledge to segment
data across all domains Di without sharing images or annotations, thereby pre-
serving data governance. Figure 1 illustrates the described scenario.

3.1 Multimodal Data Factory via Federated Learning

The first step of our method aims to build the data factory F that integrates
domains Dk from all clients. When fed with a latent code z randomly drawn from
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Fig. 1. Using federated learning, K clients collaboratively train a multimodal data
factory F (in blue). Afterwards, source clients can contribute by training locally seg-
mentation branches Ss (in orange), while target clients can asynchronously acquire the
information required to segment their data Dt via domain adaptation (in pink).

a Gaussian distribution, F is trained to produce an image x̂ that resembles those
from the clients. This is achieved through adversarial learning, which employs
an external discriminator D to distinguish between real and fake samples. In
response, F aims to fool D by retrieving images that look realistic. Tailoring
the generative process more closely to each client’s domain Dk, F and D are
adapted to be injected with the client identifier k ∈ [1,K], which is one-hot-
encoded, embedded into a 512-dimensional vector, and merged with the feature
vector z. To enhance the quality of the images and ensure robust representation
across domains with significant gaps, we further condition the generation by
introducing a domain-specific key ck. This is derived locally by computing the
average of CLIP [22] encodings of all images xi within the dataset Dk. The key
is processed through a linear layer and averaged with the label condition:

x̂ = F ← z ⊕ 1

2

(
ek(k) + ec

(
1

|Dk|
∑

xi∈Dk

CLIP(xi)

))
(1)

where ⊕ denotes concatenation, ek(·) and ec(·) are the embeddings processed
by the additional linear layers for the client identifier k and the average CLIP
encoding ck, respectively. Compatibly with a federated environment, clients par-
ticipate to the optimization of the training objective of F as follows:

Ltot =
1

K

K∑
k=1

Lk
adv(F,D) + Lk

R1
(D) + Lk

pl(F ) (2)

where Lk
adv is the non-saturating loss [9], Lk

R1
is the R1 regularization [19], and

Lk
pl is the path length regularization [13], with each term computed locally using
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only the data from the respective client k. In the process of generating x̂, the
quantities z, k and ck are combined into a single, unified latent representation
w ∈ W, a transit latent space which, as detailed in [12], is unwarped by Lk

pl. This
regularization transforms W into a disentangled latent space where different di-
rections consistently correspond to individual, controllable aspects of variation
in the generated images. At the end of the training, W summarizes the charac-
teristics of all domains Dk, including the domain-specific features differentiating
each one. Furthermore, the aforementioned property of disentanglement enables
the creation of images that smoothly transition from one domain to another,
allowing to find new intermediate domains through latent space morphing.

3.2 Domain Adaptation via Local Training

After training the data factory F , clients independently operate the local adap-
tation step. We assume that at least one among the K clients, denoted as client s,
disposes of annotation masks Ms for the respective dataset Ds, either completely
or partially. Client s is thus responsible for the development of a new segmen-
tation branch Ss to be integrated into F [29]. To this end, a local encoder Es is
trained in a fully supervised manner to reverse the generation process detailed
in Section 3.1. In particular, given a image xs

i , Es aims to find the latent vector
w̃s

i to be fed into F in order to retrieve the closest reconstruction x̃s
i ≈ xs

i . In
the meanwhile, the feature maps produced by Es and F are inputted into Ss to
produce the corresponding segmentation mask ỹsi . This is achieved using mean
squared error and LPIPS as reconstruction losses (Lr), while using Dice and
cross-entropy as segmentation losses (Ls).

Once trained, Ss becomes available to any other client t, enabling them to
access the combined knowledge from F and Ss for adaptation to their spe-
cific dataset Dt. This process is facilitated by the capability of the data fac-
tory to generate synthetic, yet realistic samples xs

j that resemble the char-
acteristics of their native domain Ds. This time, a local encoder Et is used
to derive two distinct latent vectors, w̃s

j for reconstruction as in the previous
setting, and ŵs

j for image-to-image translation to optimize a cycle-consistency
loss Lt

cyc(Et) = Lr(xs
j ,
ˆ̂xs
j) + Lr(xt

i,
ˆ̂xt
i). This ensures that both the synthetic

sample xs
j and the target domain sample xt

i complete a full cycle of domain
transformations to maintain image fidelity: first adapting to the other’s do-
main, then returning to their own, yielding ˆ̂xs

j and ˆ̂xt
i. Furthermore, both Et

and a new segmentation branch St receive guidance from Ss to achieve ac-
curate segmentation, primarily on source data xs

j , with Ss remaining frozen
to return masks ỹsj . To enforce this supervision, we include a small set Mt

of target annotations yti , with |Mt| ≪ |Ms|. The resulting segmentation loss
Lt
seg(Et, St) = Ls(ŷsj , ỹsj )+Ls(ỹti , yti) forces Et to perform translation in a label-

preserving manner, thanks to the capability of F to disentangle latent vectors
within W. This disentanglement enables smooth transitions across distant do-
mains while maintaining control over the specific attributes of the generated
image, ensuring that the translation process remains label-consistent. Notably,
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this stage does not involve the use of discriminators, as the goal is not to produce
exact replicas of the source and target domain images but to assist segmentation.

We highlight that this step operates independently from FL. Inference seg-
mentation on a new image xt

new is performed by averaging predictions ŷtnew and
ỹtnew from both the source and target segmentation branches Ss and St.

4 Experiments and Results

The proposed method is demonstrated on several non-iid setup for the segmenta-
tion of anatomical structures, presenting increasing heterogeneity: multi-scanner
(hearth segmentation; same modality, same organ), multi-modal (brain segmen-
tation; varying modalities, same organ), and multi-organ (vessel segmentation;
varying modalities, varying organs).

4.1 Datasets and Tasks

Multi-scanner setup (MS). Cardiac MRI images from the M&Ms Chal-
lenge [2] include 345 patients with cardiomyopathies as well as healthy subjects.
MR images, taken at both end diastole and end systole, were labeled for the left
ventricle (LV), right ventricle (RV), and myocardium (MYO). Data collection
was carried out across five centers using scanners from four vendors. The multi-
centric setup was simulated by partitioning the data per scanner type, thus
obtaining 4 clients. For the FL step, we trained the data factory with clients
holding data from scanners Siemens, Philips, and GE. The source domain was
selected as the client with scanner type Philips, and the client with scanner type
Canon was only used for the DA task (no FL).
Multi-modal setup (MM). The SynthStrip dataset [10], provides a compre-
hensive collection of head images aggregated from multiple sources and spanning
various contrasts, resolutions, and populations ranging from infants to glioblas-
toma patients. The considered task here is skull-stripping across multiple imag-
ing modalities. Specifically, our study incorporates 20 CT and 20 PET scans from
the CERMEP-IDB-MRXFDG dataset [18], as well as 32 PD-weighted (PDw)
and 36 T2-weighted (T2w) MRI scans from the FreeSurfer Maintenance (FSM)
dataset [6]. The multi-centric setup was simulated by partitioning the data across
modalities, thus obtaining 4 clients. The data factory was trained using clients
holding CT, PDw and PET data. The source domain is represented by the client
with PDw images, and the client with T2 images was used for DA only (no FL).
Multi-organ setup (MO). We selected 49 time-of-flight (TOF) MRA volumes
from the OASIS-3 dataset to study brain arteries in 27 cognitively normal adults
and 10 patients with cognitive decline, aged between 42 to 95 years. Additionally,
we used 28 SWI venographies of adult subjects with no visible lesions, derived
from retrospective studies conducted at UCL Queen Square Institute of Neurol-
ogy, Queen Square MS Centre, University College London. Finally, the OCTA-
500 dataset provides optical coherence tomography angiographies (OCTA) in



Title Suppressed Due to Excessive Length 7

three different 2D projections, collected from 500 subjects aged 7 to 85 years,
with 49.8% of them affected by ophthalmic diseases. Data was partitioned across
the 4 datasets. FL training was performed with OASIS, SWI and OCTA. The
source domain for this setup was OASIS. The IXI data was used only for DA
(no FL).

For all setups, segmentation results are assessed through the Dice coefficient.
Performance evaluations are conducted on the hold-out test sets specific to each
scenario. For MS, we average the results over three regions LV, RV, and MYO.

4.2 Implementation Details and Competing Methods

Data was preprocessed compatibly with the federated learning scenario. Our
federated learning framework is implemented using PyTorch 1.13.1 and Fed-
Biomed 5.0.1 [5], with 350 FL training rounds, 2000 stochastic gradient steps
per round, and batch size 2. FL aggregation is performed with FedAvg, by using
uniform weights and by sampling 2 clients per round. To enhance convergence
and smoother integration across different domains, we run a refinement stage of
35 rounds with 200 iterations each. After the FL step, supervised segmentation
is trained locally on all clients hosting labeled datasets Ds for 15k iterations
with batches of 8 images. This is followed by domain adaptation, conducted on
each target clients t for 20k iterations with batches of 4 images. Once training is
finished, the checkpoints with the best validation performance on each client’s
local validation set are selected for the final evaluation. The model architecture,
including components F , D, Ek, and Sk, builds upon preceding works [13,23,29].
We trained, validated and tested our proposed method as well as the state-of-
the-art methods on two NVIDIA GeForce RTX 2080 Ti GPUs. All code and
experiments can be accessed on github.com/i-vesseg/RobustMedSeg.

We compare our method against four state-of-the-art DA for image segmen-
tation in heterogeneous setting: 1) nnU-Net [11], a self-configuring method for
deep learning-based biomedical image segmentation, validated on a wide range
of segmentation tasks with state-of-the-art performance. We combine it with
Data Augmentation (nnU-Net+DAug) and Transfer Learning (nnU-Net+TL);
2) FedMed-GAN [24], a federated image-to-image translation method for un-
paired cross-modality image synthesis. This is concatenated with nnU-Net to
perform downstream segmentation; 3) FedDG [15], introducing federated do-
main generalization to enhance model adaptability to unseen domains. To lever-
age multiple source domains, the network is trained using all datasets except
the target; 4 and 5) SAM/MedSAM [14,16], a foundation model pretrained
over 1.1 billion segmentation masks in its original version and fine-tuned with
1.5 million medical annotated images; 6)UniverSeg [1], a foundation model
leveraging in-context learning to solve unseen segmentation tasks with little to
no labeled data.

Table 1, column G, details the methods (including ours) requiring a small set
Mt of target annotations to guide the segmentation process. In our experiments,
this set always includes three midpoint slices, extracted from three random vol-
umes of Dt. For nnU-Net+TL, SAM and MedSAM, the set is used to fine-tune

https://github.com/i-vesseg/RobustMedSeg
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Table 1. Segmentation results (Dice score) across setups (MS, MM and MO) for the
target clients. Column G indicates methods requiring Mt to guide the segmentation
process.

G MS MM MO
Siemens GE Canon∗ PET CT T2w∗ SWI OCTA IXI∗

nnU-Net 44.0±30.1 82.0±9.3 75.9±16.4 17.7±8.6 43.6±4.1 68.8±17.3 0.0±0.0 3.0±1.5 67.0±2.6
+DAug 78.1±18.7 86.3±7.2 85.5±8.2 0.1±0.2 76.7±7.3 71.7±21.2 0.0±0.0 0.2±0.6 48.4±13.2
+TL ✓ 80.8±15.6 85.4±7.7 85.0±9.0 63.7±4.3 70.3±9.4 87.7±3.4 56.9±2.7 69.3±10.5 71.5±3.5

FedMed-GAN 12.0±20.5 65.7±26.5 67.6±30.1 0.3±0.5 0.0±0.0 12.2±22.6 0.0±0.0 0.7±0.4 0.5±0.6
FedDG 81.8±12.7 85.9±7.9 81.6±8.4 0.4±0.8 2.9±3.8 62.6±4.2 0.2±0.1 11.0±7.4 66.2±2.1
SAM ✓ 1.8±1.8 1.4±1.4 0.6±1.0 12.7±6.7 9.8±1.3 21.8±1.8 32.1±6.2 34.6±12.6 2.2±0.2
MedSAM ✓ 4.3±5.7 4.0±3.0 4.3±4.8 34.3±12.6 10.2±3.3 37.7±4.7 3.4±1.1 13.2±6.3 2.0±0.4
UniverSeg ✓ 81.8±12.7 85.9±7.9 56.1±35.9 77.5±5.8 36.0±2.2 57.5±3.0 4.0±1.4 21.2±5.2 7.9±3.1
Ours ✓ 82.5±16.4 83.4±9.1 80.1±9.5 89.1±13.1 90.1±2.2 91.8±4.4 63.1±2.1 71.6±8.0 67.7±1.9
∗ Only used for DA, not contributing to FL.

Fig. 2. Comparative analysis of the segmentation results: scanner Siemens (top),
OCTA imagery (center), and PET scans (bottom) using different methods.

the initial model, while in UniverSeg it is inputted as a segmentation query sup-
port. nnU-Net, nnU-Net+DA, and FedMed-GAN use standard setups, i.e., the
former two are supervised with Ds and Ms, the latter is unsupervised with Ds

and Dt.

4.3 Results

Table 1 reflects the impact of domain gaps on segmentation performances across
methods: overall, the dice score averaged over every domain and method in each
scenario drops to 55.7±34.6, 36.5±29.4, and 21.5±26.1 for respectively MS, MM
and MO. This underscores the complexity of the tasks under study as many
methods show performances below 5%, with a 50% failure rate for MO. In this
context, our framework leads to stable systematically high dice score across
scenarios, outperforming the competing methods in 6 out of 9 cases (Figure 2).
We note that the performance of our approach never drops below 60% dice score.
This is different for example from nnU-Net+DAug, which performs positively
in MS, but fails in MM. Still concerning MS, our method leads to the best
performances for the target Siemens, documented as the most challenging in [7].
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5 Conclusion

We propose a novel federated segmentation framework tackling the real-world
challenge of missing labeled datasets in multi-centric data, based on the col-
laborative construction of a multimodal data factory followed by asynchronous
domain adaptation. We extensively validated our work on three distinct scenarios
of increasing complexity: multi-scanner cardiac MR segmentation, multi-modal
skull stripping, and multi-organ vascular segmentation. The results demonstrate
the robustness and versatility of our framework, which not only improves relia-
bility across different data domains but also avoids the exchange of raw data or
annotations between clients. Our solution leverages labeled and unlabeled data
in heterogeneous scenarios, addressing the challenge of data distribution shifts
that often hinders the translation of deep learning models into clinical practice.
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