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Abstract—This paper addresses compressed sensing of linear
time-varying (LTV) wireless propagation links under the as-
sumption of double sparsity i.e., sparsity in both the delay and
Doppler domains, using Affine Frequency Division Multiplexing
(AFDM) measurements. By rigorously linking the double sparsity
model to the hierarchical sparsity paradigm, a compressed sensing
algorithm with recovery guarantees is proposed for extracting
delay-Doppler profiles of LTV channels using AFDM. Through
mathematical analysis and numerical results, the superiority of
AFDM over other waveforms in terms of channel estimation
overhead and minimal sampling rate requirements in sub-Nyquist
radar applications is demonstrated.

Index Terms—compressed sensing, channel estimation, time-
varying channels, AFDM, chirps, sparsity

I. INTRODUCTION

Time-varying wireless channels in many propagation sce-
narios, especially in high-frequency bands, are characterized
by sparsity in both delay and Doppler domains [1]. Such spar-
sity is an important feature of wireless propagation that can
be exploited to improve channel estimation performance [2]
or radar sensing [3]. Delay-Doppler sparsity was assumed in
[1], [4] and leveraged to conceive enhanced channel estimation
schemes for time-varying channels using the sparse Bayesian
learning (SBL) framework. However, delay-Doppler sparsity
was modeled as the sparsity of a one-dimensional array with
no way to assign different sparsity levels to the delay and
Doppler domains. To obtain a sparsity model compatible
with the latter requirement, one can in principle turn to the
hierarchical sparsity framework [5]. Indeed, the concept and
the tools of hierarchical sparsity were applied in [6] to the
problem of multi-input multi-output (MIMO) channel estima-
tion under delay and angular domains sparsity. In sensing
and radar applications, the sub-Nyquist radar paradigm [3]
leverages wireless channel sparsity to develop sub-Nyquist
receivers. However, most of its solutions cannot take advantage
of Doppler domain sparsity for lowering the sampling rate and
some of them require complex analog-domain processing.

In [7], the relevance of affine frequency division multi-
plexing (AFDM) [8], a recently proposed waveform based
on the discrete affine Fourier transform (DAFT), for efficient
self-interference cancellation in mono-static integrated sensing
and communications (ISAC) scenarios was demonstrated. In
[9], we had established its relevance for time-varying channel
estimation under delay and Doppler sparsity with a known
delay-Doppler profile (DDP). Using tools from the framework

of hierarchical sparsity, the current work tackles the problem of
delay-Doppler sparse recovery when no such DDP knowledge
is assumed, with applications to both time-varying channel
estimation and sub-Nyquist radar sensing.

A. Contributions

I) The statistical notion of delay-Doppler sparsity is rig-
orously linked to the hierarchical sparsity paradigm. II) This
link is used to propose a sparse recovery algorithm based on
AFDM measurements for delay-Doppler profiles of wireless
channels. III) Using hierarchical-sparsity mathematical tools,
closed-form asymptotic results for the performance of this
recovery is provided. Finally, IV) this performance analysis is
used to show the superiority of AFDM over recovery schemes
based on other waveforms in terms of channel estimation over-
head and sensing receiver minimal sampling rate requirements.

B. Notations

Bernoulli(p) is the Bernoulli distribution with probability
p and B(n, p) is the binomial distribution with parameters
(n, p). Notation X ∼ F means that random variable X has
distribution F . If A is a set, |A| stands for its cardinality.
The set of all integers between l and m (including l and
m, (l,m) ∈ Z2) is denoted Jl ..mK. The ceiling operation is
denoted as ⌈.⌉. The modulo N operation is denoted as (·)N .

II. BACKGROUND: AFDM

In AFDM, modulation is achieved through the use of DAFT
which is a discretized version [10] of the affine Fourier trans-
form (AFT) [8] with the discrete chirp e−ı2π(c2k

2+ 1
N kn+c1n

2)

as its kernel (see Fig. 1). Here, c1 and c2 are parameters
that can be adjusted depending on the delay-Doppler profile
of the channel (in this work, we adjust c1 based on the
delay-Doppler sparsity levels). Consider a set of quadrature
amplitude modulation (QAM) symbols {xk}k=0···N−1. AFDM
employs inverse DAFT (IDAFT) to map {xk}k=0···N−1 to

sn =
1√
N

N−1∑
k=0

xke
ı2π(c2k

2+ 1
N kn+c1n

2), n = 0 · · ·N − 1 (1)

with the following so called chirp-periodic prefix (CPP)

sn = sN+ne
−ı2πc1(N

2+2Nn), n = −LCPP · · · − 1 (2)

where LCPP denotes an integer that is greater than or equal
to the number of samples required to represent the maximum
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Fig. 1. Time-frequency representation of three subcarriers of OFDM and
AFDM (c1 = P

2N
). Each subcarrier is represented with a different colour.

delay of the wireless channel. The CPP simplifies to a cyclic
prefix (CP) whenever 2c1N is integer and N is even, an
assumption that will be considered to hold from now on.

III. BACKGROUND: HIERARCHICAL SPARSITY

Definition 1 (Hierarchical sparsity, [5]). A vector x ∈ CNM

is (sN , sM )-sparse if x consists of N blocks each of size M ,
with at most sN blocks having non-vanishing elements and
each non-zero block itself being sM -sparse.

To analyze hierarchically sparse recovery schemes, a mod-
ified version of the restricted isometry property (RIP) called
the hierarchical RIP (HiRIP) was proposed in the literature.

Definition 2 (HiRIP, [5]). The HiRIP constant of a matrix A,
denoted by δsN ,sM , is the smallest δ ≥ 0 such that

(1− δ) ∥x∥2 ≤ ∥Ax∥2 ≤ (1 + δ) ∥x∥2 (3)

for all (sN , sM )-sparse vectors x ∈ CNM .

IV. SYSTEM MODEL

A. Doubly sparse linear time-varying (DS-LTV) channels

In an LTV channel with L paths, the complex gain hl,n

(n ∈ J−LCPP ..N − 1K) of the l-th path varies with time as

hl,n =

Q∑
q=−Q

αl,qIl,qe
ı2π nq

N , l = 0 · · ·L− 1 (4)

Here, Il,q for any l and q is a binary random variable that,
when non-zero, indicates that a channel path with delay l,
Doppler shift q and complex gain αl,q is active and con-
tributes to the channel output. Note that the distribution of
the random variables {Il,q}l,q controls the kind of sparsity
the LTV channel might have. The complex gain is assumed
to satisfy αl,q ∼ CN

(
0, σ2

α

)
with σ2

α satisfying the channel
power normalization

∑L−1
l=0

∑Q
q=−Q E

[
|αl,q|2 Il,q

]
= 1. Note

that this model is an on-grid approximation of a time-varying
channel. For instance, the Doppler shifts are assumed to be
integers in J−Q..QK when normalized with the resolution
associated with the transmission duration.

Definition 3 (Delay-Doppler double sparsity, [9]). An LTV
channel is doubly sparse if there exist 0 < pd, pD < 1 s.t.

Il,q = IlI
(l)
q ,∀(l, q) ∈ J0..L− 1K × J−Q..QK (5)
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Fig. 2. Examples of channels satisfying (a) Type-1 delay-Doppler sparsity,
(b) Type-2 delay-Doppler sparsity, (c) Type-3 delay-Doppler sparsity

where Il ∼ Bernoulli(pd) and I
(l)
q ∼ Bernoulli(pD).

Note that under Definition 3, sd ≜ E [
∑

l Il] = pdL is the
mean number of active delay taps in the delay-Doppler profile
of the channel and can be thought of as the delay domain
sparsity level while sD ≜ E

[∑
q I

(l)
q

]
= pD(2Q + 1) is the

mean number of active Doppler bins per delay tap and can
be thought of as the Doppler domain sparsity level. Fig. 2
illustrates three different delay-Doppler sparsity models, fully
described in [9] and dubbed Type-1, Type-2 and Type-3, that
all fall under the scope of Definition 3 each with an additional
different assumption on Il and I

(l)
q . Here, we just point out

that the difference between Type-2 and Type-3 of Figures 2-(b)
and 2-(c), respectively, is that in the latter the active Doppler
bins per delay tap appear in clusters of random positions but
of deterministic length as opposed to the absence of clusters
in the former. The case where all the delay taps have the same
(random) sparsity (as in Type-1 models of Fig. 2-(a)) also falls
under Definition 3 by setting I

(l)
q = I

(0)
q ,∀l.

B. Relation to hierarchical sparsity

DS-LTV sparsity is probabilistic while hierarchical sparsity
of Definition 1 is deterministic. The two models are nonethe-
less related: if vectorized to a concatenation of its rows,
random matrix [αl,qIl,q]l,q defines a vector α ∈ C(2Q+1)L that
consists of L blocks each of size 2Q+1, where in average sd
blocks have non-zero entries and where each non-zero block
itself is in average sD-sparse. To ensure sparsity in a stronger
sense i.e., with high probability (as L,Q,Lpd, (2Q + 1)pD
grow), we require that the following assumption hold.

Assumption 1. {Il}l=0···L−1 are mutually independent.
Moreover, the complementary cumulative distribution func-
tion (CCDF) FSD,l

(m) of the random variable SD,l ≜∑Q
q=−Q I

(l)
q for any l ∈ J0..L− 1K is upper-bounded for any

integer m > (2Q+ 1)pD by the CCDF of B (2Q+ 1, pD).

Type-1 and 2 models are made to satisfy the CCDF upper
bound by requiring that {I(0)q }q in the first and {I(l)q }q for any
l in the second to be mutually independent (and to thus satisfy
FSD,l

(m) = FB(2Q+1,pD)(m),∀m). For Type-3 models, SD,l

is deterministic and hence its CCDF is trivially upper-bounded.
As the following lemma rigorously shows, the mutual inde-
pendence of {Il}l=0···L−1 in Assumption 1 guarantees strong
delay domain sparsity while Doppler sparsity is guaranteed in
a more explicit manner by the CCDF upper bound.



Lemma 1. Under Assumption 1, the vector α is (sd, sD)-
sparse with probability 1− e−Ω(min((2Q+1)pD,Lpd)).

Proof. The proof of the lemma is given in Appendix A.

C. AFDM signal model on DS-LTV channels
The received samples at the channel output are

rn =
∑L−1

l=0 sn−lhl,n + zn, n = 0 · · ·N − 1, (6)

where zn ∼ CN
(
0, σ2

w

)
represents the i.i.d. Gaussian noise

process. After discarding the CPP (assumed to satisfy L−1 ≤
LCPP), the DAFT domain output symbols are

yk =
1√
N

N−1∑
n=0

rne
−ı2π(c2k

2+ kn
N +c1n

2), k = 0 · · ·N − 1

=

L−1∑
l=0

Q∑
q=−Q

αl,qIl,qe
ı2π(c1l

2−ml
N +c2(m

2−k2))xm + wk, (7)

where the second equality is obtained using the input-output
relation given in [8], wk is i.i.d. and ∼ CN

(
0, σ2

w

)
and where

m ≜ (k − q + 2Nc1l)N . Note how the Doppler components
of different delay taps are mixed in the DAFT domain since
a path occupying the (l, q) grid point in the delay-Doppler
domain appears as a q − 2Nc1l shift in the DAFT domain.

V. COMPRESSED-SENSING ESTIMATION OF DS-LTV
CHANNELS USING AFDM

A. DS-LTV compressed-sensing channel estimation problem
Let P ⊂ J0..N − 1K designate the indexes of the

Np (2|c1|N(L− 1) + 2Q+ 1) received samples associated
with Np DAFT domain pilots, of values {pp}p=1···Np

inserted
at indexes {mp}p=1···Np

so as each pilot is preceded by Q zero
samples and followed by (2|c1|N(L− 1) +Q) zero samples1.
Vector yp ≜ [yk]k∈P is the vectorized form of the received
pilot samples. Referring to (7), we can write

yp = APM︸ ︷︷ ︸
≜Mp

α+wp (8)

where [M]l(2Q+1)+Q+q+1 = Φ∆qΠ
lΦHxp, xp is a N -

long vector with entries equal to p1, . . . ,pNp
at indexes

{mp}p=1···Np
and to zero elsewhere, and wp ≜ [w̃]k∈P .

Here, AP is the |P| ×N matrix that chooses from a N -long
vector the entries corresponding to P . ∆q = diag(eı2πqn, n =
0 · · ·N − 1), Π is the N -order permutation matrix, Φ =
ΛΛΛc2FNΛΛΛc1 with FN being the N -order discrete Fourier trans-
form (DFT) matrix and Λc = diag(e−ı2πcn2

, n = 0 · · ·N−1).
Recall that α is hierarchically sparse due to Lemma 1. Its
sparsity support is assumed to be unknown to the receiver.

B. Algorithms for compressed sensing of DS-LTV channels
The hierarchical hard thresholding pursuit (HiHTP) ap-

proach has been suggested in the literature [5] for solving
hierarchically-sparse recovery problems such as Problem (8)
for which it gives Algorithm 1. HiHTP is a modification of the

1We show in Appendix B that the recovery results we prove hold even if
we reduce the cardinality of P to Np (2|c1|N(L− 1) + 1) + 2Q e.g., by
allowing partial overlapping between neighbouring pilot guard intervals.

Algorithm 1 HiHTP for AFDM based compressed sensing
1: Input: Mp, yp, maximum number of iterations kmax, sd,

sD
2: α̂(0) = 0, k = 0
3: repeat
4: Ω(k+1) = Lsd,sD

(
α(k) +MH

p

(
yp −Mpα

(k)
))

5: α(k+1) = argmin
z∈CL(2Q+1)

{
∥yp −Mpz∥ , sup (z) ⊂ Ω(k+1)

}
6: k = k + 1
7: until k = kmax or Ω(k+1) = Ω(k) (whichever earlier)
8: Output: (sd, sD)-sparse α̂(k).

classical hard thresholding pursuit (HTP) [11] by replacing the
thresholding operator employed at each iteration of HTP with
a hierarchically sparse version Lsd,sD . To compute Lsd,sD(x)
for a vector x ∈ CL(2Q+1) first a sD-sparse approximation is
applied to each one of the L blocks of x by keeping in each of
them the largest sD entries while setting the remaining ones to
zero. A sd-sparse approximation is next applied to the result
by identifying the sd blocks with the largest l2-norm.

C. Analyzing AFDM compressed sensing of DS-LTV channels

To guarantee the convergence of Algorithm 1 and the
recovery of α, the following technical assumption is needed.

Assumption 2. Random variables {I(l1)q }q=−Q···Q are inde-
pendent from {I(l2)q }q=−Q···Q for any l1 ̸= l2.

Theorem 1 (HiRIP for AFDM based measurements). Assume
|c1| = P

2N and P is set as the smallest integer satisfying
(L− 1)P +2Q+1 ≥ sdsD. Then under Assumptions 1 and 2
and for sufficiently large L, Q, sufficiently small δ, and Np >

O
(

1
δ2 log

2 1
δ log

log(LP )
δ log(LP ) log Q

P

)
, the HiRIP constant

δsd,sD of matrix Mp satisfies δsd,sD ≤ δ with probability 1−
e−Ω(log (2⌈Q

P ⌉+1) log 1
δ ).

When P = 2Q+1 AFDM achieves full diversity [8] and the
measurements are non-compressive, while P = 1 is the most
compressive. By setting P as in the theorem between these
two extremes, each pilot instance gives in its (L − 1)P +
2Q + 1-long guard interval a number of measurements close
with high probability to the number sdsD of unknowns. Of
course, a number Np > 1 of pilot instances is still required as
the sparsity support needs to be estimated. But, asymptotically,
this number has only a logarithmic growth.

Proof. The outlines of the proof is given in Appendix B.

Corollary 1 (Recovery guarantee for AFDM based measure-
ments). The sequence α̂(k) defined by Algorithm 1 satisfies

∥α̂(k) −α∥ ≤ ρk∥α(0) −α∥+ τ ∥wp∥ (9)

where ρ < 1 and τ are constants defined in [5, Theorem 1].

Proof. Thanks to Theorem 1, matrix Mp with large-enough
L,Q,Np has a HiRIP constant that satisfies δ3sd,2sD < 1√

3
.

The conditions of [5, Theorem 1] are thus satisfied and the
corollary follows from that theorem.
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We next explain how the value of Np dictated by Theorem 1
translates into sub-Nyquist sampling rates for radar receivers.

VI. APPLICATION TO SUB-NYQUIST RADAR

We now consider the case where the AFDM signal is
destined for a sensing receiver either co-located with the
transmitter (the mono-static setting) or in a remote device
(the bi-static setting). In any of these settings, the non-zero
complex gains αl,q in (4) will represent a point target with a
delay l (related to the to-be-estimated range) and a Doppler
frequency shift q (related to the to-be-estimated velocity).

Instead of applying DAFT to the received AFDM sig-
nal after sampling as in basic AFDM operation [8] (which
would require a sampling rate at least equal to the signal
bandwidth), an alternative consists in first de-chirping the
received signal in the analog domain with a continuous-time
version [7] of a DAFT chirp carrier e.g., of the 0-th chirp(
eı2π(c20

2+ 1
N 0n+c1n

2)
)
n

. The result is a multi-tone signal (as
shown in Fig. 3 in the case of Np = 1 and P = 2) with
discontinuities due to the frequency wrapping characterizing
AFDM chirp carriers. In this figure, the de-chirped signal
occupies two disjoint frequency bands that get merged into
one (without discontinuities) thanks to spectrum folding after
sampling at rate fs = (L−1)P+1

T . In the general case of
Np ≥ 1 pilots, if we restrict the total subset P of pilot guard
indexes to be an interval, then sampling after de-chirping can
be done at rate fs =

Np((L−1)P+1)
T to yield the vector yp

used for target estimation. In most practical configurations
Np((L−1)P+1)

T ≪ N
T = 1

∆t , and hence the sampling rate
needed for AFDM sensing is significantly smaller than what
is needed in sensing based on OFDM or OTFS waveforms.

VII. NUMERICAL RESULTS

AFDM sparse recovery performance is now compared to
that of OFDM and OTFS. For OFDM, transmission is orga-
nized in N -long frames, each constructed from Nofdm,symb ≈
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Fig. 4. MSE and pilot overhead for N = 4096, L = 30, Q = 7, pd = 0.2,
Nofdm,symb = 16, Notfs = 16, Motfs = 256. Overhead: Np,tdNp,fd +
(Nofdm,symb − 1)(L − 1) for OFDM, min(4Q + 1, Notfs)min(2L −
1,Motfs) for OTFS, Np ((L− 1)P + 1) + (L− 1)P + 4Q for AFDM.

2Q + 1 OFDM symbols each of which costing L − 1 in CP
overhead. Within each frame, Np,fd subcarriers within Np,td

OFDM symbols are set as pilots [9]. As for OTFS, subcarriers
are in the delay-Doppler domain forming a Motfs × Notfs

grid (with MotfsNotfs = N ). OTFS with orthogonal data-pilot
resources [12] requires at least Np,otfs = 1 pilot symbols with
min(4Q+ 1, Notfs)min(2L− 1,Motfs) guard samples.

We used 100 realizations of channels having a Type-1
delay-Doppler sparsity with pd = 0.2, pD ∈ {0.2, 0.4} and
N = 4096, L = 30, Q = 7 (corresponding to a 30 MHz
transmission at a 70 GHz carrier frequency, a maximum
target moving speed of 396 km/h and a maximum target
range of 300 meters). For both AFDM and OFDM, sparse
recovery of α is done using HiHTP (Algorithm 1). For OTFS,
since sensing is done without compression, non-compressive
estimation algorithms can be used [8]. For each waveform,
the number of pilots was set in such a way that the mean
squared error MSE ≜ E[∥α̂−α∥2] is approximately 10−4

at SNR = 20 dB. Fig. 4 shows an advantage of AFDM in
terms of pilot overhead i.e., the number of samples in each
frame needed as pilots and guards to achieve the target MSE
performance. However, the main focus in this paper is the
gain that can be achieved in terms of sampling rate reduction
when AFDM is employed for sub-Nyquist sensing. This gain
is illustrated (for the same setting as Fig. 4) by Table I.

TABLE I
MINIMAL SAMPLING RATE AT SENSING RECEIVER

Waveform OFDM OTFS AFDM
Sampling rate
fs (MHz) 30 = BW 30 = BW 3.45 =

Np((L−1)P+1)

T

VIII. CONCLUSIONS

The advantage of using AFDM instead of measurement
matrices based on other waveforms for sub-Nyquist sensing
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to recover doubly-sparse delay-Doppler profiles has been
rigorously established by linking delay-Doppler sparsity to the
paradigm of hierarchically-sparse recovery. Future work will
address the problem without any on-grid approximation.

APPENDIX A
PROOF OF LEMMA 1

Let Sd ≜
∑L−1

l=0 Il be the number of active delay taps. From
Definition 3 and Assumption 1, Sd ∼ B (L, pd). applying the
Chernoff’s bound to Sd evaluated at sd = (1 + ϵ)Lpd (with
an ϵ > 0 that can be set as small as needed) gives

P [Sd > sd] ≤
(
pd
sd
L

)sd (1− pd
1− sd

L

)L−sd

= e−Ω(Lpd). (10)

As for SD,l, since Assumption 1 upper-bounds its CCDF by
that of a B (2Q+ 1, pD) distribution, applying the Chernoff’s
bound to the latter evaluated at sD = (1 + ϵ)(2Q + 1)pD
similarly gives joint sparsity of {I(l)q }l=0···L−1 in the sense

P [∃l, Il = 1, SD,l > sD] = e−Ω((2Q+1)pD). (11)

Combining (10) and (11) completes the proof of the lemma.

APPENDIX B
OUTLINES OF THE PROOF OF THEOREM 1

First, define Dl ≜
{
(l̃, q)s.t.(q + P l̃)(L−1)P+1 = l

}
as the

set of delay-Doppler grid points that potentially contribute
to the pilot sample received at DAFT domain index l ∈
J0..(L− 1)P K (Fig. 5). Next, define αDl

≜ [αl,q](l,q)∈Dl
and

α̃ ≜
[
αT

D0
· · · αT

D(L−1)P

]T
. The entries of α̃ are just a

permutation of the entries of α and estimating them directly
gives an estimate of the others. Next, it can be shown that when
we set P as in the theorem and ϵ > 0 as small as needed then
α̃ is (s̃d, s̃D)-hierarchically sparse with high probability

s̃d = (L− 1)P + 1, s̃D = (1 + ϵ) log(LP ) . (12)

Indeed, the first level (of size (L − 1)P + 1) of α̃ is sensed
without compression with a number of measurements equal to
(L−1)P +1 while s̃D can be determined thanks to Definition
3 and Assumptions 1 and 2 and applying the same approach
of the proof of Lemma 1 to S̃D,l ≜

∑
(l̃,q)∈Dl

Il̃,q.
Now, we can write the signal model of sensing α̃ as

ỹp = M̃pα̃+ w̃p, (13)

where ỹp =
[
ỹT
p,0 · · · ỹT

p,(L−1)P

]T
. For each l, ỹp,l is a

Np × 1 vector composed of the pilot samples received at the
l-th DAFT domain position in each of the Np pilot instances.
Note that by this definition ỹp is obtained by permuting yp in
(8) in accordance with the permutation that gives α̃ from α.
Next, we prove that M̃p has the following Kronecker structure

M̃p = I(L−1)P+1 ⊗ M̃D, (14)

with M̃D = diag(p1 · · · pNp
)F2⌈Q

P ⌉+1,pΨ, F2⌈Q
P ⌉+1,p is a

Np×
(
2⌈Q

P ⌉+ 1
)

partial Fourier measurement matrix and Ψ

is a diagonal matrix with unit-modulus entries. We can thus use
[13, Theorem 4.5] pertaining to subsampled Fourier matrices
to get that for sufficiently large L, Q, sufficiently small δ, and

Np > O

(
1

δ2
log2

1

δ
log

log(LP )

δ
log(LP ) log

Q

P

)
(15)

the RIP constant δs̃D of M̃D satisfies δs̃D ≤ δ with probability
1 − e−Ω(log Q

P log 1
δ ). The RIP of I(L−1)P+1 trivially satisfies

δs̃d = 0. As for the HiRIP of M̃p, we can apply [5, Theorem
4] to (14) thanks to its Kronecker structure to get

δsd,sD ≤ δs̃d + δs̃D + δs̃dδs̃D ≤ δ (16)

if N and δ are as in (15). This completes the proof.
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