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AbstractÐIn this paper, we explore a distributed setting, where
a user seeks to compute a linearly-separable Boolean function of
degree 𝑀 from 𝑁 servers, each with a cache size 𝑀 . Exploiting
the fundamental concepts of sensitivity and inŕuences of Boolean
functions, we devise a novel approach to capture the interplay be-
tween dataset placement across servers and server transmissions
and to determine the optimal solution for dataset placement that
minimizes the communication cost. In particular, we showcase the

achievability of the minimum average joint sensitivity, 𝑁
2𝑀−1

, as a

measure for the communication cost.
Index TermsÐBoolean function analysis, sensitivity, inŕuence,

distributed computing, placement-transmission tradeoffs.

I. Introduction

Over the past few decades, technological advancements
have signiőcantly increased the demand for high-performance
distributed computing to divide a computationally heavy task
into multiple subtasks with lower computation load over work-
ers across a network, e.g., machine learning algorithms over
distributed servers [1], and cloud computing platforms [2].
Even though there exist heuristic approaches to the problem of
distributed computing in the literature, such as MapReduce [3],
managing the ever-increasing demands requires a deep under-
standing of distributed placement, compression, and transmis-
sion of datasets towards realizing various computations, which
is our key focus in this paper.

A. Related Work

We őrst review functional compression literature. We then
provide the existing algorithms for distributed placement of
datasets to achieve various computation tasks.

a) From source compression to functional compression:

While the fundamental limits for the problem of data com-
pression, either centralized [4] or distributed [5], has been
explored, the general problem of compression for computing, or
functional compression, requires different tools that can exploit
the structure of the computation task. To that end, Körner
introduced the notion of graph entropy for distinguishing
source symbols that produce different function outcomes [6],
[7], and the concept of graph coloring was later used in various
distributed functional compression settings, including but not
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limited to [8]ś[10]. However, this technique may not apply to
general functions. Other works, e.g., [11], [12], to exploit the
characteristics of functions, devised structured coding schemes,
which require different encoding functions for different tasks
and hence may not be practical.

Following the coded distributed computing scheme in
[13], several works investigated the storage-computation-
communication tradeoffs, e.g., for the class of linearly-
separable functions, using cyclic placement [14], or with linear
coding for optimizing placement and transmissions [15], using
placement delivery arrays [16], and tessellations [17].

b) The role of placement in distributed computation:

The most common placement of datasets across servers in
distributed setting’s literature is the łcyclic placementž scheme
on datasets, e.g., as in [14]. The placement on distributed
servers is conducted in a cyclic manner, in the amount of some
circular shifts between two consecutive servers. As a result of
cyclic placement, any subset of servers covers the set of all
datasets to compute the requested functions from the user.

While the main focus in the related literature is on encoding,
transmission, and decoding phases with a given assignment
of data, the placement conőguration of datasets across servers
could signiőcantly affect the communication cost [15], [17].

B. Motivation and Contributions

Motivated by the impact of dataset placement on transmis-
sion in distributed computing systems [15], [17], we utilize
the concept of sensitivity and inŕuence of Boolean functions
[18], [19] to designate an optimal placement conőguration that
achieves the minimum communication cost. Speciőcally, we
focus on the linearly-separable Boolean functions.

In this paper, we present a novel distributed computing
approach that involves a master node, a set of distributed
servers, and a user demanding the error-free computation
of a linearly-separable Boolean function. The master node
distributes datasets across servers, where each server then per-
forms subcomputations of datasets. Our approach captures the
joint inŕuences of subsets of distributed datasets in computing
the user demand for any given number of servers with identical
cache sizes. This enables us to show the fundamental inter-
play between the placement and transmission for distributed
computation of linearly-separable Boolean functions, where the
function structure reveals an optimal placement conőguration.

C. Organization

The rest of the paper is organized as follows. In Section II,
we present the proposed scheme for distributed computing of a



Boolean function, and the relation between dataset placement
and transmissions. Next, in Section III, exploiting the notions of
sensitivity and inŕuences of Boolean functions given placement
conőgurations, we propose a novel approach for analyzing
the communication cost for distributed computing of linearly
separable Boolean functions. Finally, in Section IV, we discuss
potential future directions toward extending the inŕuence-based
concept to a general class of functions.

Notation. The notation F
𝐿
2

represents the binary őeld of
length 𝐿, where F2 = {0,1}. We use square brackets to represent
a set of integers, where [𝐾] ≜ {1,2, . . . , 𝐾}, given 𝐾 ∈ Z

+, and
curly brackets to denote a set of subsets, e.g., {S𝑛}, where S𝑛
is a subset of datasets. For a random variable 𝑋 , E[𝑋] is its
expected value. We denote by W = (𝑊1, . . . ,𝑊𝐾 ) the vector of
all datasets. The basis vector notation 𝑒𝑘 ≜ (0, . . . ,0,1,0, . . . ,0)

represents a binary vector with cardinality 𝐾 such that 𝑒𝑘 (𝑘) =
1 and 𝑒𝑘 (𝑙) = 0, ∀ 𝑙 ≠ 𝑘 . The notations ⊕ and

⊕

indicate
the modulo two addition and the summation symbol in F2,
respectively. Hence, w ⊕ 𝑒𝑘 represents w with the 𝑘 𝑡ℎ entry
ŕipped. We denote the indicator function by 1{.} .

II. System Model

We consider a distributed computing setup consisting of a
master node, a set of distributed servers, and a user. In this
setting, there are 𝐾 independent and identically distributed
(i.i.d.) datasets, where each dataset 𝑘 ∈ [𝐾] is a Bernoulli
distributed random variable, denoted by 𝑊𝑘 ∼ Bern( 1

2
). The

master node assigns (possibly not disjoint) subsets of datasets
𝑁 servers indexed by [𝑁], where each server has an identical
cache size that allows storing up to 𝑀 datasets. Finally, the
user seeks to compute a Boolean function1 𝑓 : F

𝐾
2
−→ F2 of

the input vector of all 𝐾 datasets, i.e., W = (𝑊1,𝑊2, . . . ,𝑊𝑘).
In this paper, we use the below representation for a Boolean

function in general polynomial form [19]:

𝑓 (W) =
⊕

P⊆[𝐾 ]

𝑐P

∏

𝑘∈P

𝑊𝑘 (1)

for some subsets P of 𝐾 datasets and coefficients 𝑐P ∈ F2.

A. Phases of Distributed Computing

In this setting, we have three phases for distributed comput-
ing of 𝑓 (W) given the input vector W, as described next.

a) Dataset Placement: In this phase, the master node will
assign a subset of datasets to each server node without coding
across different datasets, known as uncoded placement in the
literature, see e.g., [20]. In particular, given a cache size of
𝑀 for each server, the master node will assign subsets of 𝐾
datasets to the servers according to a placement function 𝜌𝑛,
𝑛 ∈ [𝑁] which is described as

𝜌𝑛 : F
𝐾
2
−→ F

𝑀
2
, ∀𝑛 ∈ [𝑁] , (2)

where the assigned subset to the 𝑛𝑡ℎ server is speciőed as

𝑆𝑛 = 𝜌𝑛 (W) ⊆ {W} , |𝑆𝑛 | = 𝑀 , ∀𝑛 ∈ [𝑁] . (3)

In other words, the placement phase assigns subsets with a
cardinality 𝑀 of possibly overlapping datasets to the servers.

1A function 𝑓 is called Boolean if it only accepts binary values as both
domain and range, i.e., 0 and 1 [19].
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Fig. 1: A generic distributed computing system model.

We also denote the set of the assigned subsets, i.e., placement
conőguration by S = {𝑆𝑛 | 𝑛 ∈ [𝑁]}.

b) Encoding and Transmissions: Given the subsets 𝑆𝑛, 𝑛 ∈
[𝑁] from the placement phase, we next detail the encoding
phase. Given the subset 𝑆𝑛 and the computation task 𝑓 (W),
server 𝑛 ∈ [𝑁] will conduct subcomputations to determine
its transmitted information. Here we note that the servers
know the task 𝑓 (W) a priori and design the subcomputations
accordingly. We model the encoding and transmission process
at server 𝑛 ∈ [𝑁] by the function

𝐸
𝑓
𝑛 : F

𝑀
2

−→ F
|𝑍𝑛 |

2
, (4)

where we denote the set of computed data by server 𝑛 by

𝑍𝑛 = 𝐸
𝑓
𝑛 (𝑆𝑛) = {𝑍𝑛𝑖 | 𝑖 ∈ [|𝑍𝑛 |]} , 𝑛 ∈ [𝑁] (5)

which is then transmitted to the user. We also denote by 𝑍 =

{𝑍𝑛 | 𝑛 ∈ [𝑁]} the set of all transmitted data by all servers
to measure the total number of transmissions. The user, as
we describe next, will aggregate the transmissions 𝑍 from all
servers to determine the output of 𝑓 (W).

c) Decoding: We assume that for any given placement
conőguration and given input vector W, once the user receives
the subcomputations from each server, it will be able to
calculate the outcome of the Boolean function, i.e., 𝑓 (W),
represented by the general polynomial form in (1). The de-
coding procedure should be designed based on the placement
scheme and the encoding process. The decoding function for
the recovery of the function by the user is speciőed as

𝐷 : F
|𝑍 |

2
−→ F2 . (6)

We assume that the user can recover the function without
any error. Hence, for error-free recovery of the computation
task, the decoding procedure must satisfy 𝐷 (𝑍) = 𝑓 .

We illustrate the system model for our distributed computing
scheme in Figure 1. In this work, we focus on linearly-separable
Boolean function of degree 𝑑 as

𝑓 (W) =

𝑁
⊕

𝑛=1

𝑓𝑛 , 𝑓𝑛 =
∏

𝑘∈KP𝑛,𝑑

𝑊𝑘 , (7)



Assigned subsets Transmitted data

S
(1)
1

𝑍
(1)
11

=𝑊1𝑊4, 𝑍 (1)
12

=𝑊3𝑊6, 𝑍 (1)
13

=𝑊2

S
(1)
2

𝑍
(1)
21

=𝑊5𝑊8𝑊7, 𝑍 (1)
22

=𝑊7, 𝑍 (1)
23

=𝑊9

S
(1)
3

No transmissions

TABLE I: Server-transmission details for S (1) .

where KP,𝑑 is a subset P with cardinality 𝑑 of 𝐾 datasets:

KP,𝑑 ≜ {P ⊆ [𝐾] | |P | = 𝑑} , (8)

where 𝑑 = 𝑀 . We also assume that 𝐾 = 𝑁𝑀 , implying 𝑁

servers each with cache size 𝑀 .
We refer to our system model as a (𝐾,𝑁,𝑀,S, 𝑓 ) distributed

computing scheme. We next deőne an achievable scheme for
error-free distributed computing of 𝑓 at the user.

Deőnition 1. (An achievable distributed computing

scheme.) A (𝐾,𝑁,𝑀,S, 𝑓 ) distributed computing scheme is

called achievable if the function 𝑓 can be recovered in an error-

free manner by the user with the given cache conőguration,

i.e., 𝐷 (𝑍) = 𝑓 , where 𝑍 is possibly a nonlinear combination

of the encoded data 𝑍𝑛 = 𝐸
𝑓
𝑛 (S𝑛), 𝑛 ∈ [𝑁], which is placement-

dependent and function-aware.

Exploiting the deőnition of 𝑍 = {𝑍𝑛 | 𝑛 ∈ [𝑁]}, we denote
the total number of transmissions by all servers as

𝑇 (S)
≜ |𝑍 | =

𝑁
∑︁

𝑛=1

|𝑍𝑛 | . (9)

We next consider an example to demonstrate the interplay
between the placement conőguration and the value of 𝑇 (S)

for the given (𝐾,𝑁,𝑀,S, 𝑓 ) distributed computing scheme.
We will then show the connection between our model for
communication cost and 𝑇 (S) in Section III.

B. The Interplay between Placement and Transmission

In this subsection, we őrst present an example, with two dif-
ferent placement conőgurations, namely S (1) which is cyclic,
and S (2) , for computing a Boolean function. We next contrast
the total number of transmissions needed in each conőguration
to demonstrate the role of placement and transmissions.

Example 1. Consider a distributed computing system with 9

datasets, 3 servers, each with cache size 6, for evaluating

𝑓 (W) =𝑊1𝑊4𝑊7 ⊕𝑊2𝑊5𝑊8𝑊7 ⊕𝑊3𝑊6𝑊9 (10)

with different placement conőgurations as follows.

(i) Conőguration S (1)
: The dataset assignment is

cyclic such that S
(1)

1
= {𝑊1,𝑊2,𝑊3,𝑊4,𝑊5,𝑊6},

S
(1)

2
= {𝑊4,𝑊5,𝑊6,𝑊7,𝑊8,𝑊9}, and S

(1)

3
=

{𝑊1,𝑊2,𝑊3,𝑊7,𝑊8,𝑊9}, satisfying the cache size

constraint with equality. To successfully compute (10)

in this conőguration, it suffices that the servers need to

compute and transmit data as shown in Table I. Hence,

this scenario requires 𝑇S (1)
= 6 transmissions in total.

(ii) Conőguration S (2)
: The dataset assignment

satisőes S
(2)

1
= {𝑊1,𝑊2,𝑊4,𝑊5,𝑊6,𝑊7},

S
(2)

2
= {𝑊3,𝑊4,𝑊5,𝑊6,𝑊8,𝑊9}, and S

(2)

3
=

Assigned subsets Transmitted data

S
(2)
1

𝑍
(2)
11

=𝑊1𝑊4𝑊7, 𝑍 (2)
12

=𝑊2𝑊5𝑊7

S
(2)
2

𝑍
(2)
21

=𝑊3𝑊6𝑊9, 𝑍 (2)
22

=𝑊8

S
(2)
3

No transmissions

TABLE II: Server-transmission details for S (2) .

{𝑊1,𝑊2,𝑊3,𝑊7,𝑊8,𝑊9}. To successfully compute

(10) in this setting, without the presence of stragglers, a

viable transmission scheme is shown in Table II. Thanks

to a better arrangement of the datasets that is sensitive

to the function in S (2) versus S (1) , the total number of

transmissions is 𝑇 (S (2) ) = 4 < 𝑇 (S (1) ) = 6.

We infer from Example 1 how a cleverly conducted place-
ment phase in distributed computing settings could dramati-
cally reduce the total number of transmissions needed for error-
free recovery of the Boolean function at the user.

To evaluate the communication cost of the (𝐾,𝑁,𝑀,S, 𝑓 )

distributed computing scheme, we will next detail a novel
approach that relies on the average joint sensitivity of the
computation task abstracted by the Boolean function.

III. Main Results

In this section, to determine the role of the placement
conőguration on the communication cost, we őrst provide a
primer on the sensitivity of a Boolean function on its input,
and the inŕuence of a set of input variables on the outcome of
the function. We then present our main results.

A. Joint Sensitivity and Inŕuences

Building on the classical notions of sensitivity, inŕuence,
and average sensitivity tailored for capturing the sensitivity
of a Boolean function by modifying one dataset at each time
[18], [19], we will exploit the joint behavior of datasets across
servers, as in [21]. A Boolean function 𝑓 (W) depends on its
𝑘 𝑡ℎ input variable if there exists at least one W ∈ F

𝐾
2

such that
𝑓 (W⊕ 𝑒𝑘) ≠ 𝑓 (W). To that end, we next deőne the sensitivity
of 𝑓 (W) on a set of 𝑊𝑘’s.

Deőnition 2. (Joint sensitivity.) The joint sensitivity of 𝑓 (W)

to the set S of subsets of datasets is deőned as

SenS ( 𝑓 ,W) =

|S |
∑︁

𝑛=1

SenS𝑛
( 𝑓 ,W) , (11)

where 𝑒S𝑛
≜

⊕

{𝑘 |𝑤𝑘 ∈S𝑛 }

𝑒𝑘 describes the multi-dataset ŕipped

vector, the measure SenS𝑛
( 𝑓 ,W) = 1 𝑓 (W⊕𝑒S𝑛 )≠ 𝑓 (W) captures

the sensitivity of 𝑓 (W) on input W with the jointly ŕipped

entry datasets with indices 𝑘 such that 𝑊𝑘 ∈ S𝑛 ⊆ S.

Deőnition 3. (Joint inŕuence.) The joint inŕuence of the

datasets of S𝑛 on the function 𝑓 is deőned as

InfS𝑛
( 𝑓 ) = P[ 𝑓 (W⊕ 𝑒S𝑛

) ≠ 𝑓 (W)] = EW [SenS𝑛
( 𝑓 ,W)] .

Deőnitions 2-3 allow us to introduce our next key metric.

Deőnition 4. (Average joint sensitivity.) The average joint

sensitivity of 𝑓 (W) to the set S = {𝑆𝑛 |𝑛 ∈ [𝑁]} of all possible



datasets speciőed by 𝜌𝑛 given a cache size constraint 𝑀 is

given as follows:

asS ( 𝑓 ) = EW [SenS ( 𝑓 ,W)] =

|S |
∑︁

𝑛=1

InfS𝑛
( 𝑓 ) . (12)

Utilizing Deőnitions 2-4, we can next present our approach
for formulating an optimal dataset placement conőguration
from a communication cost perspective.

B. The Communication-Optimal Placement Conőguration

To evaluate the tradeoff between placement and communica-
tion cost for computing a Boolean function 𝑓 , we őrst present
a Lemma that focuses on each product subfunction 𝑓𝑛 given
in (7) to obtain the joint inŕuence of datasets on 𝑓𝑛.

Lemma 1. (Joint inŕuence on a product subfunction.) The

joint inŕuence of multiple datasets in a subset S𝑛 with an

arbitrary size from a product subfunction 𝑓𝑛 (W) =
∏

𝑘∈KP,𝑑

𝑊𝑘

of degree 𝑑 equals the inŕuence of each dataset on 𝑓𝑛, i.e.,

InfS𝑛
( 𝑓 ) = Inf𝑘 ( 𝑓 ) =

1

2𝑑−1
. (13)

Proof. See Appendix A. □

Towards determining the joint inŕuence of datasets on 𝑓

in (7), we next present another Lemma that contrasts the
joint inŕuence of datasets for the summation of two product
subfunctions, namely 𝑓𝑛 and 𝑓𝑛′ where 𝑛′ ≠ 𝑛, for different
dataset placement conőgurations. To that end, we denote the
set of variables included in the subfunction 𝑓𝑛 as

I𝑓𝑛 ≜ {𝑊𝑘 | 𝑓𝑛 =
∏

𝑘∈KP𝑛,𝑑

𝑊𝑘}, ∀𝑛 ∈ [𝑁] . (14)

Lemma 2. (Increase in joint inŕuence due to summation.)

Let 𝑓 = 𝑓𝑛⊕ 𝑓𝑛′ , where 𝑛 ≠ 𝑛′. Consider two different subsets of

datasets denoted by S1 = {𝑊𝑘 |𝑊𝑘 ∈ I𝑓𝑛 } and S′
1
= {𝑊𝑘 |𝑊𝑘 ∈

I𝑓𝑛 ∪I𝑓𝑛′ }. We then have:

InfS′
1
( 𝑓 ) ≥ InfS1

( 𝑓 ) . (15)

Proof. See Appendix B. □

From Lemma 2, the subsets with the lowest joint inŕuence
include datasets from the same 𝑓𝑛. We next derive a lower
bound on the average joint sensitivity for the proposed setting
using Lemmas 1-2, and present the communication-optimal
placement conőguration in Theorem 1.

Theorem 1. (A communication-optimal placement con-

őguration.) Given a (𝐾,𝑁,𝑀,S, 𝑓 ) distributed computing

scheme, the average joint sensitivity and the total number of

transmissions are lower bounded by

asS ( 𝑓 ) ≥ asS∗ ( 𝑓 ) =
𝑁

2𝑀−1
, 𝑇 (S) ≥ 𝑇 (S∗ )

= 𝑁 , (16)

respectively, corresponding to S∗ = {S∗
𝑛 | 𝑛 ∈ [𝑁]}, where S∗

𝑛 =

{𝑊𝑘 |𝑊𝑘 ∈ I𝑓𝑛 }.

Proof. See Appendix C. □

Corollary 1. The number of transmissions by server 𝑛 is

a monotonically increasing function in terms of the joint

inŕuence of datasets in each subset on Boolean function 𝑓 ,

i.e., |𝑍𝑛 | ≤ |𝑍𝑛′ | if and only if InfS𝑛
( 𝑓 ) ≤ InfS𝑛′

( 𝑓 ), ∀𝑛 ≠ 𝑛′.

From Corollary 1, it is easy to observe that 𝑇 (S) is a mono-
tonically increasing function of the average joint sensitivity,
i.e., 𝑇 (S) ≤ 𝑇 (S′ ) if and only if asS ( 𝑓 ) ≤ asS′ ( 𝑓 ).

IV. Conclusions

In this work, using the concept of sensitivity and inŕuence,
we introduced a novel approach for determining the interplay
between communication cost and placement conőguration for
distributed computing of Boolean functions. In particular, we
speciőed the optimal placement conőguration from a communi-
cation cost perspective for a class of linearly-separable Boolean
functions. Our approach is based on grouping the datasets to
minimize the summation of their joint inŕuences. As a future
direction, we will extend our approach to nonlinear Boolean
functions of any degree.

Appendix

A. Proof of Lemma 1

Using Deőnition 3 and its probabilistic nature, we have:

InfS𝑛
( 𝑓 ) = P

[

𝑓 (W⊕ 𝑒S𝑛
) ≠ 𝑓 (W)

]

(∗)
=

2

2𝑑
=

1

2𝑑−1
,

where (∗) holds since only two sequences 11 . . .1 and 00 . . .0

out of 2
𝑑 possible sequences are feasible. Similarly, for the

individual variable 𝑊𝑘 , the inŕuence is calculated as

Inf𝑘 ( 𝑓 ) = P

[
∏

𝑖∈KP\𝑘,𝑑−1

𝑊𝑖 ≠ 0

]

=

(

1

2

)𝑑−1

, (17)

where the last step follows when all the 𝑑 − 1 datasets 𝑊𝑘 ∼

Bern( 1

2
), 𝑘 ∈ KP\𝑘,𝑑−1 are equal to 1. Therefore, (13) holds.

B. Proof of Lemma 2

According to Lemma 1, InfS1
( 𝑓 ) = 1

2𝑑−1
. To őnd the joint

inŕuence of subset S′
1

on 𝑓 = 𝑓𝑛 ⊕ 𝑓𝑛′ , we őrst consider only
one dataset difference between S1 and S′

1
, i.e., we assume S′

1
=

{𝑊𝑘 |𝑊𝑘 ∈ I𝑓𝑛\𝑊𝑛 ∪𝑊𝑛′ }. We then decompose the respective
product subfunctions as

𝑓 𝑗 =
∏

𝑘∈KP 𝑗 \ 𝑗,𝑑−1

𝑊𝑘𝑊 𝑗 , 𝑗 ∈ {𝑛, 𝑛′} .

Using Deőnition 3, we can rewrite InfS′
1
( 𝑓 ) as

InfS′
1
( 𝑓 ) = P[

∏

𝑘∈KP𝑛\𝑛,𝑑−1

(𝑊𝑘 ⊕ 1)𝑊𝑛

⊕
∏

𝑘∈KP𝑛′ \𝑛
′ ,𝑑−1

𝑊𝑘 (𝑊𝑛′ ⊕ 1)

≠

∏

𝑘∈KP𝑛\𝑛,𝑑−1

𝑊𝑘𝑊𝑛 ⊕
∏

𝑘∈KP𝑛′ \𝑛
′ ,𝑑−1

𝑊𝑘𝑊𝑛′ ]

= P

[
𝑑−2
⊕

𝑖=0

∏

𝑘∈KP𝑛\𝑛,𝑖

𝑊𝑘𝑊𝑛 ⊕
∏

𝑘∈KP𝑛′ \𝑛
′ ,𝑑−1

𝑊𝑘 ≠ 0

]

.

(18)



Considering Δ 𝑓 ≜
⊕𝑑−2

𝑖=0

∏

𝑘∈KP𝑛\𝑛,𝑖

𝑊𝑘𝑊𝑛 ⊕
∏

𝑘∈KP𝑛′ \𝑛
′ ,𝑑−1

𝑊𝑘 , the

law of total probability, and i.i.d. datasets:

P[Δ 𝑓 = 1] =
1

2
(P[Δ 𝑓 = 1 |𝑊𝑛 = 1]

+P[Δ 𝑓 = 1 |𝑊𝑛 = 0]) ,

where using Lemma 1, we obtain:

P[Δ 𝑓 = 1 |𝑊𝑛 = 0] = P[
∏

𝑘∈KP𝑛′ \𝑛
′ ,𝑑−1

𝑊𝑘 = 1] =
(

1

2

)𝑑−1

,

P[Δ 𝑓 = 1 |𝑊𝑛 = 1]

= P

[
𝑑−2
⊕

𝑖=0

∏

𝑘∈KP𝑛\𝑛,𝑖

𝑊𝑘 ⊕
∏

𝑘∈KP𝑛′ \𝑛
′ ,𝑑−1

𝑊𝑘 = 1

]

= P

[
𝑑−2
⊕

𝑖=0

∏

𝑘∈KP𝑛\𝑛,𝑖

𝑊𝑘 = 0,
∏

𝑘∈KP𝑛′ \𝑛
′ ,𝑑−1

𝑊𝑘 = 1

]

+P
[
𝑑−2
⊕

𝑖=0

∏

𝑘∈KP𝑛\𝑛,𝑖

𝑊𝑘 = 1,
∏

𝑘∈KP𝑛′ \𝑛
′ ,𝑑−1

𝑊𝑘 = 0

]

=

[

1−
(

1

2

)𝑑−2] (1

2

)𝑑−1

+
(

1

2

)𝑑−2 [

1−
(

1

2

)𝑑−1]

. (19)

After rearranging (19) and applying it to (18), we obtain:

InfS′
1
( 𝑓 ) = 2

(

1

2

)𝑑−1 [

1−
(

1

2

)𝑑−1]

. (20)

It is obvious that InfS′
1
( 𝑓 ) ≥ ( 1

2
)𝑑−1 = InfS1

( 𝑓 ). By induc-
tion, it follows that for any subset S′

1
with more difference than

one dataset compared to S1, (15) holds.

C. Proof of Theorem 1

We prove this theorem in two parts:
a) Achievability: For distributed computing of a linearly-

separable Boolean function 𝑓 of degree 𝑀 , there exists an
achievable scheme with a placement conőguration S∗.

According to Lemma 1, InfS∗
n
( 𝑓 ) = 1

2𝑀−1
,∀𝑛 ∈ [𝑁]. The

average joint sensitivity in this case is therefore:

asS∗ ( 𝑓 ) =

𝑁
∑︁

𝑛=1

1

2𝑀−1
=

𝑁

2𝑀−1
. (21)

According to Deőnition 1, the (𝐾,𝑁,𝑀,S∗, 𝑓 ) distributed
computing scheme is achievable since the user with cache
conőguration S∗ would be able to recover the function in an
error-free manner with only summing 𝑍∗

𝑛’s together, i.e.,

𝐷 (𝑍∗) =

𝑁
⊕

𝑛=1

𝑍∗
𝑛 =

𝑁
⊕

𝑛=1

∏

𝑘∈KP∗
𝑛,𝑀

𝑊𝑘 =

𝑁
⊕

𝑛=1

𝑓𝑛 = 𝑓 . (22)

b) Optimality (converse): Based on Lemma 2, the mini-
mum joint inŕuence happens when we group the datasets from
the same product subfunction. We then use it to show the
optimality of our proposed placement conőguration.

We then examine a placement scheme S, where we consider
similar placement as S∗ for 𝑁 − 2 servers. For simplicity, we
only swap two datasets between the two őrst servers. They will
therefore contain subsets S1 = {𝑊𝑘 |𝑊𝑘 ∈ I𝑓𝑛\𝑊𝑛 ∪𝑊𝑛′ } and
S2 = {𝑊𝑘 |𝑊𝑘 ∈ I𝑓𝑛′ \𝑊𝑛′ ∪𝑊𝑛}, respectively, i.e., we group

𝑀 − 1 datasets from I𝑓𝑛 and one variable (𝑊𝑛′ ) from I𝑓𝑛′ in
S1 and vice versa in S2. According to Lemma 1 and Lemma
2, we have:

InfS𝑛
( 𝑓 ) ≥ InfS∗

𝑛
( 𝑓 ) =

1

2𝑀−1
, ∀𝑛 = 1,2 . (23)

For other 𝑁 −2 subsets, we also have:

InfS𝑛
( 𝑓 ) = InfS∗

𝑛
( 𝑓 ) =

1

2𝑀−1
. (24)

Using Deőnition 4 and summing the joint inŕuences together
for both S and S∗ completes the proof. By induction, it follows
that for any placement conőguration S with more swapped
datasets between subsets compared to S∗, (16) holds. We also
note that the minimum value of 𝑇 (S) corresponds to S∗ and
equals to 𝑁 , i.e., the transmission of 𝑁 units of data.
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