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Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. This paper examines the role of Cell-Free (CF)
Massive MIMO (MaMIMO) in advancing wireless communica-
tion networks, particularly for beyond 5G and 6G networks.
Building on the foundational work by Ngo et al., CF MaMIMO,
with its distributed architecture, addresses the demands for high
data rates, uniform quality of service (QoS), and power efficiency.
A central challenge in CF networks is pilot contamination, arising
from the absence of traditional cellular boundaries and an excess
of user terminals (UTs) relative to pilot sequences. We introduce
an Expectation Propagation (EP)-based method for Semi-Blind
bilinear estimation in CF MaMIMO networks, providing a low-
complexity solution by utilizing the Central Limit Theorem. This
method enhances scalability and efficiency compared to existing
approaches. Additionally, we propose a shift from distributed to
decentralized EP, allowing for local information sharing among
Access Points (APs) about user signals.

I. INTRODUCTION

Cell-Free (CF) Massive MIMO (MaMIMO), an evolution of
the traditional MaMIMO systems, represents a significant
leap in the field of advanced wireless communications. First
introduced by Ngo et al. in their seminal work [1], this
innovative concept reimagines wireless networks as distributed
architectures intricately linked with a central processing unit
(CPU). As the technological world strides towards the era
of beyond 5G networks, Cell-Free MaMIMO has garnered
substantial interest from both the academic and industrial
sectors, as highlighted by Elhoushy et al. [2].
One of the unique features of Cell-Free networks is the
absence of traditional cellular boundaries, which, while ben-
eficial in many aspects, introduces a critical challenge: the
potential for a high number of user terminals (UTs) in a
given area to exceed the length of the pilot sequence. This
imbalance leads to what is known as pilot contamination, a
phenomenon that can severely impact the performance of Cell-
Free MaMIMO networks. Addressing this issue, Semi-Blind
approaches have been explored as a viable solution to mitigate
the effects of pilot contamination, as detailed in the work of
Gholami et al. [3]. In their study, the authors conceptualize
the channel as a deterministic unknown parameter and delve
into the analysis of crucial aspects of the model, such as the
Cramer-Rao bound and identifiability.
In the context of Bayesian inference, the Semi-Blind approach
is modeled as a bilinear inference problem, where the Access
Points (APs) must concurrently estimate both the channel
state information (CSI) and the user signals. Message Passing
algorithms, renowned for their efficacy in various inference
problems by leveraging the structures of probability models,
play a critical role here. Notably, one of the most potent
message passing algorithms is Expectation Propagation (EP),
proposed by Minka [4]. EP, considered a form of (loopy)
belief propagation (BP) with approximations for simplifying

the inference problem, has shown promising results. They
have been shown to have the same fixed point as the Bethe
Free Energy [5]. However, a comprehensive understanding of
EP’s convergence properties remains an area yet to be fully
explored.
Based on variable level EP (VL-EP), a centralized Bayesian
methodology has been explored by Gholami et al. [6], offering
a novel approach in the context of Cell-Free MaMIMO net-
works. A more recent development is the distributed method
proposed by Karataev et al. [7]. This approach distributes
the computational load by enabling each Access Point (AP)
to carry out part of the computation, potentially enhancing
the scalability and efficiency of the network. Approximate
Message Passing (AMP) algorithms have been introduced to
reduce the number of messages [8]. In [9], the authors further
generalized the GAMP algorithm [10] to bilinear problems.
In [11], the author proposed Decentralized GAMP (D-GAMP),
which is a decentralized method for signal recovery in linear
systems. This can be viewed as a combination of consensus
propagation [12] and AMP.

A. Main Contributions

In this article, we develop an EP-based method to tackle
the Semi-Blind estimation problem. Compared to [7], our
factorization provides a low-complexity way of estimating
channels from the pilot symbols and prior information. By
exploiting Central Limit Theory, our factorization scheme
simplifies the computation compared to [7]. However, each
AP still needs to perform matrix inversion.
Inspired by [12] and [11], we can transform the distributed EP
into a decentralized EP by sharing the information of the UT
signals locally among the AP.

II. SYSTEM MODEL

We consider a semi-blind signal model at the l-th access point
(AP),

Yl =
[
Yp,l Yd,l

]
= Hl

[
Xp Xd

]
+Vl. (1)

The received signals Yl is composed of received pilot signals
Yp,l ∈ CN×P and received data signals Yd,l ∈ CN×T .
The channels between different users are considered Gaussian
distributed and independent i.e. vec(Hl) ∼ CN (0,Ξl) where
Ξl ∈ CNK×NK is a block diagonal matrix of K blocks
Ξkl ∈ CN×N . The transmitted symbols can be decomposed
as pilot symbols Xp ∈ SK×P and data symbols Xd ∈ SK×T ,
where S is the constellation set. The elements in Xd are i.i.d..
The noise is considered as i.i.d. Gaussian distribution, and
thus, vec(Vl) ∼ CN (0, σ2

vI).



The direct MMSE estimate of Hl can be obtained by
p(Hl|Yp,l) which is equivalent to a Gaussian linear model

vec(Yp,l) = (XT
p ⊗ IN ) · vec(Hl) + vec(Vl). (2)

If there is pilot contamination, the direct MMSE approach
contains a matrix inversion of size NK ×NK.
To simplify the computation, we obtain the factorization
scheme from the following probabilistic model

p({Yp,l}, {Yd,l}, {Hl},Xd, {Vl})

=
∏
k,t

p(xd,kt)
∏
l

T∏
t1=1

p(yd,lt1 |Hl,xd,:t1)

·
P∏

t2=1

p(yp,lt2 |Hl)
∏
k

p(hlk).

(3)

By exploiting the structure of the factorization scheme, we
come up with an EP algorithm.

III. EXPECTATION PROPAGATION

Expectation Propagation is a method to approximate the fac-
tors by distributions of the desired form [13]. The projection
of a given distribution p into a target family F is [10]

proj(p) = argmin
q∈F

KLD(p∥q), (4)

where KLD(p∥q) =
∫
p(x) ln p(x)

q(x)dx is the Kullback–Leibler
divergence. With a given factorization, the update algorithm
in EP can be interpreted as message passing: [10]

µxi;Ψ(xi) =
∏
Φ̸=Ψ

µΦ;xi
(xi);

µΨ;xi(xi) =
proj(bΨ(xi))

µxi;Ψ(xi)
,

(5)

where xi represents one variable node, Ψ, Φ denote factor
nodes and bΨ(xi) is the belief of xi at node Ψ:

bΨ(xi) = µxi;Ψ(xi)

∫
Ψ(x)

∏
j ̸=i

µxj ;Ψ(xj)dxi. (6)

In (6), we use xi to denote all elements in x except the i-th
one. Although it is not necessary to normalize the messages,
the messages appearing in this paper are all normalized to 1.
For simplicity, we use similar notations in [7] and define the
factors

Ψ1,kt = pxd,kt
; Ψ2,lt = pyd,lt|Hl,xd,:t

Ψ3,lt = pyp,lt|Hl
, Ψ4,lk = phlk

.
(7)

Furthermore, we define the projection family of belief of xd,kt

to be the categorical distribution [7]. All the beliefs of hlk are
projected to Gaussian.

IV. UPDATE RULES

A. Messages from Ψ1,kt

The factor Ψ1,kt contains only one variable. The message from
Ψ1,kt to xd,kt can be computed directly since no projection is
needed

µΨ1,kt;xd,kt
(xd,kt) = p(xd,kt). (8)

B. Belief of xd,kt at Ψ2,lt

The factor Ψ2,lt is connected to ∀k,hlk, xd,kt.
According to the EP rule, the message to xd,kt is

µΨ2,lt;xd,kt
(xd,kt) =

proj[bΨ2,lt;xd,kt
(xd,kt)]

µxd,kt;Ψ2,lt
(xd,kt)

, (9)

where the belief is defined as an approximated posterior for
xd,kt:

bΨ2,lt;xd,kt
(xd,kt) ∝

∑
xd,kt

∫
p(yd,lt|

∑
i

xd,ithli)

·
∏
i

µhli;Ψ2,lt
(hli)µxd,it;Ψ2,lt

(xd,it)dHl

= µxd,kt;Ψ2,lt
(xd,kt)

∑
xd,kt

∫
p(yd,lt|xd,kthlk +

∑
i̸=k

xd,ithli)

· µhlk;Ψ2,lt
(hlk)

·
∏
i̸=k

µhli;Ψ2,lt
(hli)µxd,it;Ψ2,lt

(xd,it)dHl.

(10)

We use the notation xd,kt to denote all the elements in xd,:t

except the k-th element. The integral (and summation) in
(10) can be considered as a marginalization operation with
hypothetic distributions given by the messages. Due to the
Central Limit Theory (CLT), we approximate

∑
i̸=k xd,ithli

to a Gaussian by using
∏

i̸=k µhli;Ψ2,lt
(hli)µxd,it;Ψ2,lt

(xd,it)
as their joint distribution [10]. Therefore, (10) becomes

bΨ2,lt;xd,kt
(xd,kt) ∝ µxd,kt;Ψ2,lt

(xd,kt)

·
∫ ∫

p(yd,lt|xd,kthlk + zd,lkt)µzd,lkt
(zd,lkt)dzd,lkt

· µhlk;Ψ2,lt
(hlk)dhlk,

(11)

where µzd,lkt
(zd,lkt) = CN (zd,lkt|mzd,lkt

,Czd,lkt
) is com-

puted as

mzd,lkt
=

∑
i̸=k

mxd,it;Ψ2,lt
mhli;Ψ2,lt

Czd,lkt
=

∑
i̸=k

τxd,it;Ψ2,lt
Chli;Ψ2,lt

+ τxd,it;Ψ2,lt
mhit;Ψ2,lt

mH
hit;Ψ2,lt

+ |mxd,it;Ψ2,lt
|2Chli;Ψ2,lt

(12)

By applying the Gaussian reproduction lemma [8], and the
fact that Gaussian distribution integrates to one, the belief (11)
becomes

bΨ2,lt;xd,kt
(xd,kt) ∝ CN (0|yd,lt−mzd,lkt

−xd,ktmhlk;Ψ2,lt
,

Cv+Czd,lkt
+|xd,kt|2Chlk;Ψ2,lt

) · µxd,kt;Ψ2,lt(xd,kt).
(13)

This distribution is already a categorical distribution. There-
fore, the outbound message is

µΨ2,lt;xd,kt
(xd,kt) ∝ CN (0|yd,lt−mzd,lkt

−xd,ktmhlk;Ψ2,lt
,

Cv+Czd,lkt
+|xd,kt|2Chlk;Ψ2,lt

)
(14)



C. Belief of hlk at Ψ2,lt

For the channel variable nodes, the message to hlk is

µΨ2,lt;hlk
(hlk) =

proj[bΨ2,lt;hlk
(hlk)]

µhlk;Ψ2,lt
(hlk)

, (15)

where the belief is defined as

bΨ2,lt;hlk
(hlk) ∝

∑
xd,:t

∫
p(yd,lt|

∑
i

xd,ithli)

·
∏
i

µhli;Ψ2,lt
(hli)µxd,it;Ψ2,lt

(xd,it)dHlk

= µhlk;Ψ2,lt
(hlk)

∑
xd,:t

∫
p(yd,lt|xd,kthlk +

∑
i̸=k

xd,ithli)

· µxd,kt;Ψ2,lt
(xd,kt)

·
∏
i̸=k

µhli;Ψ2,lt
(hli)µxd,it;Ψ2,lt

(xd,it)dHlk.

(16)

We use Hlk to denote all the column vectors in Hl except the
k-th column. By using the same approach from (10) to (13),
and separating the terms that contains only xd,kt [10] [7], the
belief (16) becomes

bΨ2,lt;hlk
(hlk)

=EbΨ2,lt;xd,kt
{CN [hlk|md,lkt(xd,kt),Cd,lkt(xd,kt)]}

(17)

where the functions md,lkt(·) and Cd,lkt(·) are defined as

Cd,lkt(x) = [|x|2(Cv +Czd,lkt
)−1 +C−1

hlk;Ψ2,lt
]−1

md,lkt(x)=Cd,lkt(x)

[
|x|2(Cv+Czd,lkt

)−1yd,lt −mzd,lkt

x

+C−1
hlk;Ψ2,lt

mhlk;Ψ2,lt

]
.

(18)

Remark. We should always use the latest belief of xd,kt when
using (17). If we use an ordering such that the message to Ψ2,lt
is updated between the update of µΨ2,lt;xd,kt

and the update
of µΨ2,lt;hlk

, we should recalculate (13) before using (17).

From the belief distribution (17), we can update the approxi-
mated posterior mean mĥ2

lk
and covariance of Cĥ2

lk
by

mĥ2
lk

= EbΨ2,lt;xd,kt
[md,lkt(xd,kt)]

Cĥ2
lk

= EbΨ2,lt;xd,kt
[Cd,lkt(xd,kt)

+md,lkt(xd,kt)md,lkt(xd,kt)
H ]−mĥ2

lk
mH

ĥ2
lk

.

(19)

D. Belief of hlk at Ψ3,lt

The update of the message from Ψ3,lt to hlk is carried out as

µΨ3,lt;hlk
(hlk) =

proj[bΨ3,lt;hlk
(hlk)]

µhlk;Ψ3,lt
(hlk)

, (20)

This update operation uses the belief given by

bΨ3,lt;hlk
(hlk) ∝ µhlk;Ψ3,lt

(hlk)

·
∫

p(yp,lt|xp,kthlk +
∑
i̸=k

xp,ithli)
∏
i̸=k

µhil;Ψ3,lt
(hil)dHlk.

(21)

Similar to (11), we can view
∑

i̸=k xp,ithli as a linear
transformation of random vector hli with joint distribution∏

i̸=k µhil;Ψ3,lt
(hil) (difference is that here we don’t need

CLT). Like before, we denote the transformed random vector
as zp,lkt with distribution

µzp,lkt
(zp,lkt) = CN (zp,lkt|mzp,lkt

,Czp,lkt
), (22)

where

mzp,lkt
=

∑
i̸=k

xp,itmhil;Ψ3,lt

Czp,lkt
=

∑
i̸=k

|xp,it|2Chil;Ψ3,lt
.

(23)

By using the Gaussian reproduction lemma, we derive the
belief as

bΨ3,lt;hlk
(hlk) = CN (hlk|mĥ3

lk
,Cĥ3

lk
), (24)

where

Cĥ3
lk

= [|xp,kt|2(Cv +Czp,lkt
)−1 +C−1

hlk;Ψ3,lt
]−1

mĥ3
lk

= Cĥ3
lk

[
|xp,kt|2(Cv +Czp,lkt

)−1yp,lt −mzp,lkt

xp,kt

+C−1
hlk;Ψ3,lt

mhlk;Ψ3,lt

]
.

(25)

We observe that (25) has an identical structure as (18). The
only difference is that (25) operates within the neighborhood
of Ψ3,lt while (18) works in the neighborhood of Ψ2,lt. An
intuitive explanation is that if we consider xd,kt as a random
variable with probability one of being a known value, then the
derivation in Section IV-C degrades to steps in Section IV-D.

E. Belief of hlk at Ψ4,lk

The message from Ψ4,lk to hlk is

µΨ4,lk;hlk
(hlk) =

proj[bΨ4,lk;hlk
(hlk)]

µhlk;Ψ4,lk
(hlk)

, (26)

where the belief is defined as

bΨ4,lk;hlk
(hlk) ∝ µhlk;Ψ4,lk

(hlk)p(hlk)

= CN (hlk|mhlk;Ψ4,lk
,Chlk;Ψ4,lk

)CN (hlk|0,Ξlk).
(27)

Applying the Gaussian reproduction lemma results to

bΨ4,lk;hlk
(hlk) = CN (hlk|mĥ4

lk
,Cĥ4

lk
), (28)

where

Cĥ4
lk

= (C−1
hlk;Ψ4,lk

+Ξ−1
lk )−1

mĥ4
lk

= Cĥ4
lk
(C−1

hlk;Ψ4,lk
mhlk;Ψ4,lk

).
(29)

For low rank Ξlk we can use matrix inversion lemma to get
Cĥ4

lk
.



V. PROJECTION METHODS

To decrease the amount of matrix inversions when the number
of antennas per AP is high, we can project all the messages
to hlk to Gaussian with multiple identities as covariance
matrices. The projection from an arbitrary Gaussian to one
with multiple of identities as a covariance matrix can be
derived by setting the partial derivative [14] to zero:

∀mx∀Cx, argmin
m,τ

KLD[N (x|mx,Cx)∥N (x|m, τI)]

⇒ m = mx; τ =
1

N
tr(Cx).

(30)

With this simplification the update at Ψ4,lk becomes O(N2) if
the eigenvalues and eigenvectors of Ξlk are known. However,
since Czd,lkt

contains a sum of non-diagonal matrices, the
matrix inversion in (18) will have a complexity of O(N3).
A. Message to hlk

Since we have already derived the belief of hlk at each factor,
we only give the message from a general node Ψ to hlk as an
example. Suppose the belief of hlk at Ψ to be

bΨ;hlk
(hlk) = CN (hlk|mĥΨ

lk
,CĥΨ

lk
). (31)

The projection gives

proj[bΨ;hlk
(hlk)] = CN (hlk|mĥΨ

lk
, τ ĥΨ

lk
I), (32)

where τ ĥΨ
lk

= tr(CĥΨ
lk
)/N . Use the ansatz that the message

from hlk to Ψ is Gaussian with multiple of identities as
covariance matrix, i.e. Chlk;Ψ := τhlk;ΨI. Thus, the message
from Ψ to hlk becomes

µΨ;hlk
(hlk) = CN (hlk|mΨ;hlk

, τΨ;hlk
I), (33)

where

τΨ;hlk
=

τ ĥΨ
lk
τhlk;Ψ

τhlk;Ψ − τ ĥΨ
lk

mΨ;hlk
=

τhlk;ΨmĥΨ
lk
− τ ĥΨ

lk
mhlk;Ψ

τhlk;Ψ − τ ĥΨ
lk

.

(34)

This operation may lead to negative results for the variance
estimate. To avoid negative variance, we can set a lower bound
ϵ, and clip τΨ;hlk

above ϵ.
B. Message to xd,kt

Since we define the target family for the projection of
bΨ2,lt;xd,kt

(xd,kt) to be a categorical distribution, which is
already one, we can directly derive the message to xd,kt

µΨ2,lt;xd,kt
(xd,kt) ∝ CN (0|yd,kt−mzd,lkt

−xd,ktmhlk;Ψ2,lt
,

Cv+Czd,lkt
+|xd,kt|2Chlk;Ψ2,lt

).
(35)

VI. MESSAGE FROM VARIABLE NODES TO FACTOR NODES

The EP rule describing the message from variable nodes to
factor nodes can be intuitively understood as two steps. At
first, each variable node computes its belief (approximated
posterior) by multiplying all the messages from its neighboring
factor. It then sends back the extrinsic message (messages from
all the neighboring factors except the receiver).

A. Message from xd,kt to Ψ2,lt

The belief at variable node xd,kt is

bxd,kt
(xd,kt) ∝ µΨ1,kt;xd,kt

(xd,kt)
∏
l

µΨ2,lt;xd,kt
(xd,kt).

(36)
We can derive the message from xd,kt to Ψ2,lt

µxd,kt;Ψ2,lt
(xd,kt)∝µΨ1,kt;xd,kt

(xd,kt)
∏
l ̸=l

µΨ2,lt;xd,kt
(xd,kt).

(37)
we shall see later that this message can be processed in a
decentralized way.

B. Messages from hlk

The belief at variable node hlk is

bhlk
(hlk) = µΨ4,lk;hlk

(hlk)

·
∏
t1

µΨ2,lt1
;hlk

(hlk)
∏
t2

µΨ3,lt2
;hlk

(hlk) (38)

The message from hlk to Ψ2,lt, Ψ3,lt and Ψ4,lk can then be
directly obtained by using Gaussian reproduction lemma. We
will only give here the message from hlk to a general factor
node Ψ, i.e., µhlk;Ψ as an example,

µhlk;Ψ(hlk) = CN (hlk|mhlk;Ψ,Chlk;Ψ), (39)

where

Chlk;Ψ =

 ∑
Ψ∈N(hlk)/{Ψ}

C−1

Ψ;hlk

−1

mhlk;Ψ = Chlk;Ψ

 ∑
Ψ∈N(hlk)/{Ψ}

C−1

Ψ;hlk
mΨ;hlk

 .

(40)

VII. DECENTRALIZED ASYNCHRONOUS METHOD

To obtain the belief of xd,kt, we need to combine the message
from all the AP. We consider the case where all the L AP
are connected and the AP network has a tree structure. A
decentralized message passing method based on the framework
of consensus propagation [12] can be used. If we consider the
logarithmic scale, the product operation (36) indeed becomes
summation.
Define the message from AP l to AP l′ to be

νl→l′(xd,kt) = µΨ2,lt;xd,kt
(xd,kt)

∏
l′∈N(l)/{l′}

νl′→l(xd,kt).

(41)
At convergence, the belief in (36) can be obtained by any AP
l as

bxd,kt
(xd,kt) ∝ µΨ1,kt;xd,kt

(xd,kt)νl→l′(xd,kt)νl′→l(xd,kt).
(42)

Therefore, we can update µxd,kt;Ψ2,lt
by

µxd,kt;Ψ2,lt
(xd,kt) = µΨ1,kt;xd,kt

(xd,kt)
∏

l′∈N(l)

νl′→l(xd,kt).

(43)



Algorithm 1 Decentralized EP
Require: All prior distributions and likelihoods

1: Initialize all Messages, esp. µΨ1,kt;xd,kt
(xd,kt) = p(xd,kt)

2: while Stopping criteria not met do
3: for l ∈ 1, . . . , L do
4: [Pilot Based Channel Estimation]
5: for k = 1 : K do
6: Compute µhlk;Ψ4,lk

based on (39)
7: Compute µΨ4,lk;hlk

based on (33)
8: for t2 = 1 : P do
9: Compute µhlk;Ψ3,lt2

based on (39)
10: Compute µΨ3,lt2

;hlk
based on (33)

11: end for
12: end for
13: [Signal Estimation]
14: for k = 1 : K do
15: for t1 = 1 : T do
16: [Message from Other APs]
17: Compute µxd,kt1

;Ψ2,lt1
based on (43)

18: Compute µΨ2,lt1
;xd,kt1

based on (14)
19: [Message to Other APs]
20: for l′ ∈ N(l) do
21: Compute νl→l′ based on (41)
22: end for
23: [Data Based Channel Estimation]
24: Compute µhlk;Ψ2,lt1

based on (39)
25: Compute µΨ2,lt1

;hlk
based on (33)

26: end for
27: end for
28: end for
29: end while

Adding this consensus-style message passing method between
the APs within the conventional EP algorithm stated in the
previous section is equivalent to a non-consensus-style EP al-
gorithm with a modified update order and some δ(xl

d,kt−xl′

d,kt)
[15] factor nodes. One possible ordering method is concluded
in Algorithm 1.

VIII. SIMULATION RESULTS

In our simulation, we adopt a setup similar to that described
in [7]. Each AP is equipped with 2 antennas. Our simulation
environment is a 400×400 square meter area, populated with
16 APs and 8 User Terminals (UTs). The APs are strategi-
cally positioned at coordinates for each (i, j) in {0, 1, 2, 3}2,
specifically at (50 + 100 × i, 50 + 100 × j) meters. UTs are
uniformly distributed across the area. The distance between
each UT, denoted as k, and AP, denoted as l, is represented by
dlk. Channel covariances are modeled using diagonal matrices,
defined as σ2

lkI, where σ2
lk is calculated using the formula

−30−36.7 log10(dlk), following the approach of [7]. We use a
4QAM constellation for the transmitted signals, with a power
of 30 dBm, and assume a noise power of −96 dBm. The
results are based on 25 distinct realizations and are depicted
in Figure 1. In our genie-aided scenario, the data symbol xd,kt

is presumed known during the update of µΨ2,lt;hlk
.

IX. CONCLUSIONS

In this paper, we proposed an EP-based algorithm to perform
bilinear detection. The algorithm also tries to decentralize the
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Fig. 1. The dynamic of proposed algorithm.

network by using message passing between the APs. CLT is
used to avoid the introduction of auxiliary variables.
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