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ABSTRACT

In this paper, we present the application of eigenvoices to
self-adaptation. This adaptation algorithm happens to be
rather well-suited for such a task. First, it is an extremely fast
adaptation algorithm, and thus well tailored to work for very
short amounts of adaptation data. It is also believed to be
rather more tolerant of errorful recognition. A third property
is the explicit aim to reduce the dimensionality that translates
into compact computation of the likelihood. This can be ex-
ploited as an embedded confidence measure to minimize the
impact of errors in the transcription.

Our experiments were carried out on the Wall Street Jour-
nal evaluation task (WSJ). We reduced our word error rate
(WER) by one percent absolute to 9.7%.

1. INTRODUCTION

With the advances in recent research, the availability of large
speech corpora, and the growing computational capabilities,
large-vocabulary speech recognition has become affordable.
However, while we are able to build models for, say, voice
dictation that comprise about a million of parameters, model
adaptation becomes increasingly difficult: the amount of
speech available for a specific speaker is limited to at most
half an hour, while the complexity (the number of degrees of
freedom) of the speech recognizer can grow arbitrarily.

Sometimes, it just so happens that we have absolutely no
preliminary speech from the speaker. In that case, we have
to perform speaker adaptation for each utterance “on the
fly”. This is the purpose of self-adaptation: given general-
purpose, speaker-independent models, how to incorporate
partial knowledge of the speaker from the current speech to
more aptly recognize that same speech?

In that scenario, we can readily state the desired properties
the adaptation scheme. It needs to be rapid, in the sense that
we have a only a rather modest fraction of speech available
for our purposes. Also, if it is based on partial estimation of
what is being said, it must minimize that dependency: to be
robust to erroneous hypotheses.
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2. SELF-ADAPTATION

Self-adaptation is the process by which one adapts models
on the same utterance as the one we are currently trying to
recognize. Typically, the decoder proceeds in two (or more)
passes. The first pass would employ rather coarse models to
narrow down the search space to a size that is affordable in
subsequent passes. Information is added between passes: vo-
cal tract length, trigrams, cross-word modelling, etc. Statis-
tics or word alignment that were generated in the first pass
can be almost readily used for adaptation. A popular, ubig-
uitous adaptation technique is MLLR (Maxmimum Likeli-
hood Linear Regression [1]). It is commonplace to apply one
or more iterations of MLLR adaptation at that stage. Chan-
nel mismatch as well as speaker mismatch are thought to be
solved in the process. Note that the use of indirect parameters
in the adaptation process implies that errorful transcriptions
are averaged in with correct ones. The impact of errors on
adaptation are present in all adapted parameters. However,
performance of self-adaptation is a function of the overall
performance of the speaker-independent model.

In this paper, we argue that another adaptation technique,
called eigenvoices [2], may be considered as a competitive
alternative to MLLR to perform speaker adaptation between
passes. First, we summarize the eigenvoices and its associ-
ated notations. Then we show how to compute the gain in
likelihood of an observation using eigenvoices. In the next
step we proceed to explain how to use this to minimize er-
rors in the estimation of the adaptation parameters. Finally,
results are presented with a short discussion.

3. EIGENVOICES

Eigenvoices is an adaptation algorithm that employs a priori
knowledge about the speaker model space [2]. The gist is
to create speaker adapted models using the training database,
and observe the distributions of the HMM model parameters,
to deduce a compact, low-dimensional representation of what
a speaker-adapted model is expected to look like.



Model parameters of all Hidden Markov Models (HMMs)
of one speaker-adapted model are constrained to lie in a lin-
ear vector space, called speaker space. We only consider
adaptation of the mean vectors. Let fi(e) be the basis vec-
tors that span the speaker space. They are called eigenvoices.
There is only a small number E of eigenvoices, typically in
the range of 1-100. The rationale behind this term is that they
are discovered using an eigen decomposition of the whole set
of speakers in the training database. If i, () is the e-th com-
ponent that corresponds to the m-th gaussian distribution in
the system, then for all m, we can write

E
Mm = Z We b (e)
e=1

where {w,} represents the location of the speaker in the
speaker space. We define w = [wy, ..., wg]?.

Given this constraint, given incoming speech O and our
a priori knowledge fi(e), we find the maximum-likelihood
(ML) eigenvoice decomposition (MLED) for that observa-
tion, which is done by iteratively optimizing the quadratic
exponent function:
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where o, is the observation vector at time ¢, v,,, (¢) is the pos-
terior probability that the distribution m produced o; at that
time, and C,,;! is the precision matrix of that distribution.
The MLED estimation is then equivalent to solving the lin-
ear system
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(with e = 1...E). In the next section, we show how to com-
pute the likelihood for concatenations of speech segments.

4. COMPACT SUFFICIENT STATISTICS FOR THE
LIKELIHOOD

4.1. Definition

In this section, we find statistics required to compute the like-
lihood. The idea is that this set of variables S will enable
us to compute the likelihood of a segment of speech with
respect to some eigenvalues. That is, a segment of speech
can be summarized compactly in S as far as the computation
of likelihood of eigenvoice-adapted models is concerned.
Define 6 to be the completion data in the Expectation-
Maximization (EM) algorithm, i.e. the state segmentation in
the Viterbi approximation. It is quite trivial to see that the

likelihood of an observation O satisfies
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and thus the following are sufficient statistics for the likeli-
hood:
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with the addition of w. The cross-correlation term, r(e, j),
grows with the square of the dimension of the eigenspace
O(E?). If we are interested in adaptation gains, then ¢ can be
safely discarded. The acoustic match, which is usually a pos-
terior probability-weighted sum of local acoustic distances,
can be summarized as cross-correlations in the probability-
weighted innner product.

4.2. Fusion of segments

Define two segments of speech O; and O, with correspond-
ing statistics Sy and S,, a rather interesting property of the
statistics is that the concatenation of the segments, say O, has
associated statistics S which can be computed as the arith-
metic sum of statistics of the segments, i.e. S = &1 + So. It
is equivalent to the MAP formula using conjugate priors, one
segment serving as a prior to the other.

It follows from the previous derivations that the estimation
of MLED eigenvalues on aribtrary concatenations of seg-
ments can be computed easily. Moreover, the estimation of
the gain or decrease in likelihood given a hypothesized eigen-
voice model on an arbitrary concatenation of speech seg-
ments can be done solely on the basis of the sufficient statis-
tics. Note that MLLR has similar sufficient statistics [3].
Those familiar with MLLR will recognize the G(3) and z(7)
matrices. They are however more cumbersome to deal with.

Additionally, since we have linear models, the likelihood
is again a Gaussian and therefore attains the Cramer-Rao
lower bound for the variance. It is inversely proportional to
the amount of data. The squared error due to the introduc-
tion of a wrong segment is also inversely proportional to the
amount of data. If a non-gaussian prior is used then the ML
and the MSE (mean-squared error) differ, but the MMSE can
be computed numerically by summing on points of interest.

4.3. Purity of segments based on adaptation gains

The application of the principle to our task is straightfoward.
Eigenvoices can be applied successfully with extremely short



segments of speech. Thus the course of an utterance in the
range of eigenvoices appears as the equivalent of many utter-
ances for other typical adaptation algorithms. Hence, eigen-
voices can work in incremental mode within one sentence.
Unsupervised adaptation gains can be improved by rejecting
incorrect transcriptions, e.g. [4]. Utterance verification tech-
niques are applied to suspicious segments. In most utterance
verification methods, the underlying assumption is that like-
lihood ratios form a good predictor of the correctness of a
transcription, e.g. [5]. Furthermore, adaptation gains in like-
lihood seem to be relevant to utterance (or speaker) verifica-
tion [6]. The use of sufficient statistics for speaker segmen-
tation was explored in [3].

If we divide the utterance into small speech segments,
with corresponding sufficient statistics S as defined in the
previous section, then the leave-one-out strategy can be ap-
plied to minimize the empircally estimated expected diver-
gence of new data. We assign high confidence to the correct-
ness of segments that yield high adaptation gains. In prac-
tice we used segments that were one word long to estimate
models, and left the rest of the utterance as cross-validation
data. As with speaker segmentation, we enforce a homogen-
ity of speech using log-probability gains. The divergence be-
tween the density estimated from one segment X on a cross-
validation segment density Y is:

1
d(X,Y) :i{Elog(Zw) +tr(Ryx'Ry) — log |Ry |+
+ (wx —wy) " Ry (wx — wY)}

where wy, = R;lbk, k = X,Y. The R precision matrices
and b vectors were defined above.

5. EXPERIMENTS

In this section, we describe our system and how it performed.

5.1. Conditions

For our experiments we chose the Wall Street Journal
Nov92 evaluation test set. We show results on two training
databases, namely WSJO and WSJO+1. WSJO, also called
S1-84, consists of 7296 sentences uttered by 84 speakers.
The total duration of speech amounts to about 12 hours.
WSJO0+1 is also known as SI-284, and includes WSJO plus
200 additional speakers, for a total of about 39k sentences
in 72 hours. The acoustic frontend uses 39 MFCC coeffi-
cients and sentence-based cepstral mean substraction (CMS).
For SI-84, We train a total of 32000 Gaussians with diag-
onal covariances, pooled in 823 mixtures. For SI-284, we
train 64000 Gaussians in 1404 mixtures. Thus each eigen-
voice dimension consumes respectively 5 and 10 MB. The
mixtures were defined using decision tree classification. We
use gender-independent models. The language model (LM)

SI-84 | SI-284

Sl 13.7% | 10.8%
MLLR 13.1% | 10.5%
MLED 12.6% | 10.1%
MLED on time segments 12.6% | 10.2%
MLED w/ variable dim. 12.6% | 10.1%
MLED w/ confidence 12.2% | 9.8%
MLED w/ conf + LM weight || 12.2% | 9.7%

Table 1. Self-adaptation: WER with S1-84 and S1-284

for this task is the standard trigram backoff model estimated
on 37M words, provided by MIT. There are about 20k words
with an out-of-vocabulary rate (OOV) of about 2%.

Our recognizer, called EWAVES, is a simple lexical-tree
based, word-internal context-dependent, one-pass trigram
Viterbi decoder with bigram LM lookahead [7]. The test set
consists of 8 speakers, none of whom are present in the train-
ing. There is an equal proportion of males and females. They
read about 40-45 sentences each, summing to 333 sentences.
The average length of a test sentence ranges from 5-15 sec-
onds, with an average of 17 words per sentence. The baseline
system results in a 13.7% Word Error Rate (WER) for SI-84
and 10.8% WER for SI-284.

The eigenvoices were built using standard methods as set
forth in [2, 8]. We train speaker-adapted models for each
speaker in the database, apply PCA to find the most impor-
tant directions of inter-speaker variability, and optimize these
directions (eigenvoices) with respect to the the maximum-
likelihood (ML) criterion. Due to memory constraints, we
limited PCA initialization to 200 speakers for SI1-284. Our
previous implementation of MLES proved ineffective, so we
used a finer approximation. Since we have diagonal covari-
ance matrices, for each feature dimensiond = 1, ...39, gaus-

sian distribution m, the ML-eigenvoices ﬂ%) (e) satisfy:
Am [ (1), i (2)---Fim (E)]T = 2 (d)

and A,,, and z,, (d) have components:
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where wj is the j-th eigenvalue of the ¢-th speaker. To reduce
memory overhead we only store one weighted A matrix for
each mixture, instead of one for each gaussian. For all exper-
iments we used E = 20 eigenvoices.

5.2. Results

Results are shown in table 1. Word error rates (WERS) are
reported for S1-84 and S1-284. We applied MLLR with one
global matrix to get an idea of the difficulty of the task. For
calibration standard MLED was also run. Jack-knifing is
equivalent to baseline MLED according to WER.



We tested the assumption of stationarity as follows. We
updated the estimate once every 100 ms, based on an win-
dow length of 400 ms. Surprisingly the method did not result
in a change in WER, even for different values of update pe-
riod and window span. We believe that the non-stationarity
is exactly balanced with uncertainty due to the removal of
observation data.

Then, for every utterance, we tuned the complexity of
the model E. That is to say, based on the adaptation gain
(and amount of training data), we forced all w,,e >= E
to be zero for some empirically determined E. For all val-
ues of tuning parameters, permutation of eigenvoices, and
maximum E, the system did not outperform the baseline
MLED. However disappointing, it is consistent with our pre-
vious unsuccessful experiments with multigaussian prior for
w (MAPED).

On the other hand, purging segments based on a ratios of
adaptation gains resulted in an improvement. The false ac-
ceptance for words was about 20% and false rejection 40%.
Errors in the exact transcription may not result in all wrong
assignment of gaussian, and conversely a word pronounced
poorly, but forced by the language model, may introduce
noise in the estimation. However, intuitively, we consider
one errors in assignment to be as detrimental as the added
uncertainty due to the removal of two correct segments.

In our last set of experiments, we decreased the language
model weight proportionaly to our confidence measure. The
intuition is that in the case of poor acoustic match, we re-
duce the gap between first and second best hypotheses, and
allow for more changes in the transcription, thereby prevent
locking-in errors due to language modeling. We observed no
significant improvement.

6. CONCLUSION AND FURTHER WORK

In this paper, we have shown that eigenvoices can be applied
successfully to the problem of self-adaptation. We employed
speaker-clustering techniques to extract homogenous, reli-
able statistics to fortify our estimation of speaker models. We
limited the impact of corruption due to incorrect labeling by
removing suspicious data. Due to the low WER of this task,
the impact was bounded. Nevertheless, we discovered that
the method was successful. Consequently, we plan to move
to more challenging tasks such as Switchboard corpus recog-
nition.
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