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Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. Federated Learning (FL) is envisioned as
the cornerstone of the next-generation mobile system, whereby
integrating FL into the network edge elements (i.e., user terminals
and edge/cloud servers), it is expected to unleash the potential
of network intelligence by learning from the massive amount
of users’ data while concurrently preserving privacy. In this
paper, we develop an analytical framework that quantifies the
interplay of user mobility, a fundamental property of mobile
networks, and data heterogeneity, the salient feature of FL, on the
model training efficiency. Specifically, we derive the convergence
rate of a hierarchical FL system operated in a mobile network,
showing how user mobility amplifies the divergence caused by
data heterogeneity. The theoretical findings are corroborated by
experimental simulations.

I. INTRODUCTION

Federated learning (FL) is an emerging paradigm of dis-
tributed machine learning that enables a large number of end
users to collaboratively learn a global model without directly
accessing their raw data [1]–[4]. Inspired by FL, there is a
trend of upgrading the wireless network by integrating FL
into the mobile system, achieving network intelligence. Under
such a context, mobile devices shall execute local model up-
dates and upload the intermediate parameters to edge servers,
preserving user privacy while reducing communication strain
on the network as well as alleviating computational pressure
on the server side. To extend FL into a large-scale deployment
with massive users, hierarchy federated learning (HFL) is
introduced to fully exploit the training data of mobile devices
[5]–[7]. In wireless HFL, mobile users directly communicate
with the nearby edge server rather than the remote cloud
server, which results in a higher communication efficiency
with more involved users.

By nature, users roam in a mobile network; this mobility
inevitably decreases the number of users participating in the
model training process of each edge server, thereby degrading
the FL performance [8]–[11]. Aside from user mobility, HFL
also confronts the challenge of data heterogeneity, which
arises from end users’ personal preferences and leads to non-
identically and independently distributed (non-IID) data sets.
Albeit the model training of FL might still converge under
non-IID data sets, a significant degradation of model accuracy
occurs as local data distributions diverge [12]–[15]. In the
presence of user mobility, performance degradation in non-
IID scenarios becomes more evident, whereas the degradation

further exacerbates when users have higher mobility. This
phenomenon has been empirically observed in [8], without
a theoretical explanation.

The present paper closes this research gap by developing
a theoretical framework that provides an acute understanding
of the interplay of user mobility and data heterogeneity on
HFL. Specifically, we show that system divergence of HFL
mainly comes from two aspects: local updates due to data
heterogeneity and connectivity loss due to user mobility. Our
analysis also reveals that the connectivity loss incurred by
user mobility is associated with the downward divergence, a
notion introduced in [15], characterizing the data heterogeneity
within an edge server. The connectivity loss will be amplified
by the local divergence introduced by data heterogeneity,
which explains why higher user mobility dramatically drops
the algorithm performance in a non-IID scenario, as reported
in [8]. In brief, the principal contributions of this paper are
summarized below:

1) We establish a theoretical framework for analyzing the
training efficiency of an HFL system, encompassing
critical factors such as user mobility, data heterogeneity,
and system hierarchy.

2) We derive the convergence rate of model training under
the considered HFL system. The analysis characterizes
the interplay between user mobility and data hetero-
geneity, showing how the connectivity loss enlarge the
influence of data heterogeneity.

A. Related Works

This part conducts a brief survey on the current progress of
investigating the effects of non-IID data and user mobility on
FL performance.

1) Federated Learning with Non-IID Data: For single-
layer FL, model errors are compared between centralized and
FL models in [13], revealing performance degradation with
increased data distribution distance. This distance serves as
a metric for non-IID degrees. Convergence rates of FedAvg
with non-IID data are analyzed in [12]. In the context of HFL,
effects of non-IID are analyzed in [5], in which the notions
of upward and downward divergences have been introduced
to assess the HFL data heterogeneity.

2) Federated Learning with Mobile Users: Mobility in-
duces dynamics in network topology, causing connectivity
loss and inconsistent collaboration [9]. The degradation in



link quality leads to more frequent transmission failures and
deteriorating system performance [10]. To overcome this chal-
lenge, a reputation-based worker selection scheme is proposed
in [10]. Additionally, user selection and wireless resource
allocation are optimized based on user locations during FL
model transmission [16]. A cluster FL algorithm is proposed
in [8], involving collaboration among multiple edge servers in
FL training. Notably, [11] points out slight user mobility can
positively impact FL, but this analysis considers only one base
station.

II. SYSTEM MODEL

A. Network Setup

We consider the HFL system depicted in Fig. 1, consisting
of one cloud server, M edge servers, and N mobile users. Each
user holds a local dataset Dn with size |Dn|. And the users
aim to collaboratively train a global model w by minimizing
the following global loss functions, f(w,D) while preserving
their data privacy:

f(w,D) = 1

|D|
∑

(xi,yi)∈D

ℓ(w;xi, yi)

=

N∑
n=1

αnFn(w,Dn). (1)

where D = ∪Nn=1Dn can be regarded as the dataset aggregated
from all the mobile users and ℓ(w;xi, yi) is the empirical loss
associated with the i-th data sample pair (xi, yi) and αn ∈
[0, 1] denotes the weight assigned on the data set of user n,
satisfying

∑N
n=1 αn = 1; here, Fn(w,Dn) represents the local

loss function constructed by the dataset of the mobile user n,
given as

Fn(w,Dn) =
1

|Dn|
∑

(xi,yi)∈Dn

ℓ(w;xi, yi). (2)

Toward minimizing (1), the network employs FL to train
the models. The training is constituted by a sequence of
edge intervals (within which edge servers interact with mobile
users) and cloud intervals (where the cloud server interacts
with the edge servers). The edge and cloud intervals comprise
several consecutive communication rounds and edge intervals,
respectively.

B. Federated Model Training

This part details the concrete steps in training the model.
1) Model Initialization of Cloud Server: At the beginning

of a cloud interval, the cloud server distributes the initial cloud
model parameter to each edge server.

2) Model Initialization of Edge Server: At the beginning
of an edge interval, each edge server broadcasts the initial
edge model to every connected user. The set of mobile users
served by the m-th edge server during the p-th edge interval
is denoted by N p

m. Note that as the users roam across the
network, the set N p

m, m ∈ {1, ...,M}, varies over time.

Fig. 1: Network architecture.

3) Local Updates: After receiving the initial model from
the edge server, each mobile user performs τe rounds of SGD
iteration using its local dataset. Such an operation at the typical
user n can be formally expressed as follows:

wt+1
n ← wt

n − ηgn(w
t
n, ξ

t
n). (3)

where η is the learning rate, ξtn ⊆ Dn represents the mini-
batch IID sampled from local dataset during the t-th local
updates, and gn(w

t
n, ξ

t
n) denotes the (stochastic) gradient of

local loss function evaluated based on the mini-batch dataset.
In this network, each user keeps moving while updating its
local model, leading to a dynamic connectivity status with the
edge servers.

4) Edge Aggregation: Upon finishing the local training,
each user tries to upload the resultant model parameters back
to the edge server from which it received the initial parameter.
For a generic edge server m, we consider only users still
connected with it can successfully send their local model back,
which we refer to as the participating users. Note that the
time of the p-th edge aggregation is also the time of model
initialization for the (p + 1)-th edge interval. As such, the
participating users of the p-th edge interval of the m-th edge
server can be formally written asN p

m∩N p+1
m , which we denote

by Spm. Then, the edge server aggregates the model parameters
from mobile users (still) in its coverage, as follows:

w̄pτe
m ← 1

|Spm|
∑

n∈Sp
m

wpτe
n . (4)

After updating the model parameters, each edge server
distributes the aggregated result to its connected users for the
next τe round local updates.

5) Cloud Aggregation: After τc rounds of edge aggrega-
tions, the cloud server collects the aggregation results from
each edge server and averages it as follows:

w̄cτcτe ←
M∑

m=1

|N cτc
m |

|N cτc |
w̄cτcτe

m . (5)

After the cloud aggregation, the cloud server then sends the
result back to the edge server for model initialization.



C. User Mobility Model

User mobility primarily impacts the dynamics of connection
status with the edge servers. We adopt the Markov chain model
to characterize this feature. Under this model, every user will
stay or move to a neighboring edge server during a time slot
with a certain probability.

Specifically, let stn ∈ RM be a vector denoting the connec-
tion status of the n-th mobile users at the beginning of the
t-th time slot, where the entries are defined as follows:

stn[m] =

{
1, if n ∈ N t

m,

0, otherwise.
(6)

in which
∑M

m=1 s
t
n[m] = 1,∀n, t since each user is only

connected with only one edge server at a time.
In this paper, we assume all the mobile users adhere to a

common transition probability matrix P ∈ [0, 1]M×M , where
pij ∈ [0, 1] denotes the probability that a typical user moves
from the i-th edge server to j-th edge server (particularly, pii
denotes the probability of staying on i-th edge server). We
require

∑M
j=1 pij = 1, since each user either roams to another

server or stays in the original cell during a communication
round. Given the current observation vector and transmission
probability matrix, the future state vector of n-th user can be
calculated by

st+1
n = stnP

t = s0n

t∏
τ=0

P τ . (7)

Assuming the transition matrix P is irreducible, then there
exists a steady-state distribution s satisfying s = sP . Follow-
ing the above, we can calculate the size N t

m of the set N t
m as

follows

N t
m =

N∑
n=1

stn[m]. (8)

which gives
N∑

n=1

sn[m] = s[m]N, as t → ∞. (9)

We assume the network has reached the steady state, where
all the mobile users are uniformly and randomly distributed
over the entire network following the steady-state distribution,
s, at the beginning of each time, and the average number
of incoming and departing users of each edge server will be
balanced, i.e., N t

m = Nm = s[m]N, ∀m,∀t. As such, we can
assume the number of users of each edge server follows its
expectation. Note that the indices of users in N t

m are time-
varying, albeit the size remains the same in expectation.

D. Illustrate the impact of Mobile Users

In this part, we illustrate influence of user mobility and why
a higher user mobility will bring about a drastic drop to the
algorithm performance in a Non-IID scenario.

To make the illustration more clear, we introduce the
auxiliary virtual sequence as [12] to represent the intermediate
result after one-step SGD from w̄t and interpret w̄t+1 as the

Fig. 2: The participating user of m-th edge server

parameter obtained after communication steps (if there exists).
Then the model parameter of n-th user connected with m-
th edge server within p-th edge interval can be described as
follows:

vt+1
n = wt

n − η∇Fn(w
t
n, ξ

t
n), (10)

wt+1
n =


vt+1
n , if τe ∤ t+ 1,
1

|Sp
m|

∑
n∈Sp

m
vt+1
n , if τe | t+ 1, τcτe ∤ t+ 1,

1
|Sp|

∑
n∈Sp vt+1

n , if τcτe | t+ 1.

(11)

in which Sp = ∪Mm=1Spm denotes the participating users for
p-th edge aggregation.

And we introduce two virtual sequences w̄t
m =

1
|Np

m|
∑

n∈Np
m
wt

n and v̄t
m = 1

|Np
m|

∑
n∈Np

m
vt
n for each m-

th edge server within p-th edge interval. Then v̄t+1
m results

from a single step SGD from w̄t
m and then w̄t+1

m is obtained
from v̄t+1

m after potential aggregation.

Fig. 3: Illustration of the update of w̄t
m and v̄t

m for m-th edge
server

When mobility is considered, user may move in and out
of the coverage area of edge server randomly. Thus the set
of users connected with m-th edge server at the beginning
and end of the edge interval differs as showed in Fig. 2,
which leads to a decrease for the number of participating users
compared with situation without mobile users. As shown in
Fig. 3, w̄t

m and v̄t
m keep the same in the interior of each

edge interval, while at the end of the p-th edge interval, w̄t
m

and v̄t
m differ due to the user loss of the edge aggregation.

Later, we will show that this difference is caused by two
parts: connection loss from user mobility and SGD noises,
which interact in a multiplicative manner. And with some
assumptions, we can bound this difference.

III. CONVERGENCE ANALYSIS

In this section, we analyze the convergence rate of the
considered edge training system. To facilitate the analysis, we
first make the following assumptions, which are commonly
adopted in literature [15].



Assumption 1 (Lipschitz gradient): There exists a constant
L such that

∥∇Fn(w1)−∇Fn(w2)∥ ≤ L∥w1 −w2∥,∀n,w1,w2. (12)

Assumption 2 (Bounded Stochastic Gradient Noise): The
stochastic gradient of all users has a uniform upper bound:

Eξtn∼Dn

[
∥gn(w; ξtn)−∇Fn(w)∥2

]
≤ σ2,∀n,w. (13)

Assumption 3 (Bounded Upward and Downward Diver-
gence): The gradient divergence of the m-th edge server and
the cloud server can be respectively bounded as follows:∑

n∈Np
m

1

Nm
∥∇Fn(w)−∇fm(w)∥2 ≤ ϵ2m, ∀i,w. (14)

M∑
m=1

Nm

N
∥∇fm(w)−∇f(w)∥2 ≤ ϵ2, ∀w. (15)

where fm denotes the loss function of the m-th edge server.
In addition, for the m-th edge server and p-th edge interval,

we denote by Spm and N p
m the set of staying users and users

at the beginning of p-th edge interval, respectively; and let
Km = |Spm|, Nm = |N p

m| be the size of two sets.
Based on the above assumptions, we commence our analysis

by bounding the difference in the aggregated global parame-
ters, taking into account the effects of user mobility.

Lemma 1: We have

ESp
m
[w̄pτe

m ] = v̄pτe
m . (16)

And we can bound the variance as:

ESp
m

[
∥w̄pτe

m − v̄pτe
m ∥2

]
=

1

Nm(Nm − 1)

( 1

pm
− 1

) ∑
n∈Np

m

∥vpτe
n − v̄pτe

m ∥2. (17)

in which pm = Km/Nm denotes the staying probability for
each user in m-th edge server.

Proof: See Appendix A in the supplementary material.
The above lemma indicates that the divergence induced by

user mobility is affected by the staying probability pm and
the mean square error (MSE),

∑
n∈Np

m
∥vpτe

n − v̄pτe
m ∥2, of

user parameters of one edge server within one edge interval.
Moreover, user mobility acts as an amplifying factor that
enlarges the divergence in local updates: the higher the user
mobility, the larger this divergence.

Next, we bound the expected gradient norm as [8], [15].
Lemma 2: Let η ≤ 1

L and T = Cτcτe, then we have

1

T

T−1∑
t=0

E
[
∥∇f(w̄t)∥2

]
≤

2
(
E
[
f(w̄0)

]
− f∗)

ηT
+

ηLσ2

N

+ 2L2

(
1

T

T−1∑
t=0

M∑
m=1

Nm

N
· 1

Nm

∑
n∈Np

m

E
[
∥w̄t

m −wt
n∥2

]
+

1

T

T−1∑
t=0

M∑
m=1

Nm

N
E
[
∥w̄t − w̄t

m∥2
])

+
L

ηT

Cτc∑
p=1

E
[
∥w̄pτe − w̄pτe∥2

]
.

(18)

Proof: See Appendix B in the supplementary material.
Compared with the result in [15], the Lemma 2 has an extra

term (namely, the last term on the right-hand side of the above
inequality), which is attributed to the connectivity loss incurred
by user mobility.

According to Lemma 2, the convergence rate is determined
by the MSE of the edge server’s aggregated parameters, edge
parameters, and user mobility. We bound these quantities
respectively in the sequel.

First, we bound the MSE of the user parameters aggregated
at each edge server.

Lemma 3: The MSE of the m-th edge server’s user param-
eters can be bounded as:

1

T

T−1∑
t=1

1

Nm

∑
n∈Np

m

E
[
∥w̄t

m −wt
n∥2

]
≤ τeAm

1− 12η2L2τ2e
. (19)

in which

Am = 2η2
(
1− 1

Nm

)
σ2 + 6η2ϵ2mτe. (20)

Proof: See Appendix C in the supplementary material.
Notably, downward MSE is not influenced by user mobility,

since in our model, user movement is only observable when
the edge aggregation happens, that is, at the end of each edge
interval. Thus within an edge interval, there’s no impact of
user mobility.

Lemma 4: The MSE of edge parameters can be bounded
as:

1

T

T−1∑
t=0

M∑
m=1

Nm

N
E
[
∥w̄t − w̄t

m∥2
]

≤ η2B

1− 12η2τ2c τ
2
e L

2
+

4η2τ2c τ
2
e L

2

1− 12η2τ2c τ
2
e L

2
· τeA

1− 12η2τ2e L
2
.

(21)
in which

A =

M∑
m=1

Nm

N
Am = 2η2σ2

(
1− M

N

)
+ 6η2τe

M∑
m=1

Nm

N
ϵ2m,

(22)

B = 4τcτeσ
2 1

N

M∑
m=1

1

pm

(
1− Nm

N

)
+ 6τ2c τ

2
e ϵ

2. (23)

Proof: See Appendix D in the supplementary material.
Here, the MSE of edge parameters is influenced by user

mobility, but only the term with stochastic gradient noise is
enlarged.

Lemma 5: Let T = Cτcτe, the divergence of user mobility
can be bounded as:

1

T

Cτc∑
p=1

E
[
∥w̄pτe − w̄pτe∥2

]
≤ 1

1− 12η2L2τ2e

M∑
m=1

Nm

N

( 1

pm
− 1

) Am

Nm − 1
.

(24)

Proof: See Appendix E in the supplementary material.



Remark 1: This lemma discloses that the divergence of user
mobility stems from two aspects, i.e., the stochastic gradient
noise and data heterogeneity. Moreover, these effects are
enlarged by a factor related to the staying probability. As data
heterogeneity increases, downward divergence goes up, as well
as this divergence. Thus, this divergence increases with both
user mobility and data heterogeneity. This may explain why
a significant decline of performance occurs when HFL meets
high user mobility and high data heterogeneity. Specifically,
when pm = 1, this term goes to zero, which is the situation
without user mobility.

Piecing together all the above lemmas, we can obtain the
final convergence result of HFL with mobile users.

Theorem 1: Under the employed HFL system, by choosing
learning rate as η satisfying η ≤ 1

2
√
6Lτcτe

, we have

1

T

T−1∑
t=0

E
[
∥∇f(w̄t)∥2

]
≤

2
(
E
[
f(w̄0)

]
− f∗)

ηT
+

ηLσ2

N

+
4ηL

N

M∑
m=1

( 1

pm
− 1

)(
σ2 + 3τe

Nm

Nm − 1
ϵ2m

)
+ 8η2L2

(
2τcτeσ

2

N

M∑
m=1

1

pm

(
1− Nm

N

)
+ 3τ2c τ

2
e ϵ

2

+
4

3
σ2

(
1− M

N

)
τe + 4

M∑
m=1

Nm

N
ϵ2m

)
.

(25)

Proof: See Appendix F in the supplementary material.
Theorem 1 encompasses several key system factors, in-

cluding user mobility, data heterogeneity, and hierarchical
network topology. It shows that by adequately adjusting the
step size, after a sufficient amount of model training, the model
converges toward a region around the optimality.

IV. EXPERIMENTS

In this section, we carry out experiments to validate our
theoretical results. Specifically, we consider training a convo-
lutional neural network (CNN) over the CIFAR-10 data set
[17] with non-IID data partitioning across users. We consider
the HFL system containing 50 users and 5 edge servers. All
users are randomly assigned to the edge servers based on a
stable distribution s and subsequently move according to our
defined mobility model. The mini-batch size at each SGD step
is set as 100, and the learning rate is set as 0.1. We perform
50 cloud communication rounds in total and set edge interval
length τe = 10, cloud interval length τc = 2.

To characterize data heterogeneity, we explore the non-IID
setting introduced in [1]. In particular, a pathological non-IID
scenario where distinct shards for each user represent varying
degrees of non-IID. The experiments are conducted under 2
shards, 3 shards, 5 shards, and IID, respectively.

Fig. 4 demonstrates the influence of the user staying prob-
ability, p, on the convergence rate of the system. Each curve
represents the average accuracy obtained from multiple ex-
periments, with the shaded area indicating the accuracy range
across the experiments. This figure confirms that user mobility

Fig. 4: Test accuracy under different data heterogeneity with
various staying probability.

Fig. 5: Accuracy vibration versus staying probability.

significantly affects the convergence rate in all scenarios.
Particularly, as data heterogeneity increases, the performance
degradation becomes more pronounced. Additionally, we ob-
serve more fluctuations in the test accuracy with an increase
in user mobility and/or data heterogeneity.

Fig. 5 plots the vibration range of final accuracy as a
function of staying probability under different degrees of data
heterogeneity. We can see that for each non-IID scenario, the
vibration range increases with decreasing staying probability,
which is in line with the observations from our analysis. Fur-
thermore, the decrease in staying probability accentuates the
difference in vibration range across various data heterogeneity.
This indicates that a small staying probability magnifies the
divergence arising from data heterogeneity, coinciding with the
analysis in Remark 1.

V. CONCLUSION

We investigated the interplay between user mobility and data
heterogeneity in an HFL system. We leveraged a Markov chain
to model user mobility, capturing the impact of user mobility
on the updates of intermediate parameters. Our analysis quanti-
fies the interplay between user mobility and data heterogeneity,
showing that the degradation intensifies with increased levels
of user mobility and data heterogeneity. Consequently, we
derived a convergence rate of the HFL, encompassing effects
of user mobility, data heterogeneity, and system hierarchy. The
analysis does not assume convexity of the objective function
and hence applies to even the deep learning settings. Our
theoretical findings offer valuable insights into the dynamics
of HFL systems with mobile users, and experiments validate
our results.
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