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Abstract

This thesis investigates the robustness of AI systems in medical image segmentation,
where inaccuracies can lead to misdiagnoses and compromise patient safety.

Typically, medical image segmentation systems use accuracy as their main perfor-
mance metric, evaluating generalization capabilities on a small testing set that
mirrors the training data distribution. However, this approach overlooks two other
crucial criteria: reliability and robustness, which may cause segmentation errors at
deployment. With AI systems unable to assure the quality of their segmentation,
manual intervention becomes necessary, demanding both high expertise and long
procedures. This highlights the need for new automatic methods to enhance the
reliability and robustness of AI systems in medical image segmentation.

Starting with formal definitions of reliability and robustness, we introduce a new
taxonomy that categorizes state-of-the-art methods for increasing reliability and
robustness into quality control and model improvement techniques. While the former
are limited to flagging segmentation errors, the latter involve model modifications
aimed at enhancing reliability or robustness.

After analyzing the factors contributing to poor robustness, we identify domain shifts
as a primary cause of deployment failures. These shifts in data distribution arise from
changes in acquisition settings, imaging modalities, populations, or imaged organs.
To address domain shifts, we propose an end-to-end semi-supervised framework
designed to achieve robust segmentation by representing heterogeneous volumetric
data in a unified, disentangled latent space. This representation enables inter-
domain translations that manipulate domain-specific properties while preserving
crucial spatial information, thereby ensuring robust segmentation across domains.

As data heterogeneity increases with the inclusion of data from new medical centers,
we transition from a centralized to a distributed setting with non-independent and
identically distributed data and limited labels. In this context, we propose a feder-
ated learning framework that collaboratively builds a multimodal data factory. Once
a source client collects a set of annotations, the data factory enables other clients to
perform domain adaptation asynchronously and locally, without accessing external
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source data or annotations. This approach results in robust segmentation perfor-
mance across diverse medical imaging datasets, contributing to the development of
more trustworthy AI systems in healthcare.

Keywords: Medical Image Segmentation, Robustness, Reliability, Deep Learning,
Image-to-Image Translation, Multi-Domain Segmentation, Domain Adaptation, Miss-
ing Labels, Federated Learning.
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Résumé

Cette thèse examine la robustesse des systèmes d’IA dans la segmentation d’images
médicales, où des inexactitudes peuvent conduire à des erreurs de diagnostic et
compromettre la sécurité des patients.

En général, les systèmes de segmentation d’images médicales utilisent la préci-
sion comme principal indicateur de performance, en évaluant les capacités de
généralisation sur un petit ensemble de tests qui reflète la distribution des données
d’entraînement. Cependant, cette approche néglige deux autres critères cruciaux:
la fiabilité et la robustesse, qui peuvent entraîner des erreurs de segmentation lors
du déploiement. Avec des systèmes d’IA incapables de garantir la qualité de leur
segmentation, une intervention manuelle devient nécessaire, exigeant à la fois une
expertise élevée et des procédures longues. Cela souligne le besoin de nouvelles
méthodes automatiques pour améliorer la fiabilité et la robustesse des systèmes d’IA
dans la segmentation d’images médicales.

En partant des définitions formelles de la fiabilité et de la robustesse, nous intro-
duisons une nouvelle taxonomie qui classe les méthodes de pointe visant à accroître
la fiabilité et la robustesse en techniques de contrôle de qualité et d’amélioration du
modèle. Alors que les premières se limitent à signaler les erreurs de segmentation,
les secondes impliquent des modifications du modèle visant à améliorer la fiabilité
ou la robustesse.

Après avoir analysé les facteurs contribuant à une faible robustesse, nous identifions
les changements de domaine comme une cause principale des échecs de déploiement.
Ces changements dans la distribution des données résultent de modifications des
paramètres d’acquisition, des modalités d’imagerie, des populations ou des organes
imagés. Pour traiter les changements de domaine, nous proposons un cadre de bout
en bout semi-supervisé conçu pour obtenir une segmentation robuste en représentant
les données volumétriques hétérogènes dans un espace latent unifié et désentrelacé.
Cette représentation permet des traductions inter-domaines qui manipulent les
propriétés spécifiques au domaine tout en préservant les informations spatiales
cruciales, garantissant ainsi une segmentation robuste à travers les domaines.
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À mesure que l’hétérogénéité des données augmente avec l’inclusion de données
provenant de nouveaux centres médicaux, nous passons d’un cadre centralisé à un
cadre distribué avec des données non indépendantes et identiquement distribuées et
des labels limités. Dans ce contexte, nous proposons un cadre d’apprentissage fédéré
qui construit de manière collaborative une usine de données multimodales. Une fois
qu’un client source collecte un ensemble d’annotations, l’usine de données permet
aux autres clients d’effectuer une adaptation de domaine de manière asynchrone et
locale, sans accéder aux données ou annotations sources externes. Cette approche
se traduit par des performances de segmentation robustes à travers divers ensembles
de données d’imagerie médicale, contribuant au développement de systèmes d’IA
plus fiables dans le domaine de la santé.

Mots-clés: Segmentation d’Images Médicales, Robustesse, Fiabilité, Apprentissage
Profond, Traduction Image-à-Image, Segmentation Multi-Domaines, Adaptation de
Domaine, Étiquettes Manquantes, Apprentissage Fédéré
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Introduction 1
1.1 Overview

In April 2019, the European Commission’s High-Level Expert Group on Artificial
Intelligence (AI) published the European Ethics Guidelines for Trustworthy AI1. In
this document, the Commission outlines robustness as one of three fundamental
prerequisites for societies to develop, deploy, and use Trustworthy AI systems,
together with ethics and law. Specifically, AI systems need to be robust technically
and socially. From the technical perspective, robustness requires development with
a preventative approach to risks and in a manner such that AI systems reliably
behave as intended. From the social perspective, robustness becomes entwined
with ethics and the principle of prevention of harm: AI systems should be both
safe, i.e., not adversely affect human beings physically or mentally, and secure, i.e.,
not open to malicious use. At present, both perspectives are often underdeveloped,
raising significant issues during the deployment of robust AI systems. For instance,
large language models like ChatGPT can be exploited with jailbreaks to circumvent
content moderation guidelines2, face recognition exhibits decreased accuracy when
identifying minoritized ethnicities3, self-driving cars are better than humans at
routine tasks but struggle in low-light conditions4.

In medical image segmentation, a lack of robustness hinders the adoption of AI
systems, as inaccurate segmentations can compromise subsequent analyses, directly
impacting patient safety. When segmenting medical images, even the top-performing
AI algorithms can be unreliable, sometimes producing implausible anatomies [1].
With AI systems unable to assure the quality of their segmentations, the responsibility
of detecting erroneous functioning falls on human experts, who must correct or
discard any segmentation errors they find [2]. The result is time-consuming and
expertise-demanding procedures which require manually delineating the structures

1https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai,
accessed on 22 Apr 2024

2https://www.techopedia.com/how-to/how-to-jailbreak-chatgpt, accessed on 27 May 2024
3https://www.scientificamerican.com/article/police%2Dfacial%2Drecognition%

2Dtechnology%2Dcant%2Dtell%2Dblack%2Dpeople%2Dapart, accessed on 25 June 2024
4https://www.abc.net.au/news/2024-06-19/self-driving-cars-report/103992024, accessed

on 25 June 2024

1
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of interest missed by the AI systems and are thus monotonous and prone to subjective
errors [3]. As long as manual intervention is continuously needed, improvements
in term of time, cost, and performance are only marginal compared to traditional
techniques. This limitation opens the door to the development of new mechanisms
to increase the robustness and reliability of AI systems and to foster their potential
benefits in medical image segmentation.

This thesis addresses the problem of achieving robustness in AI systems for medical
image segmentation. To achieve our objective, we start by defining reliability and
robustness, two closely related terms that are often used interchangeably. The
definitions provided in Section 1.2 enable us to associate robustness with a specific
subset of segmentation errors, i.e., errors caused by disruptive inputs. Section 1.3
examines how these errors translate in medical imaging scenarios, causing domain
shifts. Section 1.4 details our contributions to improve robustness through state-of-
the-art methodologies, such as domain adaptation and federated learning. Finally,
Section 1.5 outlines the organization of the subsequent chapters.

1.2 Definitions

The lack of rigorous definitions for trustworthiness is identified in [4] as a main
obstacle to the deployment of AI systems. There remains considerable vagueness
around core pillars of trustworthiness, like reliability and robustness, which have
slightly different interpretations depending on the domain of application, and are
often interchangeably used with related terms, such as stability [5] or safety [6]. By
considering AI systems, this manuscript adheres to the definitions from the IEEE
Standard Glossary of Software Engineering Terminology [7].

Definition 1.2.1 (Reliability). The ability of a system to perform its required func-
tions under some stated conditions for a specified period of time.

Definition 1.2.2 (Robustness). The degree to which a system can function correctly
in the presence of invalid inputs.

In the latter definition, invalid inputs are those that fall outside some given speci-
fications in which the system is developed. Instead, we follow a computer system
approach which extends this definition as follows:
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Definition 1.2.3 (Invalid Input). Any disruptive input that causes a given system to
produce significantly erroneous outputs.

Disruptive inputs can be drawn from the same or close distribution as the expected
inputs, referred to as in-distribution (ID) data, or from a different distribution,
referred to as out-of-distribution (OOD) data. OOD data may occur in two forms:

1. anomalies, which are inputs of corrupted quality that appear only sporadically
after deployment, without altering the overall data statistics as seen by the
system;

2. domain shifts, which are inputs of a different domain that recur consistently
after deployment, changing the data distribution encountered by the system
for an indefinite period of time.

The ability of a system to handle ID data, known as generalization, is a necessary but
insufficient condition for ensuring robustness, which requires the system to remain
effective even when encountering anomalous or domain-shifted data.

To illustrate how poor robustness affects image segmentation systems, we provide
examples using the Segment Anything Model (SAM) [8], a well-known foundation
model for semantic image segmentation as of the writing of this chapter.

Fig. 1.1.: Examples of limited robustness in semantic image segmentation across challenging
scenarios, such as noisy inputs (column 2) and changes in style (column 3).

The first image in the top left corner of Figure 1.1, which depicts a herd of horses, is
among the testing examples natively provided in the demo of SAM. This represents
a case of ID data, where the image is well-represented within the training data
distribution. As visible from the resulting segmentation in the second row, SAM
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successfully segments the primary elements inside the image, such as most of the
galloping horses and clouds in the sky.

The second example illustrates anomalies. Although it depicts what appears to be
the same scene as the first image, it has been altered using an attack method known
as Projected Gradient Descent (PGD) [9]. This technique introduces minimal quality
degradations to the image that significantly compromise model performance. As a
result, SAM fails to recognize all clouds and all but one of the horses in the modified
image. On the contrary, human observers can still easily discern them, underscoring
the superior robustness of the human sight to noise perturbations.

The third example is a drawing from a children’s coloring book rather than a
photograph, i.e. a shift in domain. Despite the change in style, the content has
remained similar: two horses galloping outdoors on a sunny day. Once again, SAM
struggles to accurately delineate the main features of the image, as many elements
are either partially segmented (e.g., the adult horse) or missed entirely (e.g., the
foal and the background shrubbery).

Although reliability and robustness against anomalies are discussed in Chapter 2,
the primary focus of this thesis is on robustness against domain shifts.

1.3 Domain Shifts

Domain shifts, or distribution shifts, alter indeterminately the data distribution
encountered by the system once deployed. In medical image segmentation, domain
shifts occur due to a wide variety of factors, which may have a significant influence
on the performance of the AI systems. The shifts that have high potential to cause
failures include changes in:

• acquisition settings, due to the adoption of different imaging protocols or
scanner devices both within the same center or across multiple centers. Modi-
fications in the acquisition settings impact image properties such as contrast,
resolution, and noise, which, even when impacted slightly, can cause perfor-
mance drops in segmentation systems. [10];

• imaging modalities, caused by advances in imaging technology which lead to
the development of new techniques or significant enhancements in existing
ones. These technologies, such as magnetic resonance imaging or computed
tomography, each present unique intensity histograms, spatial resolutions, and
noise levels, and capture distinct anatomical details [11];
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• populations, which occur when the demographic or health conditions of the
patient population differ from those considered during development. This
includes gender, age, ethnicity, lifestyle, genetic factors, and diseases, which
can influence the appearance of the anatomical structures under study [12];

• imaged organs, referring to the various anatomical structures that can be
captured within the patient, such as the heart, brain, etc. While this category
exhibits significant variability, geometrical similarities can be observed among
different structures, such as arteries or veins positioned differently inside the
body [13];

The the main objective of this thesis is to develop novel methods that tackle the
aforementioned domain shifts as a way to guarantee robustness in AI systems for
medical image segmentation.

1.4 Contributions

The contributions of this thesis are as follows.

As first contribution, we address the limitations of evaluating AI systems based solely
on their accuracy on ID data. While this level of performance is often considered
sufficient for deploying AI systems, it overlooks two critical issues. First, even the
top-performing AI algorithms can occasionally fail without any warning, hampering
reliability. Second, OOD data is typically excluded from testing but encountered
during clinical deployment, hindering robustness. Therefore, we emphasize the
need to shift to reliability and robustness as two fundamental criteria for evaluating
medical image segmentation systems. We propose a novel taxonomy that categorizes
state-of-the-art techniques aimed at enhancing reliability and robustness. Our
taxonomy distinguishes between solutions which are limited to flagging poor-quality
segmentation outcomes, and solutions which actually improve performance in either
reliability or robustness.

As second contribution, we investigate the impact of domain shifts on segmentation
performance, starting from a centralized setting where cerebrovascular images from
different datasets are collected together. These datasets exhibit differences in ac-
quisition settings as they originate from multiple centers, imaging modalities, and
imaged organs, encompassing both angiographies and venographies. We demon-
strate that state-of-the-art domain adaptation techniques, which address domain
shifts by transferring knowledge from a fully-labeled source domain to a target
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domain with limited or no labels, experience a gradual decline in performance
as the domain gap widens. When dealing with arteries and veins, we highlight
the necessity of transferring only partial knowledge from the source to the target
domain, because a full translation may compromise spatial information essential for
correct segmentation. To address this, we build on image-to-image translation and
semantic segmentation techniques to formulate a semi-supervised domain adapta-
tion framework that handles the domain-specific features independently, translating
only a subset of them while discarding the compromising ones, such as vessels’
shapes, locations, and densities. This enhanced flexibility in bridging large and
varied domain gaps enables effective segmentation of brain arteries and veins across
various datasets.

As third contribution, we extend our investigation from a centralized setting to a
multicentric setting that mimics real-life conditions, where clients are unable to
share medical data due to privacy concerns, possess non-independent and identically
distributed data, and have no access to large collections of annotations, except for
one source client. Developing an AI system within the source client and deploying
it across the other clients, despite being straightforward, leads to a drop in per-
formance due to domain shifts. These shifts arise because different centers utilize
different acquisition settings, imaging modalities, or even image different organs.
To enhance performance, we explore several state-of-the-art solutions, including
data augmentation, transfer learning, multi-source federated domain generalization,
and foundation models. However, we demonstrate that the effectiveness of these
approaches is limited, especially for domain shifts in imaged organs. To address this,
we propose a novel framework that enables robust segmentation across all clients
through two main modeling steps: federated training of a shared latent representa-
tion and local domain adaptation. Our approach requires minimal labeling effort
and no need to exchange images or annotations between clients, thus enhancing
efficiency and data governance.

1.5 Thesis Organization

This chapter gives an introduction to robust learning for medical image segmentation,
summarizing the clinical background, objectives, challenges and contributions of
this research.

Chapter 2 motivates the need to shift towards reliability and robustness as the
primary criteria for segmentation performance, after highlighting the symptoms of
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accuracy stagnation in the state-of-the-art deep learning techniques for cardiovas-
cular magnetic resonance segmentation. Through a thorough literature review, we
propose a new taxonomy for categorizing state-of-the-art works aimed at improving
segmentation reliability and robustness.

Chapter 3 focuses on 3D brain vessel segmentation across domains encompassing
multiple acquisition settings, imaging modalities, and imaged organs. To ensure
robust segmentation in the face of domain shifts, we propose a domain adaptation
framework that learns a disentangled representation to manipulate vessel properties
independently.

Chapter 4 transitions to a federated setting to examine domain shifts in a non-
independent and identically distributed setting, where annotations are not available
to all clients. To achieve robust performances in this complex scenario, we train a
collaborative multimodal data factory to generate a shared latent representation,
which then facilitates local domain adaptation for target segmentation.

Chapter 5 concludes this thesis, and discusses future works and research lines.
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From Accuracy to Reliability
and Robustness: Cardiac
Magnetic Resonance as a
Use Case

2

This chapter motivates the need to shift from medical image segmentation methods that
solely use accuracy as their main performance metric to methods that also account for
robustness and reliability. We take cardiac magnetic resonance image segmentation as
a use case to study and identify symptoms of performance stagnation in state-of-the-art
deep learning techniques. Based on this analysis, we discuss the challenges currently
faced by deep learning-based segmentation methods that hinder their reliability and
robustness. After identifying the main factors leading to poor reliability and robustness,
we survey the current efforts in the literature that address these problems, proposing a
novel taxonomy to classify the existing solutions.

The work presented in this chapter is based on [14]:

Francesco Galati, Sébastien Ourselin, and Maria A. Zuluaga. From accuracy to reli-
ability and robustness in cardiac magnetic resonance image segmentation: a review.
Applied Sciences 12.8 (2022): 3936.

2.1 Introduction

This chapter motivates the need to shift from a focus on accuracy, as the main
performance criterion, towards other criteria, i.e., reliability and robustness, by
studying the evolution of cardiovascular magnetic resonance (CMR) segmentation
methods’ accuracy over approximately a decade. In particular, we focus on fully-
automated cardiac segmentation methods from short-axis (SA) CMR acquisitions.
Since the rise of deep learning (DL) in the mid-2010s, SA CMR image segmentation
has reached state-of-the-art performance. Nevertheless, despite achieving inter-
observer variability in terms of different accuracy performance measures, visual
inspections reveal errors in most segmentation results, indicating a lack of reliability
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and robustness of DL segmentation models, which can be critical if a model were to
be safely translated into clinical practice.

In the following, we present a literature review investigating reliability and robust-
ness in current DL-based algorithms for CMR segmentation. After providing some
clinical context to the problem of CMR segmentation in Section 2.2, Section 2.3
focuses on the improvements brought by these algorithms over the last decade.
Section 2.4 summarizes the major challenges that DL-based CMR segmentation
methods face when trying to meet reliability and robustness criteria. In Section 2.5,
we present a review of the current and ongoing research for reliable and robust
CMR segmentation, and propose a novel taxonomy to classify the proposed solutions
by grouping them into two families, Quality Control (QC) and Model Improvement
(MI) techniques. QC techniques are typically external tools that only aim to flag
situations where a model may be incurring poor reliability or robustness. These
techniques do not require any modification in model architecture or training proce-
dure, allowing an effortless integration into state-of-the-art segmentation pipelines.
MI techniques, instead, are harder to integrate into existing pipelines, as their func-
tioning is related to an inner modification of the models that directly tackles the
problem by bringing improvements into different aspects of the CMR segmentation
model development process.

2.2 Clinical Motivation

Cardiovascular diseases (CVDs) are the leading cause of death globally and a major
contributor to disability [15]. In 2019, an estimate of 17.9 million people died
from CVDs, representing 32% of all global deaths and 38% of premature deaths
(under the age of 70) due to non-communicable diseases [16]. It is projected that,
by 2035, the number of people with CVD will increase by 30%, reaching over 130
million people and a prevalence rate of 45.1% [17]. As a consequence, there are
important efforts in place to improve prevention, early diagnosis and management
of CVDs [18]. In this context, CMR imaging has been positioned as a reference
for quantitative cardiac analysis, due to its non-invasive nature and its superior
spatiotemporal resolution that allows imaging the cardiac chambers and great
vessels with a great level of detail [19]. Quantitative cardiac analysis from CMR
requires an accurate segmentation of the heart. Manual delineation of the cardiac
anatomical structures can take a trained expert around 20 min per subject, which is
lengthy, monotonous, and prone to subjective errors [20]. Therefore, alongside the
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advances in CMR imaging, there has been a substantial part of research devoted to
the development of techniques for automatic CMR segmentation [21–23].

Before the emergence of deep learning (DL), traditional techniques, such as thresh-
olding, edge-based and region-based approaches, model-based (e.g., active shape
and appearance models) and atlas-based segmentation methods, represented the
state-of-the-art performance in CMR segmentation [21]. The main drawback of
traditional techniques is that they require significant user expertise, in the form
of feature engineering, encoded prior knowledge or posterior user intervention,
to reach good accuracy.

Over the last ten years, benefiting from advanced computer hardware and greater
availability of public datasets, DL-based techniques emerged as the reference method
for CMR segmentation [23], outperforming previous approaches and demonstrating
the capacity to reproduce the analysis of experts [24].

Currently, deep learning represents a real chance of developing CMR segmentation
frameworks to assist, automate and accelerate routine clinical procedures and large-
scale population studies. However, as highlighted by recent studies [1], even the best
performing DL methods may generate anatomically impossible segmentation results.
If a model were to be deployed in clinical practice, such segmentation errors would
represent a risk. With DL algorithms unable to provide guarantees on the quality of
their results, the task of inspecting, detecting errors, correcting them and validating
the segmentation results is left to the responsibility of an expert. The development
of additional mechanisms to enable their use in subsequent quantitative cardiac
analyses is highly desirable.

2.3 Evolution of CMR Segmentation Performance
(2009–2021)

SA CMR segmentation has been widely studied, thanks to the large number of
labelled SA CMR datasets available through multiple segmentation challenges and
within the UK Biobank [25], a large-scale biomedical database containing in-depth
genetic and health information from half a million participants. We analyze the per-
formance of 50 CMR segmentation methods, published since 2009, the year where
the Sunnybrook Cardiac MR Left Ventricle Segmentation Challenge1 took place. This

1https://www.cardiacatlas.org/studies/sunnybrook-cardiac-data/, accessed on 29 May
2024.
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Tab. 2.1.: Fully automated SA CMR segmentation methods published between 2009 and 2021 with the segmented structure of interest
(LV, RV or MYO). ALL denotes that a method segments the three cardiac sub-structures.

No. Ref. Challenge No. Ref. Challenge No. Ref. Challenge

1 Jolly et al. [28] LV 17 Tan et al. [29] LV 33 Scannell et al. [30] ALL

2 Huang et al. [31] LV 18 Patravali et al. [32] ALL 34 Liu et al. [33] ALL

3 Schaerer et al. [34] LV 19 Tan et al. [35] MYO 35 Li et al. [36] ALL

4 Ou et al. [37] RV 20 Wolterink et al. [38] ALL 36 Huang et al. [39] ALL

5 Margeta et al. [40] MYO 21 Rohé et al. [41] ALL 37 Li et al. [42] ALL

6 Jolly et al. [43] MYO 22 Zotti et al. [44] ALL 38 Simantiris and Tziritas [45] ALL

7 Liu et al. [46] LV 23 Khened et al. [47] ALL 39 Full et al. [48] ALL

8 Wang et al. [49] RV 24 Bai et al. [20] ALL 40 Ma [50] ALL

9 Constantinidès et al. [51] LV 25 Baumgartner et al. [52] ALL 41 Carscadden et al. [53] ALL

10 Hu et al. [54] LV 26 Grinias and Tziritas [55] ALL 42 Saber et al. [56] ALL

11 Zuluaga et al. [57] RV 27 Khened et al. [58] MYO 43 Kong and Shadden [59] ALL

12 Ngo and Carneiro [60] LV 28 Jang et al. [61] ALL 44 Acero et al. [62] ALL

13 Queirós et al. [63] LV 29 Isensee et al. [64] ALL 45 Parreño et al. [65] ALL

14 Tufvesson et al. [66] LV 30 Yang et al. [67] ALL 46 Zhou et al. [68] ALL

15 Avendi et al. [69] LV 31 Attar et al. [70] ALL 47 Saber et al. [56] ALL

16 Tran Phi Vu [71] ALL 32 Calisto and Lai-Yuen [72] ALL 48 Zhou et al. [68] ALL



challenge is the first ever reported CMR segmentation challenge. A large number
of the here-reported works were developed in the context of this and four other
CMR segmentation challenges. In chronological order, these are: the LV Segmen-
tation Challenge2 in 2011 [26], the Right Ventricle (RV) Segmentation Challenge3

in 2012 [27], the Automated Cardiac Diagnosis Challenge4 in 2017 [1] (ACDC),
and the Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Image Segmentation
Challenge5 in 2020 [10] (M&Ms).

Table 2.1 presents the SA CMR segmentation methods considered in our study and
specifies the cardiac structures each method extracts, i.e., the left ventricle (LV), the
right ventricle (RV) and left ventricular myocardium (MYO). Figure 2.1 presents SA
CMR segmentation methods’ progress in performance measured with the Dice Score
Coefficient (DSC). The methods are discriminated per segmented cardiac structure
(LV, RV and MYO). Furthermore, we differentiate between DL-based (blue) and
non-DL methods (orange).

We observe that, up to 2015, methods were exclusively not DL-based, mostly focused
on LV segmentation, and with an important performance gap between the LV and
the RV and MYO. The latter may be explained by the LV’s relatively lower variability
in shape than the other cardiac structures. In 2015, in the context of the Kaggle
Second Annual Data Science Bowl6, the top-performing methods relied on deep
learning technologies7. After this milestone, the scientific community quickly shifted
towards DL. After 2016, only one non-DL CMR segmentation method [55] has
been reported.

An immediate consequence of this change of techniques is the jump in performance
for all cardiac structures. This is more evident for MYO and RV, which had the lowest
DSCs, improving from average DSCs of 0.71 and 0.64, respectively before 2015, to
both achieving 0.85 after 2015. LV segmentation reports an improvement from 0.88
average DSC to 0.91. Since then, the number of methods has exploded. However,
performance improvements have stalled and, in some cases, deteriorated. This is
the case of general performance in the M&Ms Challenge [10], which assessed how
well the methods could cope with changes in the properties of the input images (e.g.
different origins, scanner vendors, and protocols). The result was a performance

2http://www.cardiacatlas.org/challenges/lv-segmentation-challenge, accessed on 29 May
2024.

3https://rvsc.projets.litislab.fr, accessed on 29 May 2024.
4https://www.creatis.insa-lyon.fr/Challenge/acdc, accessed on 29 May 2024.
5https://www.ub.edu/mnms, accessed on 29 May 2024.
6https://www.kaggle.com/c/second-annual-data-science-bowl, accessed on 29 May 2024.
7https://github.com/woshialex/diagnose-heart, accessed on 29 May 2024.
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Fig. 2.1.: Dice Score Coefficients (DSCs) obtained between 2009 and 2021 for LV, RV, and
MYO. Methods that do not use deep learning appear in orange, DL-based methods
in blue. Green lines indicate the performance trend over the years, estimated as
an average of DSCs within a window of 290 days. Interpretation of numbered
labels in Table 2.1.

drop, as observed from the RV trend line or the very low performance methods (e.g.,
point 34) in Figure 2.1.

Finally, while most DL-based methods in Figure 2.1 report a very high accuracy,
close to the inter-observer variability, Bernard et al. [1] demonstrated that DL-based
methods, even the best performing ones [64], produced CMR segmentations with
implausible anatomical configurations. The authors go then to suggest the adoption
of new performance evaluation metrics that are more resilient to abnormalities. In
the following, we show that the problems here identified, i.e., performance drops
or implausible segmentations, can be addressed by accounting for reliability and
robustness.
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2.4 Robustness and Reliability: New Challenges in
CMR Segmentation

This Section identifies the main factors that hinder the reliability and robustness
of DL-based CMR segmentation methods, following the definitions of robustness
(Def 1.2.1) and reliability (Def 1.2.2) provided in Section 1.2.

2.4.1 Challenges to Reliable Segmentation

We identify two factors that can hinder the reliability of a DL-based segmentation
method: overfitting and loss formulation.

Overfitting. The first and most basic condition that a reliable segmentation model
should meet is that its performance is consistent from training to testing. Failing
to do so is commonly referred to as overfitting or poor generalization. Two main
factors are linked to overfitting: model complexity and data collection.

Model complexity is related to the number of parameters in a model (e.g., the
number of weights in a network), whereas data collection refers to the task of
collecting and pre-processing data to train a model. In this study, we assume that
the best architectures for fulfilling segmentation in the presence of an adequate
number of training samples have already been identified. Therefore, we consider
that overfitting can only be caused by poor data collection. In other words, the CMR
segmentation methods presented in Section 2.3 should have a consistent training vs.
testing performance as long as good data collection is guaranteed.

The data collection process that can guarantee the reliability of the model during
testing needs to meet two conditions. First, it requires collecting a large number of
samples. Being CMR segmentation typically fulfilled in a supervised manner, this
also implies that the collected samples require annotations. Second, the collected
data should be representative of the phenomenon under study. Failing to do so is
commonly known as data bias.

Loss Formulation. State-of-the-art CMR segmentation is performed through super-
vised learning techniques. During supervised training, the loss functions measure
the dissimilarity between the ground truth and the predicted segmentation. There is
a vast offer of loss functions for medical image segmentation (e.g., the cross-entropy

2.4 Robustness and Reliability: New Challenges in CMR
Segmentation
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loss, the soft-Dice loss) [73], which can be used independently or combining multiple
losses together.

An inherent disadvantage of most of these loss functions is that they are typically
pixel-wise objective functions, which measure dissimilarity in terms of correctly
classified pixels over the total. This formulation does not optimize the model towards
the final problem task since it does not reward segmentation results that better reflect
the anatomy, i.e., the shape of the heart. Instead, it favors similarity among pixel
intensities and, eventually, it leads to incomplete and unrealistic segmentation
results both at training and at inference. In particular, predictions may contain holes
inside the structures, abnormal concavities, or duplicated regions, typically located
in the most basal and apical slices [74]. Being caused by intrinsic limitations of DL-
based algorithms, anatomical failures can occur at inference without any possibility
of inferring the quality of the model outcome. Therefore, the model becomes
unpredictable, intractable for model verification, and ultimately unreliable.

2.4.2 Challenges to Robust Segmentation

Robustness is associated with performance in face of invalid inputs. We identify two
sources that can lead to invalid inputs (Def 1.2.3 from Section 1.2), thus affecting the
robustness of a DL-based segmentation method: domain shift and data acquisition.
We choose to omit adversarial attacks from the discussion, which are performed by
attackers to inject noise into the input to cause malfunctioning. In this paragraph, we
take into account exclusively those inputs which can happen under normal operating
conditions.

Domain Shift. Domain shift represents a critical risk for supervised deployed mod-
els as it has been shown that the inference error increases proportionally to the
difference between the distribution observed at training and the one the model
encounters when deployed [75]. In CMR segmentation, this drift can be caused by
numerous factors, such as changes in demographics, modalities, acquisition proto-
cols and scanner vendors or simply anatomical variability. The M&Ms challenge [10]
was designed to assess the capacity of existing methods to cope with CMR domain
shift. The result was an overall drop in performance showing a lack of robustness in
existing methods.
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Fig. 2.2.: The proposed taxonomy for current techniques aimed at enhancing the reliability
and robustness of DL-based CMR segmentation methods.

Data Acquisition. Data acquisition may deteriorate the quality of an image and its
visual appearance, but differently from domain shift, it does not alter the image’s
statistical properties. Several factors affect the quality of a CMR image during its
acquisition. Some of them are under the control of the clinician (e.g., the number of
acquired slices), some depend on the subject being scanned (e.g., bulk or respiratory
motion), and some are out of control (e.g., arrhythmias, blood flow or magnetic field
inhomogeneities) [76]. When the quality is compromised, CMR images may contain
artifacts like ghosting, blurring and smearing. During manual labelling, these images
can be discarded for training. At inference, low-quality input images may not be
possible to discard. Potentially, they could be the only information available for a
patient. However, these low-quality inputs images may lead to poor segmentation
results, if the segmentation model is not capable of handling invalid inputs.

2.5 Methods for Improved Reliability and Robustness

In the following section, we introduce a taxonomy that encompasses two different
approaches recently emerging to improve the reliability and the robustness of
state-of-the-art DL-based segmentation methods. As schematized in Figure 2.2,
this taxonomy differentiates between techniques limited to identify failures of the
segmentation model, which hinder its reliability or robustness, and techniques that
adopt countermeasures to improve the segmentation performance. In the former
case, which we denote quality control (QC), the developed tools raise a flag when the
system (i.e., the segmentation model) under analysis incurs into a lack of reliability
or robustness, without necessarily explaining the cause or source of failure. In the
latter case, models are improved in their architecture, acting on the sources of
failures to eradicate them, and as a result to increase reliability and robustness. We
denote this category as model improvement (MI) techniques.
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2.5.1 Quality Control Techniques

QC techniques grade the quality of either input CMR images or segmentation outputs,
allowing for recognizing anomalous scenarios, but without performing any action to
correct the identified problem. Therefore, they improve reliability and/or robustness
by signalling the identified anomalies to the users for them to act upon the problem.
Most of these frameworks are not conceived to depend on a specific segmentation
architecture, but they can adapt to the different segmentation pipelines available in
the literature.

We identify two types of QC techniques, depending on when they are used. We
denote as pre-analysis QC [77–83] those methods that act exclusively on the inputs
of a DL-based model, i.e., before the model is executed, thus aiming specifically to
improve robustness. Post-analysis QC [3, 82–93] refers to those methods that act on
the outputs of the model to detect a malfunction, thus addressing reliability. Pre-
and post-analysis mechanisms are not mutually exclusive. They can be combined in
an end-to-end framework. Moreover, pre-analysis QC tools can be combined with
further processing steps that mitigate the erroneous detected inputs.

Pre-Analysis QC Tools

Pre-analysis QC tools aim to identify erroneous inputs, addressing robustness by
discarding them from the segmentation pipeline. The first barrier to overcome by this
type of methods is to define quality itself. Some methods aim to detect predefined
types of artifacts using learning-based approaches [79], heuristic techniques [77]
or a combination of both [78, 81]. Other works, instead, follow a more qualitative
definition that is based on a cardiologist’s input [80, 82, 83]. In this category,
machine learning classifiers provided with a set of qualitative labels (e.g., good/bad,
discard/keep) are trained to emulate experts criteria, aiming to flag low quality. At
inference, these models automatically retrieve the binary feedback, which replaces
experts’ decisions in high-throughput pipelines.

In one of the first QC works, Miao et al. [77] assess a perceptual difference model
that quantitatively evaluates image quality of large volumes of magnetic resonance
images to rate different image reconstruction algorithms.

Lorch et al. [78] use box-, line-, histogram-, and texture-based features to train
a random decision forest algorithm to distinguish between motion-corrupted and
artifact-free images.
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Zhang et al. [79] aim to identify missing apical and/or basal LV slices in CMR images
by using generative adversarial networks (GANs). This is achieved in two stages.
First, adversarial examples are generated and exploited to extract high-level features
from the CMR images. The features are then used to detect missing basal and apical
slices. Such process improves not only robustness to adversarial examples, but also
generalization performance for original examples.

Oksuz et al. [80] exploit different levels of k-space synthetic corruption to detect CMR
images with low perceptual quality, defined as the mean of the individual ratings
assigned by human observers. The authors use a data augmentation technique
to handle the severe class imbalance between good-quality and motion-corrupted
images, training two deep learning architectures to increase their robustness in the
classification task.

In [76, 81], Tarroni et al. present a quality control pipeline for CMR images in the
UK Biobank dataset, capable of detecting three problematic scenarios to warn a
human operator. The scenarios are low heart coverage, high inter-slice motion and
low cardiac image contrast.

Finally, some recent works have succeeded at integrating QC tools within a more
complex cardiac analysis pipeline. Machado et al. [82] use a ResNet [94] to classify
CMR images as analyzable or non-analyzable. The network is trained with a dataset
of 225 images labelled by an expert cardiologist. Those considered as analyzable
move in forward in a cardiac analysis pipeline (see Section 2.5.1).

Ruijsink et al. [83] present a DL-based pipeline for automated analysis of cardiac
function. Inside the pipeline, two convolutional neural networks (CNNs) are trained
to perform pre-analysis QC: a two-dimensional CNN with a recurrent long short-
term memory layer for motion artifacts detection, and a two-dimensional CNN
for detecting erroneous planning of the 4-chamber view. Flagged images are dis-
carded from the subsequent segmentation step that serves as input to the cardiac
function analysis.

Post-Analysis QC Tools

Post-analysis QC tools focus on the assessment of the segmentation outputs of a
model. In this sense, we consider these tools as targeting reliability, as the quality of
the segmentation output is the final indicator of the model’s performance. Methods
under this category follow two main approaches to performance assessment. They
act either as binary classifiers, assigning correct/incorrect labels to a segmentation,

2.5 Methods for Improved Reliability and Robustness 19



or as regressors, which attempt to infer well-known validation metrics, such as the
Dice Score or the Hausdorff Distance (HD), or uncertainty estimates.

Among regressors, Kohlberger et al. [88] train an SVM regressor from DSCs measured
against ground truth to build confidence measures and rank candidate segmentation
models against each other.

Valindria et al. [89] propose the Reverse Classification Accuracy (RCA), a registration-
based method relying on the spatial overlap between predicted segmentations and
reference atlases as a pseudo-measure of the performance of a segmentation model
on new data. The technique has been extensively validated in the UK Biobank [3],
despite being computationally expensive at inference time or prone to failure at the
registration stage [95].

Robinson et al. [90] rely on a CNN to predict the DSC of unseen segmented data.
The authors are the first to observe that it is difficult to obtain a balanced set of
labelled data reflecting the complete feasible distribution of DSCs.

Hann et al. [91] use an ensemble of neural networks to segment the LV from
T1 magnetic resonance, while providing an estimate of the DSC of the predicted
segmentation using multiple linear regression.

Fournel et al. [92] question the usefulness of 3D DSCs as the sole measure of
segmentation quality, as it excludes specific information related to the single slices,
which is actually fundamental when analysing the base and the apex. The authors
overcome this limitation by performing simultaneously quality control at 2D-level
and 3D-level using a CNN capable of predicting both 3D and 2D DSCs.

Galati and Zuluaga [93] use a convolutional autoencoder that reconstructs input
segmentation masks into pseudo ground truth masks. Pseudo DSC and HD are then
measured between the segmentations and their reconstructions that act as surrogate
measures of the quality of the segmentation results.

Among the classifiers, Albà et al. [84] use statistical, pattern and fractal descriptors
in a random forest classifier, which detect segmentation failures to be corrected or
removed from subsequent analyses.

Puyol-Antón et al. [85] use the uncertainty information captured in the evidence
lower bound (ELBO) produced by a Bayesian CNN to identify incorrect segmenta-
tions, which can be rejected or flagged for revision by an expert.

In [86], segmentation uncertainty is first assessed at the voxel level by using the
multi-class entropy and Monte Carlo dropout. After deriving uncertainty maps,
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a CNN is trained to detect image regions containing local segmentation failures
that potentially need correction by an expert. The authors differentiate tolerated
errors, which lay within the range of inter-observer variability, and the segmentation
failures, which are flagged to be corrected by an expert.

Gonzalez et al. [87] propose combining self-supervision loss terms and post hoc
uncertainty estimations into a reliable and lightweight novelty score that allows
anomalous samples’ identification.

The RCA [89], a regressor approach, has been embedded into the method proposed
in [82], where the authors build a cardiac analysis pipeline that integrates both pre-
(see Section 2.5.1) and post-analysis QC. For the latter, they estimate several quality
metrics between pairs of segmentations, before and after being processed by RCA.
Based on these values, an SVM binary classifier is trained to discriminate between
poor and good quality segmentations.

As [82], Ruijsink et al. [83] integrate pre- and post-analysis QC in a unified end-to-
end pipeline. When dealing with post-analysis, they attempt to determine incon-
sistencies by making comparisons between long and short-axis views, LV and RV
volumes, end-diastole and end-systole phases. They implement two support vector
machine (SVM) classification algorithms to detect abnormalities in the obtained
volume and strain curves.

Table 2.2 summarizes the main characteristics of the reported post-analysis QC tools.
In addition to the distinction among classifiers and regressors (Regression), we high-
light whether a proposed method formulates the problem in a traditional supervised
manner, thus requiring QC labels (no QC labels). Given the cost of data labelling, it
can be disadvantageous to require QC labels on top of the labels required to train
the segmentation algorithm. Classification methods typically exploit qualitative
(e.g., correct/incorrect) labels, whereas regressors require quantitative labels (e.g.,
DSC), which can be difficult to obtain [90]. To avoid these, a final set of methods
avoid the use of QC labels by considering alternative self-supervised techniques or
registration-based approaches as the RCA. Finally, Table 2.2 also highlights whether
a given method allows the identification of the specific areas of segmentation failure,
or it just gives an estimation of the general quality (detection).

2.5.2 Model Improvement Techniques

We denote model improvement (MI) techniques as those methods that directly
address the limitations of DL-based approaches leading to poor reliability or ro-
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Tab. 2.2.: Post-analysis QC methods and their three main characteristics: performing regres-
sion or classification(regression), the need of quality control labels (no QC labels)
and if they detect the element causing the error within the image (detection).

Method Regression No QC Labels Detection

Albà et al. [84] ✗ ✗ ✗

Puyol-Antón et al. [85] ✗ ✗ ✗

Sander et al. [86] ✗ ✗ ✓

Gonzales et al. [87] ✗ ✓ ✗

Kohlberger et al. [88] ✓ ✗ ✗

Valindria et al. [89] ✓ ✓ ✗

Machado et al. [82] ✗ ✗ ✗

Ruijsink et al. [83] ✗ ✗ ✗

Robinson et al. [90] ✓ ✗ ✗

Hann et al. [91] ✓ ✗ ✗

Fournel et al. [92] ✓ ✗ ✓

Galati and Zuluaga [93] ✓ ✓ ✓

bustness. Differently from QC techniques, where an external algorithmic tool flags
problematic situations, MI techniques solve the lack of reliability or robustness by
explicitly correcting the model. Another key difference w.r.t. QC tools, which can
be plugged in most of the segmentation models as an external module, is that MI
techniques imply modifications to the models or the overall analysis pipelines. In
the following, we first present MI techniques for improved reliability and robustness
classifying them based on the specific problem they tackle (Section 2.4). The section
concludes with an ablation analysis of the presented MI techniques to illustrate their
contributions to the performance of CMR segmentation methods.

Overfitting

As discussed in Section 2.4.1, the necessary complexity of DL-based models to guar-
antee a high-performance accuracy has been established. Therefore, MI techniques
to reduce overfitting firstly consist of strategies to enlarge the available datasets,
when further data collection is not possible.

Chen et al. [96] apply geometrical operations to the source training data in order
to simulate various possible data distributions across different domains. This data
augmentation strategy was also adopted by Full et al. [48] in the context of the
M&Ms Challenge.
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Other MI techniques assume it is not possible to sufficiently increase (artificially or
through further data collection) the size of the training set that it avoids overfit-
ting and propose to control the complexity of the highly complex models through
regularization.

Among them, Khened et al. [58] present a DenseNet-based FCN architecture with
long skip and short-cut connections to increase parameter efficiency.

Guo et al. [97] integrate continuous kernel cut and bound optimization into a CNN,
building a unified max-flow framework with improved generalization capabilities.

Loss Formulation

MI techniques mitigating the lack of reliability induced by typical loss functions
aim at re-formulating the training procedure through the definition of additional
objective losses that take into account anatomical constraints. Many of these works
rely on shape priors, embedding prior expertise knowledge into the segmentation
model. A second set of works takes inspiration from control theory, proposing
automatic correction schemes that make use of high-level feedback systems.

Shape Priors. Zotti et al. [98] extend the well-established U-net architecture [99]
through the formulation of a probabilistic framework, which allows the embedding
of a cardiac shape prior, in the form of a 3D volume encoding the probability of a
voxel to belong to a certain ”cardiac class“ (LV, RV, or MYO), and the definition of a
loss function tailored to the cardiac anatomy.

Clough et al. [100] propose a loss function that measures the topological corre-
spondence between predicted segmentations and prior shape knowledge. This is
done by using the differentiable properties of persistent homology, which compares
topologies in terms of their Betti numbers.

Wyburg et al. [101] enforce topology preservation by combining a segmentation
network with spatial transformers and diffeomorphic displacement fields. In this
way, the network learns to warp a binary prior, completing the segmentation task
with the desired topological characteristics.
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Automatic Correction. Girum et al. [74] formulate the segmentation problem as
a two systems task: the first is a U-Net inspired encoder–decoder CNN predicting
segmentations from the input images, the second is a fully convolutional network
(FCN) working as a context feedback system. Once fed with segmentations, the FCN
outputs encoded features which are integrated back into the decoder of the CNN.
This context feedback loop helps the model extract high-level image features and fix
uncertainties over time.

Ruijsink et al. [102] build from their previously proposed QC technique [83] to
embed anatomical awareness into CMR segmentation models. The authors assume
that the QC information provided by the QC tool encapsulates expertise biophysical
knowledge that can be used to provide feedback to the network. As such, predictions
flagged as high quality by the QC tool are fed back into the network model to
reinforce its anatomical awareness.

Painchaud et al. [103] present a segmentation framework that guarantees anatomical
criteria by warping the predictions of a given model towards the closest anatomically
valid cardiac shape with the use of a constrained Variational Autoencoder (cVAE).
This warping step acts as the correction procedure, effectively leading to a reduced
number of anatomical errors in the segmentation results.

Finally, Galati and Zuluaga [104] use the information from an autoencoder-based
post-analysis QC tool as a proxy of a model’s performance in unseen cardiac im-
ages [93]. The QC tool allows the automatic identification of Out-of-Distribution
(OoD) data, which cause failures of the segmentation model. The information is then
used as feedback to refine the training of the segmentation model, thus adapting to
the OoD data.

Data Acquisition

Methods trying to mitigate data acquisition problems to improve the robustness of
CMR segmentation models have mostly focused on improving the image quality at
the image reconstruction phase.

Among these, Schlemper et al. [105] propose two different methods to segment the
heart directly from the k-space of dynamic MRI data, bypassing middle reconstruc-
tion stages. The first method relies on an end-to-end synthesis network that exploits
the spatiotemporal redundancy of the input to generate the segmentations directly
from the input k-space. The second method is conceived for heavily undersampled
and aliased images, where there may be a loss of geometrical information and the
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first approach fails. It uses an autoencoder and a predictor network. The autoen-
coder is trained to encode and decode segmentations. The predictor learns to map
undersampled images to latent encodings. The predicted encodings are used by the
autoencoder to decode the corresponding segmentation maps.

Huang et al. [106] propose a method that takes as input the undersampled k-space
data from CMR scans to solve the reconstruction and segmentation problems simulta-
neously. The reconstruction is derived from the fast iterative shrinkage-thresholding
algorithm (FISTA), while the segmentation is based on a U-Net architecture. Com-
bining the two modules into a joint single-step, the reconstructed image becomes a
set of differentiable parameters for the segmentation module itself, allowing the two
to mutually benefit from each other through backpropagation.

Finally, Oksuz et al. [107] propose to detect, correct and segment CMR images
with motion artifacts, integrating reconstruction and segmentation in a unique
framework, which combines a spatiotemporal 2D+time CNN for artifact detection,
a convolutional recurrent neural network for reconstruction and a classical U-net for
segmentation. The full framework is trained by incorporating terms from all three
subnetworks into an overall loss function.

Domain Shift

Domain adaptation is the umbrella term used to refer to the techniques addressing
the domain shift problem [108, 109]. Within our work, we consider domain
adaptation as an MI technique that aims at improving robustness to domain-shifted
inputs. It consists of combining labelled source domain data, i.e., data from the
original training distribution, with target domain one, i.e., the domain shifted data,
typically in an unsupervised manner that avoids labelling the target domain, where
in principle no annotated data are available.

Different alternatives have been explored to improve the generalization capacity of
CMR segmentation models to an unseen domain, where the unseen domain can be a dif-
ferent image modality, such as computed tomography [110–112], a different magnetic
resonance sequence, such as late gadolinium enhancement [113], or the same modality
with varying statistical properties (e.g., different vendors and/or centers) [104].

Chen et al. [110, 111] present an unsupervised domain adaptation framework, named
SIFA. This framework adapts a segmentation network to an unlabeled domain by
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aligning source and target domains from both image and feature perspectives. Adver-
sarial learning is enforced at multiple levels in the pipeline, guiding the two adaptive
perspectives through a shared feature encoder to exploit their mutual benefits.

Ouyang et al. [112] introduce an unsupervised domain adaptation method specif-
ically designed to compensate for the drawback of domain adversarial training
when only a small number of target samples is available. This result is achieved by
introducing prior regularization on a shared domain-invariant latent space of the
source and target domain images, which is exploited during segmentation.

Chen et al. [113] tackle the problem of domain adaptation by using a common
feature generator to fuse the feature spaces of source and target data into a combined
feature domain. This new space is kept domain-invariant via indirect double-sided
adversarial learning.

Ablation Analysis of MI Techniques

We analyzed the reported performance accuracy of the different MI techniques and
their ablated versions. By ablated version, we refer to the backbone architecture of
each method without MI. Figure 2.3 summarizes the reported DSC and HD of the
different methods. We observe a clear trend of improvement when using MI: there
is an DSC increase, whereas the HD is reduced. Although the reported methods
use different backbone architectures, configurations and datasets, which limit a
direct comparison, there is a clear trend that suggests that MI techniques addressing
robustness and reliability do have a positive impact in the performance of CMR
segmentation methods.

2.6 Discussion

After tracing DL history for CMR segmentation (Section 2.3), this chapter has
highlighted the shortcomings that currently prevent this technology from meeting
some of the requirements to be safely deployed and used in clinical routine and
cardiac analysis pipelines [114]. We focus on two main factors: a lack of reliability
and robustness of many state-of-the-art methods. Starting from the definitions of
reliability (Def 1.2.1) and robustness (Def 1.2.2) considered in this PhD thesis,
we have identified and discuss the elements that lead to poor reliability and/or
robustness and we presented a wide range of works that have recently been published
tackling both problems in CMR segmentation.
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Fig. 2.3.: Average DSC (left) and HD (right) with (w/) the use of MI techniques and
without (w/o) them.



In this chapter, we proposed a new taxonomy to categorize the existing literature into
two families: quality control and model improvement techniques. Quality control
techniques can be seen as simpler strategies that only aim at flagging situations where
a model may be incurring poor reliability or robustness, without aiming to fix the
problem. Their main advantage is that these methods are typically external modules
that can be promptly attached to an existing segmentation pipeline. However, they
leave the problem to the expert, who needs to decide how to address the identified
situation. Therefore, QC tools contribute to reducing the analysis time for the expert
and providing some safety guarantees, through the generation of alerts, but do not
contribute to improving CMR segmentation performance.

Model improvement techniques, instead, bring specific improvements in several
aspects of the segmentation model development process, with the final goal of
addressing the limitations of DL models that lead to poor reliability or robustness.
As such, these type of methods are not only capable of identifying a potential
problem, as QC tools do, but they can also act on it and aim to fix it. This being
a more complex problem to tackle, it may explain why the number of existing QC
methods is larger than MI techniques. A second possible explanation to this may be
that the development of QC techniques has been strongly driven by the need to fully
automate the processing pipelines of large databases, such as the UK Biobank.

A current limiting factor to further research on new QC and MI techniques addressing
robustness and reliability is the lack of a common and well-established framework for
their evaluation. QC techniques use different types of outputs, such as quantitative
scores or a wide range of qualitative labels, with no clear mapping among them. MI
techniques, as discussed in Section 2.5.2, rely on different backbone architectures
and configurations that cannot be directly compared. The heterogeneity of existing
solutions for both categories of methods challenges an objective and consistent
evaluation.

Moreover, as demonstrated by Bernard et al. [1], current performance measures,
such as the DSC or HD, are not well-suited to identify errors which are associated
with poor reliability and robustness. Progress in the field should therefore be
accompanied with the investigation of better evaluation strategies.

2.7 Conclusion

We conducted a comprehensive review of current deep learning methods aimed at
improving reliability and robustness in cardiac magnetic resonance segmentation.
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In particular, we identified the main issues that lead to unpredictable model failures
caused by overfitting or poor loss formulation, and to low tolerance for input images
affected by acquisition artifacts or distribution shifts. The taxonomy we proposed
categorizes the state-of-the-art solutions into two main groups: quality control
techniques, which are limited to raising flags upon segmentation errors, and model
improvement techniques, which involve architectural or algorithmic modifications
to enhance reliability and robustness.
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Multi-Domain Brain Vessel
Segmentation Through
Feature Disentanglement

3

This chapter presents a framework that addresses 3D brain vessel segmentation across
domains involving different acquisition settings (multiple centers), imaging modalities
(computed tomography and magnetic resonance), and imaged organs (arteries and
veins). Through domain adaptation, our framework achieves robust performances
by combining semantic segmentation with image-to-image translation techniques. In
particular, the model learns a disentangled representation which allows to manipu-
late vessel appearances while preserving crucial spatial information, ensuring robust
segmentation. Extensive evaluations and ablation studies validate its effectiveness in
adapting to increasingly complex domain gaps.

The work presented in this chapter is based on the following works [115]:

Francesco Galati, Daniele Falcetta, Rosa Cortese, Barbara Casolla, Ferran Prados, Ninon
Burgos, and Maria A. Zuluaga. A2V: A semi-supervised domain adaptation frame-
work for brain vessel segmentation via two-phase training angiography-to-venography
translation. In: 34th British Machine Vision Conference – BMVC (2023).

3.1 Introduction

This chapter investigates how to improve AI systems’ segmentation performance
when faced with domain shifts. Models trained on a single source domain may
experience a decline in performance when transitioning from one domain to another.
At the same time, developing, deploying, and maintaining a segmentation model
for each domain is impractical, as collecting medical images is costly, and data
annotation is laborious and demands a high level of expertise.

Domain shift has been approached from various perspectives, depending on the
amount of labeled data available. Among the different approaches, domain adap-
tation (DA) aims to transfer predictive knowledge from a source domain with
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abundant labeled data to a target domain with limited or no labeled data [116].
Despite numerous successful attempts to apply domain adaptation techniques in
medical imaging, no current work has specifically focused on brain vessel segmen-
tation. Two factors may explain this. First, regardless of the number of modalities
being examined, vessel segmentation remains challenging due to the relatively small
size of vessels within a large image volume [117], which can easily be merged with
the background during adaptation [118]. Second, the domain gap between existing
modalities can vary widely.

The differences between the source and target data, referred to as domain-specific
properties, can significantly impact the overall image appearance, encompassing
various volume-related properties (e.g. spatial resolution, pixel spacing, image
intensity range, contrast, or noise level). Moreover, differences can also manifest
at a more localized level, impacting specific objects of interest: when examining
vessel-related details in a brain scan, domain-specific variations can affect the vessels’
individual intensities (e.g., vessels may be dark or bright), textures (e.g., vessels
may have smooth or irregular surfaces), locations (e.g., vessels may be central or
peripheral), shapes (e.g., vessels may be thick or thin), and densities (e.g., vessels
may be more or less numerous). To the best of our knowledge, currently, there is
a lack of methods capable of adapting vessels from diverse origins to a standard
labeled source domain for segmentation.

In the following, we present a framework for 3D brain vessel segmentation of any
new target domain using image-to-image translation. Section 3.2 provides clinical
context to the problem of multi-modal 3D cerebrovascular segmentation. In Sec-
tion 3.3, we overview the existing approaches and methodologies for addressing
domain shifts, including domain adaptation, domain generalization, and foundation
models. Section 3.4 describes our proposed approach, which circumvents the need
for domain-specific model design and data harmonization between the source and
the target domains. This is accomplished by employing disentanglement techniques
to independently manipulate different image properties, allowing to move from
one domain to the other in a label-preserving manner. Specifically, we focus on
the manipulation of vessel appearances during adaptation, while preserving spatial
information such as shapes, locations, and densities, which are crucial for correct
segmentation. In Section 3.4, we assess model performance when enlarging the
domain gap, conducting evaluations in three increasingly complex scenarios: multi-
center MRA, MRA-to-CTA, and MRA-to-MRV adaptation for vessel segmentation.
Finally, we investigate the properties of the proposed framework through exten-
sive ablation studies focusing on determining the optimal number of source and
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Fig. 3.1.: Maximum intensity projection (MIP) of a magnetic resonance angiography (left),
MIP of a computed tomography angiography (center), and minimum intensity
projection (mIP) of a magnetic resonance venography (right). All images are
skull-stripped and viewed from the axial perspective.

target annotations, assessing the efficacy of disentanglement, and testing different
architectural choices that may impact the performance of our model.

3.2 Clinical Motivation

Segmenting the cerebrovascular tree is crucial for accurately diagnosing and treating
several brain-related conditions. The complex and intricate morphology of brain
vessels requires the usage of multiple imaging modalities. Each modality has specific
properties targeting a vessel type: angiographies focus on visualizing the arteries in
the brain, while venographies primarily examine the veins. This variety of imaging
modalities, combined with the different acquisition protocols and scanners utilized in
clinical centers, poses challenges for automatic segmentation models, which struggle
to generalize across different domains, i.e. varying centers, modalities, or vessel
types (arteries or veins).

Figure 3.1 illustrates the visual disparity between a magnetic resonance angiography
(MRA), a computed tomography angiography (CTA), and a magnetic resonance
venography (MRV). This disparity can vary between different modalities. For ex-
ample, arteries in MRA and CTA mainly differ in the intensity distribution, as in
the former they stand out due to their high intensity values, while in the latter
they blend with extracerebral tissue, making them harder to distinguish. Instead,
the MRA-to-MRV domain gap also includes dissimilarities in the locations, shapes,
and densities of the cerebral vasculature: despite there is a correlation between
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the morphology of arteries and veins, the former are less numerous, occupy deeper
positions within the brain tissue, and generally have larger sizes.

The larger the dissimilarities between source and target domains are, the more
challenging it becomes to establish an image translation between the domains that
facilitates effective segmentation. Indeed, translations from the target domain to
the source cannot be performed in a fully way, i.e. adapting all domain-specific
properties to mimick the appearance of source images, as this would involve also
vessel-related properties such as shapes, positions, and densities which must be kept
unchanged not to affect the final segmentation. This chapter investigates feature
disentangling mechanisms to perform translations in a label-preserving way, i.e.
generating hybrids between the source and the target domains where only the
necessary domains-specific properties are modified to enhance segmentation.

3.3 Related Work

3.3.1 Multi-modal brain vessel segmentation

The segmentation of the 3D cerebrovascular vessels has been widely explored in the
literature [119], encompassing different modalities and vessel types. [120] presents
a statistically based algorithm driven by a physical model of blood flow to segment
vessel and other brain tissue classes in time-of-flight (TOF) MRA data. In [121], the
authors present a method based on random forest classification of image features
such as weighted temporal variance and intensity histogram parameters, achieving
full cerebral vasculature segmentation in 4D computed tomography (CT). Bériault
et al. [122] introduce an automatic method that uses conditional random fields
to integrate appearance, shape, and location potentials for segmenting venous
vasculature in susceptibility-weighted imaging (SWI). Nonetheless, only a few works
address multiple domains.

In [123], morphological operators capture simultaneously blood signals from paired
time-of-flight MRA and T1-weighted MR sequences. In [124], a multi-scale tensor
voting framework accounts for both the scale and vicinity of a voxel in paired CTA
and 3D phase-contrast MR images. Despite developing a unified artery segmentation
algorithm across image modalities, both studies [123, 124] require modality-specific
initialization and parameter tuning.

More recently, Tetteh et al. [125] introduced an angiography segmentation model
using 2D orthogonal cross-hair filters and a novel loss function for class imbalance
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with false-positive rate correction. After pretraining on synthetic data, the model
is fine-tuned to segment human MRA data and CTA microscopy scans of rat brains,
requiring pixel-wise annotations of each imaging modality. Dang et al. [117] propose
a weak patch-based deep learning approach for artery and vein segmentation from
two MR sequences. A common limitation of these two methods is they require
separate training (or fine-tuning) for each domain.

Chen et al. [126] try to bypass domain-specific manual annotation by leverag-
ing a paired dataset of MRA-CTA scans to generate annotations via registration,
thresholding, and size filtering. However, the method faces limitations arising
from misalignment between arteries after registration and the general difficulty of
acquiring paired datasets.

3.3.2 Domain Adaptation

Domain Adaptation (DA) [116] transfers knowledge from fully-labeled source do-
mains to a target domain with limited or no labels, with both domains accessible
during training. Supervised DA methods [127, 128] simplify model training by
assuming that a small number of labeled data in the target domain are available.
These methods, however, require labeled target data, which is particularly costly to
obtain for brain vessels. Unsupervised DA (UDA) techniques avoid the use of target
domain labels, leveraging the potential information available in readily accessible
unlabeled data. UDA has been applied to the segmentation of various organs, such
as liver [129], lung [130], heart [131, 132], abdominal structures [133], and brain
substructures [134]. The adaption from the source to the target distribution can
occur at different levels: input-level (or image-level) [135], feature-level [136],
output-level [134], or as a combination of two of the previous categories [131].
In recent years, unsupervised image-alignment methodologies have surged, driven
by the advancements in neural style transfer [137] and image-to-image transla-
tion [138], allowing for the extraction and combination of image content and
style. Many image-alignment approaches, however, involve intricate architectures
with multiple components [139] and heavily depend on adversarial training [131].
Due to these factors, their behavior is known to be often unstable and difficult to
interpret. To better guide the learning process, researchers have recently been redi-
recting their attention from fully unsupervised to semi-supervised DA for medical
segmentation [140, 141], including limited target annotations into the training
set.
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In the specific context of DA for vessel segmentation, Peng et al. [142] leverage two
segmentation models, each tailored to specific ophthalmic imaging modalities, oper-
ating within an UDA learning module to enhance the accuracy of 2D retinal vessel
segmentation. Gu et al. [141] introduce a semi-supervised DA method designed for
2D cross-anatomy segmentation of coronary arteries and retinal vessels, integrating
domain-specific batch normalization and cross-domain contrastive learning into a
self-ensembling mean-teacher framework. Despite achieving promising results, the
former technique might not be well-suited for large domain gaps due to the substan-
tial disparity between brain arteries and veins, while the latter might face challenges
due to the three-dimensional intricacies of the cerebrovascular structure.

3.3.3 Domain Generalization

The main limitation of DA is the requirement for repeated training with each
novel target domain. Additionally, often the target domain cannot be combined
with source domain data during training due to privacy or logistical constraints.
Domain Generalization (DG) enables a good performance across a wide range of
target domains without the need to retrain [143]. DG typically concentrates on
data augmentation [144, 145] to mimic changes in intensity and geometry across
scanners, protocols, or populations without accessing real target data. Alternative
methods include leveraging meta-learning [146] or implementing quality control
measures [104]. In the context of vessel segmentation, Lyu et al. [147] propose a
data augmentation strategy for retinal vessel, optic disc and optic cup, and lesion
segmentation that uses a model-agnostic augmentation policy to generate novel
domains and maximize the diversity among them. Hu et al. [148] introduce a novel
domain generalization method integrating a Hessian-based vector field and self-
attention mechanism to enhance tubular shape feature representation, alongside a
unique data augmentation preserving vessel structures while altering image style.

3.3.4 Foundation Models

Overall, DA and DG tend to develop specialized networks that are trained on
datasets confined to a single image modality and organ. On the opposite, foundation
models are trained on massive and diverse datasets. Initially developed for natural
language [149] and images [8, 150, 151], these models have exhibited remarkable
zero-shot generalizability across various tasks using test-time prompts such as points,
bounding boxes, masks or text. However, their deployment in actual clinical settings
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is hindered by the need to assemble vast labeled datasets, which is often unfeasible.
Furthermore, they require fine-tuning or prompting [13, 152], which is problematic
when annotations are scarce or full automation is desired. In-context learning
methods overcome these limitations by incorporating few task demonstrations as
inputs. Among these, UniverSeg [153] employs a cross-block mechanism to produce
segmentation maps from a query image and an example set of image-label pairs,
outperforming few-shot baseline methods. Although UniverSeg considers retinal
vessels and has demonstrated its capability to generalize to unseen anatomies, we
argue that requiring it to bridge large domain gaps, such as the one from retinal
to brain vessels, without incorporating any adaptation mechanism might be highly
demanding. Also, UniverSeg relies on training with more than 22,000 scans from 53
publicly available datasets, highlighting how data-greedy these methods are.

3.4 Method

Fig. 3.2.: During the two-phase training algorithm, images xi from domains S and T are
input into our model consisting of the generator G, discriminator D, and encoder
E. The training process is split in two distinct phases. In Phase 1 (top), G
undergoes adversarial training with D to build a unified latent space that is both
disentangled and semantically rich. In Phase 2 (bottom), the encoder E is trained
for label-preserving image-to-image translation, while G is refined to generate
segmentation masks ŷt

i and ŷs
i .
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Let S represent the source domain, and T represent a target domain. Our framework
relies on three datasets: S = {xs

i , ys
i }Ni=1, a set of N labeled images from S; TU =

{xt
i}Mi=1, a set of M unlabeled images from T ; and TL = {xlt

i , ylt
i }mi=1, a target labeled

dataset with m ≪ M annotated images, also from T . We denote T = TU ∪ {xlt
i |

xlt
i ∈ TL}mi=1 as the set of all target samples, excluding the labels ylt

i .

Our framework comprises a generator (G) and an encoder (E) accomplishing distinct
tasks (Figure 3.2). The generator learns to generate realistic brain images, x̂, by
identifying the features from the source and target domains and representing them
both within a unified and disentangled latent spaceW . This representation allows our
model to independently manipulate domain-specific features, enabling it to bridge
broad domain gaps and compensate for the absence of data harmonization between
the source and target at pre-processing. The encoder leverages the information
contained in W to learn image-to-image translation in a label-preserving manner,
i.e., focusing only on features that do not compromise spatial information. This is
achieved using cycle-consistency and segmentation losses that enforce E to maintain
the labels aligned in both domains.

Both G and E are trained in separate phases. Splitting the training process into
two distinct phases limits the adversarial training solely to the first phase, where
an external discriminator D is incorporated to distinguish between real and fake
images. Excluding D from the second phase, when the network learns image-to-
image translation, prevents penalization of hybrid translations. Also, the limited use
of adversarial training ensures stable and fast convergence.

3.4.1 Feature Disentanglement

In Phase 1 (Figure 3.2 top), G is trained to establish an association between latent
vectors w randomly sampled fromW and the corresponding generated brain images,
x̂, which aim to resemble images from S or T . To this end, we rely on adversarial
learning with the aid of an external discriminator D. D acts as a binary classifier
distinguishing between real and fake samples. In response, G aims to fool the
discriminator by retrieving images that mimic the original ones from S and T . The
parameters of G and D are optimized with the following loss function:

Ltot = Ladv(G, D) + LR1(D) + Lpl(F ) (3.1)

where Ladv is the non-saturating loss [154], LR1 is the R1 regularization [155],
and Lk

pl is the path length regularization [156]. The regularization brought by Lk
pl
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transformsW into a disentangled latent space where different directions consistently
correspond to individual, controllable aspects of variation in the generated images.
At the end of Phase 1,W can be queried to summarize the characteristics of both S
and T in a shared and unwarped representation. Accordingly, this representation
integrates the distinctive features from each domains, i.e. the domain-specific
features.

In Phase 2 (Figure 3.2 bottom), E is trained. When fed with an image xs
i from S, E

learns to discover two corresponding latent representations, i.e., ws
i and wt

i , which
are alternated by inputting an additional binary flag d. The latent vectors guide G,
which in this phase acts as a static decoder (with frozen parameters), to retrieve the
source reconstruction x̂s

i , within the same domain,

x̂s
i = G(ws

i ) = G(E(xs
i | d = 0)), (3.2)

or the source-to-target translation x̂t
i to the opposite domain,

x̂t
i = G(wt

i) = G(E(xs
i | d = 1)). (3.3)

When learning ws
i and wt

i , E must encode the domain-specific features that recall
the characteristics of either the source or target domain. Disentanglement ensures
that all image properties, whether related to the whole volume (e.g. pixel spacing
or image contrast) or specific to vessels (e.g. intensities, textures, shapes, locations,
and densities of vessels), are individually represented within W, facilitating E in
establishing mappings between images at flexible semantic levels.

3.4.2 Preserving Labels

Also in Phase 2, we integrate image segmentation into our framework by expanding
the generator with an additional label-synthesis branch [157] (Figure 3.2 bottom).
This branch is designed to output semantic segmentation masks that align with the
generated images: while G renders the source reconstruction x̂s

i and the source-to-
target translation x̂t

i, its label-synthesis branch predicts the associated segmentation
maps ŷs

i and ŷt
i . With this branch, we avoid using a separate segmentation module,

thus decreasing computational complexity. It consists of three fully connected
layers attached to the feature vectors of G, which are optimized in isolation while
freezing all the other parameters inside the generator. To carry out this optimization,
segmentation losses LS, calculated as the sum of the Dice and cross-entropy, are
computed for both ŷs

i and ŷt
i based on the same reference annotation ys

i . Requiring
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the model to output the same segmentation masks post-reconstruction and post-
translation is crucial to guarantee that labels are preserved during both processes.
In fact, this requirement backpropagates to E and ensures that ws

i and wt
i share the

necessary domain-specific features to preserve the position and shapes of objects,
particularly vessels (as it is our object of interest), which are consequently excluded
from the translation process. For example, transforming pixel spacing (i.e., a domain-
specific feature) in case it differs between S and T may increase or decrease the
overall image scale, thus negatively affecting the segmentation. For this reason,
E will avoid translating pixel spacing. Here, disentanglement proves beneficial,
helping the model separate domain-specific features to automatically identify those
contributing to improve the segmentation, while discarding compromising ones.
Consequently, the model can modify vessel intensities or textures while preserving
their spatial arrangement and geometrical properties. The resulting outputs are
thus hybrids between S and T , intended to facilitate the segmentation process.
This automatic alignment of the two domains allows to discard data harmonization
during pre-processing, which is often a domain-specific and time-consuming task.

3.4.3 Cycle Consistency

Up to this point, we have described the forwarding pass carried during Phase 2 by E

and G from a source image xs
i to its source reconstruction x̂s

i and source-to-target
translation x̂t

i, with corresponding predictions ŷs
i and ŷt

i . This data flow remains
equivalent when working with an input image xt

i from the target domain, resulting
in one target reconstruction and one target-to-source translation. However, segmen-
tation losses are only computed when annotations are available, i.e., in TL. In both
domains, feeding the model with opposite values of d in succession corresponds
to performing two complementary translations that neutralize each other’s effects,
as the first changes the input image’s domain, while the second brings it back to
its original one. This cyclical behavior can be exploited to enable the computation
of cycle-consistency reconstruction losses alongside the intra-domain reconstruc-
tion losses, i.e., each translation is immediately followed by its inverse to enforce
image fidelity. This approach offers a reduction in complexity and computational
cost compared to traditional cycle-based methods, which typically necessitate two
encoder-decoder pairs [138]. However, both the generator and encoder must be
used twice during each cycle. Consequently, when the cycle is completed, the losses
are propagated into G and E only once, taking into account the most recent pass.
We compute both intra-domain and cycle-consistency reconstruction losses LR as
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Fig. 3.3.: In Phase 2 of our training algorithm, we perform both source and target reconstructions (first row, source domain on the left and
target domain on the right) and source-to-target and target-to-source translations (second and third rows). The backpropagation
of LR exclusively updates the weights of E, while LS influences both E and G.



the addition of mean squared error and LPIPS [158]. A comprehensive summary of
Phase 2 is displayed in Figure 3.3.

3.4.4 Inference

Given a new image xt
new, the model generates its reconstruction in T , i.e., x̂t

new,
and its translation in S, i.e., x̂s

new. Simultaneously, the label-synthesis branch of G

retrieves the segmentation masks ŷt
new and ŷs

new, corresponding respectively to x̂t
new

and x̂s
new. Since both predictions contain valuable information pertaining to vessel

segmentation, the final segmentation mask is obtained by averaging ŷt
new and ŷs

new

before the last argmax operation. Notably, when used with a source image xs
new,

the model only performs reconstruction. The translation capability, which involves
generating x̂t

new and the corresponding ŷt
new, is not used, since our main goal is the

segmentation of the target domain.

3.5 Experiments and Results

3.5.1 Experimental Setup

Datasets

Our experiments use the following datasets.

OASIS-3 [159]. We randomly select 49 time-of-flight (TOF) MRA volumes. These
volumes have a median grid size of 576× 768× 232 voxels and a median voxel size
of 0.30× 0.30× 0.60 mm. Our selection encompasses 27 cognitively normal subjects
and 10 patients at different stages of cognitive decline, all adults ranging in age
from 42 to 95 years.

IXI1. We sample 50 TOF MRA volumes, with a median grid size of 359× 481× 100
voxels and a median voxel size of 0.47× 0.47× 0.80 mm. All images were acquired
from healthy subjects spanning an age range of 20 to 86 years.

TopCoW [160]. We use the 40 CTA volumes within the first release of the dataset.
The volumes exhibit a median grid size of 290×366×211 voxels and a median voxel

1https://brain-development.org/ixi-dataset
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size of 0.46× 0.46× 0.70 mm. The patients within this cohort were all in the process
of recovering from disorders related to strokes.

Susceptibility-weighted images (SWI). We use a private dataset consisting of 28
SWI venographies from retrospective studies previously conducted at UCL Queen
Square Institute of Neurology, Queen Square MS Centre, University College London.
The images have a median grid size of 480× 480× 288 voxels and a median voxel
size of 0.50× 0.50× 0.50 mm and include adult subjects showing no visible lesions
on SWI.

For OASIS-3, IXI, and SWI, all images volumes were annotated by two experts
(RC, MAZ) to obtain vessel masks. For TopCoW, we used the masks included in
the dataset, which include annotations only of the vessels constituting the circle
of Willis (CoW). Brain masks were obtained using SynthStrip [11]. For TopCoW,
we generated brain annotations through a registration and resampling procedure
initiated from the pairwise MRA.

The datasets undergo separate pre-processing without any inter-domain harmoniza-
tion. First, all volumes are resampled using bicubic interpolation to fix a uniform
spacing, calculated as the dataset’s median value, with minor increments made if
the images do not fit into a volume of 5123 voxels. Next, each volume is rescaled
based on its mean and standard deviation, and then clipped between the 0.1 and
99.9 percentiles and normalized in the range [−1, +1]. The segmentation masks
undergo one-hot encoding, resulting in a three-dimensional label: one dimension
for the brain, one for the vessels, and an additional one for the background.

Implementation Details

Our framework is implemented in PyTorch 1.9.1. Phase 1 and Phase 2 use batches
of four images each, and run for 250k and 20k iterations, respectively. In addition,
a preliminary phase of 15k iterations is conducted before Phase 2, to pretrain the
model using only source data. After training, the models with the best validation
performance on S and T are selected for the final evaluation. The generator G and
discriminator D are based on StyleGAN2 [156], while the label-synthesis branch is
adapted from DatasetGAN [157]. As in [161], the encoder E maps input images
into the extended latent spaceW+ of StyleGAN2, using a ResNet backbone inspired
by [162]. Building upon this backbone, multiple outputs are branched out: one for
latent code prediction and the other for feature tensor prediction. These branches
are then connected to G through a dynamic skip connection module [163], which
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Tab. 3.1.: Source domain performance on OASIS-3

Dice Precision Recall clDice

Vessels 73.7 ± 2.8 66.9 ± 4.8 82.5 ± 3.7 76.9 ± 5.2

filters the residual information to establish fine-level content correspondences. All
code and experiments can be accessed on github.com/i-vesseg/MultiVesSeg.

Evaluation setup

We evaluate models considering their segmentation performance on the target
datasets using test splits. We assess performance using the Dice coefficient (Dice),
the centerlineDice (clDice) [164], precision and recall.

3.5.2 Ablation Studies

We study how the performance of our model is impacted by the number of available
annotated images in both the target and source domains, as well as by various
architectural choices. Given the substantial domain gap between angiographies and
venographies, which depict two different vessel types, we utilize TOF MRA images
from OASIS-3 as the source domain S and SWI images as the target domain T to
analyze the behavior of our model in this particularly complex scenario.

Intra-domain Performance

We first assess the performance of our method in intra-domain vessel segmentation.
In Phase 1, we include a source dataset (S) of N = 35 source volumes and a target
dataset (T ) of |T | = M + m = 20 target volumes into our training set. As this phase
is entirely unsupervised, the division between the unlabeled and labeled target sets
TU and TL does not have any impact. Subsequently, we pretrain the encoder E and
the segmentation branch of G using only the source data (left half of the first row in
Figure 3.3), ignoring source-to-target translation. For evaluation, we split equally
the remaining 14 TOF MRAs between validation and testing, following a 70-15-15
ratio. The results on the testing set are presented in Table 3.1, demonstrating that
our method’s performance is comparable to state-of-the-art approaches for brain
artery segmentation [117, 165].
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Impact of Target Annotations

We investigate the model’s sensitivity to the number of annotated target images.
Using a fixed number of source images (N = 35), we gradually increase the number
of annotated target images into the training set (TL). We begin with m = 0 and
progress to m = 1 and m = 3 midpoint slices, extracted from three distinct volumes.
This sequence concludes with the inclusion of the full three volumes into TL. The
remaining volumes are used without annotations (M = 17). Four images are set
aside for validation, and another four are kept for testing.

Figure 3.4 (left) reports vessel segmentation performance. As expected, the per-
formance improves as the number of available annotated samples increases. In
particular, there is a performance boost observed during the transition from m = 0
to m = 1 slice, marking the shift from an unsupervised DA scenario to a semi-
supervised one. However, as the number of labeled slices increases from m = 3 to
cover three whole volumes (m = 831 slices in total), the extent of this performance
improvement gradually diminishes, suggesting a trend towards saturation. This
indicates that while the model benefits from additional annotated target images, it
already exhibits good behavior when only a few target labels are available.

Impact of Source Annotations

We investigate the scenario where the number of available source images varies
(N = [0, 10, 20, 35]) while the number of annotated target images is fixed (m = 3
slices). Source and target validation and testing sets are the same as in Sections 3.5.2
and 3.5.2. Figure 3.4 (right) summarizes the obtained results. We start considering
a few-shot segmentation scenario, where minimal annotations are employed to train
segmentation in T , and there is no contribution from S (i.e., N = 0). In this case,
our model performs exclusively target reconstruction (right half of the first row in
Figure 3.3), calculating the segmentation loss only for TL. A sharp performance
increase is observed when passing from N = 0 to N = 10 source volumes, i.e., when
we activate source reconstruction and inter-domain translations. After, there is a
modest increase of only 3.4% in Dice when moving from N = 10 to N = 35. Despite
the improvements become more gradual, overall the contribution from the labeled
source proves to be crucial for achieving satisfactory results.

3.5 Experiments and Results 45



Fig. 3.4.: Vessel segmentation performance with varying target annotations m (left) and
source annotations N (right). Vertical error bars represent the standard deviation
across the testing set.

Architecture Elements

We perform an ablation study to assess how the different elements in our architecture
affect the segmentation accuracy. Specifically, we examine the effects of the following
features, which we notice to have the most significant impact on the results: residual
connections (Res), to enhance information flow between E and G; domain-specific
batch normalization (DSBN), to normalize feature maps separately for the two
domains; balanced data sampling (BDS), to ensure that each batch contains two
samples from S, one from TL and one from TU ; and intensity inversion (Inv), to
flip the intensity values of the input images, thus mitigating the disparity between
domains capturing vessels in dark and bright appearances respectively.

Table 3.2 displays the configurations obtained by deactivating each assessed com-
ponent. Residual connections appear to exert the most influence on the model’s
functioning, causing a substantial drop in Dice from 72.2% to 14.4%. Residual
connections emerge as indispensable components, serving to preserve spatial infor-
mation during reconstruction and facilitating the network’s manipulation of low-level
semantic attributes [162]. Domain-specific batch normalization causes a drop of
2.9%; balanced data sampling 1.1%, and intensity inversion brings a negligible effect
of 0.4% in the Dice. Notably, intensity inversion is specific to MRA-to-MRV, thereby
falling within the definition of data harmonization between the source and target
domains. Proving that this inversion does not impact the performance reinforces the
hypothesis that our method does not necessitate domain-specific pre-processing to
address the domain gap. However, this is true only in the semi-supervised setting:
after conducting an additional experiment with m = 0, we notice a significant
Dice score drops from 40.9% to 0.1% when intensity inversion is not used. This
underlines the need for some form of guidance in establishing connections between
vessels across TOF MRA and SWI modalities. This guidance could come in the
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Tab. 3.2.: Architectural Choices

Res DSBN BDS Inv Dice clDice

✓ ✓ ✓ ✓ 72.2 ± 2.5 75.4 ± 3.3

✗ ✓ ✓ ✓ 14.4 ± 3.4 17.0 ± 3.4

✓ ✗ ✓ ✓ 69.3 ± 2.8 73.7 ± 3.2

✓ ✓ ✗ ✓ 71.2 ± 2.4 74.4 ± 3.3

✓ ✓ ✓ ✗ 71.8 ± 3.0 74.3 ± 3.3

form of labeled examples or intensity harmonization, but it represents an essential
requirement for the correct functioning of our model.

3.5.3 Comparison with State-of-the-Art Methods

Tab. 3.3.: Results in the target domains

MC MRA

U-Net CycleGAN SIFA SynthSeg UniverSeg AADG DCDA CS-CADA Ours

Dice
Vessels 65.6 ± 4.4 30.5 ± 3.3 53.7 ± 1.9 41.7 ± 5.4 7.3 ± 2.6 45.3 ± 2.9 12.0 ± 2.8 43.3 ± 5.0 69.9 ± 2.3
Brain 95.1 ± 1.6 81.7 ± 2.9 89.4 ± 4.0 93.6 ± 3.3∗ 95.4 ± 1.2 97.7 ± 0.3 90.5 ± 1.2 69.3 ± 6.3 97.8 ± 0.2

Precision
Vessels 62.6 ± 8.2 35.3 ± 5.1 56.5 ± 4.1 61.5 ± 7.4 5.4 ± 3.1 78.2 ± 4.1 23.1 ± 4.8 54.7 ± 15.1 70.0 ± 4.0
Brain 92.5 ± 3.0 86.8 ± 1.7 89.6 ± 1.0 99.2 ± 0.4∗ 93.9 ± 2.3 98.8 ± 0.4 87.3 ± 1.0 81.7 ± 7.1 98.0 ± 0.5

Recall
Vessels 70.3 ± 6.7 27.4 ± 4.4 51.7 ± 3.6 31.7 ± 4.9 14.7 ± 4.9 32.0 ± 3.1 8.2 ± 2.1 37.7 ± 4.7 70.2 ± 4.7
Brain 98.0 ± 0.5 77.4 ± 5.3 89.5 ± 7.6 88.9 ± 5.9∗ 97.0 ± 0.5 96.6 ± 0.7 94.1 ± 2.9 60.5 ± 6.8 97.7 ± 0.5

clDice Vessels 68.7 ± 6.5 25.4 ± 3.0 51.5 ± 3.0 41.0 ± 6.4 8.1 ± 2.1 35.8 ± 2.6 8.4 ± 2.3 40.2 ± 5.4 76.8 ± 2.9

MRA-to-CTA

U-Net CycleGAN SIFA SynthSeg UniverSeg AADG DCDA CS-CADA Ours

Dice
Vessels 70.5 ± 3.0 33.1 ± 4.3 60.9 ± 2.9 55.1 ± 23.6 11.5 ± 9.0 5.8 ± 6.0 0.0 ± 0.0 0.0 ± 0.0 74.5 ± 4.2
Brain 95.8 ± 1.7 93.1 ± 1.6 94.4 ± 1.9 5.1 ± 7.0∗ 95.9 ± 0.8 94.8 ± 1.6 91.2 ± 3.5 85.6 ± 10.4 96.6 ± 1.1

Precision
Vessels 72.7 ± 13.5 27.1 ± 5.2 63.5 ± 8.3 52.2 ± 15.6 38.9 ± 19.9 22.5 ± 22.3 0.0 ± 0.0 0.0 ± 0.0 73.3 ± 13.3
Brain 94.2 ± 3.1 94.9 ± 1.4 94.1 ± 3.3 49.1 ± 49.1∗ 93.5 ± 1.5 91.5 ± 3.4 95.1 ± 1.1 95.2 ± 0.9 96.2 ± 1.8

Recall
Vessels 72.1 ± 10.5 43.1 ± 2.5 59.1 ± 2.6 63.2 ± 27.7 6.9 ± 5.7 3.4 ± 3.5 0.0 ± 0.0 0.0 ± 0.0 78.8 ± 8.5
Brain 97.5 ± 0.4 91.4 ± 2.2 94.8 ± 2.0 2.8 ± 3.8∗ 98.5 ± 1.2 98.5 ± 1.5 87.8 ± 6.3 79.2 ± 15.2 97.1 ± 1.1

clDice Vessels 72.5 ± 6.7 39.7 ± 5.2 68.9 ± 6.3 63.5 ± 29.0 18.0 ± 9.0 nan ± nan nan ± nan nan ± nan 78.0 ± 8.7

MRA-to-MRV

U-Net CycleGAN SIFA SynthSeg UniverSeg AADG DCDA CS-CADA Ours

Dice
Vessels 29.1 ± 4.9 5.1 ± 0.3 0.8 ± 0.5 10.9 ± 1.9 3.6 ± 1.1 2.0 ± 1.2 0.0 ± 0.0 0.4 ± 0.2 67.5 ± 1.7
Brain 83.0 ± 2.5 75.0 ± 0.8 91.4 ± 1.9 97.4 ± 0.1∗ 83.5 ± 2.5 96.7 ± 0.5 75.6 ± 1.1 25.7 ± 2.5 97.8 ± 0.2

Precision
Vessels 18.2 ± 4.0 11.5 ± 0.8 2.6 ± 1.1 51.4 ± 5.7 6.5 ± 2.4 1.3 ± 0.6 2.4 ± 2.1 0.8 ± 0.4 71.1 ± 4.4
Brain 71.3 ± 3.7 62.6 ± 0.7 97.8 ± 0.2 96.9 ± 0.5∗ 72.8 ± 3.8 97.4 ± 0.3 62.0 ± 1.6 32.5 ± 3.8 97.8 ± 0.4

Recall
Vessels 76.0 ± 5.5 3.3 ± 0.3 0.5 ± 0.3 6.1 ± 1.2 2.5 ± 0.7 6.3 ± 4.0 0.0 ± 0.0 0.3 ± 0.1 64.4 ± 2.1
Brain 99.5 ± 0.2 93.6 ± 1.2 85.9 ± 3.5 97.9 ± 0.5∗ 98.1 ± 0.2 96.0 ± 0.9 97.0 ± 0.5 21.3 ± 1.8 97.8 ± 0.5

clDice Vessels 33.5 ± 5.9 4.1 ± 0.3 0.6 ± 0.4 10.4 ± 1.9 2.7 ± 0.9 1.8 ± 1.1 nan ± nan 0.4 ± 0.2 69.9 ± 2.7

∗All methods were re-trained except for SynthSeg: only for brain segmentation, we utilized the
original pretrained model made available by the authors. Notably, this model appears to work well
with magnetic resonance (both MRA and MRV) but fails to segment the brain in CTA images.

We compare the best results obtained through our ablation studies with seven DA
state-of-the-art methods. These are: CycleGAN [138], Synergistic Image and Feature
Adaptation (SIFA) [131], SynthSeg [134], UniverSeg [153], Automatic Augmen-
tation for Domain Generalization (AADG) [147], DCDA [142], and Contrastive
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Fig. 3.5.: Comparison of the segmentation results for brain and vessels in the target MRA, CTA, and SWI images using different methods.
Red indicates brain masks, while green vessels. The rows display slices at varying levels: top, middle, and bottom.



Semi-supervised learning for Cross Anatomy Domain Adaptation (CS-CADA) [141].
In particular:

1) CycleGAN is a well-established method to perform unpaired image-to-image
translation on natural images. After translating data from T , we feed the results into
a 2D U-Net previously trained on S, as CycleGAN does not provide segmentation.

2) SIFA is a UDA technique based on image-to-image translation for multi-class
medical segmentation, therefore trained using both S and T , without utilizing any
target label ylt

i ;

3) SynthSeg is a UDA 3D output-level alignment method based on synthetic data
generation for brain synthesis and segmentation. It is trained with masks ys

i from S,
determining the best checkpoint based on the target performance;

4) UniverSeg is a foundation model that aims to solve unseen medical segmentation
tasks without additional training;

5) AADG is a multi-source domain generalization framework based on data manipu-
lation of retinal vessel images. To leverage training from multiple source domains,
the network is trained using all datasets except the target;

6 and 7) DCDA and CS-CADA are, respectively, unsupervised and semi-supervised
DA methods designed for retinal vessel segmentation and 2D coronary artery seg-
mentation. We train these methods using both S and T , including labels from TL for
CS-CADA

As a baseline, we consider a fully-supervised training setup with limited target
annotations. To this end, we use a 2D U-Net [99] that is trained with the few target
samples in TL.

Using OASIS-3 as a source domain, we conduct experiments in three distinct do-
main adaptation scenarios of increasing difficulty to ensure a broader perspective,
comparing our model’s performance in adapting to the following shifts:

1) Multi-center (MC) MRA, where MRAs are used as S and T , but from different
centers. Thirty-six unlabeled volumes (TU ) from IXI enter the training set; seven are
kept for validation and seven for testing;
2) MRA-to-CTA., where the target domain is CTAs from TopCoW, including 28
volumes without annotations (TU ) for training, six for validation and six for testing;
and
3) MRA-to-MRV, with SWIs used as T , of which 20 volumes deprived of labels (TU )
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are included in the training set, four in the validation set and four in the testing
set.

In MC MRA and MRA-to-MRV, we extract three midpoint slices from TU to form TL.
In MRA-to-CTA, we allocate three entire volumes for TL since they only have CoW
annotations. For the source dataset, 35 are allocated for training (S), while seven
volumes are used for validation and testing.

Table 3.3 summarizes the obtained results. For the sake of ensure fairness, we
include performance evaluation of cross-modality brain segmentation since most of
the methods (e.g. SIFA, SynthSeg, AADG, and UniverSeg), have been developed for
segmenting large objects, such as the brain. In fact, most methods have a very good
performance on this task, but there is a clear difficulty in segmenting the vessels.
This becomes particularly visible in the latter scenario: both the U-Net baseline,
trained with full supervision on the reduced dataset TL, and the considered state-
of-the-art methods in domain adaptation and generalization struggle to segment
veins. The degradation in performance from MC MRA and MRA-to-CTA to MRA-
to-MRV highlights the challenge posed by increasing domain gaps. UniverSeg
fails at segmenting vessels across all scenarios but demonstrates satisfactory brain
segmentation performance despite not requiring additional training. CS-CADA, the
only other SSDA model besides ours, provides poor results overall, likely because it
originally relies on a larger annotated target set than TL.

Notably, our proposed method achieves high performance in the target domain for
both brain and vessel segmentation. In particular, it bridges even the wider of the
domain gaps, successfully segmenting veins by using only three annotated target
slices and leveraging the information from the associated arteries in the source
modality. This demonstrates the model’s capability to cope with the differences
between arteries and veins, which are not limited to their low-level attributes like
intensities and textures but encompass also higher-level aspects like their positions
and shapes.

Figure 3.5 displays a visual comparison of the results across MC MRA, MRA-to-CTA
and MRA-to-MRV. The prevailing issue centers on false negatives, wherein vessels
remain undetected. This problem is exemplified by DCDA, which indicates no vessels
in both MRA-to-CTA and MRA-to-MRV. Moreover, some methods, notably CycleGAN,
demonstrate a tendency to displace vessels. Shifts in vessel positions result in a
deviation from the ground truth that significantly impacts the dice score.
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Fig. 3.6.: Target-to-source translations produced by the different image-level alignment
methods.

3.5.4 Quantitative Analysis

Impact of Disentanglement

Adopting the path length regularization [156] has an important role in the domain
adaptation process as it allows the disentangling of the latent space W, enabling
inter-domain translations that can handle independently volume-related image
properties, such as overall spatial information and appearance, and vessel-related
properties, such as their intensities, textures, shapes, locations, and densities. This
allows preserving the target content while mimicking the appearance of a source
image as it is better recognized by the segmentation branch. Keeping vessel position
and shape unchanged, despite these being domain-specific features, is a key property
to guarantee correct segmentation. By relying on the aforementioned capabilities,
we have gathered evidence of the ability to separate the vessel-related features
by visually inspecting the target-to-source translations generated by our model
compared to other image-level alignment methods.

In Figure 3.6, we display three cases of translation: one from MC MRA (first row),
another from MRA-to-CTA (second row), and a third from MRA-to-MRV (third row).
These examples highlight how the different models act on the vessel-related proper-
ties. In particular, we identified three problematic behaviors that compromise the
accuracy of the final segmentation results. These behaviors involve the translation of
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label-altering features due to their domain-specific nature. Firstly, vessels undergo
displacement, resulting in changes to their position and size. This occurs while resiz-
ing the whole brain to align with the pixel spacing of the source domain. Specifically,
CycleGAN and DCDA tend to translate all domain-specific features without distinc-
tion, including in fact the pixel spacing, and thus leading to spatial misalignment
between the source and target domains. We believe this problem arises because the
segmentation loss does not influence enough the prior translation, which is totally
the case in CycleGAN, where translation and segmentation are completely separate.
Secondly, vessels are observed merging with the background and vanishing. This is
noticeable as the number of bright vessels in the translations is never greater than the
vessels in the target domain. The phenomenon is particularly evident in SWI images,
where veins are generally more abundant than arteries in TOFs. The third issue
arises in SIFA, which initially appears to better preserve the positions and shapes of
the brain and vessels during translation, despite generating some shadow artifacts
around the skull in MC MRA and MRA-to-MRV translations. However, most veins
from SWIs are left untransformed and do not resemble arteries after translation.
Only a few veins, likely those aligning well with the typical artery arrangement,
transform into bright vessels. We attribute this behavior to the network’s inability to
link arteries and veins during translation without some form of guidance.

These findings align with what observed for Figure 3.5, where problematic vessels
are either omitted from the final segmentation or displaced. Also, this reinforces
the importance of enforcing label-preserving translations in our problem. Notably,
our model uniquely transforms dark vessels from the input (SWI) into bright vessels
without relocating them or reducing their number to replicate the typical arrange-
ment of arteries in TOF MRA images. This ability to selectively translate only some
domain-specific features, particularly those unrelated to vessel size and position, en-
ables our approach to adapt veins and arteries and retrieve accurate segmentations.
Lastly, we emphasize that achieving a hyper-realistic translation of target volumes is
not the central focus of our model. We acknowledge that our translations may not
present as entirely sourced but rather as hybrid representations. Indeed, the ability
of the network to translate input images aims exclusively to serve the segmentation
process, which is the primary objective of the proposed method.

Impact of Data Harmonization

The use of disentanglement and label-preserving translations eliminates the need
for data harmonization during pre-processing. To demonstrate that this does not
impact our model’s performance, we have conducted an experiment incorporating
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Tab. 3.4.: Performance comparison of different DA methods in the MRA-to-MRV scenario,
including data harmonization at pre-processing. We report mean Dice, Precision,
Recall and clDice (in %) with standard deviations.

SIFA SynthSeg CS-CADA DCDA Sato Ours

Dice
Vessels 0.8 ± 0.2 37.3 ± 4.4 51.4 ± 1.7 4.5 ± 0.4 44.2 ± 7.2 70.4 ± 2.4
Brain 91.5 ± 0.4 79.6 ± 3.8 91.5 ± 0.8 - - 97.5 ± 0.2

Precision
Vessels 11.6 ± 1.2 42.3 ± 9.2 58.6 ± 6.7 14.8 ± 3.5 42.7 ± 6.4 66.8 ± 5.2
Brain 84.8 ± 0.7 69.4 ± 5.5 89.6 ± 0.8 - - 97.6 ± 0.3

Recall
Vessels 0.4 ± 0.1 33.9 ± 1.6 46.2 ± 2.2 2.7 ± 0.2 46.1 ± 9.3 74.9 ± 3.0
Brain 99.3 ± 0.1 93.6 ± 0.5 93.5 ± 1.1 - - 97.4 ± 0.5

clDice Vessels 0.8 ± 0.2 48.2 ± 4.7 58.0 ± 2.8 3.9 ± 0.2 50.0 ± 6.7 74.8 ± 2.4

data harmonization between the source and target domains. In this experiment,
additional data harmonization steps are included in the pre-processing pipeline.
Specifically, both source and target data are rescaled to have a uniform voxel
spacing of [0.5, 0.5, 0.5] mm and jointly normalized within the range [−1, +1].
Performances are assessed in the most complex of the analysed target scenarios, i.e.,
venographies, including three whole volumes (m = 831 slices) in TL. Our method
is compared against four of the state-of-the-art DA methods used in Section 3.5.3:
SIFA, SynthSeg, CS-CADA, and DCDA. Additionally, we include a Sato filter [166]
for vessel enhancement as a baseline model.

Table 3.4 shows the results obtained. Brain segmentation results are generally
satisfactory due to data harmonization, which homogenizes voxel spacing and
makes all brains appear uniformly sized within the images. The performance at
segmentating vessels remains overall poor, as most methods are outperformed by
the simpler Sato filter.

Figure 3.7 illustrates the shift in performance when transitioning from the data
harmonization setup to the one without it. Apart from brain segmentation using SIFA,
all other compared methods exhibit either a drop in performance or no improvement
if their initial performance is already low. In contrast, our model maintains consistent
performance for both brain and vessel segmentation. This demonstrates its capability
to compensate for the lack of data harmonization through disentanglement, which
enables label-preserving transformations, thereby automatically aligning data from
the source and target domains.
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Fig. 3.7.: Shift in the performance with and without incorporating data harmonization
into our pre-processing pipeline, calculated for our model and the compared DA
methods.

3.6 Conclusion

Among the model improvement techniques studied in Chapter 2, this chapter focused
on domain adaptation. We developed a novel end-to-end semi-supervised framework
designed as an out-of-the-box tool for segmenting arteries and veins. Our framework
is designed to remain robust against domain shifts caused by changes in acquisition
center, imaging modality, or vessel type. By representing heterogeneous volumetric
data in a unified and disentangled latent space, our method effectively performs
inter-domain translation in a label-preserving manner. Ablation studies optimized the
framework by refining the balance of source and target annotations and evaluating
critical architectural choices. Comparative analyses demonstrated our framework’s
superior performance in segmenting 3D brain vessels, even with large domain gaps
and complex cerebrovascular morphology.
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Federated Multi-Centric
Image Segmentation with
Uneven Label Distribution

4

This chapter addresses the problem of achieving robust segmentation despite domain
shifts caused by different acquisition settings, imaging modalities, and imaged organs,
which occur in complex non-independent and identically distributed multi-centric
settings, where annotations are not available to all clients. It proposes a federated
learning framework that collaboratively builds a multimodal data factory embedding
a shared, disentangled latent representation across participants. During a second
asynchronous stage, each participant can perform local domain adaptation without
requiring access to external raw data or annotations. This approach facilitates robust
target segmentation in a semi-supervised manner, i.e. relying solely on a small set of
target annotations.

The work presented in this chapter is based on [167]:

Francesco Galati, Rosa Cortese, Ferran Prados, Marco Lorenzi, and Maria A. Zuluaga.
Federated multi-centric image segmentation with uneven label distribution. In: Medical
Image Computing and Computer Assisted Intervention – MICCAI (2024).

4.1 Introduction

This chapter investigates the robustness of medical image segmentation systems
when run in a Federated Learning (FL) setting, where multiple clients collaborate
to jointly train a model by sharing partially optimized model parameters instead
of private data. In the context of supervised learning for medical image segmen-
tation, current FL schemes are mostly based on the assumption of homogeneous,
independent, and identically distributed (iid) data across centers, each with access
to annotations. While these assumptions simplify the learning process, they often
fails to reflect real-world conditions. First, heterogeneity in data distributions across
clients is often neglected, leading to models prone to domain shifts. These shifts,
which in FL are also known as client shifts, may cause difficult convergence of the
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global model and performance degradation when applied to clients with underrep-
resented acquisition settings, imaging modalities, patient populations, or imaged
organs. Additionally, fully labeled data must be available at each site to perform
the distributed learning task. This constraint implies that unlabeled data, which
are abundant in most institutions, should be discarded, entailing a loss of potential
relevant information that could contribute to model improvement.

In the following, we present a novel federated image segmentation approach adapted
to complex non-iid setting typical of real-life conditions, which addresses the problem
of domain shifts due to three specific factors: different scanner vendors, imaging
modalities, and imaged organs. Clinical context to federated learning for real-world
medical image segmentation is provided in Section 4.2. Section 4.3 reviews relevant
research in federated learning, in particular when addressing the problem of label
scarcity and domain shifts across participants. Section 4.4 presents our approach,
which assumes that labeled dataset is not available to all clients, and that clients data
exhibit different data distributions. Our proposed framework collaboratively builds a
multimodal data factory with a shared, disentangled latent representation, enabling
local Domain Adaptation (DA) and target segmentation in a second asynchronous
stage. Section 4.5 evaluates our method on multi-scanner cardiac segmentation,
multi-modality skull-stripping, and multi-organ vascular segmentation, achieving
improved Dice scores up to 13.4% as compare to competing segmentation methods
from the state-of-the-art.

4.2 Clinical Motivation

Although supervised learning models need large collections of labeled data to pre-
vent overfitting and achieve high-quality results, in practice they are often trained on
small datasets provided by single data centers. This limitation, which can hinder the
generalizability and robustness of segmentation models, is mainly due to the high
costs associated with acquiring medical images, and the tedious expertise-requiring
effort for their annotation. While sharing medical data is essential to train more
robust models, in real-life scenarios it is often complex to gather data from different
hospitals in a centralized repository, due to privacy constraints and current regula-
tions [168], which pose significant barriers to data sharing and collaboration across
institutions. Federated learning offers a solution to keep sensitive information local-
ized while still benefiting from collaborative model training. However, challenges
remain in ensuring these models are robust, particularly when dealing with client
shifts and limited labeled data, which are common in diverse clinical settings. This
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chapter proposes a solution to these challenges through the federated training of a
multimodal data factory, which subsequently enables local domain adaptation for
robust target segmentation in a second stage.

4.3 Related Work

The following section provides an overview of recent related works addressing
federated learning for medical image segmentation, particularly when handling
client shifts and limited labels. We refer the reader to Section 3.3 for exploring other
related topics, such as domain adaptation and domain generalization, which are
discussed below in their federated context.

4.3.1 Federated Learning

Federated learning is a distributed approach to machine learning that enables
multiple clients to collaboratively refine a shared model. This enforces privacy
as sensitive data is processed locally and only the updated model parameters are
aggregated centrally. In real-world practice, aggregation may suffer from limited
annotations, which may lead to badly trained client models, and client shifts, which
may cause difficult convergence of the global model. To address these challenges,
several federated segmentation approaches have been proposed.

Limited Labels

Due to their high cost, pixel-wise annotation masks are often not available at every
client. Wicaksana et al. [169] propose FedMix, a federated learning framework
for medical image segmentation which enhances performance through an adaptive
weight assignment procedure accounting for mixed labels, from strong pixel-wise
annotations to weak class labels. However, this setting only tackles variable label
quality, but it does not apply when labels are fully absent in a client.

Several federated semi-supervised learning models deal with label scarcity by using
pseudo-labeling strategies to leverage unlabeled data. [170] utilizes the embedded
knowledge learned from labeled clients to mitigate the annotation deficiency at
unlabeled clients and enable fundus image and prostate MRI segmentation. In [171],
authors combine pseudo-labeling with contrastive learning to segment COVID-19
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X-ray and CT infected regions, and colorectal polyp. Ma et al. [172] develop a
framework for skin and polyp lesion segmentation which incorporates pseudo-
label generation with knowledge transfer across sites. While effective in certain
segmentation tasks, these federated semi-supervised works do not address the issue
of client shift.

Client Shifts

Methods addressing client shifts aim to build a federated learning framework that
can predict data from a target client with a unique data distribution. The FedSM
framework [173] addresses client shifts in cross-silo federated learning for medical
image segmentation through a novel personalized FL objective formulation and
a method, SoftPull, to solve it and produce personalized models. Unlike FedSM,
which applies only to labeled clients participating to the federated training, the
IOP-FL framework proposed by [174] deploys the global model both to clients inside
and outside the FL. For internal clients, it uses a gradient-based approach that
accumulates global and local gradients. For outside clients, the local models and the
global model can form a routing space to generate an new model adapted to their
distribution. To run their model on outside domains, the authors of FedDG [175]
propose a federated domain generalization technique for retinal fundus and prostate
MRI segmentation, exploiting episodic frequency learning across multi-source data
distributions. Nonetheless, IOP-FL and FedDG are primarily suited for small domain
gaps, like those arising from different scanners and patient demographics.

Our work considers a more general problem, using federated domain adapta-
tion [176, 177] to handle larger distributional shifts, such as those between different
imaging modalities or imaged organs. We highlight a lack of reproducible meth-
ods merging DA and FL in medical segmentation literature, due to the complex
architecture of the networks involved, the necessity of complete retraining for each
new target domain, and the reliance on techniques which typically need access to
both source and target domains (e.g., contrastive learning), challenges which are all
tackled in our work.

4.4 Method

We formulate a collaborative learning scheme that involves a group of K clients,
each owning a dataset Dk from a unique domain Dk, with k = 1, ..., K. At the
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Fig. 4.1.: Using federated learning, K clients collaboratively train a multimodal data factory F (in blue). Afterwards, source clients
can contribute by training locally segmentation branches Ss (in orange), while target clients can asynchronously acquire the
information required to segment their data Dt via domain adaptation (in pink).



start of the process, these datasets lack annotations. Operating in an unsupervised
manner, we train a multimodal data factory F , which serves multiple functions:

1. performing conditional image synthesis to generate images x̂ that resemble
those from the clients;

2. providing a disentangled latent spaceW which supports the representation
and translation of domains with significant differences;

3. allowing for customization through the addition of domain-specific segmenta-
tion branches, trained asynchronously once a source client s acquires annota-
tions Ms for its dataset Ds.

This design allows clients to exchange the necessary knowledge to segment data
across all domains Dk without sharing images or annotations, thereby preserving
data governance. Figure 4.1 illustrates the described scenario.

4.4.1 Multimodal Data Factory via Federated Learning

The first step of our method aims to build a data factory F that integrates domains
Dk from all clients. When feeding a latent code z randomly drawn from a Gaussian
distribution, F is trained to produce an image x̂ that resembles those from the
clients. This is achieved through adversarial learning, which employs an external
discriminator D to distinguish between real and fake samples. In response, F aims
to fool D by retrieving images that look realistic.

Tailoring the generative process more closely to each client’s domainDk, F and D are
adapted to be injected with the client identifier k ∈ [1, K], which is one-hot-encoded,
embedded into a 512-dimensional vector, and merged with the feature vector z. To
enhance the quality of the images and ensure robust representation across domains
with significant gaps, we further condition the generation by introducing a domain-
specific key ck. This is derived locally by computing the average of CLIP [178]
encodings of all images xi within the dataset Dk. The key is processed through a
linear layer and averaged with the label condition:

x̂ = F ← z ⊕ 1
2

ek(k) + ec

 1
|Dk|

∑
xi∈Dk

CLIP(xi)

 (4.1)

where ⊕ denotes concatenation, ek(·) and ec(·) are the embeddings processed by
the additional linear layers for the client identifier k and the average CLIP encoding
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ck, respectively. Compatibly with a federated environment, clients participate to the
optimization of the training objective of F as follows:

Ltot = 1
K

K∑
k=1
Lk

adv(F, D) + Lk
R1(D) + Lk

pl(F ) (4.2)

where Lk
adv is the non-saturating loss [154], Lk

R1
is the R1 regularization [155], and

Lk
pl is the path length regularization [156], with each term computed locally using

only the data from the respective client k.

In the process of generating x̂, the quantities z, k and ck are combined into a sin-
gle, unified latent representation w ∈ W, a transit latent space which, as detailed
in [179], is unwarped by Lk

pl. This regularization transforms W into a disentan-
gled latent space where different directions consistently correspond to individual,
controllable aspects of variation. At the end of the training,W summarizes the char-
acteristics of all domains Dk, including the domain-specific features differentiating
each one. Furthermore, the aforementioned property of disentanglement enables
the creation of images that smoothly transition from one to another, allowing to find
new intermediate domains through latent space morphing.

4.4.2 Domain Adaptation via Local Training

After training the data factory F , clients independently operate the local adaptation
step. We assume that at least one among the K clients, denoted as client s, disposes
of annotation masks Ms for the respective dataset Ds, either completely or partially.
Client s is thus responsible for the development of a new segmentation branch Ss

to be integrated into F [157]. To this end, a local encoder Es is trained in a fully
supervised manner to reverse the generation process detailed in Section 4.4.1. In
particular, given a image xs

i , Es aims to find the latent vector w̃s
i to be fed into F in

order to retrieve the closest reconstruction x̃s
i ≈ xs

i . In the meanwhile, the feature
maps produced by Es and F are inputted into Ss to produce the corresponding
segmentation mask ỹs

i . This is achieved using mean squared error and LPIPS [158]
as reconstruction losses (LR), while using Dice and cross-entropy as segmentation
losses (LS).

Once trained, Ss becomes available to any other client t, enabling them to access
the combined knowledge from F and Ss for adaptation to their specific dataset Dt.
This process is facilitated by the capability of the data factory to generate synthetic,
yet realistic samples xs

j that resemble the characteristics of their native domain Ds.
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This time, a local encoder Et is used to derive two distinct latent vectors, w̃s
j for

reconstruction as in the previous setting, and ŵs
j for image-to-image translation to

optimize a cycle-consistency loss

Lt
cyc(Et) = LR(xs

j , ˆ̂xs
j) + LR(xt

i, ˆ̂xt
i) (4.3)

This ensures that both the synthetic sample xs
j and the target domain sample xt

i

complete a full cycle of domain transformations to maintain image fidelity: first
adapting to the other’s domain, then returning to their own, yielding ˆ̂xs

j and ˆ̂xt
i.

Furthermore, both Et and a new segmentation branch St receive guidance from Ss

to achieve accurate segmentation, primarily on source data xs
j , with Ss remaining

frozen to return masks ỹs
j . To enforce this supervision, we include a small set Mt of

target annotations yt
i , with |Mt| ≪ |Ms|. The resulting segmentation loss

Lt
seg(Et, St) = LS(ŷs

j , ỹs
j ) + LS(ỹt

i , yt
i) (4.4)

forces Et to perform translation in a label-preserving manner, thanks to the capa-
bility of F to disentangle latent vectors within W. This disentanglement enables
smooth transitions across distant domains while maintaining control over the specific
attributes of the generated image, ensuring that the translation process remains
label-consistent. Notably, this stage does not involve the use of discriminators,
as the goal is not to produce exact replicas of target domain images but to assist
segmentation.

We highlight that this step operates independently from FL. Inference segmentation
on a new image xt

new is performed by averaging predictions ŷt
new and ỹt

new from
both the source and target segmentation branches Ss and St.

4.5 Experiments and Results

The proposed method is demonstrated on several non-iid setup for the segmenta-
tion of anatomical structures, presenting increasing heterogeneity: multi-scanner
(hearth segmentation; same modality, same organ), multi-modal (brain segmen-
tation; varying modalities, same organ), and multi-organ (vessel segmentation;
varying modalities, varying organs).
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4.5.1 Datasets and Tasks

Multi-scanner setup (MS). Cardiac MRI images from the M&Ms Challenge [10]
include 345 patients with hypertrophic and dilated cardiomyopathies as well as
healthy subjects. MR images, taken at both end diastole and end systole, were
labeled for the left ventricle (LV), right ventricle (RV), and myocardium (MYO).
Data collection was carried out across five centers in three countries using scanners
from four vendors. The multi-centric setup was simulated by partitioning the data
per scanner type, thus obtaining 4 clients. For the FL step, we trained the data
factory with clients holding data from scanners Siemens, Philips, and GE. The source
domain is selected as the client with scanner type Philips, and the client with scanner
type Canon is kept as a hold-out client from FL, used only for DA.

Multi-modal setup (MM). The SynthStrip dataset [11] provides a comprehensive
collection of full-head images aggregated from multiple sources and spanning various
contrasts, resolutions, and populations ranging from infants to glioblastoma patients.
This dataset is fully annotated with brain contours, addressing skull-stripping across
multiple imaging modalities. Specifically, our study incorporates 20 CT and 20 PET
scans from the CERMEP-IDB-MRXFDG dataset [180], as well as 32 PD-weighted
(PDw) and 36 T2-weighted (T2w) MRI scans from the FreeSurfer Maintenance
(FSM) dataset [181]. The multi-centric setup was simulated by partitioning the
data across modalities and discarding paired images, i.e., ensuring that images of
different modalities from the same patient were not included in the same partition,
thus obtaining 4 independent clients. The data factory was trained using clients
holding CT, PDw and PET data. The source domain is represented by the client with
PDw images, and the client with T2 images is kept as a hold-out client from FL, used
only for DA.

Multi-organ setup (MO). We selected 49 time-of-flight (TOF) MRA volumes from
the OASIS-3 dataset to study brain arteries in 27 cognitively normal adults and
10 patients with cognitive decline, aged between 42 to 95 years. Additionally, we
used 28 SWI venographies of adult subjects with no visible lesions, derived from
the retrospective study conducted at UCL Queen Square Institute of Neurology,
Queen Square MS Centre, University College London. Finally, the OCTA-500 dataset
provides optical coherence tomography angiographies (OCTA) from 500 subjects
in three different 2D projections: full, maximum projection between the internal
limiting membrane (ILM) and the outer plexiform layer (OPL), and maximum
projection between the OPL and Bruch’s membrane (BM). This dataset spans subjects
aged 7 to 85 years, with 49.8% of them affected by ophthalmic diseases and the
remainder healthy. Data was partitioned across the 4 datasets. Federated training
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was performed with OASIS, SWI and OCTA. The source domain for this setup is
OASIS, and the IXI data is kept as a hold-out client from FL, used only for DA.

4.5.2 Preprocessing and Evaluation Setup

Compatibly with the federated learning scenario, data from distinct clients was
preprocessed independently to remain confidential. First, the volumes are resampled
through bicubic interpolation to fix a uniform voxel size, which is calculated as the
median value of all spacings, with minor adjustments to ensure that all volumes fit
within 5123 voxels. Next, the volumes are standardized according to their mean and
standard deviation, and then clipped to only include values within the 0.1 to 99.9
percentiles, normalizing these values to fall between [−1, +1]. The annotations are
converted into a C-dimensional label, where C is the total number of segmentation
classes involved in each task.

For evaluation, data from each client is split between training, validation, and testing,
following a 70-15-15 ratio. In all setups, segmentation results are assessed through
the Dice coefficient. Performance evaluations are conducted on the hold-out test
sets specific to each scenario. For MS, we average the results over three regions LV,
RV, and MYO.

4.5.3 Implementation Details

Data was preprocessed compatibly with the federated learning scenario. Our fed-
erated learning framework is implemented using PyTorch 1.13.1 and Fed-Biomed
5.0.1 [182], with 350 FL training rounds, 2000 stochastic gradient steps per round,
and batch size 2. FL is performed by sampling two clients per round and using
FedAvg, which aggregates model parameters from each client update with uniform
weights (1/K) rather than weighting by the size of each dataset (|Dk|/

∑
|Dk|). To

enhance convergence and smoother integration across different domains, we run a
refinement stage of 35 rounds with 200 iterations each.

After the FL step, supervised segmentation is trained locally on all clients hosting
labeled datasets Ds for 15k iterations with batches of 8 images. This is followed
by domain adaptation, conducted on each target clients t for 20k iterations with
batches of 4 images. Once training is finished, the checkpoints with the best
validation performance on each client’s local validation set are selected for the final
evaluation.
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The model architecture, including components F , D, Ek, and Sk, builds upon
preceding works [156, 157, 161]. Additionally, we adapted F and D to be injected
with a client-specific identifier (k = 1, ..., K) and key (ck =

∑
xi∈Dk

CLIP(xi)), which
are embedded into 512-dimensional vectors, and merged with the feature vector z

to condition the generative process [183].

We trained, validated and tested our proposed method as well as the state-of-the-art
methods on two NVIDIA GeForce RTX 2080 Ti GPUs.

4.5.4 Competing Methods

We compare our method against four state-of-the-art DA for image segmentation in
heterogeneous setting:

1. nnU-Net [184], a self-configuring method for deep learning-based biomedical
image segmentation, validated on a wide range of segmentation tasks with
state-of-the-art performance. We combine it with Data Augmentation (DAug)
and Transfer Learning (TL);

2. FedMed-GAN [185], a federated image-to-image translation method for un-
paired cross-modality image synthesis. This is concatenated with nnU-Net to
perform downstream segmentation;

3. FedDG [175], introducing federated domain generalization to enhance model
adaptability to unseen domains. To leverage multiple source domains, the
network is trained using all datasets except the target;

4, 5. SAM/MedSAM [8, 13], a foundation model pretrained over 1.1 billion seg-
mentation masks in its original version and fine-tuned with 1.5 million medical
annotated images;

6. UniverSeg [153], a foundation model leveraging in-context learning to solve
unseen segmentation tasks with little to no labeled data.

Table 4.1, column G, details the methods (including ours) requiring a small set of
target annotations to guide the segmentation process. In our experiments, this set
always includes three midpoint slices, extracted from three random volumes of Dt.
For nn-UNet, SAM and MedSAM the set is used to fine-tune the initial model, while
in UniverSeg it is inputted as a segmentation query support.
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Tab. 4.1.: Segmentation results (Dice score) across setups (MS, MM and MO) for the target clients. Column G indicates methods requiring
a small set of target annotation to guide the segmentation process.

G MS MM MO
Siemens GE Canon∗ PET CT T2w∗ SWI OCTA IXI∗

nn-UNet 44.0±30.1 82.0±9.3 75.9±16.4 17.7±8.6 43.6±4.1 68.8±17.3 0.0±0.0 3.0±1.5 67.0±2.6
+DAug 78.1±18.7 86.3±7.2 85.5±8.2 0.1±0.2 76.7±7.3 71.7±21.2 0.0±0.0 0.2±0.6 48.4±13.2
+TL ✓ 80.8±15.6 85.4±7.7 85.0±9.0 63.7±4.3 70.3±9.4 87.7±3.4 56.9±2.7 69.3±10.5 71.5±3.5

FedMed-GAN 12.0±20.5 65.7±26.5 67.6±30.1 0.3±0.5 0.0±0.0 12.2±22.6 0.0±0.0 0.7±0.4 0.5±0.6
FedDG 81.8±12.7 85.9±7.9 81.6±8.4 0.4±0.8 2.9±3.8 62.6±4.2 0.2±0.1 11.0±7.4 66.2±2.1
SAM ✓ 1.8±1.8 1.4±1.4 0.6±1.0 12.7±6.7 9.8±1.3 21.8±1.8 32.1±6.2 34.6±12.6 2.2±0.2
MedSAM ✓ 4.3±5.7 4.0±3.0 4.3±4.8 34.3±12.6 10.2±3.3 37.7±4.7 3.4±1.1 13.2±6.3 2.0±0.4
UniverSeg ✓ 81.8±12.7 85.9±7.9 56.1±35.9 77.5±5.8 36.0±2.2 57.5±3.0 4.0±1.4 21.2±5.2 7.9±3.1
Ours ✓ 82.5±16.4 83.4±9.1 80.1±9.5 89.1±13.1 90.1±2.2 91.8±4.4 63.1±2.1 71.6±8.0 67.7±1.9

∗ Only used for DA, not contributing to FL.



4.5.5 Results

Table 4.1 reflects the impact of domain gaps on segmentation performances across
methods. The Dice score averaged over every domain and method in each scenario
is 55.7±34.6, 36.5±29.4, and 21.5±26.1 for respectively MS, MM and MO. This
highlights how increasingly larger domain gaps have a greater negative effect on
performance.

In the MS scenario, half of the compared methods (nn-UNet, nn-UNet+DAug, nn-
UNet+TL, and FedMed-GAN) show a drop in performance when targeting Siemens,
documented as the most challenging shift by the authors of [145], who emphasize
the unpredictability of determining whether a data domain will be robustly predicted
by a model or not. This unpredictability is further highlighted by UniverSeg, which
performs well for Siemens but experiences an unexpected drop in performance with
Canon. SAM and MedSAM consistently fail across all scanners, with Dice scores
never above 5%. As the complexity of the subsequent scenarios increases, this poor
performance persists in both the MM and MO scenarios, which we attribute to the
insufficient number of target annotations in Mt used for fine-tuning. Overall, these
results indicate that data augmentation and fine-tuning alone are not able to ensure
robust cross-domain performance. Our method shows the most stable results, with
a performance variability of 3.3% between its highest and lowest Dice scores, and
achieves the best performance for Siemens, demonstrating superior robustness in
the most challenging case for the other methods.

In the MM scenario, all the compared methods exhibit drops in performance due
to domain shifts, with an average performance variability of 43.2%. Additionally,
more methods than in the MS scenario have Dice scores below 5%. Among these,
FedDG shows the most drastic change in performance between MS, where it main-
tains a stable behaviour across all scanners, and MM. This underscores a common
limitation of domain generalization techniques, which are robust only for minor
domain variations, such as changes in scanners within the same modality and organ,
but fail when facing larger shifts. Our method achieves the highest performance,
with an average Dice score of 90.3%, significantly surpassing the second-best score
of 73.9% by nn-UNet+TL. Moreover, our method demonstrates the lowest perfor-
mance variability at just 2.7%, underscoring its robust performance across different
modalities.

The MO scenario presents the highest complexity among the tasks studied. The limi-
tations already described in the previous scenarios become even more pronounced,
as evidenced by a 50% failure rate where performances fall below 5%, and in many
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cases, even reach 0%. Notably, nn-UNet+TL is the only method that avoids failures,
achieving an average Dice score of 65.9%. In this challenging scenario, our method
again outperforms the others, with an average Dice score of 67.5%. Except for
nn-UNet+TL and our method, all other methods experience failures, yet there is no
single target domain where all methods fail uniformly. This again underscores the
unpredictability of predicting in advance which method will fail in which domain.

In this context, the performance of our approach never drops below 60%: our frame-
work leads to stable systematically high Dice score across scenarios, outperforming
the competing methods in 6 out of 9 target domains. For the 3 remaining cases,
2 involve hold-out clients from FL, meaning these clients bypassed the creation
of the multimodal data factory and moved directly to domain adaptation. This
may negatively impact our results, though slightly and without leading to severe
failures, but is faster as it avoids adversarial training and is simpler since it does
not involve coordination with other clients. This faster approach is effective when
domain gaps are minor, as the target data must be partially represented inW by the
source domain. For example, IXI includes MRA volumes similar to those in OASIS,
and T2w volumes resemble PDw volumes in both appearance and voxel spacing.
This similarity explains why methods like FedDG perform better in these two cases,
leading to nn-UNet+TL outperforming our method for IXI.

The segmentation results across the nine target clients in MS, MM, and MO, are
displayed from top to bottom in the following grids for all the methods under
study: nn-UNet and nn-UNet+DAug (Figure 4.2), nn-UNet+TL and FedMed-GAN
(Figure 4.3), FedDG and SAM (Figure 4.4), MedSAM and UniverSeg (Figure 4.5).
The results from our method and the ground truth data are presented in Figure 4.6
and Figure 4.7 respectively. Conducting a visual comparison, it can be observed that
all methods except FedMed-GAN, SAM, and MedSAM successfully segment the left
ventricle, right ventricle, and myocardium in the first row. In the second row, only
our method achieves precise skull stripping across all modalities. Finally, in the last
row, nn-UNet+TL and our method satisfactorily segment blood vessels.

Figures 4.8 and 4.9 illustrate the best and worst case scenarios when applying our
method to segment data from the nine target domains. In the best results, the
produced segmentations are uniformly of high quality. However, in the worst results,
several errors are evident. For both the Siemens and GE scanners, discrepancies with
the ground truth are noticeable in the segmentation of the right ventricle. In the
Siemens case, our method fails to capture the right ventricle, while in the GE case,
the ground truth itself is poorly annotated. Moving to the second row of the grid,
the T2w scan exhibits suboptimal brain contours, while the skull stripping in the
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PET scan fails entirely. This is expected as PET differs significantly from the source
domain, particularly in voxel spacing, which largely affects the brain proportions
inside each slice. Nonetheless, our method achieves the highest final Dice score of
89.1%, which is 11.6% higher than the second-ranked method, UniverSeg. Lastly, in
the vessel segmentation results of the final row, all three clients show noisy outputs:
both the SWI and MRA images contain erroneously segmented areas outside the
brain, with extracerebral vessels mistakenly segmented in the latter case, and the
retinal vessel mask has significant noise in the bottom left corner due to bright noise
in the original image.

4.5.6 Conclusion

To simulate real-world scenarios with non-independent and identically distributed
multicentric data due to different acquisition settings, imaging modalities, and
imaged organs, we moved from the centralized setting of Chapter 3 to a new
federated setting. We assumed that annotations are not available to all clients and
introduced a semi-supervised framework designed to achieve robust segmentation
across all clients. This framework involves training a collaborative multimodal
data factory through federated learning, which allows clients to develop a shared
latent representation collaboratively, facilitating conditional image synthesis and
smooth domain transitions. In the subsequent asynchronous stage, one client trains
a segmentation branch using labeled data, enabling others to locally perform domain
adaptation for target segmentation without exchanging raw data or annotations.
Our method was validated on multi-scanner cardiac MR segmentation, multi-modal
skull stripping, and multi-organ vascular segmentation, demonstrating its robustness
and versatility across these scenarios.
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Fig. 4.2.: Comparison of the segmentation results: Siemens, GE, and Canon (top row, left to
right); PET, CT, and T2w (middle row, left to right); SWI, OCTA, and IXI (bottom
row, left to right), using nn-UNet and nn-UNet+DAug.
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Fig. 4.3.: Comparison of the segmentation results: Siemens, GE, and Canon (top row, left to
right); PET, CT, and T2w (middle row, left to right); SWI, OCTA, and IXI (bottom
row, left to right), using nn-UNet+TL and FedMed-GAN.
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Fig. 4.4.: Comparison of the segmentation results: Siemens, GE, and Canon (top row, left to
right); PET, CT, and T2w (middle row, left to right); SWI, OCTA, and IXI (bottom
row, left to right), using FedDG and SAM.
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Fig. 4.5.: Comparison of the segmentation results: Siemens, GE, and Canon (top row, left to
right); PET, CT, and T2w (middle row, left to right); SWI, OCTA, and IXI (bottom
row, left to right), using MedSAM and UniverSeg.
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Fig. 4.6.: Comparison of the segmentation results: Siemens, GE, and Canon (top row, left to
right); PET, CT, and T2w (middle row, left to right); SWI, OCTA, and IXI (bottom
row, left to right), using our method.

Fig. 4.7.: Comparison of the segmentation results: Siemens, GE, and Canon (top row, left to
right); PET, CT, and T2w (middle row, left to right); SWI, OCTA, and IXI (bottom
row, left to right), ground truth.
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Fig. 4.8.: Best segmentation results from our method compared to the ground truth: 90.9%
for Siemens, 90.4% for GE, and 86.6% for Canon (top row, left to right); 96.1%
for PET, 92.0% for CT, and 96.1% for T2w (middle row, left to right); 66.6% for
SWI, 84.6% for OCTA, and 70.2% for IXI (bottom row, left to right).
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Fig. 4.9.: Worst segmentation results from our method compared to the ground truth:
39.5% for Siemens, 72.1% for GE, and 73.8% for Canon (top row, left to right);
51.1% for PET, 85.0% for CT, and 85.1% for T2w (middle row, left to right);
60.1% for SWI, 40.1% for OCTA, and 64.7% for IXI (bottom row, left to right).
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Conclusions and Future
Directions

5

5.1 Conclusion

AI systems have drastically enhanced automatic medical image segmentation, yet
their deployment in clinical settings lacks the necessary reliability and robustness.
This thesis addressed the problem of achieving more robust AI systems when facing
changes in acquisition settings, imaging modalities, and imaged organs between
development and deployment. We started by analyzing state-of-the-art deep learning
techniques designed to enhance reliability and robustness, using cardiac magnetic
resonance segmentation as a case study. Then, we proposed two methodological
advancements to strengthen model robustness against various domain shifts and
across various medical image segmentation tasks, using domain adaptation and
federated learning.

5.1.1 From Accuracy to Reliability and Robustness in Cardiac
Magnetic Resonance

Chapter 2 presented an overview of the state-of-the-art methods in CMR segmenta-
tion, focusing on the performance changes preceding and following the rise of deep
learning techniques.

As we showed by studying the improvements brought by DL-based models over the
last decade, current techniques have reached their maturity in terms of accuracy,
achieving performance comparable to experts. Therefore, efforts to develop new
models that optimize performance accuracy seem unnecessary. Instead, we observed
that works tackling reliability and robustness are rather limited and the field is quite
young. Following this observation, we investigated the main factors influencing
the reliability and robustness of DL-based CMR segmentation methods. Based on
the formal definitions of these two terms, we distinguished the factors hindering
reliability, i.e. overfitting and loss formulation, from the ones hindering robustness,
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i.e. domain shift and data acquisition. We noted that the former pertain to the
internal characteristics of the model, specifically:

• Overfitting is linked to the model’s number of parameters and the tasks of data
collection and pre-processing required for training the model.

• Loss formulation involves identifying suitable loss functions, as most are pixel-
wise objective functions that do not consider the anatomical plausibility of the
segmentation outputs.

In contrast, the latter are related to the presence of invalid inputs:

• Domain shift occurs when there is a change in the data distribution between
the one observed at training and the one encountered after deployment.

• Data acquisition may introduce artifacts into CMR images, leading to poor
segmentation results.

Once identified the possible problems leading to poor reliability or robustness, we
proposed a new taxonomy to distinguish between two families of possible solutions:
Quality Control (QC) techniques, which are limited to externally monitoring and
flagging errors in the segmentation model’s behavior, and Model Improvement
(MI) techniques, which involve implementing internal adjustments to improve the
model’s segmentation performance. For both techniques, we provided a benchmark
of the current research in the literature. Given the ambitious nature of MI and the
automation benefits of QC for large databases, we encountered a larger number of
existing QC methods compared to MI techniques.

5.1.2 Multi-Domain Brain Vessel Segmentation Through Feature
Disentanglement

In Chapter 3, we introduced an end-to-end semi-supervised domain adaptation
framework designed as an out-of-the-box tool for segmenting arteries and veins in
images from different centers and/or modalities. To this end, we opted for a minimal
pre-processing strategy that avoids any data harmonization between source and
target domains. While enhancing the versatility of our model, this comes at the cost
of widening the domain gap between the two domains. Our investigations analyzed
this trade-off, delving into the concepts and mechanisms crucial for the effective
functioning of our model. To address the problem of domain shift arising from
different medical centers, imaging modalities, and vessel types, we rely on the path
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length regularization [156], which allows representing heterogeneous volumetric
data in a unified and disentangled latent space. Consequently, we explored the
potential of disentanglement, investigating the possibility of modifying selected
domain-specific features to achieve inter-domain translation in a label-preserving
manner.

In addition to assessing the efficacy of disentanglement, we conducted ablation
studies to determine the optimal number of source and target annotations and to
evaluate the influence of key architectural choices on performance. Finally, we com-
pared our framework against other state-of-the-art domain adaptation and domain
generalization methods. Our approach demonstrates superior performance, accu-
rately segmenting 3D brain vessels primarily using annotations from arterial images,
which are comparatively easier to obtain. The results exhibit promising performance
in semi-supervised domain adaptation scenarios, overcoming the difficulties posed
by large domain gaps, in particular between veins and arteries, and the intricate
morphology of the cerebrovascular tree.

Despite our accomplishments, we acknowledge the potential for improvement. First,
our topological approach is limited since while we report centerlineDice [164] scores
in Table 3.3, we do not incorporate its differentiable form, known as soft-clDice, as
a loss function in our training process. This could enforce the topological integrity
of our segmentation results. Second, we highlight the necessity of our model to
repeat training for each new target domain, and we note that in-context learning,
as offered by methods like UniverSeg, presents a viable alternative. Furthermore,
our model requires guidance in the form of m target annotated 2D slices. Again,
foundation models can prove beneficial: by pretraining on extensive collections
of tree-like objects, segmentation models can acquire a broader representation of
vessels. This approach facilitates linking vessels from distant modalities without
relying on any additional guidance.

5.1.3 Federated Multi-Centric Image Segmentation with Uneven
Label Distribution

In Chapter 4, we tackled the real-world challenge of missing labels in multi-centric
data, exhibiting differences in distribution due to three factors: different scanners,
imaging modalities, and imaged organs. To address this challenge, we introduced a
novel segmentation framework centered around the collaborative construction of
a multimodal data factory and trained using a federated learning approach where
clients collectively develop a shared and disentangled latent representation of their
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data. This latent representation not only enables conditional image synthesis to
generate images that resemble those from the different client domains, but also
supports smooth transitions between domains through latent space morphing.

Building on the proposed data factory, we introduce a second asynchronous stage
requiring at least one client to train a segmentation branch using a labeled source
dataset. Subsequently, other clients can adapt their data distribution to match that
of the labeled source domain. This facilitates local domain adaptation for target
segmentation with minimal labeling effort and without the need to exchange images
or annotations between clients, thus enhancing efficiency and data governance.

We extensively validated our work on three distinct scenarios of increasing com-
plexity: multi-scanner cardiac MR segmentation, multi-modal skull stripping, and
multi-organ vascular segmentation. The results demonstrated the robustness and
versatility of our framework, which not only improves reliability across different
data domains but also avoids the exchange of raw data or annotations between
clients. Our solution leverages labeled and unlabeled data in heterogeneous sce-
narios, addressing the challenge of data distribution shifts that often hinders the
translation of deep learning models into clinical practice.

While our framework has achieved robust performance, there are some limitations
to consider. Our framework requires at least one client to have a labeled dataset,
which can be a constraint in resource-limited settings. As for centralized domain
adaptation, our approach still needs repeating training for each new target domain.
To reduce the training time, we explored the case where some clients (Canon, T2w,
IXI) perform asynchronous local domain adaptation without helping to construct the
multimodal data factory via federated learning. This method requires only partial
retraining, which is faster as it avoids adversarial training and is simpler since it
does not involve coordination with other clients. However, this partial approach
still requires collecting and training on target data, and it is effective only for small
domain gaps, as the target data must be sufficiently represented in the latent space
by at least one other domain.

5.2 Future Directions

Our results indicate that the methods proposed in Chapter 3 and Chapter 4 achieve
higher performance in tasks characterized by significant domain gaps, at the same
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time maintaining better stability across tasks without noticeable drops in perfor-
mance. However, we acknowledge some limitations in our methods, which suggest
directions for future work.

5.2.1 Achieving Topological Consistency

Loss functions such as the cross-entropy loss or the soft-Dice loss measure the degree
of overlap between the predicted and the ground-truth segmentations only on a
pixel-wise level. When training AI systems, incorporating some form of global
information can be crucial to capture the large-scale structure of the predicted
segmentation, in terms of its shape or topology [100].

Achieving topology preservation can be particularly crucial for elongated and con-
nected shapes, such as for vascular structures, where segmentation methods often
produce discontinuities or false positives. Recent works address the problem by
formulating differentiable loss functions that enforce the topological integrity of
segmentation results [164]. Incorporating such functions into the training process
could provide additional assurances against inconsistencies in tubular structures.
Recent advances have introduced more sophisticated techniques to address these
challenges, such as using walk algorithms to reconnect broken vessel segments [186],
or incorporating graph neural networks to account for the global structure of vessel
shapes [187].

Despite their potential, topological priors have not been investigated for addressing
domain shifts. However, incorporating a topological prior, such as a 3D tubular tree
model for vessels, represents an abstraction that remains consistent across various
acquisition settings, imaging modalities, populations, and even different organs in
cases like arteries and veins. As such, this abstraction is essential for enhancing the
robustness of medical image segmentation in future works.

5.2.2 Enlarging Source Databases

Domain adaptation methods require access to large datasets of target images, even
if unlabeled. This requirement can become particularly challenging in situations
where target data is scarce.

Domain generalization and foundation models offer solutions to domain shifts with-
out the need for target datasets. However, domain generalization is effective only in
scenarios with small domain gaps, such as when changing acquisition settings. On

5.2 Future Directions 81



the other hand, foundation models, while exhibiting strong generalization capabili-
ties, still depend on large annotated source databases, which must be gathered from
different hospitals into a centralized repository. This is often complex due to privacy
constraints and current regulations [168].

In the future, foundational models for medical image segmentation are likely to
benefit from source datasets of similar size as those used for natural imaging. This
growth in dataset size can be achieved through federated learning, which enables
multiple medical institutions to collaboratively train models on a distributed database
without compromising data privacy. However, scaling up the number of participants
introduces new challenges such as increased data heterogeneity, class imbalance,
and communication overhead.

Additionally, source datasets can be expanded by leveraging natural and synthetics
images, containing for example tube-like and tree-like structures to mimic vessels.
This would provide a robust feature base, valid across multiple domains character-
ized by similar shapes. Finally, this base could be fine-tuned for specific healthcare
applications through targeted transfer learning.

5.2.3 Integrating Assistive Prompts

High-performing approaches to deal with large domain shifts, including domain
adaptation, foundation models, and transfer learning, necessitate to receive guidance
from the target domain to achieve accurate segmentation. While a small example
set of target image-label pairs is a reasonable trade-off for improved performance,
optimizations are possible.

First, to avoid repeating training for each new target domain like in domain adap-
tation, in-context learning allows the model to incorporate the example set as part
of the input, along with the actual query image to be segmented. This enables the
model to adapt to new tasks without the need for retraining [153].

Second, the example set can be simplified compared to pixel-wise annotations,
replacing it with visual (e.g., clicks, bounding boxes, or scribbles) [152] or textual
prompts [188].

As the field advances in developing large AI systems that operate across diverse data
sources, the emphasis is shifting toward training on multiple labeled source datasets
and adapting the learned patterns to any new target domain and task. Prompts are
crucial in this context, as they help to define the target task by indicating the regions
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of interest within the target domain. Future research directions include integrating
domain adaptation mechanisms such as cycle consistency or feature alignment, in-
context learning, and prompt engineering to develop robust capabilities for largely
different and previously unseen medical imaging domains.

5.3 Publications

The research conducted for this thesis led to the publications provided below.

5.3.1 First-Authored Publications

Journals

[J1] Francesco Galati, Sébastien Ourselin, and Maria A. Zuluaga. “From Accu-
racy to Reliability and Robustness in Cardiac Magnetic Resonance Image
Segmentation: A Review”. In: Applied Sciences 12.8 (2022).

[J2] Francesco Galati, Rosa Cortese, Ferran Prados, Ninon Burgos, and Maria
A Zuluaga. “Multi-Domain Brain Vessel Segmentation Through Feature
Disentanglement”. In: Medical Image Analysis (2024). Under submission.

Conferences

[Con1] Francesco Galati and Maria A. Zuluaga. “Using Out-of-Distribution Detec-
tion for Model Refinement in Cardiac Image Segmentation”. In: Statistical
Atlases and Computational Models of the Heart. Multi-Disease, Multi-View,
and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge.
2022, pp. 374–382.

[Con2] Francesco Galati, Daniele Falcetta, Rosa Cortese, Barbara Casolla, Ferran
Prados, Ninon Burgos, and Maria A Zuluaga. “A2V: A semi-supervised
domain adaptation framework for brain vessel segmentation via two-phase
training angiography-to-venography translation”. In: 34th British Machine
Vision Conference. 2023, pp. 750–751.

[Con3] Francesco Galati, Rosa Cortese, Ferran Prados, Marco Lorenzi, and Maria
A Zuluaga. “Federated Multi-Centric Image Segmentation with Uneven
Label Distribution”. In: Medical Image Computing and Computer Assisted
Intervention – MICCAI. 2024. In Press.
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5.3.2 Co-Authored Publications

Journals

[J1] Vien Ngoc Dang, Francesco Galati, Rosa Cortese, Giuseppe Di Giacomo,
Viola Marconetto, Prateek Mathur, Karim Lekadir, Marco Lorenzi, Ferran
Prados, and Maria A. Zuluaga. “Vessel-CAPTCHA: An efficient learning
framework for vessel annotation and segmentation”. In: Medical Image
Analysis 75 (2022), p. 102263.

Conferences

[Con1] Piera Riccio, Bill Psomas, Francesco Galati, Francisco Escolano, Thomas
Hofmann, and Nuria Oliver. “OpenFilter: A Framework to Democratize
Research Access to Social Media AR Filters”. In: Advances in Neural Infor-
mation Processing Systems. Vol. 35. 2022, pp. 12491–12503.

[Con2] Riccardo Schiavone, Francesco Galati, and Maria A. Zuluaga. “Binary
Domain Generalization for Sparsifying Binary Neural Networks”. In: Ma-
chine Learning and Knowledge Discovery in Databases: Research Track. 2023,
pp. 123–140.

[Con3] Matteo Pentassuglia, Marion L. Tiberti, Francesco Galati, Bénédicte But-
tard, Clémence Ginet, Maria A. Zuluaga, and Aïda Meghraoui. “Automatic
denoising of high-dimensional tissue images to improve the cell segmenta-
tion”. In: SophIA Summit. 2023.

[Con4] Hava Chaptoukaev, Vincenzo Marcianó, Francesco Galati, and Maria A Zu-
luaga. “HyperMM: Robust Multimodal Learning with Varying-sized Inputs”.
In: 5th International workshop on Multiscale and Multimodal Medical Imag-
ing, In conjunction with Medical Image Computing and Computer Assisted
Intervention – MICCAI. 2024. In Press.
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Challenges

[Ch1] Carlos Martín-Isla, Víctor M. Campello, Cristian Izquierdo, Kaisar Kushibar,
Carla Sendra-Balcells, Polyxeni Gkontra, Alireza Sojoudi, Mitchell J. Fulton,
Tewodros Weldebirhan Arega, Kumaradevan Punithakumar, Lei Li, Xiaowu
Sun, Yasmina Al Khalil, Di Liu, Sana Jabbar, Sandro Queirós, Francesco
Galati, Moona Mazher, Zheyao Gao, Marcel Beetz, Lennart Tautz, Christo-
foros Galazis, Marta Varela, Markus Hüllebrand, Vicente Grau, Xiahai
Zhuang, Domenec Puig, Maria A. Zuluaga, Hassan Mohy-ud-Din, Dim-
itris Metaxas, Marcel Breeuwer, Rob J. van der Geest, Michelle Noga,
Stephanie Bricq, Mark E. Rentschler, Andrea Guala, Steffen E. Petersen,
Sergio Escalera, José F. Rodríguez Palomares, and Karim Lekadir. “Deep
Learning Segmentation of the Right Ventricle in Cardiac MRI: The M&Ms
Challenge”. In: IEEE Journal of Biomedical and Health Informatics 27.7
(2023), pp. 3302–3313.

[Ch2] Kaiyuan Yang, Fabio Musio, Yihui Ma, Norman Juchler, Johannes C. Paet-
zold, Rami Al-Maskari, Luciano Höher, Hongwei Bran Li, Ibrahim Ethem
Hamamci, Anjany Sekuboyina, Suprosanna Shit, Houjing Huang, Diana
Waldmannstetter, Florian Kofler, Fernando Navarro, Martin Menten, Ivan
Ezhov, Daniel Rueckert, Iris Vos, Ynte Ruigrok, Birgitta Velthuis, Hugo Kuijf,
Julien Hämmerli, Catherine Wurster, Philippe Bijlenga, Laura Westphal,
Jeroen Bisschop, Elisa Colombo, Hakim Baazaoui, Andrew Makmur, James
Hallinan, Bene Wiestler, Jan S. Kirschke, Roland Wiest, Emmanuel Mon-
tagnon, Laurent Letourneau-Guillon, Adrian Galdran, Francesco Galati,
Daniele Falcetta, Maria A. Zuluaga, Chaolong Lin, Haoran Zhao, Zehan
Zhang, Sinyoung Ra, Jongyun Hwang, Hyunjin Park, Junqiang Chen, Marek
Wodzinski, Henning Müller, Pengcheng Shi, Wei Liu, Ting Ma, Cansu Yalçin,
Rachika E. Hamadache, Joaquim Salvi, Xavier Llado, Uma Maria Lal-Trehan
Estrada, Valeriia Abramova, Luca Giancardo, Arnau Oliver, Jialu Liu, Haibin
Huang, Yue Cui, Zehang Lin, Yusheng Liu, Shunzhi Zhu, Tatsat R. Patel,
Vincent M. Tutino, Maysam Orouskhani, Huayu Wang, Mahmud Mossa-
Basha, Chengcheng Zhu, Maximilian R. Rokuss, Yannick Kirchhoff, Nico
Disch, Julius Holzschuh, Fabian Isensee, Klaus Maier-Hein, Yuki Sato, Sven
Hirsch, Susanne Wegener, and Bjoern Menze. “TopCoW: Benchmarking
Topology-Aware Anatomical Segmentation of the Circle of Willis (CoW)
for CTA and MRA”. In: arXiv : 2312.17670 (2024).
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5.4 Code Availability

In ensuring a method’s robustness and reliability, reproducibility plays a key role.
While many other factors contribute to the trustworthiness of a method, a model can
only be considered trustworthy by guaranteeing that others can reproduce reported
results. To that end, all the methods developed in this thesis are publicly available.
Table 5.1 provides the GitHub repositories containing the code used in Chapter 3
and Chapter 4.

Tab. 5.1.: GitHub repositories containing the code of the contributions presented in Chap-
ter 3 and Chapter 4.

Chapter 3 https://github.com/i-vesseg/MultiVesSeg

Chapter 4 https://github.com/i-vesseg/RobustMedSeg
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Long Résumé A
A.1 Aperçu

En avril 2019, le groupe d’experts de haut niveau de la Commission européenne sur
l’Intelligence Artificielle (IA) a publié les Lignes Directrices Européennes en matière
d’Éthique pour une IA digne de confiance1. Dans ce document, la Commission
décrit la robustesse comme l’une des trois conditions fondamentales pour que les
sociétés puissent développer, déployer et utiliser des systèmes d’IA dignes de confi-
ance, aux côtés de l’éthique et du droit. Plus précisément, les systèmes d’IA doivent
être robustes tant sur le plan technique que social. Du point de vue technique, la
robustesse nécessite un développement avec une approche préventive des risques et
de manière à ce que les systèmes d’IA se comportent de manière fiable comme prévu.
Du point de vue social, la robustesse est liée à l’éthique et au principe de prévention
des dommages: les systèmes d’IA doivent être à la fois sûrs, c’est-à-dire ne pas
affecter négativement les êtres humains physiquement ou mentalement, et sécurisés,
c’est-à-dire ne pas être ouverts à une utilisation malveillante. Actuellement, ces deux
perspectives sont souvent sous-développées, soulevant des problèmes significatifs
lors du déploiement de systèmes d’IA robustes. Par exemple, les grands modèles de
langage comme ChatGPT peuvent être exploités via des détournements pour con-
tourner les lignes directrices de modération de contenu2, la reconnaissance faciale
présente une précision diminuée lors de l’identification des minorités ethniques3, les
voitures autonomes sont meilleures que les humains pour les tâches de routine mais
rencontrent des difficultés dans des conditions de faible luminosité4.

Dans la segmentation d’images médicales, un manque de robustesse entrave l’adoption
des systèmes d’IA, car des segmentations inexactes peuvent compromettre les analy-
ses ultérieures, impactant directement la sécurité des patients. Lors de la segmenta-
tion d’images médicales, même les algorithmes d’IA les plus performants peuvent

1https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai,
consulté le 22 avril 2024

2https://www.techopedia.com/how-to/how-to-jailbreak-chatgpt, consulté le 27 mai 2024
3https://www.scientificamerican.com/article/police%2Dfacial%2Drecognition%

2Dtechnology%2Dcant%2Dtell%2Dblack%2Dpeople%2Dapart, consulté le 25 juin 2024
4https://www.abc.net.au/news/2024-06-19/self-driving-cars-report/103992024, consulté

le 25 juin 2024
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être peu fiables, produisant parfois des anatomies invraisemblables [1]. Les systèmes
d’IA étant incapables de garantir la qualité de leurs segmentations, la responsabilité
de détecter un fonctionnement erroné incombe aux experts humains, qui doivent
corriger ou rejeter toute erreur de segmentation qu’ils trouvent [2]. Le résultat est
un processus long et exigeant en expertise, nécessitant la délimitation manuelle des
structures d’intérêt manquées par les systèmes d’IA, rendant ces tâches monotones et
sujettes à des erreurs subjectives [3]. Tant qu’une intervention manuelle reste néces-
saire, les améliorations en termes de temps, de coût et de performance ne seront
que marginales par rapport aux techniques traditionnelles. Cette limitation ouvre la
porte au développement de nouveaux mécanismes pour augmenter la robustesse et
la fiabilité des systèmes d’IA et pour encourager leurs avantages potentiels dans la
segmentation d’images médicales.

Cette thèse aborde le problème de la robustesse des systèmes d’IA pour la segmen-
tation d’images médicales. Pour atteindre notre objectif, nous commençons par
définir la fiabilité et la robustesse, deux termes étroitement liés qui sont souvent
utilisés de manière interchangeable. Les définitions fournies dans la Section A.2
nous permettent d’associer la robustesse à un sous-ensemble spécifique d’erreurs
de segmentation, c’est-à-dire les erreurs causées par des entrées perturbatrices. La
Section A.3 examine comment ces erreurs se traduisent dans les scénarios d’imagerie
médicale, provoquant des changements de domaine. La Section A.4 détaille nos
contributions pour améliorer la robustesse grâce à des méthodologies de pointe,
telles que l’adaptation de domaine et l’apprentissage fédéré. La Section A.5 discute
les orientations futures de la recherche dans ce domaine.

A.2 Définitions

L’absence de définitions rigoureuses de la confiance est identifiée dans [4] comme un
obstacle majeur au déploiement des systèmes d’IA. Il subsiste une grande ambiguïté
autour des piliers fondamentaux de la confiance, tels que la fiabilité et la robustesse,
qui ont des interprétations légèrement différentes selon le domaine d’application,
et sont souvent utilisées de manière interchangeable avec des termes apparentés,
tels que la stabilité [5] ou la sécurité [6]. En considérant les systèmes d’IA, ce
manuscrit adhère aux définitions du IEEE Standard Glossary of Software Engineering
Terminology [7].

Definition A.2.1 (Fiabilité). La capacité d’un système à accomplir ses fonctions
requises dans certaines conditions données pendant une période de temps spécifiée.
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Definition A.2.2 (Robustesse). Le degré auquel un système peut fonctionner cor-
rectement en présence d’entrées invalides.

Dans cette dernière définition, les entrées invalides sont celles qui sortent des
spécifications dans lesquelles le système est développé. Nous suivons plutôt une
approche des systèmes informatiques qui étend cette définition comme suit:

Definition A.2.3 (Entrée Invalide). Toute entrée perturbatrice qui cause à un sys-
tème donné de produire des résultats significativement erronés.

Les entrées perturbatrices peuvent provenir de la même distribution ou d’une distri-
bution proche des entrées attendues, appelées données en distribution (ID), ou d’une
distribution différente, appelées données hors distribution (OOD). Les données OOD
peuvent se présenter sous deux formes:

1. anomalies, qui sont des entrées de qualité corrompue apparaissant unique-
ment de manière sporadique après le déploiement, sans altérer les statistiques
globales des données telles que perçues par le système ;

2. changements de domaine, qui sont des entrées d’un domaine différent se pro-
duisant de manière récurrente après le déploiement, modifiant la distribution
des données rencontrées par le système pour une période indéfinie.

La capacité d’un système à gérer les données ID, connue sous le nom de généralisa-
tion, est une condition nécessaire mais insuffisante pour assurer la robustesse, qui
exige que le système reste efficace même lorsqu’il rencontre des données anormales
ou présentant des changements de domaine.

Bien que la fiabilité et la robustesse contre les anomalies soient discutées dans cette
thèse, notre principal objectif est la robustesse face aux changements de domaine.

A.3 Changements de Domaine

Les changements de domaine, ou changements de distribution, modifient de manière
indéterminée la distribution des données rencontrées par le système une fois déployé.
Dans la segmentation d’images médicales, les changements de domaine surviennent
en raison d’une grande variété de facteurs, qui peuvent avoir une influence significa-
tive sur la performance des systèmes d’IA. Les changements ayant un fort potentiel
de provoquer des échecs incluent les modifications dans:
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• les paramètres d’acquisition, dus à l’adoption de protocoles d’imagerie ou
de dispositifs de scanner différents, tant au sein d’un même centre qu’entre
plusieurs centres. Les modifications des paramètres d’acquisition impactent
les propriétés de l’image telles que le contraste, la résolution et le bruit, qui,
même lorsqu’ils sont légèrement affectés, peuvent provoquer une baisse de
performance des systèmes de segmentation [10];

• les modalités d’imagerie, causées par les progrès de la technologie d’imagerie
qui conduisent au développement de nouvelles techniques ou à des amélio-
rations significatives des techniques existantes. Ces technologies, telles que
l’imagerie par résonance magnétique ou la tomodensitométrie, présentent
chacune des histogrammes d’intensité, des résolutions spatiales et des niveaux
de bruit uniques, et capturent des détails anatomiques distincts [11];

• les populations, qui surviennent lorsque les conditions démographiques ou
de santé de la population de patients diffèrent de celles prises en compte lors
du développement. Cela inclut le sexe, l’âge, l’ethnicité, le mode de vie, les
facteurs génétiques et les maladies, qui peuvent influencer l’apparence des
structures anatomiques étudiées [12];

• les organes imagés, se référant aux différentes structures anatomiques pou-
vant être capturées chez le patient, comme le cœur, le cerveau, etc. Bien
que cette catégorie présente une variabilité significative, des similitudes
géométriques peuvent être observées parmi différentes structures, telles que
les artères ou les veines positionnées différemment à l’intérieur du corps [13];

L’objectif principal de cette thèse est de développer de nouvelles méthodes pour
aborder les changements de domaine susmentionnés afin de garantir la robustesse
des systèmes d’IA pour la segmentation d’images médicales.

A.4 Contributions

Dans ce qui suit, nous résumons les contributions clés présentées dans les Chapitres 2,
3, et 4 de la thèse.
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A.4.1 De la Précision à la Fiabilité et à la Robustesse dans
l’Imagerie par Résonance Magnétique Cardiaque

Le Chapitre 2 présente un aperçu des méthodes de pointe en segmentation IRM
cardiaque, en mettant l’accent sur les changements de performance avant et après
l’avènement des techniques d’apprentissage profond.

Comme nous l’avons montré en étudiant les améliorations apportées par les modèles
basés sur l’apprentissage profond au cours de la dernière décennie, les techniques
actuelles ont atteint leur maturité en termes de précision, obtenant des performances
comparables à celles des experts. Par conséquent, les efforts pour développer de
nouveaux modèles visant à optimiser la précision de la performance semblent
superflus. Au lieu de cela, nous avons observé que les travaux abordant la fiabilité
et la robustesse sont plutôt limités et que le domaine est encore relativement jeune.
Suite à cette observation, nous avons investigué les principaux facteurs influençant
la fiabilité et la robustesse des méthodes de segmentation IRM cardiaque basées sur
l’apprentissage profond. Basé sur les définitions formelles de ces deux termes, nous
avons distingué les facteurs entravant la fiabilité, à savoir le surapprentissage et la
formulation de la perte, de ceux entravant la robustesse, à savoir le changement de
domaine et l’acquisition des données. Nous avons noté que les premiers concernent
les caractéristiques internes du modèle, spécifiquement:

• Le surapprentissage est lié au nombre de paramètres du modèle et aux tâches
de collecte et de prétraitement des données nécessaires à l’entraînement du
modèle.

• La formulation de la perte implique l’identification de fonctions de perte
appropriées, car la plupart sont des fonctions d’objectif pixel-à-pixel qui ne
tiennent pas compte de la plausibilité anatomique des sorties de segmentation.

En revanche, les seconds sont liés à la présence d’entrées invalides:

• Le changement de domaine survient lorsqu’il y a un changement dans la
distribution des données entre celle observée lors de l’entraînement et celle
rencontrée après le déploiement.

• L’acquisition des données peut introduire des artefacts dans les images IRM,
conduisant à de mauvais résultats de segmentation.

Après avoir identifié les problèmes possibles menant à une faible fiabilité ou ro-
bustesse, nous avons proposé une nouvelle taxonomie pour distinguer deux familles
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de solutions possibles: les techniques de Contrôle de Qualité (CQ), qui se limitent à
surveiller et signaler les erreurs dans le comportement du modèle de segmentation,
et les techniques d’Amélioration du Modèle (AM), qui impliquent la mise en œuvre
d’ajustements internes pour améliorer la performance de segmentation du modèle.
Pour les deux techniques, nous avons fourni un bilan de la recherche actuelle dans
la littérature. Étant donné la nature ambitieuse de l’AM et les avantages en termes
d’automatisation du CQ pour les grandes bases de données, nous avons rencontré
un nombre plus important de méthodes CQ existantes par rapport aux techniques
AM.

A.4.2 Segmentation des Vaisseaux Cérébraux Multi-Domaines par
Découplage des Caractéristiques

Dans le Chapitre 3, nous avons introduit un cadre de l’adaptation de domaine semi-
supervisée de bout en bout conçu comme un outil prêt à l’emploi pour segmenter les
artères et les veines dans des images provenant de différents centres et/ou modalités.
À cette fin, nous avons opté pour une stratégie de prétraitement minimale qui évite
toute harmonisation des données entre les domaines source et cible. Bien que cela
améliore la polyvalence de notre modèle, cela a pour conséquence d’élargir l’écart
de domaine entre les deux domaines. Nos investigations ont analysé ce compromis,
en approfondissant les concepts et mécanismes cruciaux pour le bon fonctionnement
de notre modèle. Pour aborder le problème du changement de domaine provenant
de différents centres médicaux, modalités d’imagerie et types de vaisseaux, nous
nous appuyons sur la régularisation de la longueur du chemin [156], qui permet
de représenter des données volumétriques hétérogènes dans un espace latent unifié
et découplé. En conséquence, nous avons exploré le potentiel du découplage, en
enquêtant sur la possibilité de modifier certaines caractéristiques spécifiques au
domaine pour obtenir une traduction inter-domaine de manière préservant les
labels.

En plus d’évaluer l’efficacité du découplage, nous avons réalisé des études d’ablation
pour déterminer le nombre optimal d’annotations source et cible et pour évaluer
l’influence des choix architecturaux clés sur la performance. Enfin, nous avons
comparé notre cadre avec d’autres méthodes de pointe en adaptation de domaine et
généralisation de domaine. Notre approche démontre des performances supérieures,
segmentant avec précision les vaisseaux cérébraux 3D principalement en utilisant
des annotations d’images artérielles, qui sont relativement plus faciles à obtenir. Les
résultats montrent des performances prometteuses dans les scénarios d’adaptation
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de domaine semi-supervisée, surmontant les difficultés posées par les grands écarts
de domaine, en particulier entre les veines et les artères, et la morphologie complexe
de l’arbre cérébrovasculaire.

Malgré nos réalisations, nous reconnaissons le potentiel d’amélioration. Première-
ment, notre approche topologique est limitée puisque, bien que nous rapportions les
scores centerlineDice [164], nous n’incorporons pas sa forme différentiable, connue
sous le nom de soft-clDice, en tant que fonction de perte dans notre processus
d’entraînement. Cela pourrait renforcer l’intégrité topologique de nos résultats de
segmentation. Deuxièmement, nous soulignons la nécessité pour notre modèle de
répéter l’entraînement pour chaque nouveau domaine cible, et nous notons que
l’apprentissage contextuel, tel que proposé par des méthodes comme UniverSeg,
présente une alternative viable. De plus, notre modèle nécessite des orientations
sous la forme de m tranches 2D annotées cibles. Encore une fois, les modèles de base
peuvent être bénéfiques: en se pré-entraînant sur des collections étendues d’objets
en forme d’arbre, les modèles de segmentation peuvent acquérir une représenta-
tion plus large des vaisseaux. Cette approche facilite le lien entre les vaisseaux de
modalités éloignées sans nécessiter d’orientation supplémentaire.

A.4.3 Segmentation d’Images Multi-Centriques Fédérées avec
Répartition Inégale des Labels

Dans le Chapitre 4, nous avons abordé le défi réel des labels manquants dans les
données multi-centriques, présentant des différences de distribution dues à trois
facteurs: différents scanners, modalités d’imagerie et organes imagés. Pour relever
ce défi, nous avons introduit un cadre de segmentation novateur centré autour de
la construction collaborative d’une usine de données multimodales et entraîné en
utilisant une approche d’apprentissage fédéré où les clients développent collective-
ment une représentation latente partagée et découplée de leurs données. Cette
représentation latente permet non seulement la synthèse conditionnelle d’images
pour générer des images ressemblant à celles des différents domaines des clients,
mais aussi facilite des transitions en douceur entre les domaines par le biais du
morphing de l’espace latent.

En nous appuyant sur l’usine de données proposée, nous introduisons une deux-
ième étape asynchrone nécessitant qu’au moins un client entraîne une branche de
segmentation en utilisant un ensemble de données source étiquetées. Par la suite,
d’autres clients peuvent adapter leur distribution de données pour correspondre
à celle du domaine source étiqueté. Cela facilite l’adaptation locale au domaine
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pour la segmentation cible avec un effort de labellisation minimal et sans avoir
besoin d’échanger des images ou des annotations entre les clients, améliorant ainsi
l’efficacité et la gouvernance des données.

Nous avons largement validé notre travail sur trois scénarios distincts de complexité
croissante: la segmentation IRM cardiaque multi-scanners, le dénudement de crâne
multi-modalités, et la segmentation vasculaire multi-organes. Les résultats ont
démontré la robustesse et la polyvalence de notre cadre, qui améliore non seulement
la fiabilité à travers différents domaines de données, mais évite également l’échange
de données brutes ou d’annotations entre les clients. Notre solution exploite les
données étiquetées et non étiquetées dans des scénarios hétérogènes, répondant au
défi des décalages de distribution des données qui entrave souvent la traduction des
modèles d’apprentissage profond en pratique clinique.

Bien que notre cadre ait atteint des performances robustes, certaines limites doivent
être prises en compte. Notre cadre nécessite qu’au moins un client dispose d’un
ensemble de données étiquetées, ce qui peut être une contrainte dans les environ-
nements à ressources limitées. Comme pour l’adaptation de domaine centralisée,
notre approche nécessite encore un entraînement répétitif pour chaque nouveau
domaine cible. Pour réduire le temps d’entraînement, nous avons exploré le cas
où certains clients (Canon, T2w, IXI) effectuent une adaptation locale asynchrone
au domaine sans contribuer à la construction de l’usine de données multimodales
via l’apprentissage fédéré. Cette méthode nécessite uniquement un réentraînement
partiel, ce qui est plus rapide car elle évite l’entraînement adversarial et est plus
simple puisqu’elle n’implique pas de coordination avec d’autres clients. Cependant,
cette approche partielle nécessite encore de collecter et d’entraîner sur des données
cibles, et elle est efficace seulement pour les petits écarts de domaine, car les données
cibles doivent être suffisamment représentées dans l’espace latent par au moins un
autre domaine.

A.5 Directions Futures

Nos résultats indiquent que les méthodes proposées dans le Chapitre 3 et le Chapitre 4
atteignent de meilleures performances dans les tâches caractérisées par des écarts de
domaine significatifs, tout en maintenant une meilleure stabilité à travers les tâches
sans baisses notables de performance. Cependant, nous reconnaissons certaines
limites dans nos méthodes, ce qui suggère des pistes pour les travaux futurs.
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A.5.1 Atteindre la Cohérence Topologique

Les fonctions de perte telles que la perte de croisement d’entropie ou la perte soft-
Dice mesurent le degré de chevauchement entre les segmentations prédites et la
vérité terrain uniquement au niveau des pixels. Lors de l’entraînement des systèmes
d’IA, l’intégration d’une forme d’information globale peut être cruciale pour capturer
la structure à grande échelle de la segmentation prédite, en termes de forme ou de
topologie [100].

Obtenir une préservation topologique peut être particulièrement crucial pour les
formes allongées et connectées, telles que les structures vasculaires, où les méthodes
de segmentation produisent souvent des discontinuités ou des faux positifs. Des
travaux récents abordent ce problème en formulant des fonctions de perte différen-
tiables qui imposent l’intégrité topologique des résultats de segmentation [164].
L’incorporation de telles fonctions dans le processus d’entraînement pourrait offrir
des garanties supplémentaires contre les incohérences dans les structures tubulaires.
Les avancées récentes ont introduit des techniques plus sophistiquées pour abor-
der ces défis, telles que l’utilisation d’algorithmes de marche pour reconnecter
les segments de vaisseaux brisés [186], ou l’incorporation de réseaux de neu-
rones graphiques pour tenir compte de la structure globale des formes de vais-
seaux [187].

Malgré leur potentiel, les priors topologiques n’ont pas été explorés pour traiter
les décalages de domaine. Cependant, l’incorporation d’un prior topologique, tel
qu’un modèle de réseau tubulaire 3D pour les vaisseaux, représente une abstraction
qui reste cohérente à travers divers paramètres d’acquisition, modalités d’imagerie,
populations, et même différents organes dans des cas comme les artères et les veines.
En tant que tel, cette abstraction est essentielle pour améliorer la robustesse de la
segmentation d’images médicales dans les travaux futurs.

A.5.2 Augmentation des Bases de Données Sources

Les méthodes d’adaptation de domaine nécessitent l’accès à de grands ensembles
de données d’images cibles, même non étiquetées. Cette exigence peut devenir
particulièrement difficile dans les situations où les données cibles sont rares.

Les méthodes de généralisation de domaine et les modèles de base offrent des
solutions aux décalages de domaine sans nécessiter d’ensembles de données cibles.
Cependant, la généralisation de domaine est efficace uniquement dans les scénarios
avec de petits écarts de domaine, comme lors du changement des paramètres
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d’acquisition. D’autre part, les modèles de base, bien qu’ils présentent de fortes
capacités de généralisation, dépendent encore de grandes bases de données sources
annotées, qui doivent être rassemblées à partir de différents hôpitaux dans un dépôt
centralisé. Cela est souvent complexe en raison des contraintes de confidentialité et
des régulations actuelles [168].

À l’avenir, les modèles de base pour la segmentation d’images médicales sont sus-
ceptibles de bénéficier de bases de données sources de taille similaire à celles
utilisées pour l’imagerie naturelle. Cette augmentation de la taille des ensembles
de données peut être réalisée par l’apprentissage fédéré, qui permet à plusieurs
institutions médicales de former des modèles de manière collaborative sur une base
de données distribuée sans compromettre la confidentialité des données. Cependant,
l’élargissement du nombre de participants introduit de nouveaux défis tels que
l’hétérogénéité accrue des données, le déséquilibre des classes et la surcharge de
communication.

De plus, les ensembles de données sources peuvent être étendus en utilisant des
images naturelles et synthétiques, contenant par exemple des structures tubulaires et
arborescentes pour imiter les vaisseaux. Cela fournirait une base de caractéristiques
robuste, valide à travers plusieurs domaines caractérisés par des formes similaires.
Enfin, cette base pourrait être ajustée pour des applications de soins de santé
spécifiques grâce à un apprentissage par transfert ciblé.

A.5.3 Intégration des Indications Assistives

Les approches performantes pour traiter les grands décalages de domaine, y compris
l’adaptation de domaine, les modèles de base et l’apprentissage par transfert, nécessi-
tent des orientations du domaine cible pour obtenir une segmentation précise. Bien
qu’un petit ensemble d’exemples d’images étiquetées cibles constitue un compromis
raisonnable pour améliorer les performances, des optimisations sont possibles.

Premièrement, pour éviter de répéter l’entraînement pour chaque nouveau domaine
cible comme dans l’adaptation de domaine, l’apprentissage en contexte permet
au modèle d’incorporer l’ensemble d’exemples comme partie de l’entrée, ainsi que
l’image de requête réelle à segmenter. Cela permet au modèle de s’adapter à de
nouvelles tâches sans avoir besoin de réentraînement [153].

Deuxièmement, l’ensemble d’exemples peut être simplifié par rapport aux anno-
tations au niveau des pixels, en le remplaçant par des indications visuelles (par
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exemple, des clics, des boîtes de délimitation ou des griffonnages) [152] ou des
indications textuelles [188].

Alors que le domaine progresse dans le développement de grands systèmes d’IA qui
fonctionnent à travers diverses sources de données, l’accent est mis sur l’entraînement
sur plusieurs ensembles de données sources étiquetées et l’adaptation des modèles
appris à tout nouveau domaine et tâche cible. Les indications sont cruciales dans ce
contexte, car elles aident à définir la tâche cible en indiquant les régions d’intérêt
dans le domaine cible. Les directions futures de recherche incluent l’intégration des
mécanismes d’adaptation de domaine tels que la cohérence cyclique ou l’alignement
des caractéristiques, l’apprentissage en contexte et l’ingénierie des indications pour
développer des capacités robustes pour des domaines d’imagerie médicale largement
différents et jamais vus auparavant.
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