
❚❍❊❙❊ ❉❊ ❉❖❈❚❖❘❆❚ ❉❊

❙❖❘❇❖◆◆❊ ❯◆■❱❊❘❙■❚❊

♣ré♣❛ré❡ à ❊❯❘❊❈❖▼

➱❝♦❧❡ ❞♦❝t♦r❛❧❡ ❊❉■❚❊ ❞❡ P❛r✐s ♥◦ ❊❉✶✸✵
❙♣é❝✐❛❧✐té✿ ✓■♥❢♦r♠❛t✐q✉❡✱ ❚é❧é❝♦♠♠✉♥✐❝❛t✐♦♥s ❡t ➱❧❡❝tr♦♥✐q✉❡✔

❙✉❥❡t ❞❡ ❧❛ t❤ès❡✿

Pr♦t♦❝♦❧✲❧❡✈❡❧ ❆tt❛❝❦s ❛♥❞ ❉❡❢❡♥s❡s t♦ ❆❞✈❛♥❝❡

■♦❚ ❙❡❝✉r✐t②
❚❤ès❡ ♣rés❡♥té❡ ❡t s♦✉t❡♥✉❡ à ❇✐♦t✱ ❧❡ ✵✺✴✶✷✴✷✵✷✹✱ ♣❛r

▼❛r❝♦ ❈❛s❛❣r❛♥❞❡

Prés✐❞❡♥t Pr♦❢✳ ❆✉ré❧✐❡♥ ❋r❛♥❝✐❧❧♦♥ ❊❯❘❊❈❖▼

❘❛♣♣♦rt❡✉rs Pr♦❢✳ ❚❤♦♠❛s ❊✐s❡♥❜❛rt❤ ❯♥✐✈❡rs✐t② ♦❢ ▲ü❜❡❝❦

❉r✳ ❈❧é♠❡♥t✐♥❡ ▼❛✉r✐❝❡ ❈◆❘❙

❊①❛♠✐♥❛t❡✉rs Pr♦❢✳ ❑❛s♣❡r ❘❛s♠✉ss❡♥ ❯♥✐✈❡rs✐t② ♦❢ ❖①❢♦r❞

Pr♦❢✳ ◆✐❧s ❖❧❡ ❚✐♣♣❡♥❤❛✉❡r ❈■❙P❆

❉✐r❡❝t❡✉r ❞❡ t❤ès❡ Pr♦❢✳ ❘❡✜❦ ▼♦❧✈❛ ❊❯❘❊❈❖▼

❈♦✲❞✐r❡❝t❡✉r ❞❡ t❤ès❡ Pr♦❢✳ ❉❛♥✐❡❧❡ ❆♥t♦♥✐♦❧✐ ❊❯❘❊❈❖▼

Abstract

The Internet of Things (IoT) has become pervasive in modern life, with an ever-expanding
market. These devices serve a variety of purposes, aiding and accompanying users in daily ac-
tivities. However, as they frequently communicate with other devices, such as smartphones run-
ning companion apps, they present a signiőcant attack surface. Furthermore, their constrained
resourcesÐlimited computational power, battery capacity, and cryptographic supportÐmake
them attractive targets for malicious actors. For instance, adversaries could compromise the
privacy of őtness trackers by leaking sensitive health data, undermine the security of FIDO2
authenticators, or jeopardize the availability and safety of electric scooters, potentially resulting
in hazardous outcomes such as őre risks.

Conventional security solutions used in the web domain, such as TLS and certiőcate-based
authentication, are often unsuitable for IoT connectivity. Instead, IoT devices typically rely
on vendor-speciőc, application-layer protocols operating over standard transport layers such
as Bluetooth, Bluetooth Low Energy (BLE), NFC, or USB. These protocols reinvent standard
security mechanismsÐsuch as key agreement, authentication, session management, and encryp-
tionÐwith varying degrees of success, often introducing signiőcant vulnerabilities. Gaining a
comprehensive understanding of these protocols typically requires extensive reverse engineering
and manual analysis.

In this thesis, we examine a diverse range of IoT devices, spanning various levels of complex-
ity and security robustness. We introduce smart tools designed to facilitate security assessments
of these devices. These tools not only enable the detection of these vulnerabilities but also pro-
vide advanced features that support future research. These include capabilities such as őtness
tracker impersonation, őrmware binary analysis for electric scooters, and the development of
virtual environments for FIDO2 devices.

Our evaluation focuses on the ecosystems of Xiaomi and Fitbit őtness trackers, Xiaomi
electric scooters, and FIDO2 authenticators. Regardless of whether their underlying protocols
are open-source (e.g., FIDO2) or proprietary (e.g., Xiaomi), or whether their hardware capa-
bilities vary signiőcantly (e.g., őtness trackers vs. electric scooters), we uncovered multiple
protocol-level vulnerabilities. These weaknesses allowed us to compromise the security, privacy,
availability, and safety of the devices, with tangible real-world consequences for both users and
the broader vendor ecosystems.

Résumé

L’Internet des objets (IoT) est devenu omniprésent dans la vie moderne, avec un marché en con-
stante expansion. Ces dispositifs remplissent une variété de fonctions, aidant et accompagnant
les utilisateurs dans leurs activités quotidiennes. Cependant, comme ils communiquent fréquem-
ment avec d’autres appareils, tels que les smartphones exécutant des applications compagnons,
ils présentent une surface d’attaque signiőcative. De plus, leurs ressources limitéesÐfaible puis-
sance de calcul, capacité de batterie restreinte et support cryptographique limitéÐen font des
cibles attrayantes pour des acteurs malveillants. Par exemple, des adversaires pourraient com-
promettre la conődentialité des trackers de őtness en divulguant des données de santé sensibles,
saper la sécurité des authentiőcateurs FIDO2, ou encore compromettre la disponibilité et la
sécurité des trottinettes électriques, entraînant potentiellement des risques d’incendie.

Les solutions de sécurité conventionnelles utilisées dans le domaine du web, telles que TLS
et l’authentiőcation par certiőcats, sont souvent inadaptées à la connectivité IoT. À la place,
les dispositifs IoT reposent généralement sur des protocoles spéciőques au fabricant, opérant au
niveau de la couche application, par-dessus des couches de transport standards comme le Blue-
tooth, le Bluetooth Low Energy (BLE), le NFC ou l’USB. Ces protocoles sur mesure réinventent
fréquemment des mécanismes de sécurité essentielsÐcomme l’accord de clés, l’authentiőcation,
la gestion des sessions et le chiffrementÐavec un succès variable, introduisant souvent des vul-
nérabilités signiőcatives. Une compréhension approfondie de ces protocoles nécessite générale-
ment une ingénierie inverse poussée et une analyse manuelle.

Dans cette thèse, nous examinons une gamme variée d’appareils IoT, couvrant divers niveaux
de complexité et de robustesse en matière de sécurité. Nous introduisons des outils intelli-
gents conçus pour faciliter les évaluations de sécurité de ces dispositifs. Ces outils permettent
non seulement la détection de ces vulnérabilités, mais offrent également des fonctionnalités
avancées qui soutiennent la recherche future. Parmi ces fonctionnalités, on trouve la possibil-
ité d’imitation de traqueurs de őtness, l’analyse de binaires de őrmware pour les trottinettes
électriques, et le développement d’environnements virtuels pour les dispositifs FIDO2.

Notre évaluation se concentre sur les écosystèmes des traqueurs de őtness Xiaomi et Fitbit,
des trottinettes électriques Xiaomi et des authentiőcateurs FIDO2. Qu’il s’agisse de proto-
coles open-source (par exemple, FIDO2) ou propriétaires (par exemple, Xiaomi), ou que les
capacités matérielles varient considérablement (par exemple, traqueurs de őtness par rapport
aux trottinettes électriques), nous avons découvert plusieurs vulnérabilités au niveau des proto-
coles. Ces faiblesses ont permis de compromettre la sécurité, la conődentialité, la disponibilité
et la sûreté des dispositifs, avec des conséquences tangibles dans le monde réel tant pour les
utilisateurs que pour les écosystèmes de fournisseurs plus larges.

Acknowledgements

I would like to express my deepest gratitude to my supervisor, professor Daniele Antonioli, for
his unwavering dedication and support throughout the past four years. His guidance and the
vast knowledge he has shared with me have been invaluable, and I am immensely thankful for
the opportunity he gave me to pursue my PhD at EURECOM.

A heartfelt thanks to professor Mauro Conti and Eleonora Losiouk, who supervised me
during my Master’s Degree Thesis and continue to collaborate with me in ongoing research. I
am grateful for their continued mentorship and support, as well as to all the other people in
academia who collaborated with me during this journey.

I am sincerely grateful to the reviewers of my thesis for their valuable feedback, and to the
members of the jury, who dedicated their time and expertise to evaluating my work.

To my friends at EURECOM, I owe a special thanks for the many occasions when their help
and support were invaluable. To Feras, who is still trying to get me to move to Switzerland
after my defense. To Dario Nisi, my best office mate, Luigi Russo and Andrea Olivieri for the
insightful conversations, and to professor Aurelien Francillon and Aurelien Hernandez for their
support in the lab. I’m also grateful to my padel friends and rivals for the fun on and off the
őeld.

A big thank you to my family, who have supported me unconditionally throughout the
years, even accepting, without hesitation, the sudden news that I would be moving to France
for three years. I hope it was worth it and that I’ve made you proud.

To my friends in Veneto, I appreciate you more than you know. You’ve been there for me
through countless Wednesday nights, despite my antics and the silly events I organize. It makes
me happy to see how our bond did not fade, and never will, regardless of the distance.

Lastly, to my love Erica, who more than anyone else, has shared in my victories and my
losses. You’ve been my source of motivation during tough times, and your support has meant
the world to me. I will never be able to tell how I appreciate your patience and help. I will
always be there for you, just as you’ve been for me.

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Questions . 3
1.3 Contributions . 5
1.4 Thesis Outline . 7

2 Background 9
2.1 RQ1 . 9
2.2 RQ2 . 11
2.3 RQ3 . 13
2.4 RQ4 . 14

3 BreakMi 15
3.1 Introduction . 15
3.2 Background . 17

3.2.1 Bluetooth Low Energy (BLE) . 17
3.2.2 Xiaomi Fitness Tracking Ecosystem . 18

3.3 Analysis of Xiaomi Fitness Tracking . 19
3.3.1 Reverse-Engineered Protocols . 20
3.3.2 Protocol-level Vulnerabilities . 23

3.4 Proposed Attacks . 25
3.4.1 System Model . 25
3.4.2 Attacker Model . 25
3.4.3 OTA Tracker Impersonation Attack . 26
3.4.4 OTA App Impersonation and MitM Attacks 26
3.4.5 SB App Impersonation Attack . 28
3.4.6 OTA and SB Eavesdropping Attacks . 29
3.4.7 Discussion . 30

3.5 Implementation . 30
3.5.1 Protocol Dissector Module . 30
3.5.2 Security Mechanisms Module . 32
3.5.3 Attacks Module . 33

3.6 Evaluation . 34
3.6.1 Setup . 34
3.6.2 Results . 35

3.7 Countermeasures . 36

3.8 Comparison with Fitbit . 39
3.8.1 Architecture and Protocols . 39
3.8.2 Vulnerabilities and Attacks . 40
3.8.3 Attacking Fitbit with breakmi . 40
3.8.4 Porting our Xiaomi Countermeasures to Fitbit 41

3.9 Reverse-Engineering Methodology . 41
3.9.1 Trackers and Apps Reconnaissance . 41
3.9.2 BLE and Web Traffic Analysis . 41
3.9.3 Mobile Companion Apps Analysis . 42
3.9.4 Development of Scripts . 43

3.10 Related Work . 43
3.11 Conclusion . 45

4 E-Spoofer 47
4.1 Introduction . 47
4.2 Xiaomi E-Scooter Ecosystem . 49
4.3 Threat Model . 50

4.3.1 System Model . 50
4.3.2 Attacker Models . 51

4.4 Reversed Xiaomi Security Protocols . 52
4.4.1 No Security (P1) . 52
4.4.2 XOR Obfuscation (P2) . 53
4.4.3 AES-ECB and XOR Obfuscation (P3) 53
4.4.4 ECDH and AES-CCM (P4) . 54

4.5 Attacks . 54
4.5.1 Malicious Pairing (MP) . 55
4.5.2 Session Downgrade (SD) . 56
4.5.3 Root Causes . 56

4.6 Implementation . 58
4.6.1 Proximity Attack Module . 58
4.6.2 Remote Attack Module . 58
4.6.3 Reverse-Engineering Module . 59

4.7 Evaluation . 60
4.7.1 Setup . 60
4.7.2 Results . 61

4.8 Countermeasures . 61
4.8.1 Authorized and Authenticated Pairing 62
4.8.2 Anti-Downgrade BLE Firmware Patching 63

4.9 Related Work . 63
4.10 Conclusion . 65

5 E-Trojans 67
5.1 Introduction . 67
5.2 Motivation, RE, and Vulnerabilities . 69

5.2.1 Motivation . 69
5.2.2 Prior RE on Xiaomi E-Scooters . 69

Contents

5.2.3 New Xiaomi E-Scooters RE Details . 70
5.2.4 RE E-Scooter Vulnerabilities . 74

5.3 Threat Model . 74
5.3.1 System Model . 74
5.3.2 Attacker Model . 75

5.4 Attacks . 75
5.4.1 Attacks Initialization . 75
5.4.2 Undervoltage Battery Ransomware (UBR) 75
5.4.3 User Tracking via Internals (UTI) . 76
5.4.4 Denial of E-Scooter Services (DES) . 77
5.4.5 Password Leak and Recovery (PLR) . 78
5.4.6 Mapping Attacks and Vulnerabilities . 79

5.5 Implementation . 79
5.5.1 BCTRL Firmware Patching and Capabilities 79
5.5.2 UBR App and Backend . 81

5.6 Evaluation . 82
5.6.1 Setup . 82
5.6.2 Results . 82

5.7 Countermeasures . 83
5.8 Related Work . 84
5.9 Conclusion . 84

6 CTRAPS 87
6.1 Introduction . 87
6.2 FIDO2 and CTAP Preliminaries . 90
6.3 Threat Model . 92

6.3.1 System Model . 92
6.3.2 Attacker Model . 92

6.4 Attacks . 93
6.4.1 Client Impersonation (CI) Attacks . 94
6.4.2 API Confusion (AC) Attacks . 95
6.4.3 Discussion . 98

6.5 Vulnerabilities . 98
6.6 Implementation . 100

6.6.1 CTAP Testbed . 100
6.6.2 CTAP Client Impersonation . 101
6.6.3 FIDO Wireshark Dissectors . 101

6.7 Evaluation . 102
6.7.1 Setup . 102
6.7.2 Authenticators Results . 103
6.7.3 Relying Parties Results . 104

6.8 Countermeasures . 105
6.9 Discussion . 106

6.9.1 FIDO2 Reference Threat Model Issues 106
6.9.2 Yubico CredMgmt Implementation Vulnerability 106

6.10 Related Work . 107

Contents

6.11 Conclusion . 109

7 Conclusion 111

Résumé en Français 113
Énoncé du Problème . 114
Questions de Recherche . 115
Contributions . 118
Contexte . 120
Conclusion . 127

List of Figures

2.1 High-level system model for an IoT ecosystem. 10

3.1 Xiaomi őtness tracking system architecture . 18
3.2 Xiaomi Pairing v1 . 20
3.3 Mi Bands pairing conőrmation messages . 21
3.4 Xiaomi Pairing v2 . 22
3.5 Xiaomi Authentication . 23
3.6 OTA tracker impersonation attack . 27
3.7 OTA app impersonation and MitM attacks . 28
3.8 SB eavesdropping and app impersonation attacks 29
3.9 Proposed authenticated key establishment protocol 37
3.10 Proposed mutual authentication protocol . 38

4.1 Xiaomi e-scooter ecosystem . 49
4.2 Proximity-based and remote attacker models . 51
4.3 Malicious Pairing attack strategy . 55
4.4 Session Downgrade attack strategy . 56

5.1 E-scooter block diagram and attacker models . 70
5.2 Disassembled M365 and ES3 . 71
5.3 M365 BMS . 71
5.4 User Tracking via Internals with UTI . 78

6.1 Attacker models . 93
6.2 Factory reset authenticator attack with proximity CI1 94
6.3 Proőle and track user attack with remote CI2 95
6.4 Delete discoverable credentials attack with proximity AC1 97

7.1 High-level system model for an IoT ecosystem. 120

List of Tables

3.1 Mapping between the vulnerabilities and the OTA and SB attacks 31
3.2 Reversed Xiaomi őtness tracking application-layer opcodes 32
3.3 Fitness trackers’ speciőcations . 34
3.4 Evaluation results for OTA and SB attacks . 35
3.5 Evaluation results for SB attacks against Android 36

4.1 Xiaomi e-scooters’ application-layer protocols 53
4.2 Mapping between vulnerabilities and the E-Spoofer attacks 57
4.3 Evaluation results . 62

5.1 Battery and BMS details . 72
5.2 Mapping between the four attacks and the four vulnerabilities 79
5.3 Mapping between the ten capabilities and the four attacks 81
5.4 Evaluation results . 82

6.1 CTAP Authenticator API and authorization requirements 91
6.2 AC combinations . 96
6.3 Mapping the seven vulnerabilities to the eleven attacks 99
6.4 Details about the evaluated authenticators . 102
6.5 CI and AC attacks on the six authenticators . 103
6.6 CTRAPS attacks on the ten relying parties . 104
6.7 Comparison between recent attacks on the FIDO protocol 108

Chapter 1

Introduction

Internet-of-Things (IoT) devices are embedded systems designed to connect and exchange data
with other systems over the internet. These devices span a wide range, from small, everyday
gadgets like őtness trackers to sophisticated systems like electric scooters. They are typically
built to perform speciőc, limited tasks while prioritizing energy efficiency and cost-effectiveness.
For instance, they collect data from users and their environments through sensors. However,
their design constraints mean that IoT devices often operate with minimal computing power,
memory, and storage in order to reduce costs and extend battery life. To achieve connectivity
while conserving energy, they rely on low-power wireless protocols such as Bluetooth Low
Energy (BLE) and Near Field Communication (NFC). Their compact form factor limits their
ability to integrate high-end hardware like displays, GPS, or advanced cryptographic modules.

Given these constraints, IoT devices typically rely on a supporting ecosystem to extend their
functionality. A cloud-based backend, for instance, can handle resource-intensive tasks such as
data storage, complex analysis, and machine learning on the data collected by the device’s
sensors. Meanwhile, a mobile companion app often serves as a proxy, enabling user interaction
and providing the device with internet connectivity. This ecosystem allows the device to provide
advanced features through external infrastructure.

One of the biggest challenges in IoT security is balancing efficiency and affordability with
security, which is often deprioritized. IoT devices must rely on lightweight cryptography, due
to the signiőcant processing power and memory required by strong encryption and the cost
and lack of space for cryptographic modules. Most devices do not support certiőcate-based
authentication or public key cryptography. This is especially problematic when attempting to
protect security-critical operations such as pairing, session establishment, and őrmware updates.
The widespread deployment of IoT devices across critical functionsÐranging from personal
health to online security and mobilityÐmeans that successful attacks can have far-reaching
consequences, impacting not only individual users but potentially millions of people and the
entire vendor’s ecosystem. Below are examples highlighting the signiőcant effects of breaches
on security, privacy, availability, and safety.

Fitness trackers store and manage highly personal data, such as heart rate, physical ac-
tivity, and even incoming SMS or phone call notiőcations. An attacker could leak or hijack
this sensitive health data, compromising the user’s privacy and potentially exposing them to
identity theft or unwanted surveillance. FIDO2 authenticators manage cryptographic keys and
credentials that secure access to online accounts. If an attacker successfully breaches these
devices, it could lead to the loss of access to critical online services, such as email, banking, or

1

2 2

work accounts. This not only disrupts the user’s daily life but also opens the door to further
security risks, including account takeovers or őnancial fraud. Electric scooters continuously
monitor their lithium-ion battery status to ensure rider safety. If compromised, a scooter’s
safety mechanisms could be disabled, or false data about the battery’s condition could be fed
to the user, leading to malfunctions or even battery őres. This not only endangers the rider
but also poses risks to those nearby. Moreover, IoT devices are designed for on-the-go use,
and being unable to access them when needed can cause signiőcant inconvenience. For in-
stance, a locked e-scooter or authenticator could prevent users from accessing essential services
or transportation at inconvenient moments.

1.1 Problem Statement

IoT devices rely on standard communication transports, such as BLE, NFC, and USB. How-
ever, these standards often fail to address the unique requirements of speciőc manufacturers,
prompting them to build ad-hoc protocols over these transports. For instance, the standard BLE
GATT services lack adequate authentication mechanisms to meet the requirements of ecosys-
tems like Xiaomi’s, which employ server-side authentication. Similarly, in the FIDO2 standard,
NFC communication between an authenticator and a client uses the Client-To-Authenticator
Protocol (CTAP) over ISO14443 (a contactless communication standard) and ISO7816-4 (a
speciőcation for smart cards).

Manufacturers lack the resources to design secure IoT systems while also reimplement-
ing standard security mechanisms across multiple layered protocols. In comparison, the Con-
strained Restful Environments (CoRE [1]) Working Group took four years to release their
application-layer protocol, i.e., the Constrained Application Protocol (CoAP [2]), and four more
years to extend [3] their IoT network stack to TCP and TLS. Moreover, vendors contribute
to the proliferation of insecure IoT protocols by refusing to develop a single and robust IoT
framework, instead fragmenting their ecosystem into smaller ones, each with their own poorly
designed protocol. As a consequence to the complexity and fragmentation of layered protocols,
manufacturers frequently introduce critical vulnerabilities on security-critical operations such
as pairing, session establishment, and őrmware updates, putting the entire ecosystem at risk.
These issues can be found in different layers and components of the ecosystem. For example,
in the protocol’s design, the device’s code or hardware, and the user interaction.

We focus on protocol-level issues, found in the design and logic of IoT communication pro-
tocols. A protocol-level vulnerability stems from ŕaws in how the protocol is deőned, such as
missing authentication or weak encryption schemes. These vulnerabilities, the attacks exploit-
ing them, have a broad scope that affects all devices running the protocol, irrespective of their
software and the hardware. This means that even future versions of affected devices remain
vulnerable. For instance, our attacks on the Mi Band 5 were equally effective on the Mi Band
6, even though they were developed before we were aware of the Mi Band 6’s existence.

Fixing protocol-level issues is particularly challenging, especially when backward compati-
bility is a concern. Addressing these vulnerabilities often requires redesigning or updating the
protocol speciőcation, which, in the case of widely adopted standards like BLE and FIDO2,
demands collaboration across industries and standards bodies. For instance, we advocated for
improvements to the pairing and session establishment protocols used by Xiaomi őtness trackers
and engaged in discussions with the FIDO Alliance to update their Reference Threat Model.

1.2. Research Questions 3

1.2 Research Questions

This thesis explores four fundamental research questions confronting huge and unsolved chal-
lenges in the evolving landscape of IoT security. In selecting our research questions, we aimed
to address critical gaps in the current understanding and security of IoT ecosystems, focusing
on areas that are both underdeveloped and impactful.

RQ1 - How can we improve IoT protocol security testing? We believe it is crucial to
hold manufacturers accountable for inadequate security, especially when they misrepresent the
guarantees their products offer. To do so effectively, a strong foundation in protocol analysis
techniques and available tools is essential. In evaluating an IoT ecosystem, we identify two
core activities: analyzing the attack surface and understanding the device’s underlying logic,
including reverse-engineer if necessary.

The attack surface of IoT devices varies considerably, shaped by factors such as commu-
nication channels (e.g., BLE radio and USB connectors), hardware components (e.g., sensors
and displays), and system architecture (e.g., presence of backend servers and internal subsys-
tems). For example, őtness trackers and e-scooters are vulnerable to long-range attacks over
BLE, while FIDO2 authenticators are exposed to close-proximity threats via NFC or local
threats through USB connections. Some attack vectors exploit speciőc weaknesses, such as
FIDO2 client impersonation attacks, which take advantage of the lack of visual feedback on
authenticators. Similarly, Xiaomi’s server-side pairing protocol can be manipulated to remotely
unpair devices from their owners’ accounts. The choice of transport mechanism also impacts
how traffic is captured, decrypted, and analyzed. For instance, Android’s HCI snoop log al-
lows monitoring of BLE traffic without link-layer encryption, whereas decrypting a TLS session
requires obtaining the pre-master secret key. Scalable security testing must consider all these
different scenarios and variables.

Many vendors rely on security through obscurity, keeping their protocols closed-source and
undocumented. This practice makes protocol analysis highly dependent on the effectiveness
of reverse engineering (RE). RE is necessary for decrypting application-layer messages (e.g.,
those exchanged after key agreement) and understanding the binary format and semantics of
the protocol’s communication. Additionally, RE is a continuous effort, as proprietary protocols
may evolve over time with the release of new patches or device generations. For instance, the
Mi Band 4 employs a different pairing protocol than the Mi Band 3 and underwent another
major update in 2021. Despite the existance of third-party tools developed by security experts,
those are too device-speciőc, offer limited testing capabilities, and become obsolete as soon as
the protocols evolves. There is a need for better tooling and a stable testing environment not
requiring to buy or run the hardware.

RQ2 - How can we find IoT protocol-level vulnerabilities and attacks? IoT
ecosystems present a range of security challenges that, despite their apparent simplicity, have
proven difficult to address and have persisted for over a decade of research. These challenges
stem from inherent issues such as limited device resources, fragmented protocols, and the unfair
delegation of security responsibilities to end-users. Advancing IoT security requires a deep
understanding of these persistent issues and addressing their root causes. Below, we highlight
a selection of the critical security risks we have evaluated.

Weak or non-mutual authentication opens the door to impersonation and spooőng at-

4 4

tacks. Inadequate encryption and integrity protection expose communications to eavesdrop-
ping, forged messages, and replay attacks. Insecure őrmware updates result in devices being
compromised by malware or unauthorized modiőcations. Faulty protocol or őrmware version
negotiation makes them vulnerable to downgrade attacks, reducing their security guarantees
to the ones on weaker iteration of the protocol or őrmware. Insufficient user awareness and
misleading user conőrmation due to poor UI and non-transparent warnings during security-
critical decisions. Manufacturer over-reliance on security through obscurity rather than strong
security mechanisms leads to protocols with no security guarantees as soon as they are reverse-
engineered.

RQ3 - How can we design secure IoT protocols? Countless academic efforts have
attempted to address the security risks we previously discussed. One common strategy involves
porting lightweight versions of established security mechanisms. For example, the introduction
of CoAP, a web protocol similar to HTTP but optimized for constrained environments. As
well as the development of DTLS in Constrained Environments (DICE [4]), which implements
cryptographic primitives like Elliptic Curve Diffie-Hellman Ephemeral (ECDHE), also used in
TLS. A second approach is the creation of ad-hoc solutions tailored to speciőc IoT ecosystems.
An example is the development of security-enhancing FIDO2 extensions or the redesign of
protocols to more efficiently use existing cryptographic primitives. For instance, we leveraged
Xiaomi’s implementation of the Tiny Encryption Algorithm (TEA) to encrypt őrmware.

The primary limitation of these countermeasures is their lack of backward-compatibility
and interoperability. Researchers often design entirely new protocols that are incompatible
with existing ones or propose adding new hardware components to devices. For example,
multiple FIDO2-related works suggest to őx client impersonation by integrating a secure display.
However, many of these solutions are not (easily) portable across devices due to differences
in software, architecture, or transport. For instance, while we were able to patch a session
downgrade vulnerability in e-scooter őrmware, extending that őx to other őrmware versions
required signiőcant additional coding and reverse engineering efforts. We őnd it unrealistic
to expect users to discard their devices and upgrade to the newer models just to address
security ŕaws they didn’t cause. Researchers should help developing countermeasures that can
be applied across a wide range of devices, ideally without requiring manufacturer intervention.
Improving user interaction mechanisms and releasing tools to patch devices, would empower
users to take control of their own security, rather than relying solely on official updates. We
do not address the current fragmentation of IoT protocols but we focus on solving high-level
security concepts adaptable to various protocols, leaving implementation details to developers.

RQ4 - How can we design privacy-aware IoT protocols? Achieving privacy in IoT
is a critical challenge as the proliferation of interconnected devices generates vast amounts of
personal data, often collected and transmitted without explicit user consent. The importance
of addressing privacy concerns lies in the potential consequences of data breaches, which can
lead to user tracking and őngerprinting, GDPR breach, and the manipulation of user behav-
ior. Currently, privacy in IoT is unregulated, with manufacturers simply posting an arbitrary
document (e.g., Xiaomi’s őtness tracker Privacy Notice [5]) that still does not make them ac-
countable in case of privacy infringments (i.e., Xiaomi never acknowledged our several attacks
leaking user health and private data). The Mozilla Foundation engaged in the Privacy Not
Included initiative [6], releasing their own privacy evaluation of IoT products.

1.3. Contributions 5

We consider unacceptable that, in the current state, the devices that collect most personal
data are the ones protecting it the least and leaking it to malicious actors, dishonest manufac-
turers, and advertisers. Several attempts to systematize IoT security have been made, such as
the Fitbit Golden Gate framework [7] which promotes reliable and secure communications, but
no explicit desire to guarantee privacy. We consider privacy attacks as important as security
ones, and őx them, for example by proposing rotating and dynamic BLE advertising on őtness
trackers and credential identiőers in FIDO2. We highlight how there are no mechanisms in
place for the user to manage which data is collected by their devices and which data is sent to
the backend for processing. This would be a crucial step toward enabling users to take control
of their own privacy.

1.3 Contributions

This thesis makes four key contributions to the study of analysis techniques, vulnerabilities,
attacks, and countermeasures in IoT systems. We place a particular emphasis on protocol-level
vulnerabilities due to their signiőcant academic and real-world impact, driving fundamental
improvements in security and privacy. Our research exposes critical ŕaws in the underlying
logic and structure of protocols used by devices such as őtness trackers, e-scooters, and FIDO2
authenticators, advocating for a transition towards secure-by-design principles by vendors. We
now summarize the key contributions of this thesis and discuss how each work addresses the
research questions in its respective context.

BreakMi

The contribution "BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosys-
tem" [8] has been published in the IACR Transactions on Cryptographic Hardware and Em-
bedded Systems (CHES 2022).

In BreakMi, we analyze őtness trackers, demonstrating how even the smallest and most
inexpensive devices can signiőcantly impact both users and the manufacturer’s ecosystem. We
address RQ1 by releasing a virtual őtness tracker and companion app that communicate using
the Xiaomi protocol. We publish the Xiaomi GATT services, characteristics, and their func-
tions, along with dissectors for Xiaomi packets and their binary data format. We address RQ2
by identifying six remote and proximity attacks stemming from ten vulnerabilities. Our attacks
break security mechanisms and allow the injection of fake data into both the tracker and the
backend system. We address RQ3 by improving Xiaomi’s pairing and authentication protocols,
enhancing security guarantees without compromising backward compatibility or performance.
Finally, we address RQ4 by demonstrating how őtness trackers leak conődential data, such as
health data and sleep schedule, and can employed in user tracking.

E-Spoofer

The contribution "E-Spoofer: Attacking and Defending Xiaomi Electric Scooter Ecosystem" [9]
has been published in the Proceedings of the 16th ACM Conference on Security and Privacy
in Wireless and Mobile Networks (WiSec 2023).

6 6

In E-Spoofer, we reverse-engineer and exploit the pairing and session establishment protocols
of Xiaomi personal e-scooters. We address RQ1 by releasing a virtual e-scooter and companion
app that replicate BLE communications exactly as the original, enabling testing without the
need to purchase hardware. We systematize Xiaomi’s four protocols and provide tools to verify
the cryptographic primitives in use (e.g., none, AES, or ECDH). We address RQ2 by presenting
two proximity and remote attacks that exploit six vulnerabilities. A malicious pairing attack
allows an attacker to impersonate the app and unlock an e-scooter from a distance, facilitating
theft. A session downgrade attack leverages a forgotten protocol version downgrade by the
developers. We address RQ3 by redesigning Xiaomi’s protocols with an intentional pairing
gesture and mutual authentication. We also release a tool to detect őrmware vulnerable to our
attacks, as well as a patched őrmware for a model no longer updated by Xiaomi. Lastly, we
address RQ4 by achieving unauthorized access to the e-scooter and all private information it
contains, including mileage and the time spent in the current ride.

E-Trojans

The contribution "E-Trojans: Ransomware, Tracking, DoS, and Data Leaks on Battery-powered
Embedded Systems" is currently under submission at the IEEE International Symposium on
Hardware Oriented Security and Trust (HOST 2025).

In E-Trojans, we demonstrate how an internal attacker can compromise the safety of an
e-scooter driver, leading to hazards such as short circuits and őre risks. We address RQ1 by
releasing an e-scooter analysis and patching tool that can introduce malicious capabilities into
legitimate battery management system őrmware. We address RQ2 by presenting four attacks
that can be executed from within the e-scooter’s battery management system őrmware. Our
őndings include the őrst instance of undervoltage battery ransomware as well as a series of
Denial of Service (DoS) attacks. We identify four vulnerabilities that facilitate these attacks,
including the absence of őrmware signature veriőcation. We address RQ3 by securing őrmware
through encryption and signature veriőcation, and by protecting the internal UART bus with
a secure protocol such as SCP03, along with implementing rate limiting measures. Finally, we
address RQ4 by proposing a user tracking attack that őngerprints battery details and leaks
personal data over BLE advertising.

CTRAPS

The contribution "CTRAPS: CTAP Impersonation and API Confusion Attacks and Defenses
on FIDO2" will be submitted to the 10th IEEE European Symposium on Security and Privacy
(EURO S&P 2025).

In CTRAPS, we propose two attack strategies to break the security and privacy of FIDO2,
an open-source and robust authentication standard. We address RQ1 by developing a virtual
FIDO2 testbed, which includes a virtual client for arbitrary invocation of the Authenticator
API and a virtual relying party capable of registering any type of credential on an authenticator.
We also enhance existing FIDO2 dissectors to capture more packets and better visualize the
information. We address RQ2 by presenting eleven proximity and remote attacks and discussing
their seven root causes, along with the limitations of the unrealistic FIDO2 reference threat

1.4. Thesis Outline 7

model. Our attack strategies include client impersonation (e.g., NFC reader) capable of zero-
click attacks and a novel API confusion technique, where authorization permits granted by the
user for certain API calls are hijacked and used for other, potentially destructive, API calls.
Our attacks demonstrate that introducing new features (e.g., discoverable credentials meant to
protect against third-party data breaches) can inadvertently create new attack vectors (e.g.,
deleting discoverable credentials via the Credential Management API). We address RQ3 by
proposing seven countermeasures, including authenticating the CTAP client and improving
authorization mechanisms. We analyze how our solutions impact usability while maintaining
backward compatibility and low costs, in contrast to hardware-based solutions (e.g., adding a
screen). At last, we address RQ4 by demonstrating a zero-click unauthorized extraction of all
relying parties and credential identiőers stored on the authenticator.

1.4 Thesis Outline

The rest of the thesis is divided into six chapters, organized as follows. Chapter 2 provides some
background related to protocol-level analysis, attacks, and countermeasures in the landscape
of IoT security. We focus on how prior works addressed our four research questions. Chapter 3
is based on the paper "BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking
Ecosystem" [8]. We analyze the proprietary and closed-source protocols of Xiaomi őtness track-
ers. We study their pairing, authentication, and communication phases. Chapter 4 is based on
the paper "E-Spoofer: Attacking and Defending Xiaomi Electric Scooter Ecosystem" [9]. We
analyze the proprietary and closed-source protocols of Xiaomi electric scooters. We study their
four versions of pairing and session establishment. Chapter 5 is based on the unpublished pa-
per "E-Trojans: Ransomware, Tracking, DoS, and Data Leaks on Battery-powered Embedded
Systems". We examine the protocols for the őrmware update and internal bus communications
of Xiaomi e-scooters. Chapter 6 is based on the unpublished paper "CTRAPS: CTAP Imper-
sonation and API Confusion Attacks and Defenses on FIDO2". We analyze the open-source
and peer-reviewed Client-To-Authenticator-Protocol in the FIDO2 standard. We focus on the
CTAP Authenticator API exposed by the authenticator. Chapter 7 concludes the thesis. In
this chapter, we outline future works, research directions, and limitations of our study.

8 8

Chapter 2

Background

We provide relevant background information on the IoT ecosystem to establish a foundational
understanding for the contents of this thesis.

Figure 7.1 presents a high-level overview of a typical IoT ecosystem. In this model, an
IoT device collects data from its surroundings via sensors (e.g., accelerometer and heart rate
monitor) and interacts with the user through actuators (e.g., touch buttons). The device owner
interacts with the system primarily through a companion app installed on their smartphone.
Communication between the IoT device and smartphone occurs over wireless (e.g., BLE and
NFC) or physical (e.g., USB) transports, utilizing either proprietary protocols (e.g., Xiaomi)
or open standards (e.g., FIDO2). The companion app connects to the manufacturer’s backend
over Wi-Fi, typically secured by a TLS channel. The backend is responsible for handling
resource-intensive operations that are beyond the computational capabilities of the device or
smartphone, while also managing the storage and processing of user data. This system model
provides a clear framework for identifying the key points where protocol analysis, vulnerability
assessment, and security enhancements can be applied.

In the following sections, we compare existing related work to the contents of our thesis. We
review how other researchers tried to address our research questions, discussing their őndings,
and comparing them with our contribution. For more information regarding the related work
speciőc to each contribution presented by this thesis, please refer to Section 3.10 for BreakMi,
Section 4.9 for E-Spoofer, Section 5.8 for E-Trojans, and Section 6.10 for CTRAPS.

2.1 RQ1

How can we improve IoT protocol security testing? Researchers have analyzed and tested
protocols using various approaches we categorize on the targeted surface, as illustrated in
Figure 7.1. We review the entry points to perform analysis on IoT ecosystems.

App-to-backend traffic and API analysis. Traffic between the app and backend often
contains security-critical operations, such as pairing, and sensitive data like the user’s health
metrics and daily routines. In [10], the authors veriőed the integrity and encryption of őtness
tracker communications with the manufacturer’s backend using a man-in-the-middle (MitM)
attack via an HTTPS proxy. Similarly, in [11], researchers reverse-engineered the őrmware
update and backend traffic of Xiaomi smart home devices, including vacuum robots, allowing
them to disconnect the devices from Xiaomi’s cloud and add them to an isolated cloud. Burn-

9

10 10

IoT Device

Sensors

Actuators

User

Application-layer
protocol over transport

Companion
App

Backend

Application-layer
protocol over TLS

API
Endpoint

● Open debug ports
 -> Disable ports
● Insecure updates
 -> Signed firmware

● Weak authentication
 -> Mutual authentication
● Obfuscation over
encryption
 -> Encrypted session
● Downgradable protocol
 -> Version enforcement

● No link-layer security
 -> Enable link-layer security
● Weak user authorization
 -> Contextual confirmation

● No authentication
 -> API authentication
● Unencrypted data
 -> Encrypted and
integrity-protected data

● Authorization
 -> API authorization
● Data exposure
 -> Access control

App-to-backend traffic
analysis (e.g., MitM Proxy)

Device-to-app traffic (e.g.,
BLE) and protocol analysis

Static (e.g., decompilation) and dynamic
analysis (e.g., instrumentation)

API analysis (e.g.,
endpoint enumeration)

Debug interface analysis
(e.g., JTAG port)

Figure 2.1: High-level system model for an IoT ecosystem. The IoT device (left) collects data
via sensors and actuators. Users interact with the device through a companion app (middle),
connected to the vendor’s backend (right). We indicate available analysis techniques in teal.
We report common vulnerabilities in red and a possible defense against them in blue.

Fit [12] tested the resistance of three őtness tracking backends to DNS spooőng, discovering
vulnerabilities in all three. API analysis has also been a focus of traffic analysis. For instance,
a hacker exploited insecure API endpoints of the Bird e-scooter rental service backend to re-
motely book scooters or trigger alarms [13]. In [14], researchers exploited a vulnerability in
Fitbit’s API to perform unauthorized server-side pairing, effectively unpairing the original user
from their Fitbit Charge 2.

Device-to-app traffic analysis. Analyzing traffic between the device and app varies in
difficulty depending on the transport protocol. Bluetooth Low Energy (BLE) is a common
transport for IoT devices, and capturing BLE traffic is relatively straightforward if the user has
control over the communicating smartphone. On Android, users can enable the HCI snoop log
to collect BLE traffic. Using this technique, one researcher learned how to spoof notiőcations
on the Mi Band 3 and reverse-engineered its GATT server, including both standard (e.g., heart
rate, steps) and custom Xiaomi BLE transfer services [15]. Apple’s Magic Pairing protocol
for seamless BLE pairing was reverse-engineered in [16], revealing BLE advertising details and
communication with iCloud. Periscope [17] examined Android apps that conőgure smartphones
as BLE peripherals, using static analysis techniques like code decompilation to study BLE
traffic. When physical access to the device is unavailable, BLE traffic can be intercepted over
the air using hardware sniffers like Ubertooth, as done in [18] to discover correlation attacks.

Automated protocol analysis. Reverse-engineering closed-source and undocumented bi-
nary protocols is a challenging task. Automated methods like fuzzing and forensics scale well
as data input increases, enabling researchers to quickly detect vulnerabilities and explore di-
verse execution paths. In [19], the authors applied digital forensics to Xiaomi smart speakers,

2.2. RQ2 11

using NLP and text mining to associate speech patterns with user intentions. By analyzing
proprietary Xiaomi protocols, they identiőed speciőc events like playing music. The authors
of [20] developed AFLIoT, a greybox fuzzer for Linux-based IoT binaries, enabling them to fuzz
real-world devices such as the Xiaomi R1D router and discover unique crashes. The Avatar [21]
framework was capable of on-the-ŕy static analysis and device emulation regardless of the pres-
ence of peripherals. Frankenstein [22] emulated BLE devices in a virtual environment, executing
large portions of code and allowing the injection of wireless frames. Incision [23] expanded on
those frameworks by using a feedback loop gradually improving the reverse-engineering of the
protocol, in an automated way.

Manual protocol analysis. Manual methods, such as code decompilation and dynamic
instrumentation, involve more human effort but often uncover more complex vulnerabilities.
In [24], researchers performed static code analysis on őtness tracking apps by decompiling app
bytecode into Java or Smali code when necessary. Similarly, the authors of [25] analyzed privacy
concerns in e-scooter apps using static analysis tools like MobSF to examine app permissions
and third-party libraries. Firmware debugging was employed by [26] to őnd a backdoor in the
Fitbit Charge HR őrmware, and by [27], where JTAG ports in a Fitbit Charge 2 were accessed
to dump its őrmware and encryption keys. Formal veriőcation methods, though partially
automated, require protocol modeling to prove security guarantees. For instance, in [28], the
authors demonstrated that FIDO U2F authentication is compromised when the server app
identiőer is not validated. Additionally, formal veriőcation has been used in other IoT protocols
like EDHOC and MQTT to uncover security issues [29, 30].

Our improvements. In our research, we applied a variety of these techniques to reverse-
engineer and analyze protocols in őtness trackers, e-scooters, and FIDO2 authenticators. We
developed custom security analysis and testing tools with unique capabilities not previously
available, and made them public. Our improvements include: (i) virtual environments that en-
able security testing without requiring physical IoT devices or their companion apps; (ii) attack
toolkits implemented as command-line scripts and Android apps, facilitating reproducibility
of our attacks; (iii) Wireshark dissectors to improve visualization and understanding of cus-
tom protocol packets; and (iv) Frida hooks that extract real-time information about protocol
execution at runtime.

2.2 RQ2

How can we find IoT protocol-level vulnerabilities and attacks? The academic community has
extensively studied and reported vulnerabilities and attacks in IoT security. However, the
diversity and continuous evolution of IoT ecosystems consistently drive new discoveries. Below,
we present a selection of the attacks most relevant to this thesis.

Attacks on IoT ecosystems. Security researchers have exploited vulnerabilities across
various layers of IoT ecosystems, including devices, companion apps, and backends. Numerous
instances of őtness trackers, a popular target, have been victim of eavesdropping, impersonation,
man-in-the-middle attacks, and data leakage. The root causes of these attacks typically stem
from a lack of authentication and encryption in the communications between the őtness tracker,
its companion app, and the backend. These issues were found either at the protocol level or
were caused by implementation oversights by manufacturers. For example, the authentication

12 12

protocols of the Fitbit Charge HR were reverse-engineered in [26], while researchers in [14] were
able to leak private data from the Fitbit Charge 2 and perform a malicious őrmware update
on the device. Electric scooters, though less frequently studied, have also been targeted. The
Xiaomi M365, for instance, was shown to suffer from mutual authentication ŕaws between the
device and the companion app [31]. Further exploits included locking mechanisms that abruptly
brake the scooter [32] and a man-in-the-middle (MitM) attack to insert custom audio őles into
Lime e-scooters [33]. Vulnerable APIs in the Bird app allowed attackers to bypass QR code
veriőcation [13]. Xiaomi’s diverse IoT ecosystem has also drawn attention. Researchers reverse-
engineered Xiaomi vacuum cleaners in [34], bypassing secure boot, decrypting communication
with the backend, leaking data, and injecting fake records. Other Xiaomi targets include smart
speakers [19], security cameras [35, 36], and routers [20]. Side-channel attacks have proven
effective on authenticators as well, as demonstrated in [37, 38, 39].

Attacks on BLE security. As the most prevalent transport layer in IoT devices, BLE has
been subject to numerous attacks. Key negotiation in BLE has been compromised by downgrade
attacks that force low-entropy encryption [40] or exploit BLE features [41]. All iterations of
BLE pairing mechanisms, including legacy pairing [42], Simple Pairing [43, 44], and Secure
Connections Only Mode [45], have been successfully attacked. Method Confusion [46] enables
man-in-the-middle attacks by pairing devices using two different modes, which is hard for users
to detect. Privacy attacks, such as tracking users via MAC addresses, have been demonstrated
through botnets [47] or by exploiting BLE advertising across apps [48]. A large-scale study
in [49] examined Android apps that share BLE channels, revealing the potential for abuse by
malicious apps. BLECryptracer [50] leveraged this ŕaw to perform rogue őrmware updates on
BLE devices. Application-layer protocols built on top of BLE have also been scrutinized. For
example, researchers in [51] compromised the ZeroConf protocol in Apple’s ecosystem, allowing
them to intercept Bluetooth channels used by Tencent QQ and Scribe apps.

Cryptographic misuse in IoT. Despite its critical role in securing IoT, cryptography is
often misapplied. Cryptographic key extraction has been a major area of focus, particularly
in automotive systems. Vulnerabilities were found in keyless entry systems, including Tesla
Model S [52] and X [53], and KeeLoq-based entry systems [54]. Transponder weaknesses that
immobilize cars, such as Hitag2 [55] and Megamos Crypto [56], were also exploited. Xiaomi
devices exhibited cryptographic weaknesses, from excessive reliance on obfuscation [57, 58]
to őrmware decryption key leaks [59]. FIDO2’s cryptographic protocols, including privacy,
revocation, attestation, and post-quantum security, were formally veriőed in [60]. However, a
public key substitution attack was identiőed in [61] for FIDO2, exploiting write access to the
server database. In [62], Samsung’s TrustZone Keymaster, responsible for managing FIDO2
credentials, was found vulnerable to an AES-GCM IV reuse attack due to a downgrade that
allowed a őxed IV to be used instead of a random one.

Our improvements. In our research, we found new, impactful, and low-cost attacks and
vulnerabilities in őtness trackers, e-scooters, and FIDO2 authenticators. Our improvements
include: (i) twenty-seven IoT vulnerabilities such as unauthenticated pairing, replayable session,
unsigned őrmware, and trackable devices; (ii) twenty-three IoT attacks such as the őrst battery
ransomware and a zero-click authenticator factory reset from remote and proximity; and (iii)
the API confusion attack strategy misdirecting the user into calling an unintended CTAP API.

2.3. RQ3 13

2.3 RQ3

How can we design secure IoT protocols? The IoT őeld is in constant need for robust counter-
measures to the increasing threats it is facing. The research direction is not őxing the protocols,
but detecting signs of tampering or the presence of a malicious actor instead. This is a sensible
way for the user to mitigate damage, but does not solve the core issues at the protocol-level,
leaving the system forever vulnerable. We discuss two common ways to defend IoT devices.

Intrusion and anomaly detection. Intrusion detection systems (IDS) mitigate the im-
pact of an attacker already inőltrated in a system, accepting that sometimes it is impossible to
őx the protocol’s design. The authors of [63] proposed a supervised IDS for smart home, using
machine learning on traffic captures to classify legitimate and malicious packets. Passban [64]
tried to solve the issue that edge IoT devices cannot efficiently deploy signature-based IDS due
to resources and infrequent updates, by relying on anomaly detection. Anomaly detection was
also used by [65], an IDS for IoT environments that detect classic network attacks, such as
ARP poisoning, DNS spooőng, and ŕooding via COAP/HTTP. Oasis [66] is a BLE framework
capable of injecting intrusion detection algorithms into the őrmware of BLE controllers. Its
detection module relies on instrumentation and uses heuristics for each speciőc attack.

Remote attestation. The goal of remote attestation is ensuring that the software running
on the IoT device is legitimate and was not tampered. This practice is often not supported by
devices or other components in the ecosystem. Researchers have analyzed remote attestation
in Yubico authenticators [67], őnding that the proposed Asynchronous Remote Key Generation
produces unforgeable challenge-response signatures. Other attestation mechanisms modes have
been evaluated, such as [68], providing global key revocation and anonymity to the encryption
scheme underlying key wrapping, and [69], featuring different attestation modes. Alternatives
to remote attestation have been discussed in literature. For example, in [70] the researchers
present an efficient trust mechanisms that prevents Sybil attacks in IoT networks with constant
access to the backend, such as smart grids in agricolture. Trusted Execution Environments have
been employed to guarantee authorized access to resources, such as in [71], where access control
policies are put in place and policy-infringing applications within TEE are scrutinized. The
Internet Engineering Task Force (IETF) proposed Software Updates for Internet of Things
(SUIT) for secure software updates, that has been successfully tested on low-resource devices
by [72]. The authors of [73] designed an online data integrity monitor for sensor systems
managing data failure and recovery.

Our improvements. In our research, we proposed practical and backward-compatible
defenses to őx our attacks and solves their root causes at the protocol-level. We responsibly
disclosed our őnding to the vendors, that ignored (i.e., Xiaomi), őxed (i.e., Google), or are
currently evaluating (i.e., FIDO2 and Microsoft) our feedback. Our improvements include: (i)
strong protocol enhancements that raise their security and privacy with robust countermeasures,
such as mutual authentication, contextual user conőrmation, őrmware veriőcation, and trusted
clients; (ii) vulnerability assessment tools that check whether a device is affected by our attacks,
such as our Yara signatures for the Xiaomi e-scooter őrmware and our Android app testing a
Yubico implementation vulnerability; and (iii) user patches that protect their devices without
relying on security updates from the vendor, such as our patch to the Xiaomi M365 őrmware.

14 14

2.4 RQ4

How can we design privacy-aware IoT protocols? The IoT őeld is in constant need for robust
countermeasures to the increasing threats it is facing. The research direction is not őxing the
protocols, but detecting signs of tampering or the presence of a malicious actor instead. This is
a sensible way for the user to mitigate damage, but does not solve the core issues at the protocol-
level, leaving the system forever vulnerable. Privacy can be broken by the manufacturer, who
is not inherently malicious, or third-party attackers with malicious intentions.

Privacy violations by manufacturers. Devices frequently upload data to the manufac-
turer’s backend due to storage limitations and for server-side data processing. However, there is
often no transparent method to verify what information is being transmitted, raising concerns
about potential oversharing of user private data. For instance, the authors of [18] discovered
that Fitbit Flex trackers collect more data than what is officially disclosed. They found evi-
dence of per-minute activity records being sent to the backend, information that is never shared
with the user. Furthermore, manufacturers do not always adhere to the privacy standards they
advertise. In a study evaluating eleven vendors, researchers in [74] identiőed two vendors that
were non-compliant with their own privacy policies. One potential solution to mitigate vendor
interference is to decouple devices from their backends. For example, in [75] a security expert
developed custom őrmware for a Xiaomi vacuum cleaner that connects to alternative, more
secure personal cloud endpoints. However, implementing such modiőcations typically requires
root access, which is not feasible for most devices. Additionally, IoT companion apps often
share sensitive information with advertising companies, who use this data for targeted market-
ing campaigns. The authors of [76] highlight the alarming volume of conődential data that can
be retrieved from sensor networks.

Privacy violations by third-parties. Malicious third-parties exploit the communication
channels of IoT devices to leak conődential data and track users. The authors of [47] demon-
strated how BLE advertising can be used to identify users based on the traffic patterns of their
őtness trackers. The BLEScope [77] analysis tool extracts service and characteristic UUIDs
from BLE apps and őngerprints them based on static information. It also assesses whether
apps encrypt and authenticate application-layer traffic by analyzing cryptographic API calls.
In another study [10], the researchers evaluated the security of Wi-Fi traffic between őtness
trackers and backend. The őnd a lack of encryption and integrity protection, which allows
attackers to eavesdrop on user web login information and sensitive data such as health records.
Similarly, the authors of [78] revealed that attackers can read, modify, and delete records stored
in Fitbit memory banks, exposing all contained data. As demonstrated in [79], a malicious ISP
or network observer could infer private home activities by analyzing encrypted Internet traf-
őc from smart appliances. In [80], the authors discovered that exploiting illegal states and
unauthorized logins could even grant attackers access to private home camera footage.

Our improvements. In our research, we őnd and discuss vulnerabilities, attacks, and
countermeasures involving privacy and GDPR-protected health data. Our improvements in-
clude: (i) four privacy-related vulnerabilities, such as unprotected sensitive memory in e-scooter
őrmware and trackable credential identiőers in FIDO2; and (ii) nine privacy-breaking attacks,
such as őtness tracker impersonation (i.e., reading SMS messages from phone) and user tracking
via e-scooters and FIDO2 authenticators.

Chapter 3

BreakMi

This contribution, titled "BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness
Tracking Ecosystem", has been published in the IACR Transactions on Cryptographic
Hardware and Embedded Systems (CHES 2022) [8].

3.1 Introduction

Fitness tracking systems are complex and pervasive technologies used to monitor sensitive
(health) data. They are composed of wearable devices connected to a mobile application acting
as a gateway to cloud services. We have seen impactful security and privacy breaches affecting
those systems. For example, researchers found backdoors in trackers’ őrmware [26], managed
to ŕash malicious őrmware wirelessly [14], leaked private data, including health records and
login credentials [81], and disabled communication encryption [27]. It is not straightforward to
őx these issues as vendors might not patch them at all, and őtness trackers might not support
(secure) remote patching. Furthermore, vendors must distribute the software őx securely and
on a large scale.

Xiaomi is the worldwide őtness tracking leader. In 2020, Xiaomi sold 13.5 million devices
and had 24.5% of the market share [82]. Nevertheless, the Xiaomi őtness tracking ecosystem
received little attention from security researchers, despite being pervasive and promising security
and privacy guarantees to its users [5]. Currently, there is only incomplete and outdated
information about Xiaomi security mechanisms [24, 10]. On the other side, Fitbit (its main
competitor) has received more consideration from security researchers. For example, recent
work demonstrated that popular Fitbit devices are susceptible to attacks such as packet sniffing,
data exőltration, and code injection through őrmware updates [78, 18, 83, 26, 14].

In this work, we perform an extensive and up-to-date security evaluation of the Xiaomi
őtness tracking ecosystem that is currently lacking. We analyze all Xiaomi trackers since 2016
(i.e., Mi Band 2/3/4/5/6 and Amazőt Cor 2) and up-to-date Xiaomi companion apps (Mi Fit
and Zepp). Via extensive static and dynamic reverse-engineering experiments, we reconstruct
Xiaomi’s proprietary Pairing, Authentication, and Communication protocols used to connect
trackers and apps via BLE. We őnd that these protocols are implemented at the application-
layer over a BLE link-layer. Moreover, we discover that Xiaomi ignores standard BLE security
mechanisms (e.g., BLE pairing and secure sessions), although its devices support them.

Then, we uncover severe specification-level vulnerabilities affecting the self-baked Xiaomi
protocols. For example, keys are sent in cleartext, authentication is unilateral and replayable,

15

16 16

and the BLE traffic is neither encrypted nor integrity protected. As the vulnerabilities target
the protocols’ design, they can be exploited regardless of the hardware and software details
of the target (e.g., őrmware, operating system, app, and BLE versions). Additionally, those
issues might even be exploitable on other Xiaomi products sharing the same application-layer
security mechanisms.

To demonstrate the impact of the presented vulnerabilities, we develop and evaluate six prac-
tical attacks on actual devices. With our over-the-air (OTA) attacks, an attacker in Bluetooth
range with a victim can impersonate a tracker to an app, an app to a tracker, man-in-the-
middle (MitM) them, and eavesdrop on their communication. Alternatively, with our remote
attacks, indicated in the paper as software-based (SB), an attacker can remotely eavesdrop on
data from a tracker or impersonate an app by abusing Android BLE API within a malicious
app. Our attacks are high impact because they affect the whole Xiaomi ecosystem and enable
the attacker to achieve valuable goals such as eavesdropping on sensitive data exchanged by
a tracker and a smartphone (e.g., health data, SMS, and notiőcations) or sending arbitrary
commands to the tracker and the smartphone.

We developed breakmi, a security evaluation toolkit for őtness tracker ecosystems to au-
tomate our RE efforts and attacks. breakmi has three modules: protocol dissector, security
mechanisms, and attacks. The protocol dissector module understands Xiaomi’s proprietary
application-layer protocols, allowing for fast and automated analysis of its application-layer
packets. The security mechanisms module reimplements Xiaomi’s custom security mechanisms,
such as Pairing and Authentication. The attacks module deploys our attacks automatically,
including over-the-air or remote impersonation and MitM on arbitrary trackers and apps. We
will release breakmi in the open after responsible disclosure.

To show the effectiveness of our attacks, we present an extensive evaluation of Xiaomi
trackers and apps. In particular, we successfully attacked all Xiaomi trackers released since
2016 (i.e., Mi Band 2/3/4/5/6 and Amazőt Cor 2) and the latest versions of the Xiaomi őtness
mobile apps (i.e., Mi Fit version 4.8.1 and Zepp version 5.9.2). Two of the presented attacks are
remotely targeting the Android platform. We successfully conduct them on six popular Android
versions (i.e., Android 6/8/9/10/11/12) to conőrm their widespread impact. According to [84],
these versions represent 90% of the Android ecosystem.

To effectively address the presented vulnerabilities and attacks, we propose five countermea-
sures. All of them incur minimal overhead because they rely on a few additional messages and
on lightweight security features. We redesign Xiaomi proprietary protocols to implement four
out of the five proposed countermeasures at the application-layer. The őfth countermeasure
applies to the link-layer, where we encourage the activation of the standard BLE link-layer
security (i.e., BLE legacy pairing, LE Secure Connections), already supported by all Xiaomi
devices.

To check the effectiveness of our attacks and the extensibility of breakmi to other vendors,
we also analyzed the Fitbit ecosystem (the second biggest ecosystem after Xiaomi). We looked
at two popular Fitbit trackers (i.e., Charge 2 and Charge 4) and the Fitbit mobile app (v
3.54.1). Our results show that the Fitbit ecosystem provides better (still proprietary) security
mechanisms than Xiaomi. However, it is still vulnerable to őve out of the six presented attacks.
While testing our attacks on Fitbit, we extended breakmi by adding Fitbit’s custom protocols
and security mechanisms.

To encourage further research on the topic, we describe our reverse-engineer methodology in
detail. Speciőcally, we used a mix of static and dynamic techniques for reconnaissance, traffic

3.2. Background 17

analysis, and app analysis. Additionally, we developed custom scripts and tools to automate
our analyses that are now part of breakmi. Overall we spent a considerable time reversing the
Xiaomi ecosystem (i.e., one year RE effort).

We summarize our contributions as follows:

• We reverse-engineer the proprietary security protocols used by Xiaomi to protect the
BLE link between its trackers and companion apps. Those protocols include Pairing,
Authentication, and Communication at the application-layer, and do not take advantage
of BLE link-layer security mechanisms already supported by its devices.

• We uncover novel and severe vulnerabilities in the speciőcation of those protocols en-
abling an attacker to target the ecosystem as a whole. The list of vulnerabilities includes
unilateral and replayable authentication, improper key agreement, and lack of encryption
and integrity protection of sensitive data.

• We show how to exploit these vulnerabilities, and we perform high-impact Xiaomi-
compliant attacks either over-the-air or remotely (via a malicious app). We design and
release breakmi, a toolkit to automatically analyze and attack the Xiaomi ecosystem.
We address the presented vulnerabilities and attacks by proposing őve practical and low
overhead countermeasures that őx Xiaomi’s vulnerable protocols.

• We compare Xiaomi with Fitbit, and we őnd that four of the identiőed vulnerabilities
and őve of the proposed attacks are portable to Fitbit. We extend breakmi to the Fitbit
ecosystem, and we successfully conduct the attacks.

Responsible disclosure We responsibly disclosed our őndings to Xiaomi in March 2021 via
the HackerOne platform. Xiaomi considered our report as a single and known vulnerability,
namely “lack of encryption,ž scheduled to be őxed on an undisclosed timeline. We disagree with
this response as we reported multiple classes of vulnerabilities leading to several attacks (and
not a single vulnerability)1. We also responsibly disclosed our őndings to Fitbit in January 2022
through Google Vulnerability Reward Program, and Fitbit acknowledged our attacks and will
deploy a őx in April 2022.

3.2 Background

In this section, we introduce Bluetooth Low Energy and what is known about the Xiaomi őtness
tracking ecosystem.

3.2.1 Bluetooth Low Energy (BLE)

Bluetooth Low Energy is the de-facto standard wireless technology for low-power wireless ser-
vices, including őtness tracking. It is deőned in the Bluetooth standard [85] and provides a
client-server architecture to exchange data using a speciőc format. Security-wise, BLE includes

1Our experiments did not involve or expose third-party users, but we analyzed our own devices in a controlled
environment.

18 18

Figure 3.1: Xiaomi őtness tracking system architecture. The tracker is a battery-powered
embedded device supporting BLE. The smartphone runs a őtness tracking application and is
capable of communicating with the tracker via BLE and with a backend server via the Internet.

pairing and session establishment mechanisms that should provide conődentiality, integrity,
and authenticity guarantees at the link-layer.

The BLE client-server architecture is speciőed by the Generic ATTribute Proőle (GATT)
and uses the ATTribute Protocol (ATT) protocol [85, p. 1531]. In Bluetooth terminology, the
client is deőned as the central, and the server as the peripheral. The client sends read, write,
and notiőcation requests to the server. The server answers accordingly to the request type and
the availability of data.

In a őtness tracking use case, the GATT server is the tracker device (e.g., wristband) and
the GATT client is a smartphone application. The server exposes őtness data, such as heart
rate and step count, while the client can periodically query such data. BLE data is exchanged
using a hierarchical and object-oriented format deőned in [85, p. 284].

The top-level of the hierarchy is a proőle, and it contains a set of services. Each service
provides characteristics or other services. A characteristic provides a value őeld with optional
őelds, such as descriptors and properties. Each characteristic can be conőgured with access-
control ŕags (e.g., read-only, write-only, or read-write).

BLE provides pairing and secure session establishment protocols to secure the link-layer.
Before exchanging data over GATT, the client and the server can pair to agree upon a long-term
pairing key and use it to establish a secure session (e.g., by using ECDH).

On the contrary, session establishment is implemented using AES-CCM authenticated-
encryption, keyed with a fresh session key (derived from a pairing key). The server can protect
a GATT characteristic by requiring a client to pair before accessing it by setting its encryption
and authentication security permissions.

A BLE device supporting a Bluetooth version greater than or equal to 4.2 can support a
security mode known as Secure Connections (SC) that enhances pairing and session establish-
ment by only using FIPS-compliant algorithms.

3.2.2 Xiaomi Fitness Tracking Ecosystem

The Xiaomi őtness tracking ecosystem includes wearable tracking devices, smartphones run-
ning a tracker companion app, and backend infrastructure. As we see from Figure 3.1, the
Xiaomi components communicate wirelessly using a combination of short-range and long-range
technologies. The tracker and the smartphone use BLE (introduced in Section 3.2.1), while
the smartphone and the backend require Internet connectivity through Wi-Fi or a cellular net-
work. We note that other őtness tracker vendors, including Fitbit, employ the same general

3.3. Analysis of Xiaomi Fitness Tracking 19

architecture.
Xiaomi trackers are wearable and battery-powered devices composed of sensors to collect

health data, such as step count and heart rate, and actuators, such as buttons and a touch
screen. They can also control the associated smartphone (e.g., lock/unlock the screen) and
receive notiőcations (e.g., SMS, WhatsApp).

Xiaomi ships two families of trackers called Mi Band (MB) [86] and Amazfit [87]. Mi Band
is the most popular family and so far includes six generations: MB 1 (2014), MB 2 (2016), MB
3 (2018), MB 4 (2019), MB 5 (2020), and MB 6 (2021). Amazőt has two generations: Cor 1
(2018) and Cor 2 (2019). The two families are manufactured by the same company (Huami [88])
and have similar hardware and software capabilities. For example, the Cor 1 is a MB 2 clone,
and the Cor 2 clones the MB 3.

Xiaomi’s official companion app is Mi Fit and is freely available for Android [89] and iOS [90].
The app provides a user interface to conőgure and manage a tracker and is compatible with all
Mi Band and Amazőt Cor generations. Another official app that supports Xiaomi trackers is
Zepp, available on Android [91] and iOS [92]. There are also several third-party apps compatible
with Xiaomi.

The Xiaomi backend is an Internet-accessible infrastructure that manages several aspects
of the ecosystem. It stores the list of registered users and their associated trackers. It also
backups the conőgurations of the trackers and the apps. Additionally, it distributes őrmware
and resource őle (e.g., fonts, images) updates to the trackers. The backend is managed by
Huami, which is also the developer of the Mi Fit and Zepp applications (and the tracker’s
manufacturer).

On one hand, Xiaomi does not provide any information about its security architecture and
mechanisms. However, on the other hand, it claims to guarantee its users’ conődentiality,
security, and privacy (see the Privacy Policy [5] dated May 2020). Hence our work investigates
how these claims are actually implemented in practice.

3.3 Analysis of Xiaomi Fitness Tracking

From our reverse-engineering experiments, we found that Xiaomi uses three closed-source and
proprietary application-layer protocols in three different operations: Pairing, Authentication,
and Communication.

These three protocols deőne the format, and the purpose of any BLE packet exchanged
between Xiaomi companion apps and trackers. A single vulnerability in the protocols can be
used to exploit any supported Xiaomi tracker and app. Hence they must be well designed
and implemented, but this work (experimentally) shows the contrary. We note that Xiaomi
protocols are orthogonal to the link-layer security mechanisms provided by BLE introduced in
Section 3.2.1.

In our experiments, we also uncover that Xiaomi disables BLE link-layer security and privacy
features despite being supported by its trackers and apps. BLE security mechanisms were
designed to protect the emerging IoT market, including the őtness tracking industry, and it is
not evident why Xiaomi simply ignores them. This choice considerably increases the risk of a
security breach as Xiaomi only trusts its vendor-speciőc protocols.

Now we describe these protocols in detail. The presented information required extensive
reverse-engineering (RE) efforts described in Section 3.9. Then, we pinpoint vulnerabilities in

20 20

Tracker App

Pairing Init

pair v1

Key [16 B]

Wait for user confirmation

Pairing Complete

Reset Data

Figure 3.2: Xiaomi Pairing v1. The app generates and sends to the tracker a 16-byte pairing
key (Key) in the clear. The tracker shows a pairing conőrmation message to the user. Once the
user conőrms, the tracker resets its data, and pairing is completed.

their speciőcation, including lack of mutual authentication and replay protection. The vulner-
abilities are critical as they affect the whole Xiaomi ecosystem regardless of the hardware and
software details of the trackers and the apps.

3.3.1 Reverse-Engineered Protocols

We isolate three Xiaomi proprietary application-layer protocols, and we name them Pairing,
Authentication, and Communication. Pairing is used to establish a long-term secret (i.e.,
pairing key) between a tracker and an app. Authentication is employed to prove ownership of a
pairing key. Communication runs only after a successful Authentication and enables interaction
between trackers and an app.

Those interactions include sending health data from the tracker and sending commands or
notiőcations from the app to the tracker or vice versa. Now we describe their technical details.
We use the terms tracker and app to refer to any Xiaomi-compliant device, and, when needed,
we indicate the speciőc tracker model or app name.

Pairing

Pairing is used to establish a 16-byte pairing key between the tracker and the app. The pairing
key is the root of trust between the devices and must be kept secret and stored securely. We
observed two versions of Pairing.

The őrst version, which we call Pairing v1, is used by Mi Band 2/3 and Amazőt Cor 1/2
trackers. Instead, Pairing v2 is employed by Mi Band 4/5/6 and is server-based as it involves
Xiaomi backend. Mi Fit and Zepp apps support both pairing versions. Now we describe the
technical details of Pairing v1/v2.

Pairing v1 is supported by MB 2/3 and works shown in Figure 3.2. The app sends a pairing
initialization message (Pairing Init). The tracker responds with a Pairing version message
(pair_v1). The app generates and sends a 16-byte pairing key (Key) to the tracker in the
clear. Then, the tracker shows the user a pairing conőrmation message (see Mi Band 2/3 in
Figure 3.3) and waits for user conőrmation (together with the app). Once the user conőrms

3.3. Analysis of Xiaomi Fitness Tracking 21

pairing, the tracker sends a success message (Pairing Complete) to the app and resets its
stored data, completing Pairing v1.

Figure 3.3: Mi Bands pairing conőrmation messages. To accept pairing, a user must either
press a hardware button (Mi Band 2/3) or touch a software button (Mi Band 4/5/6). Note
that Amazőt Cor 1/2 use similar pairing conőrmation messages.

Xiaomi introduced Pairing v2 in 2019, and it is supported by MB 4/5/6. The protocol
involves interactions with the Xiaomi backend using HTTPS. The protocol works as depicted
in Figure 3.4. The app sends a Pairing Init message, and the tracker replies with a pair_v2

and a truncated digest of its public key (SHA1(pub_k)). As we observed the same digest on all
trackers that we tested (i.e., 1863c2cce5d159413bed92c4b163c279), we are conődent that all
trackers are using the same public key.

Then, the app sends a random number request, and the tracker answers with R, a 16-byte
random number. R and the tracker public Bluetooth address (TR_A) are inputs to a custom
key derivation function (kdf) that generates the pairing key (Key). As such, R is the pairing
key seed and is sent in the clear. We reverse-engineered kdf and discovered that it computes a
SHA256 of the concatenation of TR_A and R and outputs Key, the leading 16 bytes of the digest.
The function is expressed as:

Key = kdf(TR_A, R) = SHA256(TR_A∥R)[0 : 16].

Next, the app and the backend establish a TLS session, and the app sends SHA1(pub_k)
and the Key encoded as base64 to the backend. The backend computes a signature (Sig) of Key
using its private key (pri_k) and sends the base64-encoded signature to the app (B64(Sig)).
The app provides the signature to the tracker that veriőes it and sends back an acceptance
message (Valid Sig). Then, pairing completes identically to Pairing v1, with the user having
to accept a pairing conőrmation message (see Mi Band 4/5/6 in Figure 3.3).

Authentication

Authentication has only one version and works as depicted in Figure 3.5. The app sends an
authentication request message (Auth Req). The tracker answers with a 16-byte challenge
(Chal). The app computes a 16-byte response (Resp) by encrypting Chal with Key using AES
in ECB mode and sends it to the tracker. The tracker computes its own response, checks it
against Resp, and sends a positive authentication message (Auth OK) if Resp is veriőed. As a
result, the tracker authenticates that the app owns the correct pairing key and unlocks access
to its private data (e.g., step count). However, the tracker never authenticates to the app, and
the authentication messages are sent in the clear.

22 22

Tracker App Backend

Pairing Init

pair v2, SHA1(pub k)

Rand Req

R [16 B]

Key=kdf(TR A,R) Key=kdf(TR A,R)

SHA1(pub k), B64(Key)

Sig=sign(Key,pri k)

B64(Sig)

Sig

verify(Sig,pub k)

Valid Sig

Wait for user confirmation

Pairing Complete

Reset Data

Figure 3.4: Xiaomi Pairing v2. The app starts the protocol by sending a Pairing Init message.
The tracker sends back pair_v2 and a public key digest (SHA1(pub_k)). Then the app requests
a random number, and the tracker replies with R, which is 16 bytes long. Both devices run
a custom key derivation function (kdf) to compute Key from R (key seed) and the Bluetooth
address of the tracker (TR_A). Then, the app sends SHA1(pub_k) and Key base64-encoded to
the backend. The backend computes a signature (Sig) of Key with its private key and sends
Sig base64-encoded to the app. The app presents Sig to the tracker, which veriőes it and sends
back a conőrmation message. Then, the tracker shows the user a pairing conőrmation message,
and if the user accepts, pairing is completed, and the tracker resets its data.

Communication

Once a tracker and an app complete Pairing and Authentication, they run the Communication
protocol to exchange data, commands, and notiőcations. We discovered that Communication
is neither encrypted nor integrity protected despite the tracker and the app sharing a pairing
key. This őnding is surprising, as Xiaomi trackers and apps do support encryption primitives
and crypto hardware acceleration. Moreover, prior authoritative reports, such as the ones from
Mozilla [93, 94, 95], state that Xiaomi uses encryption (and meets Mozilla’s minimum security
standards) when this is not the case.

Communication is implemented on top of BLE GATT (introduced in Section 3.2.1). The
tracker is the GATT server, and the app is the GATT client. The server has a set of public
services (e.g., Generic Access) and characteristics (e.g., Device Name). Each characteristic has
access control bits to set reading and writing permissions.

3.3. Analysis of Xiaomi Fitness Tracking 23

Tracker App

Tracker and App share Key

Auth Req

Chal [16 B]

Resp=AES(Chal,Key)

Check Resp

Auth OK

Unlock Data

Figure 3.5: Xiaomi Authentication. Using a challenge-response procedure, the tracker unilat-
erally authenticates that the app owns the shared pairing key (Key).

On top of GATT, Xiaomi uses a custom data locking mechanism where a tracker GATT
characteristic cannot be accessed until the app has authenticated to the tracker (via a successful
run of Authentication). Two examples of locked characteristics are heart rate and step count.

3.3.2 Protocol-level Vulnerabilities

We analyzed the Pairing, Authentication, and Communication protocols (described in Sec-
tion 3.3.1), and we identiőed thirteen severe vulnerabilities in their specifications. Most of
them, such as unilateral/replayable authentication and lack of encryption and integrity protec-
tion, were publicly unknown. The issues affect all trackers released since 2016, even the newest
releases (i.e., MB 6) and the most recent app versions. We now describe the vulnerabilities
grouped by protocol.

Pairing v1 (MB 2/3, AC 1/2)

• Pairing key sent in the clear. The app sends the pairing key to the tracker in the clear
and with no integrity protection (see Key in Figure 3.2).

• Pairing not authenticated. The devices do not authenticate each other during Pairing.
Hence the app and the tracker cannot determine if they are pairing with a legitimate
device.

• Pairing key generated by the app. The pairing key is generated and distributed by the
app, despite the tracker being able to run a key agreement protocol (e.g., ECDH).

• Weak user confirmation. As shown in Figure 3.3, pairing conőrmation is weak as the
user only has to interact with the tracker, and the tracker does not show any contextual
information.

24 24

Pairing v2 (MB 4/5/6)

• Pairing key seed sent in the clear. The tracker sends the pairing key seed to the app in
the clear and with no integrity protection (see R in Figure 3.4). This issue is as bad as in
Pairing v1, as the pairing key is deterministically computed from its seed and its publicly
available information (i.e., the tracker’s Bluetooth address).

• Pairing only (weakly) authenticates the app. Pairing v2 does not authenticate the tracker
to the app but authenticates the app to the tracker. In particular, the tracker must receive
a correct signature from the app. The signature algorithm is deterministic, and both
inputs are public, so an attacker could reverse the algorithm and obtain the signature.

• Pairing version can be downgraded/upgraded. The tracker decides the version of Pairing
by sending either pair_v1 or pair_v2. As this message is not integrity protected, it
can be manipulated to force a speciőc pairing version (e.g., downgrade from v2 to v1 or
upgrade from v1 to v2).

• Pairing key generated by the tracker. The pairing key only depends on the tracker, despite
the app being able to run a key agreement protocol (e.g., ECDH). This issue is worse
than the one highlighted for Pairing v1 key generation. The tracker is a computationally-
constrained device and is more likely to generate a low-entropy key than an app running
on a smartphone.

• Default keypair. The hash of the public key is the same for all MB 4/5/6 that we tested,
and this entails that all our trackers share the same public key. Our device sample is
limited, but we found the same key even across devices bought in different countries.
This implementation is risky because an attacker can compromise the whole ecosystem
by leaking the default private key.

• Weak user confirmation. As shown in Figure 3.3, pairing conőrmation is weak for the
same reasons as Pairing v1.

Authentication

• Unilateral app authentication. The protocol unilaterally authenticates the app (see Resp

in Figure 3.5), but it does not require to authenticate the tracker. Indeed, there is no
way for an app to check if it is connected with a legitimate tracker.

• Replayable authentication. The protocol is vulnerable to replay attacks as, given a őxed
challenge, there is no way to generate different responses (i.e., there is no nonce). Hence
a őtness tracker cannot be certain that a valid response comes from a trusted app.

Communication

• No encryption. Despite sharing a pairing key and supporting encryption algorithms, the
tracker and the app do not encrypt their sessions. Hence sensitive data exchanged over
BLE can be effortlessly obtained.

3.4. Proposed Attacks 25

• No integrity protection. Despite sharing a pairing key and supporting Message Authenti-
cation Codes (MAC), the tracker and the app do not integrity-protect their communica-
tion. As a result, sensitive data can be manipulated at will.

3.4 Proposed Attacks

We now describe six attacks to demonstrate the severity of the issues presented in Section 3.3.2.
As the attacks exploit architectural vulnerabilities in the Xiaomi protocols, they are effective on
all devices employing those protocols. Developing the attacks required extensive RE efforts as
we target proprietary and unknown protocols (unlike BLE pairing and session establishment).
We discuss four over-the-air attacks and two software-based attacks.

Our OTA tracker impersonation, OTA app impersonation, and OTA MitM require proximity
with the target, as they exploit BLE traffic and minimal equipment.

Our SB app impersonation and SB eavesdropping are remote and require the installation of
a malicious app on the victim’s phone. Despite only asking for Internet and Bluetooth normal
permissions and requiring no root access, this app can abuse the Android BLE API to interfere
with BLE traffic. Next, we present our threat model, describe the attacks, discuss how each
attack maps to the vulnerabilities presented earlier and their impact.

3.4.1 System Model

Our system model has the same architecture presented in Section 3.2.2 and depicted in Fig-
ure 3.1. There are three entities: a tracker, a companion app, and a backend. The tracker and
the app communicate over BLE, and the app communicates with the backend via Wi-Fi or a
cellular network. The entities use the strongest security mechanisms at their disposal.

For example, the communication between the tracker and the app is protected using Xi-
aomi Pairing, Authentication, and Communication protocols that we reverse-engineered and
described in Section 3.3.1. Similarly, the app and the backend use TLS. Such mechanisms should
protect against passive and active attacks, including eavesdropping, device impersonation, and
man-in-the-middle (MitM) attacks.

Our victim is a user of the Xiaomi ecosystem. She might use any supported trackers, such
as Mi Band (MB) 2/3/4/5/6 and Amazőt Cor (AC) 1/2, and any version of the Mi Fit and
Zepp companion apps. We assume that the victim has installed the app, registered an account
with the Xiaomi backend, and paired her tracker with the smartphone app. Hence the user can
establish authenticated sessions between the tracker and the app.

3.4.2 Attacker Model

Our attacker targets Xiaomi Pairing, Authentication, and Communication protocols as the
vulnerabilities in these protocols can be exploited regardless of the hardware and software
details of the target tracker and app. In other words, she is looking for Xiaomi-compliant
vulnerabilities.

The attacker only knows public information advertised by the tracker over BLE (e.g., the
public BLE address of the tracker), and she has no physical access to the target devices. Hence

26 26

the attacker does not know any pre-shared secret between the victims (e.g., pairing keys) and
cannot tamper with the devices’ operating system and őrmware.

The attacker has four goals: (i) she aims at impersonating the tracker to the app and (ii)
the app to the tracker; (iii) she wants to establish a MitM position between the tracker and the
app; (iv) she desires to eavesdrop the data exchanged between the tracker and the app.

The attacker can use over-the-air (OTA) or software-based (SB) attacks. Our attacker
model is based on the Android threat model proposed by Mayrhofer et al. [96]. This threat
model labels our OTA attacks as both Proximal Access and Network-level threats. In particular,
our OTA attacks involve T.P1 - Devices in physical proximity, but not under direct control, of
an attacker who can control radio communication channels, including BLE), T.N1 - Passive
eavesdropping and traffic analysis, and T.N2 - Active manipulation of network traffic. The
attacker can sniff BLE traffic, jam the BLE spectrum, craft, and send custom BLE packets to
the app and the tracker.

The same threat model labels our SB attacks as Application Code threats. In particular, our
SB attacks involve T.A1 - Abusing APIs supported by the OS. The attacker can remotely attack
the victim through a malicious app already installed on the victim’s smartphone, a common
requirement for most Android malware [97, 98, 99]. This requirement is reasonable as users
often install unwanted apps on their smartphones fairly often. Kotzias et al. [100] estimated
that 67% of unwanted apps are directly installed from the Google Play Store or alternative
markets (10.4%). When launched, our malicious app stealthily abuses Android BLE API. It
only requires normal permissions related to the Internet and Bluetooth and does not need root
privileges.

3.4.3 OTA Tracker Impersonation Attack

The attacker can wirelessly impersonate any tracker by presenting itself to a victim app as a
spoofed tracker, running the unilateral Authentication protocol without having to authenticate,
and then starting a Communication session that is neither encrypted nor integrity protected.
The attack does not require knowledge of the pairing key, does not trigger Pairing (which
requires user interaction), and can be launched anytime a target app is in BLE range with the
attacker. The attack leverages Xiaomi’s unilateral authentication and the lack of encryption
and integrity protection of Communication.

The technical details of the attacks are presented in Figure 3.6. The attacker advertises her
presence as the impersonated tracker by copying its features, including its Bluetooth address
and GATT server. The victim (App) recognizes the attacker as trusted and sends her an
authentication request (Auth Req). The attacker answers with a random challenge (Chal), and
the app computes and sends back a response (Resp) derived from a pairing key unknown to
the attacker. The attacker ignores Resp, answers with a positive authentication message (Auth
OK), and unlocks her own GATT server. Afterwards, during Communication, the app considers
the impersonated tracker as trusted.

3.4.4 OTA App Impersonation and MitM Attacks

The attacker can impersonate any app over-the-air or MitM an app and a tracker using a
replay attack on the non replay-protected Authentication protocol and can start an insecure
Communication session.

3.4. Proposed Attacks 27

Attacker App

Auth Req

Chal

Resp=AES(Chal,Key)

Ignore Resp

Auth OK

Unlock Fake

Data

Communication

Att. impersonates Tracker to App

Figure 3.6: OTA tracker impersonation attack. The attacker impersonates a tracker by spooőng
the tracker’s BLE address and BLE advertisement packets. The victim (Mi Fit or Zepp app),
which is already paired with the impersonated tracker, recognizes the attacker as trusted and
sends her an authentication request (Auth Req). The attacker’s device answers with a random
challenge (Chal). The app solves it and sends back a response (Resp) computed from the
pairing key unknown to the attacker. The attacker ignores Resp, answers with a positive
authentication message (Auth OK), and unlocks its fake GATT server. As a result, the app
starts the Communication protocol with the impersonated tracker, believing it is trusted.

In particular, the attacker can start Authentication in parallel with the app and the tracker.
When the tracker sends a challenge, the attacker replays it to the app, relays the app response
to the tracker, and successfully authenticates to the tracker without knowing the pairing key.
Then, the attacker can either impersonate the app by dropping her connection with the legiti-
mate app and starting a Communication session with the tracker or MitM the Communication
session between the app and the tracker.

The attacks do not require knowledge of the pairing key and do not trigger Pairing. Unlike
the OTA tracker impersonation attack, these ones require both the app and the tracker to be
in BLE range with the attacker. This issue is not that signiőcant as the tracker and the app
are typically carried and used by the same person.

The technical details of the OTA app impersonation and MitM attacks are presented in
Figure 3.7. The attacker advertises her presence as a trusted tracker, and the app sends an
Auth Req message to the attacker to start Authentication. The attacker sends a parallel Auth
Req message to the tracker to initiate Authentication with the tracker. The tracker sends a
Chal to the attacker, who relays it to the app. Then, the app computes Resp and sends it to
the attacker, who replays it to the tracker to prove ownership of a pairing key that she does
not know. The tracker sends an Auth OK message to the attacker, and the attacker sends an
Auth FAIL message to the app if she wants to impersonate it or sends an Auth OK message to
preserve her MitM position.

28 28

Tracker Attacker App

Auth ReqAuth Req

Chal Chal

Resp=AES(Chal,Key)Resp

Check Resp

Auth OK Auth FAIL or Auth OK

Unlock Data

Communication

Communication

Att. impersonates App to Tracker or MitM the victims

Figure 3.7: OTA app impersonation and MitM attacks. The attacker impersonates the app
and sends an authentication request (Auth Req) to the tracker (MB 2/3/4/5/6 and AC 1/2)
as the app. The tracker sends an authentication challenge (Chal), and the attacker relays it to
the legitimate app. Then, the app computes a response (Resp) and sends it to the attacker,
believing that it is talking to the victim tracker. The response is computed from a pairing key
(Key) only known to the victims. The attacker relays Resp to the tracker, which checks it and
sends back a positive authentication message (Auth OK). Then, the attacker has two options.
She can impersonate the app by sending the app a negative authentication message (Auth FAIL)
and taking over the communication session. Otherwise, she can relay the positive authentication
message (Auth OK) to the app and establish a man-in-the-middle position between the victim
app and tracker.

3.4.5 SB App Impersonation Attack

The attacker can impersonate any Xiaomi Android app and remotely pair with a victim tracker.
The attack works regardless of the pairing’s protocol version. Similarl to other Android mal-
ware threat models [96], the malicious app is already installed on the victim’s smartphone.
This app acts stealthily, runs with normal BLUETOOTH and INTERNET permissions, and does not
require root access. The main advantage of this attack over the OTA counterpart is that it
can be conducted remotely (i.e., over the Internet). Its main drawback is that it requires user
interaction to trigger a new pairing session. However, since pairing conőrmation involves in-
teractions only with the trackers, the user has no way to tell if the tracker is pairing with a
malicious or legitimate app.

The SB app impersonation on Android is depicted in the right part of Figure 3.8 and works
as follows. The attacker abuses the Android BLE API to discover a tracker paired with the
Xiaomi app. This task can be done by őnding Xiaomi proprietary commands in the smartphone
GATT traffic or by looking for the BLE address of the tracker in the list of connected devices.

If the target tracker supports Pairing v1, the attacker starts a pairing protocol with the
tracker. The tracker cannot tell if the pairing request is authentic and completes pairing

3.4. Proposed Attacks 29

Figure 3.8: SB eavesdropping (left) and app impersonation (right) attacks. On the left, the
attacker eavesdrops on all data exchanged by the tracker and the app by querying the tracker’s
BLE GATT server without knowing the pairing key (black key). On the right, the attacker
impersonates the app by re-pairing with the tracker and establishing a new pairing key (red key)
unknown to the impersonated app. SB eavesdropping and app impersonation on Pairing v1
require only BLUETOOTH and INTERNET Android permissions. SB app impersonation on Pairing
v2 also requires BLUETOOTH_ADMIN and ACCESS_FINE_LOCATION.

with the attacker’s malicious app. Otherwise, if the tracker supports Pairing v2 (i.e., server-
based), the attacker must use a different strategy. In particular, the attacker sends a factory
reset proprietary command (that we reverse-engineered). The command does not require prior
authentication. It deletes the bond between the tracker and the legitimate app, changes the
tracker’s BLE address, and puts it in pairing mode. Then, the attacker can őnd the tracker
and complete the pairing. This attack strategy completely defeats server-based pairing, which
still lacks strong device authentication. Finally, regardless of the attacked pairing version, the
legitimate app cannot connect back to the tracker (e.g., in Figure 3.8, the tracker accepts the
red key, but the app has the black one).

3.4.6 OTA and SB Eavesdropping Attacks

Due to the lack of encryption during Pairing, Authentication, and Communication, the attacker
can effortlessly launch OTA and SB eavesdropping attacks.

In the OTA case, the attacker can sniff sensitive data exchanged between tracker and app.
For example, during Pairing v1 she can sniff the pairing key, during Pairing v2 the pairing key
seed, during Authentication the challenge-response pairs (to be used in an offline brute-force
attack), and during Communication all the data sent including health parameters from the
tracker and notiőcations from the app.

In the SB case, the attacker can sniff sensitive data from remote trackers via a malicious
app, taking advantage of the lack of encryption and a known issue with the Android BLE API.
Android allows applications with BLUETOOTH permissions to sniff all GATT data received by
a smartphone. Thus, any application co-located with the Mi Fit app can sniff all the traffic
coming from a tracker without pairing or authenticating with it. For example, in Figure 3.8, we
depict a malicious app (Attacker App in red) sniffing the heart rate value sent by the tracker
by abusing Android BLE API.

30 30

3.4.7 Discussion

Mapping between attacks and vulnerabilities In Table 3.1, we present a mapping be-
tween our attacks and the vulnerabilities presented in Section 3.3.2. The Pairing v1/v2 protocols
can be targeted by OTA eavesdropping, SB eavesdropping, and SB app impersonation. OTA
and SB eavesdropping exploit the data sent in the clear during the Pairing protocol (pairing
key in Pairing v1 and pairing key seed in Pairing v2). SB app impersonation exploits the
missing/weak authentication and weak user conőrmation to connect a malicious device to a le-
gitimate tracker. The Authentication protocol can be targeted by OTA tracker impersonation,
OTA app impersonation, and OTA man-in-the-middle. OTA tracker impersonation exploits
unilateral app authentication (the tracker does not need to authenticate with the app). The
OTA app impersonation exploits the replayability of BLE traffic between app and tracker, al-
lowing any device to mimic a legitimate tracker. The OTA man-in-the-middle is a combination
of the OTA app and tracker impersonations. The Communication protocol can be targeted
by OTA tracker impersonation, OTA app impersonation, OTA man-in-the-middle, OTA eaves-
dropping, and SB eavesdropping. The lack of encryption and integrity protection in any BLE
packet exchanged between app and tracker allows an attacker to eavesdrop and manipulate
BLE traffic freely.

Attacks’ Impact The attacks’ impact is high for several reasons. The proposed attacks,
and their root causes (that we RE), were not known by the community. Also, our attack
techniques include novel aspects. For example, the SB remote attacks combine unknown Xiaomi
vulnerabilities with known Android issues.

The proposed attacks disprove the security and privacy claims made by Xiaomi in their
Privacy Policy [5], as we highlight in Section 6.7. We demonstrate that all Xiaomi trackers
released since 2016 are vulnerable to the proposed attacks, and future releases will be vulnerable
as well, as our attacks are Xiaomi-compliant. Our attacks affect millions of users, as Xiaomi is
the world’s leading őtness tracker manufacturer.

The proposed attacks are cheap and low-effort (e.g., only require commercial-off-the-shelf
products and minimal equipment) and are easy to deploy. An attacker can violate users’ privacy
by leaking and manipulating sensitive data (e.g., health records and 2FA SMS) and enforcing
malicious factory reset and őrmware update requests.

3.5 Implementation

In this section, we present the implementation of breakmi, a toolkit that we developed to
reverse-engineer and attack Xiaomi’s proprietary Pairing, Authentication, and Communication
protocols. breakmi reimplements these protocols and automates our experiments and attacks.
The toolkit contains a protocol dissector module, a security mechanisms module, and an attacks
module. We will release breakmi as open-source, and now we describe how we implemented
each module.

3.5.1 Protocol Dissector Module

Our toolkit, breakmi, includes a protocol dissection module capable of speaking Pairing v1/v2,
Authentication, and Communication protocols (presented in Section 3.3). The dissectors mod-

3.5. Implementation 31

Vulnerabilities OTA Attacks SB Attacks

Tracker Imp. App Imp. MitM Eaves. Eaves. App Imp.

Pairing v1

Pairing key
sent in the clear

- - - ✓ - -

Pairing not
authenticated

- - - - - ✓

Weak user
confirmation

- - - - - ✓

Pairing v2

Pairing key seed
sent in the clear

- - - ✓ ✓ -

Pairing only (weakly)
authenticates app

- - - - - ✓

Weak user
confirmation

- - - - - ✓

Authentication

Unilateral app
authentication

✓ - ✓ - - -

Challenges and
responses replayable

- ✓ ✓ - - -

Communication

No encryption ✓ ✓ ✓ ✓ ✓ -

No integrity
protection

✓ ✓ ✓ - - -

Table 3.1: Mapping between the exploited vulnerabilities identiőed in Section 3.3.2 and the
OTA and SB attacks presented in Section 5.4. A checkmark (✓) indicates that a vulnerability
is exploited to conduct an attack.

ule can detect and craft any Xiaomi proprietary message given a capture. We develop the
dissectors as an aid for RE. We implement the module deőning őfteen custom dissection classes
for scapy [101], an interactive packet manipulation program. Each class encodes a message type
using a speciőc binary layout. Table 3.2 lists all messages that we can dissect and customize.
The table’s őrst column indicates the message type, the second column the message sender,
and the third column the packet layout. For example, the Pairing Key message is used by an
app during Pairing v1 to send the pairing key and the packet contains a leading 0100 and then
Key.

Pairing v1/v2 messages are managed by Xiaomi’s custom Auth GATT characteristic (
00:00:00:09:00:00:35:12:21:18:00:09:AF:10:07:00), which can be found under Xiaomi’s custom
GATT service 0xFEE1. The dissectors extract capture packets with Pyshark [102], a Python
API for Wireshark [103], and label them as v1 or v2. For Pairing v2, they also look for the
Signature transmitted on Xiaomi’s custom Chunked Transfer characteristic (00:00:00:20:00:00:
35:12:21:18:00:09:AF:10:07:00), under Xiaomi’s 0xfee1 service.

32 32

Message Sender Opcode/Value

Pairing Init App 0100

pair_v1 Tracker 100104

Pairing Key App 0100, Key

Pairing Complete Tracker 100101

Pairing Fail Tracker 100204

pair_v2 Tracker 10018101

SHA1(pub_k) Tracker Const

Random Req App 820002

Random Resp Tracker 108201, R

User Confirmation Tracker 108301

Server Check Tracker 10008401010000

Auth Req App 0200 or 820002

Auth Chal Tracker 100201, Chal or 108201, Chal

Auth Resp App 0300, Resp or 8300, Resp

Auth Complete Tracker 100301 or 108301

Auth Fail Tracker 100304 or 108307

Table 3.2: Reversed Xiaomi application-layer opcodes and relevant values. Key,
Const, R, Chal and Resp are 16-byte values shown in hex. Const equals to
1863c2cce5d159413bed92c4b163c279.

The Auth characteristic also serves Authentication messages. The dissectors monitor the
status of Authentication and the challenge-response. In our experiments, we crafted Authen-
tication messages with different opcodes and noticed that MB 4/5/6 accept opcodes used by
MB 2/3, as shown in Table 3.2.

The Communication protocol involves several characteristics, but we focused on the stan-
dard Heart Rate Measurement (00:00:2A:37:00:00:10:00:80:00:00:80:5F:9B:34:FB) and the cus-
tom Steps (00:00:00:07:00:00:35:12:21:18:00:09:AF:10:07:00). The dissectors decode the custom
data format and display the effective value transmitted from the tracker to the app.

3.5.2 Security Mechanisms Module

Our toolkit also implements the custom key derivation function for Pairing v2 and challenge-
response Authentication procedures. By using these functions, breakmi is capable of deriving
a valid pairing key from its seed (R) and a valid authentication response (Resp) from a chal-
lenge (Chal), and a pairing key (Key). We invested much time in understanding how the key
derivation and challenge-response procedures work, and we reimplemented them with Python.
In particular, we used Python’s cryptography module from PyCA [104] to implement SHA256
for the key derivation and AES-ECB for the challenge-response part.

3.5. Implementation 33

To reverse the key derivation and the challenge-response, we used a mix of static and
dynamic techniques. For the static analysis, we decompiled the Mi Fit APK with JADX [105]
and looked at the recovered source code. Unfortunately, the Mi Fit app is obfuscated, and we
could not recover the key derivation and authentication logic. At this point, we switched to
dynamic binary instrumentation with Frida [106]. Our dynamic approach was successful, as we
were able to reverse the key derivation and authentication logics by hooking their entry point
at runtime and observing their inputs and outputs.

3.5.3 Attacks Module

The OTA tracker impersonation attack, presented in Figure 3.6, was implemented using Bleno [107],
an open-source BLE peripheral written in Node.js. Our Bleno script imitates any Xiaomi tracker
by exposing the same BLE features (e.g., BLE advertisements and GATT server) collected by
an extensive study of legitimate Mi Band 2/3/4/5/6. It was challenging to collect this informa-
tion from all trackers and make sense of the (proprietary) characteristics and services exposed
by the trackers. Once a victim app őnds our Bleno tracker, we can complete Pairing v1 and
Authentication as a trusted device, and we expose a malicious GATT server to the app during
Communication.

The OTA app impersonation attack, presented in Figure 3.7, was implemented using No-
ble [108], an open-source BLE central, and by re-using the tracker impersonation described
above. Our tool connects to nearby Xiaomi apps and trackers, performs a replay attack on the
Authentication protocol, disconnects from the app, and establishes a communication session
with the tracker as a trusted app. Once connected, our fake app retrieves data from the tracker,
such as the step count and the user’s heart rate. Furthermore, it can send fake SMS and phone
call notiőcations and activate alarms. The OTA MitM attack implementation uses the same
logic of the app impersonation. However, instead of disconnecting from the app after the replay
attack is completed, the tool keeps two parallel connections and establishes a MitM position
between the app and the tracker.

The toolkit also includes a malicious app that can be used to perform SB app impersonation
and eavesdropping attacks. Our app requires only Android’s BLUETOOTH permission to interact
with the tracker over BLE and INTERNET permission to exőltrate data remotely. Android clas-
siőes these permissions as normal, so they are granted during installation without triggering
any user prompt.

SB eavesdropping and SB app impersonation utilize the same setup that periodically checks
active BLE connections using Android getConnectedDevices API and waits for a Xiaomi
tracker to appear. As soon as a tracker connects, the malicious app launches the attack.

During SB eavesdropping, our app subscribes to relevant characteristics and can eavesdrop
on all BLE data coming from the tracker, including sensor readings, commands, pairing key
seeds, and authentication challenges. During app impersonation, our app starts a new pairing
session with the tracker by sending a Pairing Init without disrupting the communication
between the tracker and the legitimate app. The malicious app eventually negotiates a new
pairing key as in the right part of Figure 3.8 and gains access to protected data. The SB
app impersonation attack on Pairing v2 entails the additional challenge of interacting with
the Xiaomi backend to retrieve a signature. The malicious app sends a factory reset com-
mand to the tracker, which causes the change of its BLE address. A scan (requiring Android
BLUETOOTH_ADMIN and ACCESS_FINE_LOCATION permissions) allows our app to perform a new

34 34

Device Year BTv Pv BS SC SoC FW

Mi Band 2 2016 4.2 1 ✓ ✗ DA14681 1.0.1.81

Mi Band 3 2018 4.2 1 ✓ ✗ DA14681 2.4.0.32

Cor 2 2019 4.2 1 ✓ ✗ DA14681 0.3.0.44

Mi Band 4 2019 5.0 2 ✓ ✓ DA14697 1.0.9.66

Mi Band 5 2020 5.0 2 ✓ ✓ DA14697 1.0.2.64

Mi Band 6 2021 5.0 2 ✓ ✓ DA14699 1.0.1.36

Table 3.3: Fitness trackers’ technical speciőcations. The columns contain the device name,
release year, supported Bluetooth version (BTv), Pairing protocol version (Pv), BLE link-layer
security support (BS), BLE Secure Connections (SC) support, used system-on-chip (SoC), and
Mi Fit őrmware version (FW).

pairing process and associate the tracker to our malicious Xiaomi account stealing its ownership
from the legitimate user.

Since all attacks performed by breakmi are fully automated, we propose it as a continuous
evaluation tool for the Xiaomi ecosystem. Even if Xiaomi were to enable link-layer security, the
vulnerabilities we found at the application-layer would continue to exist. By using breakmi,
anyone would be able to test for those vulnerabilities in future Xiaomi őtness trackers.

3.6 Evaluation

This section describes the evaluation of the attacks (presented in Section 5.4) using breakmi

(described in Section 6.6). Our evaluation conőrms that all Xiaomi trackers since 2016 and the
most recent version of Xiaomi companion apps are vulnerable to our protocol-level attacks. In
addition, it proves that breakmi works in practice and is cheap to deploy. As a result, millions
of Xiaomi users are potential targets, and their sensitive health and personal data can be leaked
and manipulated by bad actors.

3.6.1 Setup

In our evaluation, we tested all trackers shipped by Xiaomi since 2016. The sample includes
Mi Band 2/3/4/5/6 and Amazőt Cor 2. The MB 1 is out of scope because it is known to
ship with no security at all [109]. We did not test the Amazőt Cor 1 because of its limited
availability and market share. However, we expect that it is vulnerable to our attacks as it is a
MB 2 clone. Moreover, we tested the latest versions of Mi Fit (v 4.8.1) and Zepp (v 5.9.2) as
the official Xiaomi mobile applications. The apps are compatible with all Xiaomi trackers and
are available for Android and iOS. Despite our attacks not requiring root permissions, we use
rooted devices to facilitate our experiments.

Table 3.3 presents the trackers’ technical speciőcations. The Mi Band 2, Mi Band 3, and
Cor 2 support Bluetooth version (BTv) 4.2 and Pairing version (Pv) v1. The others support
Bluetooth 5.0, Pairing v2, and BLE Secure Connections (SC). All trackers support BLE security
(BS) at the link-layer, but Xiaomi is not taking advantage of that. The tracker system-on-chip

3.6. Evaluation 35

Mi Fit Zepp MB2 MB3 AC2 MB4 MB5 MB6

OTA Tracker Impersonation - - ✓ ✓ ✓ ✓ ✓ ✓

OTA App Impersonation ✓ ✓ - - - - - -

OTA Man-in-the-Middle ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

OTA Eavesdropping ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SB Eavesdropping - - ✓ ✓ ✓ ✓ ✓ ✓

SB App Impersonation ✓ ✓ - - - - - -

Table 3.4: Evaluation results for OTA and SB attacks. The őrst column shows the attack
name, the following eight columns contain the targets (two companion apps and six őtness
trackers). A checkmark (✓) means that the attack was successful, and a hyphen (-) means that
the attack does not apply to that target. MB and AC abbreviate Mi Band and Amazőt Cor.
The SB attacks on the Mi Fit and Zepp apps were successfully tested on six Android versions
(see Table 3.5).

(SoC) is either a DA14681, a DA14697, or a DA14699, all manufactured by Dialog Semicon-
ductor [110]. We also report the őrmware version (FW) of the tracker at the evaluation time.

Since our SB attacks depend on an issue with the Android BLE API (in addition to Xiaomi
ones), we tested six popular Android versions using different smartphones: Android 12 (Google
Pixel 4A), Android 11 (Google Pixel 2 XL), Android 10 (Google Pixel XL), Android 9 (Samsung
Galaxy J5), Android 8.1 (Xiaomi Redmi 5 Plus) and Android 6 (Samsung Galaxy S5). We
note that we cannot test our attacks on the Android emulator as it does not support Bluetooth
emulation.

Our OTA attacking device is an Acer Aspire 3 laptop connected with a BLE sniffer and a
BLE dongle. The laptop runs Ubuntu version 18.04 and supports Bluetooth 4.2. The sniffer uses
three BBC Micro Bit boards and btlejack [111]. The BLE dongle is a CSR8510 A-10 Controller
with Bluetooth 4.0 support. The dongle is needed as we have to change the attacking device’s
BLE address, and the laptop (BLE controller) does not allow this operation.

The OTA impersonation and MitM attacks were performed by the attacking device running
breakmi and acting as both a spoofed tracker and a spoofed app. When impersonating the
tracker, the attacking device advertises as a spoofed tracker, while during an app impersonation,
it scans for trackers as a spoofed app. OTA eavesdropping was performed using the BLE sniffer.
The SB app impersonation and eavesdropping attacks were performed by running the malicious
app in the background and letting the legitimate app and the tracker communicate as usual.

3.6.2 Results

The attacks’ evaluation results are shown in Table 3.4, where we demonstrate that the attacks
are effective across all evaluated devices (if the attack applies to that device). We can wirelessly
impersonate all tested trackers and apps, MitM them, and eavesdrop on their communication.
We can also remotely eavesdrop and impersonate the Mi Fit and Zepp apps for Android via a
malicious app. All attacks work regardless of the hardware and software details of the victim
device (e.g., SoC, őrmware, app, tracker, and BLE versions).

36 36

Smartphone Android SB Eaves. SB App Imp.

Pixel 4A 12 (n/a) ✓* ✓*

Pixel 2XL 11 (34.7%) ✓ ✓

Pixel XL 10 (27.7%) ✓ ✓

Galaxy J5 9 (13.9%) ✓ ✓

Redmi 5 Plus 8 (10.56%) ✓ ✓

Galaxy S5 6 (3.36%) ✓ ✓

* Attack requires Android BLUETOOTH_CONNECT dangerous permission

Table 3.5: Evaluation results for SB attacks against the latest six Android versions. All attacks
were tested using a MB 4 as a tracker. The őrst column shows the smartphone model, the
second one the Android version and its market share according to [84]. Market share numbers
for Android 12 are not available (n/a) as it is too recent. The third and fourth columns show
that all Android versions we test are vulnerable to SB attacks (✓). If we sum the markets share
numbers, our attacks are effective on at least 90.22% of Android devices.

The SB remote attacks target Android, so we test them on six popular Android versions,
as we show in Table 3.5. We conőrm that all six tested Android versions are vulnerable
to our attacks. According to [84], this means that (at least) 90.22% of Android devices are
vulnerable. Since Android 12 was recently released in October 2021, statistical market share
data is not available yet. We highlight that, up until Android 11, our attacks only ask for
standard Bluetooth permissions as a requirement to access the getConnectedDevices method
(that we exploit). Android 12 introduces the BLUETOOTH_CONNECT dangerous-level runtime
permission, which must be declared to access getConnectedDevices. As a consequence, on
Android 12, our malicious app must show the user a Nearby Devices dialog that explicitly
states our intent to őnd, connect to and determine the location of nearby devices.

3.7 Countermeasures

We now discuss őve countermeasures addressing the vulnerabilities presented in Section 3.3.2
and the attacks presented in Section 5.4. The őrst four apply to the application-layer and the
őfth to the link-layer.

C1 (Authenticated) Key Establishment Pairing v1/v2 should use an Authenticated Key
Establishment (AKE) to prevent impersonation, man-in-the-middle, and eavesdropping attacks.
Figure 3.9 illustrates an updated version of Pairing v1/v2 to support C1. The tracker and the
app őrst generate a public-private key pair and share their public keys (App_Pk and TR_Pk).
They proceed with the calculation of a key (K) through a Diffie-Hellman (DH) function and
the sharing of two nonces (App_N and TR_N). Finally, the tracker and the app calculate a
conőrmation value (V) displayed on each screen and wait for user conőrmation concerning the
match of the displayed values.

3.7. Countermeasures 37

Tracker App

Gen TR Pk, TR Sk Gen App Pk, App Sk

App Pk

TR Pk

K = DH(TR Sk, App Pk) K = DH(App Sk, TR Pk)

App N

TR N

V = F(K, App N, TR N) V = F(K, App N, TR N)

TR and App display V

Waiting for user confirmation

Figure 3.9: Authenticated key establishment (i.e., pairing) protocol providing C1+C2. Tracker
and app generate a public-private key pair and share the public keys (App_Pk and TR_Pk) with
each other. They calculate a new key through a DiffieśHellman (DH) function and share two
nonces (App_N and TR_N). Then, the tracker and the app both calculate a conőrmation value (V)
displayed on each screen and wait for user conőrmation concerning the match of the displayed
values. The DH function guarantees C1, while the user verifying tracker and app during pairing
conőrmation guarantees C2.

C2: Strong Pairing Confirmation The updated Pairing v1/v2 protocol, shown in Fig-
ure 3.9, guarantees C2 thanks to the numeric comparison performed by the user. In particular,
while pairing, a MitM attacker is not capable of generating V as she does not know K pairing.
Moreover, during an app impersonation attack, the adversary would trigger an unexpected user
interaction while re-pairing with the app.

C3: Strong Key Authentication The Authentication procedure should be mutual and
resistant to replay attacks. Mutual authentication is easy to implement by letting the app and
the tracker send their challenges and then verifying them on both ends. Replay protection is also
straightforward and can be achieved by using nonces and generating a response from a challenge
and a nonce. These measures raise the bar for tracker impersonation and app impersonation.
Figure 3.10 illustrates the updated Xiaomi Authentication protocol. Tracker and app already
share the pairing key (K) and exchange a challenge (App_Ch and TR_Ch). They calculate the
solutions through a hash function H, which relies on the challenges and the pairing key. They
verify the correctness of the received challenge solution, and if both checks are successful, the
tracker unlocks its data. Finally, they start an AES-CCM encrypted communication session
using a session key SK obtained through a HKDF key derivation function from the pairing key
K, and two exchanged nonces (App_N and TR_N).

38 38

Tracker App

Tracker and App share K

App Ch

TR Ch

R1, R2 = H(K, App Ch, TR Ch) R1, R2 = H(K, App Ch, TR Ch)

R1

R2

If R1 check fails, abort If R2 check fails, abort

Unlock Data

App N

TR N

SK = HKDF(K, App N, TR N) SK = HKDF(K, App N, TR N)

AES-CCM AE session using SK

Figure 3.10: Mutual authentication protocol providing C3+C4. Tracker and app already share
the pairing key (K) and exchange a challenge (App_Ch and TR_Ch). They calculate the solutions
through a hash function H, that relies on the challenges and on the pairing key. They verify
the correctness of the received challenge solution, and if both checks are successful, the tracker
unlocks its data. Finally, they start an AES-CCM encrypted communication session using a
session key SK obtained through a HKDF key derivation function from the pairing key K, and
two exchanged nonces (App_N and TR_N). The mutual veriőcation of challenges guarantees C3
and AES-CCM with a fresh session key provides C4.

C4: Authenticated-encryption The Communication protocol should use a fresh session
key derived from the pairing key K to encrypt and integrity-protect the data exchanged between
app and tracker. Devices can rely on AES-CCM and HKDF to introduce this countermeasure,
as both functions are already supported by the devices SoC. C4 protects against eavesdropping
and MitM attacks during Communication.

C5: BLE Link-Layer Security To complement the security at the application-layer, Xi-
aomi might also enable the BLE link-layer security mechanisms already supported by all its
devices. The robustness of BLE link-layer security mechanisms depends on the BLE version
of the device. The MB 4/5/6 implement BLE SC, so that they would beneőt from secure
protocols for pairing and session establishment. Instead, the MB 2/3 implement legacy BLE
security, which is known to be insecure [112].

3.8. Comparison with Fitbit 39

3.8 Comparison with Fitbit

In this section, we compare our őndings of Xiaomi with the Fitbit [113] ecosystem, which is
Xiaomi’s main competitor in the őtness tracker market. Our motivation for the comparison is
twofold. Firstly, to assess if Fitbit is affected by similar vulnerabilities and attacks found on
Xiaomi devices. Secondly, to evaluate how effective breakmi is on other large őtness tracking
ecosystems. We used the same RE methodology adopted for Xiaomi and described in Section 3.9
for this analysis, but we targeted different proprietary protocols.

In particular, we had a look at a Charge 2 tracker and the latest version of the Fitbit app
for Android [114], as their security mechanisms were already reversed [18, 26, 27, 14]. The
Charge 2 is from 2016, supports Bluetooth 4.1 and BLE link-layer security, and is powered by
a BLUENRGCSP SoC from ST Microelectronics. We also considered the Charge 4 from 2020,
but unlike the Charge 2, it uses unknown protocols, and reversing them is out of the scope of
this work.

We now summarize what is known about the Fitbit protocols. Then we discuss their vul-
nerabilities and how the attacks presented in Section 5.4 apply to them. We describe how
we extended breakmi to deploy őve attacks on actual Fitbit devices successfully. Finally, we
discuss how to port the countermeasures discussed for Xiaomi to the Fitbit ecosystem.

3.8.1 Architecture and Protocols

Fitbit uses the same system architecture as Xiaomi (see Figure 3.1). A tracker communicates
over BLE with the Fitbit companion app, and the app communicates via Wi-Fi or a mobile
network with the Fitbit backend. The devices use proprietary application-layer protocols (e.g.,
Pairing, Authentication, and Communication) and ignore available BLE link-layer security
mechanisms. Unlike Xiaomi, which utilizes public BLE addresses, Fitbit trackers use random
static addresses. Regardless, Fitbit devices are still trackable because their BLE address never
changes for their entire lifetime.

Pairing As described in [26, 14], Fitbit employs a Pairing protocol to establish a pairing
key (authentication key in Fitbit terms) between the trackers and the app. During Pairing,
the backend (which pre-shares a device key with a tracker) computes the pairing key from the
device key and a salt, and sends them to the app. The app sends the salt to the tracker, and
the tracker computes the pairing key from the salt and the device key. We note that, unlike
Xiaomi, the key or its seed is not sent in cleartext, and pairing conőrmation is strong. Pairing
is accepted only when the user conőrms on the app that she sees the same numeric sequence
on the tracker and app screens. As such, Fitbit adopts a stronger user conőrmation strategy
than Xiaomi.

Authentication Fitbit Authentication, unlike Xiaomi, is mutual and works as follows. The
app sends a random challenge together with a constant key salt (provided by the backend during
Pairing). The tracker sends back a MAC and a counter value, where the MAC is computed
using the counter and the random challenge and is keyed using the pairing key corresponding to
the key salt. The app checks that the MAC is valid and sends back a different MAC computed
using the counter and keyed with the pairing key. The tracker checks the MAC, and then
mutual authentication of the pairing key is achieved. The counter is updated on each run of
the Authentication protocol.

Communication Fitbit sessions, unlike Xiaomi, have two different modes: live and normal.

40 40

Live mode is not encrypted and monitors the tracker readings in real-time. Live mode data stays
in the app, and is not relayed to the backend. On the other hand, normal mode synchronizes
the data from the tracker to the backend. The synchronization process is encrypted with
the shared pairing key by using either XTEA (extended TEA) encryption [115] or AES-EAX
authenticated-encryption [116].

3.8.2 Vulnerabilities and Attacks

We compare Xiaomi and Fitbit security mechanisms, investigate if Xiaomi vulnerabilities can
be found in the Fitbit ecosystem, and evaluate how our OTA and SB attacks perform on Fitbit.

Vulnerabilities Fitbit proprietary security mechanisms are slightly better than Xiaomi’s,
but severe vulnerabilities still affect them. In particular, the Fitbit Pairing protocol does not
send the pairing key (seed) in the clear, has strong user conőrmation but still lacks device
authentication. The Authentication protocol is mutual but is replayable. The Communication
protocol partially uses encryption and integrity protection. For example, only normal mode
data is encrypted.

OTA attacks The OTA app impersonation and MitM attacks from Figure 3.7 are still
effective, as Fitbit Authentication is not replay-protected. Instead, the OTA tracker imperson-
ation presented in Figure 3.6 does not work as Fitbit Authentication is mutual. However, the
attacker can still impersonate a tracker using a replay attack similar to the one described in
Figure 3.7. The OTA eavesdropping works only with unencrypted data (e.g., live mode data).

SB attacks The SB app impersonation attack on Android in Figure 3.8 is still effective.
A malicious app can get valid authentication credentials from the backend and re-pair with
the victim tracker (see Fig 4a in [14]). Thus, we discovered a novel technique to steal trackers
virtually. The SB eavesdropping suffers the same limitations as OTA eavesdropping.

Overall, the attacks’ impact on Fitbit is lower than the one on Xiaomi but remains sig-
niőcant. For example, during impersonation or MitM, the attacker can only manipulate and
tamper with the packets sent in cleartext. Nevertheless, the attacker can still abuse the unpro-
tected live mode data to report worrisome health conditions to the user.

3.8.3 Attacking Fitbit with breakmi

We extended breakmi to analyze and attack the Fitbit ecosystem. We can clone Charge 2
trackers (including their advertised data and GATT servers) and the Fitbit app. Moreover,
we can speak the Pairing, Authentication, and Communication protocols described before. We
created custom scapy dissection classes to generate valid packets just like we did for Xiaomi.
Fitbit uses static (random) BLE addresses, and we updated breakmi to support this privacy
feature.

We use breakmi to perform the OTA impersonation and MitM attacks by replaying packets
during the Fitbit Authentication. We also developed an extra module for our malicious Android
app that performs the SB eavesdropping and app impersonation attacks. The latter provides
the trackers’ serial number and BLE address to the backend to reset the tracker’s owner and
then triggers pairing from the malicious app. This strategy is different from those we presented
in Section 3.4.5, targeting Xiaomi.

3.9. Reverse-Engineering Methodology 41

3.8.4 Porting our Xiaomi Countermeasures to Fitbit

Fitbit Pairing, Authentication, and Communication protocols described in Section 3.8.1 can be
strengthened by using a subset of the countermeasures proposed for Xiaomi in Section 5.7. In
particular, unencrypted live mode data can be protected with C1 (authenticated-encryption),
Pairing can be enhanced with C2 (authenticated key establishment), Authentication can be
improved by adding replay protection as in C3. In addition, defense in depth can be achieved
using C4 (BLE link-layer security). C5 (strong pairing conőrmation) is not needed as is already
provided by Fitbit pairing conőrmation.

3.9 Reverse-Engineering Methodology

In this section, we describe our reverse-engineering methodology and how we applied it to
perform our security analysis of Xiaomi and Fitbit ecosystems. We describe how we perform
reconnaissance on a őtness tracking ecosystem. We explain how we analyze the traffic exchanged
between tracker, app, and backend and how we apply static and dynamic analysis techniques
to a mobile app. We also discuss the development of automated scripts for reverse-engineering
and security assessment.

3.9.1 Trackers and Apps Reconnaissance

We now describe how we performed reconnaissance of the Xiaomi trackers and apps.
Regarding the tracker, we inspect its BLE GATT server using the “nRF Connect for Mobilež

app [117]. The app allows to scan, explore and communicate with BLE devices. We extract
data from every service and characteristic, identifying Xiaomi proprietary GATT services (i.e.,
0xFEE0, 0xFEE1). We őnd a set of characteristics protected by Authentication. For example,
the Auth characteristic manages Pairing and Authentication, and the Steps and Heart Rate
characteristics contain sensitive data.

We install Mi Fit and Zepp apps and interact with them. The apps are very similar as they
share the same UI, communicate with the same backend, and provide the same interface to the
tracker. The apps’ UI does not show any information about the Pairing, Authentication, and
Communication protocols that we RE. We also őnd that their codebase is very similar despite
being closed-source. GadgetBridge [118], an open-source project, provides some insights into
the apps’ internals.

3.9.2 BLE and Web Traffic Analysis

First, we intercept over-the-air BLE traffic with a BLE sniffer and conőrm that Xiaomi BLE
traffic is not encrypted. Then, since we control the smartphone running the app, we simply
enable the “Bluetooth HCI Snoop Logž under the “Developer Optionsž and directly access BLE
capture őles. This option does not work correctly on some smartphones, but other alternatives
exist (e.g., hcidump [119], adb bugreport [120]). We visualize and inspect BLE packets using
Wireshark [103], a network protocol analyzer. We őnd several recurring opcodes, shown in
Table 3.2. We deőne the Pairing, Authentication, and Communication protocols and implement
them in our automated scripts.

42 42

We run mitmproxy [121] on our machine, a MitM proxy tool that intercepts and logs Wi-Fi
and cellular networks traffic. We also conőgure our smartphone to redirect its web traffic to
mitmproxy, and we install the mitmproxy CA (Certiőcate Authority) certiőcate. We intercept
traffic going from the app to the Xiaomi backend while performing various operations with
the tracker (e.g., adding a new tracker, synchronizing user activity data, completing workout
sessions). We discover several API endpoints (e.g., account.xiaomi.com/oauth2/authorize,
account.huami.com/v2/client/login, api-mifit-de2.huami.com/v1/device/binds.json). We
inspect the traffic looking for interesting requests. For example, we reverse-engineer how Xiaomi
registers new trackers on its backend. Then, we test the API endpoints by sending custom-
made requests and monitoring their responses (the tests were performed according to Xiaomi’s
Bug Bounty program guidelines).

We merge BLE and Web capture őles using a Wireshark utility better to visualize the
sequentiality of the packets in Xiaomi protocols. We discover how the app acts as a proxy
between the tracker and the backend during Pairing v2 and how the app sends security packets
to the unprotected (custom) Chunked Transfer characteristic.

3.9.3 Mobile Companion Apps Analysis

We examine Mi Fit and Zepp apps’ code to uncover the implementation of Xiaomi proprietary
protocols from the source. We describe which static and dynamic analysis techniques we applied
to our app analysis.

We start our static code analysis by extracting Mi Fit and Zepp APKs and decompiling
them with JADX [105], a Dex to Java decompiler. We discover that the Java code is obfuscated
and difficult to navigate. We experiment with different deobfuscation tools, either by directly
acting on the APK őles (i.e., JADX deobfuscation utility, DeGuard [122], simplify [123]) or by
converting them into JAR őles őrst (i.e., Java Deobfuscator [124]), but they were unable to
deobfuscate it. We utilize apktool [125] to reverse-engineer the APK, inspect its resources and
experiment with repackaging.

We manually inspect the apps’ code. We search for keywords, trying several interesting
words (e.g., Pairing, Bonding, Authentication, and Characteristic strings) and cryptographic
functions supported by the tracker (e.g., MD5 and AES-ECB). We utilize the Mobile Security
Framework (MobSF) [126], an automated pen-testing and malware analysis tool, to inspect
app components and for its automated binary analysis. We create control-ŕow graphs with
Androguard [127], a Python reverse-engineering tool. Then, we perform dataŕow analysis to
help us to track the pairing Key. Ultimately, we őnd the code sections responsible for Pairing,
Authentication, and Communication.

We apply dynamic analysis techniques to conőrm that those code sections are actually
executed at runtime. We rely on Frida [106], a dynamic binary instrumentation toolkit that
allows us to inject code during runtime execution. We use Frida hooks to log runtime variables
and conőrm they match with the values found in the capture őles. We also experiment with
editing variables at runtime and test the robustness of Xiaomi’s security mechanisms when
receiving unexpected values.

3.10. Related Work 43

3.9.4 Development of Scripts

Throughout our RE efforts, we develop a set of scripts that automate time-consuming tasks.
We aggregate and upgrade those scripts in breakmi, an extensible modular toolkit.

First, we build automated scripts to interact with a tracker’s GATT server using a Python
library called Bleak [128]. Our scripts automatically connect, explore, and display information
about any BLE device. Then, we build scripts that replicate interesting operations on the
tracker (e.g., read requests, enable notiőcations, őrmware update, and factory reset).

We automate BLE traffic analysis by developing protocol dissectors on Pyshark [102], a
Python wrapper for packet parsing, and by using the scapy [101] packet crafting library. We
reverse-engineer the binary structure of Xiaomi őrmware so that we can extract őrmware from
capture őles containing a őrmware update. We also automate web traffic analysis via mitm-
proxy by developing scripts with the mitmdump utility. Our mitmdump scripts analyze hun-
dreds of web requests to őnd pairing-related messages, identify their purpose and retrieve their
parameters.

We automate our OTA attacks using Bleno [107] and Noble [108]. We create spoofed BLE
peripherals that mirror services, characteristics, and advertising from legitimate MB 2/3/4/5/6
and Cor 2. We implement the Pairing, Authentication, and Communication protocols on the
Auth, Steps, Heart Rate, and Chunked Transfer characteristics. We also implement the Pairing,
Authentication, and Communication protocols on a BLE central and conőgure it to scan for and
connect to the target trackers. During OTA MitM, the malicious BLE central and peripheral
communicate with each other through websockets.

3.10 Related Work

We discuss the current state of the literature concerning the security and cryptographic analysis
of Mi Band, Fitbit, and other embedded devices, the attacks on BLE protocols, and Android
vulnerabilities and compare it with our work.

Attacks against Mi Band devices Fereidooni et al. [10] looked at ways to inject false data
from the tracking application to the backend of 17 popular trackers, including a Mi Band device.
Hilts et al. [24] presented a security and privacy analysis of six trackers, including a Mi Band.
These analyses are useful yet orthogonal to ours as they do not cover Xiaomi’s proprietary
security protocols. Some developers released tools for Mi Band 2 [129] and Mi Band 3 [130]
able to trigger Xiaomi’s Pairing v1 to unlock private data as described in [15]. Mi Band 4 tools
such as [131] require the knowledge of the pairing key, because nothing is known about Pairing
v2 apart from it being “server-basedž [118]. Our attacks are much stronger and stealthy. They
do not require knowledge of the pairing key, no speciőc action from the victim, do not disrupt
the pairing between the victim’s app and the victim’s tracker, and do not reset the data (as
they completely skip Pairing). In fact, we improved and corrected the attack in [15], that claims
to be targeting Authentication when it is actually targeting Pairing v1. The Xiaomi protocols
reverse-engineered in [11] belong to Mi Home [132, 133], the Xiaomi app that manages smart
home devices, which does not support őtness trackers. To conclude, existing attacks were ad-
hoc and partial. Our work is the őrst to systematize and generalize attacks against the Xiaomi
őtness tracking ecosystem.

44 44

Attacks against Fitbit devices Rahman et al. [78, 81] attacked the legacy ANT Communi-
cation protocol used by Fitbit Ultra and Garmin Forerunner and provided őxes for them. Cyr
et al. [18] utilized Ubertooth to sniff OTA BLE traffic from a Fitbit Flex and an HTTP/HTTPS
proxy, underlining several privacy-related issues, including device identiőcation attacks. As de-
scribed in [134], Fitbit Charge was patched for being vulnerable to non-authenticated reads and
a replay attack. Goyal et al. [83] presented a comparative analysis of a Jawbone UP Move and
Fitbit Charge. They discovered security issues in the GATT server, the mobile app, and the
backend. Schellevis et al. [26], reversed the Fitbit Charge HR authentication protocol through
őrmware analysis. Fereidooni et al. [27] found ways to spoof Fitbit Flex and One data by tear-
ing down the devices and analyzing their őrmware. Classen et al. [14] demonstrated attacks on
Fitbit capable of leaking private data from a tracker, re-ŕashing a rogue őrmware, and redirect-
ing the app to a rogue cloud service. Other researchers could only perform eavesdropping while
being near the target device, but we can do it remotely with our SB eavesdropping attack. Our
SB app impersonation attack allows us to remotely inject fake data into the Fitbit account of
our victim. Instead, previous studies required the ownership of the tracker or physical access.
We also veriőed that Fitbit Charge 2 is still using the same protocols reversed in [14], and we
have proven the feasibility of a MitM setup by deploying our OTA MitM attack.

Attacks against BLE protocol Fitness trackers communicate with the app using BLE.
Privacy-oriented case studies show, by looking at BLE advertising [47, 135, 48, 136] or BLE
UUID [77], that one can őngerprint the tracker and even identify the user’s activities (e.g., walk-
ing or sitting). Several papers discussed standard-compliant attacks on BLE legacy pairing [42],
key negotiation [40], Secure Simple Pairing [43, 44, 44], Secure Connections Only Mode [45],
associations [137], GATT [138], and reconnections [139]. Bugs speciőc to implementation and
related exploits were also discussed [140, 141]. Wang et al. [41] exploited the BLE features
designed for low-cost devices to downgrade the key negotiation and authentication procedures
and access the stored BLE data. BLE legacy pairing and Secure Simple Pairing were also
found to be vulnerable to misbinding attacks [142]. Works about BLE are orthogonal to what
we present as we are targeting proprietary protocols implemented at the application-layer on
top of an insecure BLE link layer.

Cryptographic security on embedded systems Constrained embedded devices often
misuse cryptographic primitives, thus introducing severe vulnerabilities in the whole system.
Wouters et al. [52, 53] reverse-engineered the Tesla Model S and Model X key fob and found new
vulnerabilities. Our study and methodology are similar to theirs, as they reversed proprietary
protocols (i.e., Tesla’s PKES and Pairing protocols), analyzed the BLE SoC, discussed crypto-
graphic security measures, developed a proof-of-concept and proposed countermeasures. Their
őndings could apply to other key fob manufacturers, similar to what we did with breakmi. We
exploited the same vulnerabilities found both in Xiaomi and Fitbit devices, two of the largest
players in the őtness tracker market. An orthogonal approach to reverse-engineering embedded
systems is őrmware and binary code analysis, adopted by Incision [23], an architecture and
OS-agnostic RE framework. While similar tools are effective, we believe that our application-
layer analysis is necessary to provide a full security assessment of an embedded device.

3.11. Conclusion 45

Vulnerabilities in Android It is known that Android does not properly isolate Bluetooth
keys among apps. For example, all devices’ Bluetooth pairing keys are shared by all apps
enabling co-located attacks [143, 144]. This fact might affect őtness trackers that are relying
on BLE pairing. However, this is not the case for Xiaomi, which only relies on proprietary
security mechanisms at the application-layer. As a result, our attacks are still effective even if
Android would őx the shared pairing key issue.

Smartwatches Prior work also studied the security of smartwatches, with Apple Watch as
the main target. In particular, researchers focused on MagicPairing [16], Apple’s Bluetooth
security mechanism, and reverse-engineering [24, 10]. In this work, we focus only on őtness
trackers, as smartwatches represent a separate class of devices with far more capabilities than
őtness trackers. For example, smartwatches ship with more capable SoC (e.g., ARM general-
purpose and multi-core application processors) than trackers (e.g., ARM microcontroller), so
comparing the two devices classes would be unfair.

3.11 Conclusion

Xiaomi is a market leader in the őtness tracking industry. Little is known about this ecosystem’s
security and privacy properties despite managing the sensitive information of millions of users
(such as health and personal data). Nonetheless, Xiaomi claims to be “committed to protecting
the privacy, conődentiality, and security of personal informationž in its Privacy Policy [5]. We
address this relevant issue by performing an extensive and up-to-date security evaluation of the
Xiaomi őtness tracking ecosystem.

After extensive RE experiments, we uncover several worrisome issues. Xiaomi uses pro-
prietary and undocumented security mechanisms to protect the communication between its
trackers and apps. In particular, Xiaomi provides Pairing, Authentication, and Communication
application-layer protocols over an insecure BLE connection. Xiaomi’s approach is extremely
risky as the security of its ecosystem relies on custom protocols that cannot be peer-reviewed
in the open by the security community. Moreover, Xiaomi ignores standard BLE link-layer
security mechanisms despite being supported by its devices.

We uncovered thirteen severe vulnerabilities (most of which were unknown) in the speciőca-
tion of Xiaomi custom application-layer protocols and exploited ten of them. The issues range
from unilateral and replayable authentication to the lack of encryption and integrity protection.
Being Xiaomi-compliant, the issues are exploitable on all devices using these protocols.

We demonstrate how to exploit the vulnerabilities with proximity-based (OTA) and remote
(SB) attacks. Speciőcally, we describe over-the-air eavesdropping, impersonation, and MitM
attacks, and remote eavesdropping and impersonation threats based on a malicious app co-
located with the Xiaomi app.

In our evaluation, we successfully attacked all Xiaomi trackers released since 2016 (e.g.,
MB 2/3/4/5/6, Cor 2) and the up-to-date versions of the Mi Fit (v 4.8.1) and Zepp (v 5.9.2)
companion apps. We also positively test our remote attacks on six popular Android versions
(i.e., Android 6/8/9/10/11/12), covering at least 90.22% of Android devices in the market,
according to [84].

We develop breakmi, a modular toolkit that automates RE experiments and attacks. breakmi
includes protocol dissector, security mechanisms, and attacks modules. It is based on open-

46 46

source software and requires cheap and available hardware. We test our toolkit on the Xiaomi
ecosystem, and we extend it to also work on Fitbit. We will open-source breakmi.

We propose five effective countermeasures that őx the presented vulnerabilities and attacks.
Our countermeasures provide stronger Pairing, Authentication, and Communication protocols.
Moreover, we show how to integrate our protocols into the Xiaomi ecosystem.

We assess whether the Fitbit ecosystem suffers from the same vulnerabilities as Xiaomi.
We őnd that Fitbit has better (still proprietary) Pairing, Authentication, and Communication
protocols. Nevertheless, it is vulnerable to őve out of the six attacks presented in this paper.
We conduct such attacks on actual Fitbit devices, and we extend our toolkit to be compatible
with Fitbit.

Overall, our work required an extensive and time-consuming RE effort. The hardest RE
challenge was the server-based Pairing v2. More speciőcally, it took us six months to under-
stand how the tracker, app, and backend interact among themselves while pairing. We spent
two months developing breakmi, which automated most of our protocol analysis and reverse-
engineering and quickly made up for the time investment. For example, when Xiaomi released
the new MB 6, our toolkit immediately detected its similarity to the previous generation of
trackers. Using this information, we could deploy our attacks on the MB 6 within a single day.
Another example would be the process of adding support for the Fitbit ecosystem. We only
spent two weeks on it, while we spent three months working on fully supporting the Xiaomi
ecosystem.

Chapter 4

E-Spoofer

This contribution, titled "E-Spoofer: Attacking and Defending Xiaomi Electric Scooter
Ecosystem", has been published in the Proceedings of the 16th ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec 2023) [9].

4.1 Introduction

Xiaomi is leading the electric scooter (e-scooter) market [145]. Its ecosystem includes seven
e-scooters released in the last seven years (i.e., M365, Pro 1, Pro 2, 1S, Essential, Mi 3, and Mi
4) and the Mi Home mobile application for Android [132] and iOS [133]. Mi Home enables a
user to manage his e-scooter, e.g., wirelessly locking and unlocking it or setting a password. Mi
Home and the e-scooter communicate via proprietary application-layer protocols developed by
Xiaomi. These protocols are undocumented, not peer-reviewed, and built on top of a Bluetooth
Low Energy (BLE) link-layer.

Despite their associated security, privacy, and safety risks, no research work evaluated the
security protocols used by Xiaomi to secure the interaction between its e-scooters and Mi Home.
Instead, recent work focused on the privacy implications of e-scooter rental apps (including
Xiaomi) [25] and on the security of Xiaomi’s őtness tracking ecosystem [146]. In our work,
we őnd that Xiaomi protocols can be exploited to (remotely) unlock and steal an e-scooter or
permanently prevent its owner to manage it from Mi Home.

This work presents the first security evaluation of the communication channel between
Xiaomi’s e-scooters and Mi Home. In particular, we uncover and reverse-engineer all four e-
scooter protocols used from 2016 to 2021. We label them as P1, P2, P3, and P4, and we
dissect their custom Pairing (i.e., key agreement) and Session phases. We őnd that P1, P2,
and P3 offer no security guarantees but security through obscurity. Instead, P4 provides some
security properties (e.g., ECDH key agreement and AES-CCM authenticated encryption) but
is vulnerable to downgrade attacks. Moreover, we őnd that Xiaomi decided not to use standard
BLE link-layer security mechanisms (e.g., BLE pairing), despite their devices support them.

We present four novel attacks targeting the Xiaomi protocols’ speciőcations. Two attacks
enable a proximity-based or remote attacker to pair maliciously with an e-scooter and get au-
thorized access to it without spooőng the victim’s identity (i.e., MP). The other two attacks
allow a proximity-based or remote attacker to downgrade the connection with an e-scooter to an
insecure version and send arbitrary commands (i.e., SD). The proximity-based adversary must

47

48 48

be in BLE range of the target e-scooter. Instead, the remote adversary must have installed a
malicious app on the victim’s smartphone. Our attacks achieve impactful goals, such as un-
locking and stealing an e-scooter, or preventing a victim from regaining control of the e-scooter
via Mi Home. We isolate the six attacks’ root causes, including the improper authentication
and authorization mechanisms, and the unprotected but privileged vendor-speciőc features of
Xiaomi protocols.

We release E-Spoofer, a toolkit capable of performing our four attacks by reimplementing
and abusing the four reversed Xiaomi protocols. The toolkit includes three extensible modules.
Two dedicated modules implement the Malicious Pairing and Session Downgrade attacks. The
reverse-engineering (RE) module offers protocol dissectors to decode and build custom Xiaomi
packets (e.g., P1, P2, P3, and P4). and useful Frida hooks for Mi Home to dynamically intercept
and modify the proprietary Xiaomi payloads.

We successfully evaluate the attacks in eight different attack scenarios covering P1, P2,
P3, and P4. Our setup allows testing multiple e-scooter conőgurations by using three modded
e-scooters (e.g., M365, Essential, and Mi 3) with five BLE subsystems and eight BLE őrmware.
Our results are alarming. In all attack scenarios, we managed to unlock an e-scooter and steal
it, or to lock it and to change its password, preventing its legitimate owner from accessing it
via Mi Home. These results lead to millions [147] of exploitable devices.

To őx the four attacks and their six root causes, we developed and tested two usable and
low-cost countermeasures and include them in our toolkit. First, we propose a backward-
compatible pairing protocol with proper authentication and authorization mechanisms. Second,
we provide a script to patch the session downgrade command from an e-scooter BLE őrmware.
We successfully test our patch on the M65 and Pro 1 e-scooters, whose BLE őrmware is no
longer updated by Xiaomi.

We summarize our contributions as follows:

• We present the őrst security evaluation of the proprietary security mechanisms employed
by Xiaomi’s e-scooters and Mi Home application. We isolate four custom application-layer
security protocols on top of an insecure BLE link-layer. After reversing their Pairing and
Session phases, we uncover six severe vulnerabilities in their design, including vendor-
speciőc and unauthenticated protocol commands.

• We develop four attacks that steal an e-scooter or prevent its owner from accessing it
from the Mi Home app previously paired with that e-scooter. The attacks are effective
on P1, P2, P3, and P4, and can be deployed by an attacker in BLE range of a target
e-scooter (i.e., proximity-based attacker) or via a malicious application on the victim’s
smartphone (i.e., remote attacker).

• We open-source E-Spoofer, an automated and low-cost toolkit that implements our at-
tacks and tampers with the four Xiaomi protocols. Our toolkit includes the MP and
SD attack modules, and a reverse-engineering module with protocol dissectors, őrmware
analysis tools, and Mi Home Frida hooks.

• We conőrm that our four attacks are effective in eight attack scenarios covering őve e-
scooter BLE subsystems and eight BLE őrmware. Our evaluation samples include P1, P2,
P3, and P4. Our experimental setup allows to reproduce multiple attack scenarios using
three partially disassembled e-scooters and different BLE subsystems. We also release

4.2. Xiaomi E-Scooter Ecosystem 49

Xiaomi Protocols
Over BLE

Xiaomi E-scooter User Phone

Web Requests
Over Wi-Fi

Xiaomi Backend

Figure 4.1: Xiaomi e-scooter ecosystem. Xiaomi e-scooter (left), the user smartphone running
the Mi Home app (middle), and the Xiaomi backend (right). The e-scooter and the app are
paired and connected over BLE. The app associates the e-scooter with the Xiaomi backend
over Wi-Fi. We focus on the BLE traffic between the app and the e-scooter.

two effective countermeasures that őx our attacks. The őrst addresses the MP attacks
by implementing a more secure pairing protocol. The second prevents the SD attacks by
patching the BLE őrmware of an e-scooter.

Responsible disclosure and ethics We responsibly disclosed our őndings multiple times
with Xiaomi via their bug bounty program [148]. In October 2022, we reported a UI password
bypass issue with Mi Home, Xiaomi acknowledged it and provided a bug bounty. In November
2022, we shared a technical report and the code to reproduce our őndings. In December 2022,
we provided them with a video of the attacks on actual devices. Xiaomi did not follow up.
We conducted our experiments in a controlled environment without involving third-party users
and services. We provide our open-source E-Spoofer toolkit at https://github.com/Skiti/

ESpoofer.

4.2 Xiaomi E-Scooter Ecosystem

Xiaomi is the electric scooter (e-scooter) market leader, sporting the highest number of active
users and shipped devices [145]. Currently, it features seven e-scooters, i.e., M365 (2016), Pro
1 (2019), Pro 2 (2020), 1S (2020), Essential (2020), Mi 3 (2021), and Mi 4 (2022). Xiaomi also
maintains Mi Home, a smartphone application for Android [132] and iOS [133] that manages
Xiaomi’s smart home devices, including any e-scooter. Xiaom’s cloud-based backend service
manages the e-scooters and their active Mi Home users.

Figure 4.1 shows a high-level representation of the Xiaomi e-scooter ecosystem. This work
focuses on the BLE communication channel between the e-scooter and Mi Home. The e-scooter
acts as a BLE peripheral (connection responder), while Mi Home is the BLE central (connection
initiator). The e-scooter periodically broadcasts BLE advertisement packets to be discovered.
These packets contain the e-scooter name, model, security level, and pairing mode activation.
Mi Home scans the BLE spectrum and lists all connectable Xiaomi e-scooters nearby. Once
connected, the devices exchange data using BLE’s Generic Attribute Proőle (GATT). The
e-scooter exposes a GATT server, which includes the Nordic UART Service and a custom
Xiaomi service. On the other hand, Mi Home acts as a GATT client, sending read, write,
and subscribe requests to the e-scooter’s GATT server. To communicate, Mi Home and the
e-scooter establish a BLE link-layer connection. Then, they use proprietary application-layer

50 50

protocols and mechanisms that cannot be scrutinized with multi-purpose static and dynamic
analysis tools.

Mi Home requires the user to register a Xiaomi account to pair, connect, and manage one
or more Xiaomi e-scooters. The pairing process is a one-time procedure that requires user in-
teraction and an Internet connection. The user starts pairing via the app UI, scans for nearby
Xiaomi e-scooters, selects the correct e-scooter from a list, presses the headlight button to ac-
tivate pairing mode, and waits. Once the pairing is complete, Xiaomi backend links the user
account to the paired e-scooter, and Mi Home remembers the device for future connections.
Optionally, the user can set a 6-digit alphanumeric PIN to protect the e-scooter from unautho-
rized access to Mi Home (e.g., from attackers that have stolen the user’s smartphone and want
to unlock the e-scooter via Mi Home).

A Xiaomi e-scooter is a high-end embedded device composed of several proprietary and un-
documented subsystems: radio (BLE), battery management (BMS), and electric motor (DRV).
Each subsystem has a dedicated system-on-chip (SoC) and őrmware. The connection between
the subsystems is not standardized and might involve a proprietary bus. The radio subsystem
provides BLE connectivity, enabling communication between the e-scooter and Mi Home. It
also acts as a gateway to distribute őrmware updates to the DRV and BMS. The BMS monitors
and manages the e-scooter’s battery. The DRV takes care of the electric motor that, when the
DRV is not up-to-date, can be patched to change the motor’s maximum speed. At the time
of writing, all Xiaomi e-scooters are manufactured by Ninebot, a Chinese company őnanced by
Xiaomi that acquired Segway (its main competitor in the US) in 2015 [149].

4.3 Threat Model

Now we present our system model and our proximity-based and remote attacker models. Please
refer to Section 4.2 for their related background material.

4.3.1 System Model

We consider a victim who owns a Xiaomi e-scooter and a smartphone equipped with the Mi
Home app for Android or iOS, as shown in Figure 4.1. We assume that the Mi Home version
number is the latest available at the time of submission (e.g., Android v7.11.704 and iOS
v7.12.204). We do not set a target Android or iOS version as we want to explore Xiaomi-
compliant attacks that work regardless of the smartphone OS version.

The victim securely paired the app, and the e-scooter accepted the required permissions
and completed the default őrmware update. The update process involves the BLE, battery
management, and electric motor subsystems (e.g., DRV017, BLE157, BMS141), and the BLE
component acts as a gateway. To consider the most secure scenario, we assume that the
password-protection is enabled to prevent unauthorized access to the e-scooter. Hence, accord-
ing to common sense, the victim locks and unlocks the e-scooter from the app. Moreover, the
victim uses the e-scooter features, such as pressing the power button to activate or deactivate
the headlight.

The e-scooter and Mi Home communicate using Xiaomi proprietary application-layer proto-
cols. These protocols run on top of a link-layer connection established using BLE. Only Xiaomi

4.3. Threat Model 51

Xiaomi Protocols
Over BLE

Xiaomi Protocols
Over BLE

Xiaomi
E-scooter

Victim
Phone

Proximity
Attacker

Remote Attacker

Figure 4.2: Proximity-based (left) and remote (right) attacker models investigated in this work.
In the proximity-based threat model, the attacker is within BLE range of a target e-scooter. In
the remote threat model, the adversary őrst installs a malicious Android app on the victim’s
smartphone. Then, she uses the malicious app (in red) to remotely target an e-scooter within
BLE range of the victim’s smartphone.

knows the application-layer protocols’ details and their security guarantees (e.g., conődentiality,
integrity, and authenticity).

4.3.2 Attacker Models

Password protection and secure communication at the application-layer and link-layer should
protect victims against impactful attacks, including threats effective from BLE proximity or
remotely via a malicious app on the victim’s smartphone. For example, it should not be possible
to (remotely) unlock and steal an e-scooter or (remotely) reset a password to deny the victim
access to the e-scooter. Based on this reasoning, and as shown in Figure 4.2, we focus on two
relevant threat actors:

Proximity-based attacker The proximity-based attacker targets the e-scooter with BLE
signals. Hence, she requires being within BLE range of the target device. The proximity
attacker has the following goals: (i) unlock and steal a (password-protected) e-scooter, and (ii)
prevent the legitimate owner from accessing and controlling the e-scooter via Mi Home.

The proximity adversary has the capabilities of a real-world and low-cost BLE attacker.
She can craft custom BLE packets, sniff the traffic over-the-air to get public information (e.g.,
BLE addresses and advertisements), and replicate the Android and iOS Mi Home apps with
her attack equipment. The attacker does not observe the e-scooter while it pairs with Mi
Home and does not install malicious software on the victim’s devices. Moreover, she does not
physically tamper with the e-scooter and the smartphone (e.g., no physical fault injection and
side-channel attack).

Remote attacker The remote adversary attacks the e-scooter using a malicious application
installed on the victim’s smartphone. Thus, she requires the victim’s smartphone to be within
BLE range of the e-scooter, but she can remotely activate the app. For example, the adversary
can attack the e-scooter while the victim is parking the e-scooter and walking away from the
parking lot. This model differs from a proximity-based attack as the latter involves a BLE
attacking machine (e.g., a laptop) in the BLE range of the victim, while the former involves

52 52

a malicious smartphone app. The remote attacker has the same goals as the proximity-based
attacker.

Capability-wise, we consider a low-cost and real-world remote threat actor targeting the
Android ecosystem (as opposed to iOS, which is more closed). We assume a malicious Android
app that was installed using known (yet practical) social engineering and phishing techniques.
The app does not require root privileges but needs basic permissions to interact with the e-
scooter, such as Bluetooth and Internet permissions. The attacker develops the app using
standard Android tools (e.g., Android Studio) and APIs (e.g., BLE advertisement, scanning,
and GATT APIs). The remote attacker has the same limitations as the proximity one, except
for installing an app on the victim’s smartphone.

Physical access requirements Regardless of the attacker model, we assume that the ad-
versary needs minimal (but mandatory) physical access to steal and carry away an e-scooter.
For example, in a proximity-based scenario, the attacker can approach the e-scooter when the
victim is not present and perform some short interactions with its dashboard (e.g., pressing the
headlight and the power buttons). Alternatively, in a remote threat scenario, two adversaries
can collude. For example, an adversary unlocks the e-scooter by launching a remote attack via
the malicious app. At the same time, the other adversary can press any button (if necessary)
and steal the e-scooter.

4.4 Reversed Xiaomi Security Protocols

We describe the four proprietary Xiaomi protocols that we reverse-engineered (RE). We dis-
cover that Mi Home and the e-scooter establish an insecure link-layer BLE connection, despite
both devices supporting BLE security mechanisms (e.g., BLE Pairing). Instead, Xiaomi uses
proprietary application-layer protocols to secure their whole e-scooter ecosystem.

Table 4.1 summarizes the details we reversed from the protocols. We label the protocols as
P1, P2, P3, and P4, and also assign a descriptive name to each one. P1 is named "No security"
because it does not utilize any security mechanism. P2 is named "XOR obfuscation" because
it employs an obfuscation strategy exclusively based on XOR. P3 is named "AES-ECB and
XOR obfuscation" because it XORs Xiaomi packets with the output of an AES-ECB cipher.
P4 is named "ECDH and AES-CCM" because it employs ECDH for Pairing and AES-CCM
during Session. Then, we isolate the protocols’ phases: Pairing (e.g., key agreement), and
Session (e.g., authenticated encryption). For instance, P2 Pairing is based on a public XOR
mask and is unauthenticated. Its Session reuses the XOR mask to obfuscate payloads, is not
authenticated, and provides no integrity protection. Our experiments reveal that all Xiaomi
e-scooters (more speciőcally, their BLE subsystems) and all Mi Home versions (from 2016 to
2021) have employed these protocols. Now we describe each protocol in detail.

4.4.1 No Security (P1)

P1 provides no security guarantees as it lacks Pairing and Session capabilities. The devices es-
tablish a BLE connection and then exchange the application-layer payloads in cleartext without
integrity protection. The only roadblock for the attacker to eavesdrop and inject packets into

4.4. Reversed Xiaomi Security Protocols 53

Table 4.1: The four Xiaomi application-layer security protocols analyzed in this work. The őrst
and second columns show the protocol ID and name. Each protocol has a Pairing and Session
phase. P4 has two Session versions, where v2 is equal to v1 but adds downgrade protection.
Unil means unilateral.

ID Name Pairing

P1 No security None

P2 XOR obfuscation Public XOR mask, no auth

P3 AES-ECB and XOR obfuscation Weak AES-ECB key agreement, no auth

P4 ECDH and AES-CCM ECDH, AES-CCM unil auth

ID Name Session

P1 No security None

P2 XOR obfuscation XOR mask obfuscation, no auth, no integrity

P3 AES-ECB and XOR obfuscation XOR obfuscation, implicit auth, no integrity

P4 ECDH and AES-CCM
v1: HKDF, HMAC, AES-CCM, mutual auth

v2: v1 with downgrade protection

the connection is the knowledge of the application-layer packet format. P1 is the prototypical
example of security through obscurity (STO).

4.4.2 XOR Obfuscation (P2)

P2 offers no security guarantees, but relies on a XOR-based obfuscation strategy. During
Pairing, Mi Home reads a twelve-byte XOR mask from the e-scooter Hardcopy Data Channel
GATT characteristic, different at every reboot of the device. Then, during Session, the devices
obfuscate the application-layer payloads by XORing them with the XOR mask. If the payload
is longer than the XOR mask, the app asks the e-scooter for the extended version of the same
XOR mask and uses that one instead in the XOR operation. Since the attacker can trivially
recover the mask (e.g., eavesdropping or reading it from the e-scooter), P2 is insecure and falls
into the STO category.

4.4.3 AES-ECB and XOR Obfuscation (P3)

P3 uses a weak key establishment protocol based on AES-ECB and XOR obfuscation. Pairing
generates a sixteen-byte pairing key (pk) by computing pk=AES-ECB(key=constant,input=esc

ooter_name), where constant is hardcoded both in the Mi Home app and in the e-scooter BLE
őrmware, and escooter_name is publicly advertised by the device. Then, during Session, the
devices obfuscate the application-layer payloads by XORing them with pk. If the payload is
longer than the pairing key, the payload is XORed with an extended pairing key, which is just
pk repeated as many times as necessary. P3 provides no security guarantees but only STO.
An attacker can compute pk by extracting constant from the reversed code of any Mi Home
APK and trivially acquire escooter_name. Once pk is known, the attacker can de-obfuscate
and inject valid P3 packets.

54 54

4.4.4 ECDH and AES-CCM (P4)

During Pairing, P4 employs Elliptic Curve Diffie-Hellman (ECDH) for key agreement and
unilateral pairing key authentication. In particular, the e-scooter sends chal, a sixteen-byte
random challenge. The devices exchange their public keys, using the SECP256R1 curve, and
derive ss, an ECDH shared secret. Then, they compute a pairing key (pk) and a one-time key
(otk) using HKDF as follows: pk||otk=HKDF(key=ss,input="mible-setup-info",salt="").
The app responds to the e-scooter challenge with resp=AES-CCM(key=otk,input=chal).

During Session, P4 uses HKDF, to derive the directional session keys, and HMAC-based
mutual authentication. The devices exchange rand_esc and rand_app, two sixteen-byte random
numbers. The devices derive two directional session keys (sk_esc and sk_app) and AES-CCM
nonces (n_esc and n_app) as follows: sk_esc||sk_app||n_esc||n_app=HKDF(key=pk,input="

mible-login-info",salt=rand_app||rand_esc).
Then, the e-scooter sends resp_esc=HMAC(key=sk_esc,input=rand_esc||rand_app) to

authenticate its session key. Similarly, the app authenticates its directional key by sending re

sp_app=HMAC(key=sk_app,input=rand_esc||rand_app). After mutual authentication of both
session keys, each device employs AES-CCM to encrypt and integrity protect the application-
layer payloads. AES-CCM is keyed with the directional session key and initialized with the
directional nonce concatenated with a packet counter.

P4 provides security guarantees (unlike P1, P2, and P3) but can be downgraded. Replay
attacks are ineffective against P4 Pairing and Session because the former utilizes a random
challenge during pairing key authentication, and the latter utilizes random values and nonces
during the HMAC-based authentication. Moreover, the mutual authentication during P4 Ses-
sion prevents impersonation attacks on Mi Home or the e-scooter. The usage of session keys
limits the impact of a compromised key to the current session only, and the usage of a packet
counter in the encryption of regular BLE communication protects against nonce reuse attacks.

P4 protocol comes in two versions (i.e., P4v1 and P4v2), depending on the supported version
of the Session phase.

4.5 Attacks

We present four novel attacks targeting the four Xiaomi custom protocols discussed in Sec-
tion 4.4 that enable stealing a (password-protected) e-scooter or denying a victim from using it
via Mi Home. Our attacker can either be proximity-based or remote, as stated in Section 4.3.
The attacks achieve their goals by using one of two spooőng strategies: (i) the attacker pairs
with the target e-scooter while impersonating any user, i.e., Malicious Pairing (MP) (ii) the
adversary connects to the target e-scooter and downgrades the session to an insecure version,
i.e., Session Downgrade (SD).

The attacks are critical to the Xiaomi ecosystem as they exploit the four Xiaomi application-
layer security protocols at the architectural level. Hence, they are effective regardless of the
e-scooter’s hardware and software details, including its model, and only depend on the BLE
őrmware being run. Moreover, they defeat the most secure setup, i.e., a password-protected
and software-locked e-scooter already paired with a registered Xiaomi user. We even completed
the attacks while the e-scooter was in motion (in a controlled environment). We now describe
the MP and SD strategies, and we isolate their root causes.

4.5. Attacks 55

4.5.1 Malicious Pairing (MP)

Attacker E-scooter

Light button press

Pairable for 17 sec

BLE: Advertisement

Detect Pairing phase

BLE: Connection request

BLE: Connection completed

Xiaomi: Pairing request

Xiaomi: Pairing completed

Attacker paired and authorized (P1, P2, P3, P4)

Figure 4.3: Malicious Pairing (MP) attack strategy. The user presses the headlight button. The
e-scooter goes into pairable mode for seventeen seconds and advertises it via BLE. The attacker
detects the Pairing phase supported by the e-scooter. Then, she establishes a BLE connection
without impersonating the victim’s smartphone and completes Xiaomi Pairing. As a őnal
result, she is authorized to send any Xiaomi-compliant command to the e-scooter, including
lock, unlock, and set or change a password.

Figure 4.3 shows the MP attack strategy that can be used to lock an e-scooter away from its
user, or to steal it. The attacker waits until the victim presses the e-scooter headlight button
to switch on or off the front light (or presses the button if the e-scooter is unattended). As
a side effect, the button press activates pairing mode for the e-scooter for seventeen seconds
without notifying the user. The adversary detects that the e-scooter is pairable from its BLE
advertisement packets and detects which Xiaomi protocol it supports (i.e., P1, P2, P3, or P4).
Then, she establishes a BLE link-layer connection without spooőng the victim’s smartphone
BLE address. Hence, the adversary can target an e-scooter without knowing any information
about its owner (e.g., any e-scooter in a parking lot).

Finally, the attacker sends a Xiaomi-compliant pairing request and completes Pairing, re-
gardless of the supported Xiaomi protocol of the e-scooter. Once paired, she can perform any
action requiring authentication. For example, she can lock it and set a new e-scooter password
to prevent the victim from accessing it from Mi Home. The takeover is effective, as we discov-
ered that Mi Home does not allow resetting the e-scooter password, even with a factory reset.
Alternatively, the attacker can use the MP strategy to unlock and steal the e-scooter.

The MP attack strategy is effective for a proximity-based attacker inside the BLE range of
the e-scooter, and for a remote attacker controlling a malicious app while the victim’s smart-
phone is within BLE range of the e-scooter. Moreover, the strategy works regardless of the
Pairing phase version and the e-scooter password because, while pairing, the attacker does not
have to authenticate its identity and provide the password.

56 56

4.5.2 Session Downgrade (SD)

Attacker E-scooter

BLE: Advertisement

Detect Session phase

BLE: Connection request

BLE: Connection completed

Xiaomi: Session downgrade

Downgraded Session (P4v1 to P3, P2 to P1)

Figure 4.4: Session Downgrade (SD) attack strategy. The app detects a nearby e-scooter
vulnerable to SD (i.e., running P4v1 or P2). The attacker skips Pairing and sends the session
downgrade command to the e-scooter. The Session is downgraded from P4v1 to P3, or from
P2 to P1.

Figure 4.4 shows the SD attack strategy that allows an adversary to lock an e-scooter away
from its user, or to steal it. The attacker detects the Session protocol supported by the e-
scooter. Then, she looks at the BLE advertisement packets of the e-scooter, and she detects if
the target runs P4v1 or P2, being the two Session protocols that expose a session downgrade
command. She establishes a BLE link-layer connection without spooőng anything from the
victim. Hence, the adversary can target an e-scooter running P4v1 or P2 without knowing any
information about its owner. Then, the attacker sends a Xiaomi-compliant session downgrade
command, downgrading the Session from P4v1 to P3 or from P2 to P1. The attacker exploits
the insecure P3 and P1 to perform dangerous actions on the e-scooter. Similarly to MP, she can
lock the e-scooter and prevent access to it from Mi Home by setting a new e-scooter password.
She can also use the SD strategy to unlock and steal the e-scooter. The SD strategy can be
applied to our proximity-based and remote threat models. The strategy entirely skips Pairing
and starts an insecure downgraded Session, removing any authentication requirement from the
attacker. Moreover, the strategy is particularly effective on e-scooters running P4v1, as they
offer security guarantees that are nulliőed by downgrading the Session phase to the insecure
P3.

4.5.3 Root Causes

The four attacks presented above are enabled by the following six root causes (i.e., vulnerabil-
ities) that we isolated in the Xiaomi protocols’ speciőcation:

V1: Unauthenticated Pairing None of the Pairing phases require device authentication
(e.g., via a certiőcate signed by Xiaomi). Hence, an attacker can pair with an e-scooter while
spooőng an arbitrary Mi Home app without authenticating, regardless of the application-layer
protocol used by the e-scooter (i.e., P1, P2, P3, or P4).

4.5. Attacks 57

Table 4.2: Mapping between the vulnerabilities (rows) and the presented attacks (columns). We
put a ✓ if an attack exploits a vulnerabilit. Otherwise, we put an ✗. We split our two attacks,
Malicious Pairing (MP) and Session Downgrade (SD), depending on their threat model, either
proximity-based or remote.

Proxim. Remote

Vulnerability MP SD MP SD

V1: Unauthenticated Pairing ✓ ✗ ✓ ✗

V2: Unintentional Pairing mode ✓ ✗ ✓ ✗

V3: Improper e-scooter passw. enfor. ✓ ✓ ✓ ✓

V4: Unprotected sensitive memory ✓ ✓ ✓ ✓

V5: Downgradable and insec. Session ✗ ✓ ✗ ✓

V6: No BLE sec. despite device support ✗ ✓ ✗ ✓

V2: Unintentional Pairing mode Pressing the e-scooter’s headlight button activates pair-
ing mode for seventeen seconds without notifying the user. Hence, whenever the victim presses
the headlight button, an attacker in the BLE range of the e-scooter can detect that the e-
scooter is pairable from its BLE advertisements and pair. Alternatively, given physical access,
the attacker can trigger pairing mode while the victim is away, by simply pressing the headlight
button (even if the e-scooter is software-locked).

V3: Improper e-scooter password enforcement The e-scooter does not enforce the
password set by the user via Mi Home. Only Mi Home checks it to prevent unauthorized
access to the e-scooter from the victim’s smartphone. Therefore, an attacker can tamper with
a password-protected e-scooter without knowing the password. Moreover, Mi Home does not
provide a way to deactivate the password, and the password does not change across factory
resets. If the adversary changes the e-scooter password, she prevents the victim from controlling
the e-scooter via Mi Home.

V4: Unprotected sensitive memory Xiaomi custom protocols include an unauthenticated
command to read and write sensitive memory regions. For example, the attacker can read and
overwrite the victim’s password from the e-scooter DRV subsystem memory. Moreover, she can
tamper with the BLE subsystem memory to lock, unlock, reboot, and shut down the e-scooter.

V5: Downgradable and insecure Session Xiaomi custom protocols include unauthenti-
cated commands to downgrade the Session phase. For instance, the attacker can downgrade
a P4v1 Session to a P3 Session and a P2 Session to a P1 Session. At the same time, P1, P2,
and P3 Session phases are insecure and provide no conődentiality, authenticity, or integrity
guarantees. P1 uses no key, P2 employs XOR-based obfuscation with a constant XOR mask,
and P3 uses a slightly more complex, yet predictable, obfuscation based on AES-ECB and XOR
operations.

58 58

V6: No BLE security despite device support Xiaomi does not employ BLE security at
the link-layer despite device support but relies solely on its custom security mechanisms at the
application-layer. So, there is no defense in depth, and the application-layer is a single point
of failure.

Table 4.2 maps the six root causes of the four attacks described earlier. MP attacks exploit
V1, V2, V3, and V4. V1 and V3 lower the attack requirements. V2 allows attacks from
proximity without requiring physical access to activate pairing mode. V4 enables dangerous
operations on the e-scooter by unauthorized attackers. SD attacks exploit V3, V4, V5, and V6.
V3 and V6 lower the attack requirements. V4 enables dangerous operations on the e-scooter.
V5 makes SD possible.

4.6 Implementation

Here, we present E-Spoofer, a new toolkit to carry out the four attacks presented in Section 5.4,
facilitate further reverse-engineering of Xiaomi protocols and help in future security evaluations
in the Xiaomi e-scooter ecosystem.

4.6.1 Proximity Attack Module

The E-Spoofer proximity attack module performs proximity-based MP and SD over-the-air,
using BLE. We use Noble [150], a NodeJS module, to create a BLE central that spoofs the Mi
Home app and speaks Xiaomi protocols. We replicate P4 Pairing and P4v1 Session, as these
protocols are available on all (up-to-date) Xiaomi e-scooters.

Our module reimplements P4 Pairing, including ECDH and pairing key authentication. We
perform ECDH and obtain a shared secret. We receive a challenge from the e-scooter. We
derive a pairing key and a one-time key from the shared secret by running HKDF-SHA256.
We utilize the one-time key and the challenge for the sophisticated pairing key authentication
by running AES-CCM-128. Finally, we send the solution to the e-scooter and complete P4
Pairing.

Our module reimplements P4v1 Session, including the HMAC-based mutual authentication
and AES-CCM encryption. We send a challenge to the e-scooter, and receive a challenge from
him. We retrieve the pairing key generated during Pairing. We derive the directional session
keys and IVs from the pairing key and the two challenges by running HKDF-SHA256. Then,
we use the directional session keys and IVs to calculate the solution of the e-scooter challenge
by running HMAC-SHA256. Finally, we encrypt with AES-CCM-128 the BLE commands (e.g.,
session downgrade, lock or unlock the e-scooter, setting or changing the password) using the
session keys and IVs, and the packet count. The above-mentioned cryptographic operations also
require other input values found in the decompiled Mi Home code, identical for all e-scooter
models.

4.6.2 Remote Attack Module

The E-Spoofer remote attack module performs the attacks using a malicious Android app.
The app acts as a BLE central, spooőng Mi Home and speaking Xiaomi protocols. It detects

4.6. Implementation 59

a vulnerable e-scooter via its BLE advertisement, by analyzing the info included in the adver-
tisement itself (i.e., e-scooter name, model, security level, and pairing mode activation). When
an e-scooter is found in pairing mode, the app will pair and perform MP or SD. We develop
the app using the RxAndroidBle library [151], built on RxJava.

Our malicious app requires no root privileges but Bluetooth and location-related permis-
sions. On Android 9 or lower, these permissions are BLUETOOTH, BLUETOOTH_ADMIN,
and ACCESS_COARSE_LOCATION. Android 10 and 11 require ACCESS_FINE_LOCAT
ION instead of coarse locatio. On Android 12 or higher, the app requires the BLUETOOTH_
CONNECT and BLUETOOTH_SCAN permissions.

4.6.3 Reverse-Engineering Module

The E-Spoofer reverse-engineering module contains the protocol dissectors, Ghidra utilities,
and Frida hooks that we developed while statically and dynamically RE the Xiaomi e-scooter
ecosystem. The research community can use these modules to perform other experiments on the
Xiaomi ecosystem or adapt them to test similar ecosystems. We now describe each submodule.

Protocol Dissectors We develop Pyshark dissectors that automatically parse BLE captures
and detect custom Xiaomi payloads and advertisement packets. They identify the Xiaomi
protocol version from the packet header and dissect the packet accordingly. We also develop
Scapy scripts to complement the Pyshark dissectors and offer a more advanced analysis.

We develop an advertisement packet analyzer for Xiaomi e-scooters. Our script extracts the
name of the scooter (e.g., MIScooter1234), the scooter model (i.e., 0x20 for M365), the security
level (i.e., 0x00 for P1, 0x01 for P2, and 0x02 for P3 and P4) and pairing mode activation (i.e.,
0x01 means not active, 0x02 means active).

Ghidra Utilities We utilize Ghidra [152] to statically RE portions of the e-scooter’s BLE
őrmware. We used the open-source mijia library [153] to identify some compiled functions in
the őrmware, related to BLE advertisement and cryptographic mechanisms (e.g., AES, HKDF).
We manually name the functions related to Pairing and Session and release six YARA [154]
rules with their signatures to identify them automatically. We also release our Ghidra project
őles to reproduce our setup, as part of E-Spoofer.

We discover how the session downgrade command is implemented in the BLE őrmware, and
why P4v2 does not support it. A static memory flag decides whether P3 packets (including
the downgrade command) are accepted or discarded. Firmware running P4v1 enables this ŕag,
thus becoming vulnerable to SD. Firmware running P4v2 disables this ŕag, thus discarding the
downgrade command and becoming immune to SD. We did not őnd any way to exploit this ŕag,
unreachable by the unprotected sensitive memory (V4) root cause presented in Section 4.5.3.

Frida Hooks First, we decompile the Mi Home APK. We navigate the decompiled code to
őnd the classes and functions involved in Xiaomi security mechanisms and we write down their
signature. Then, we develop Frida [106] hooks to intercept these calls. We print the input and
output values, and we modify them if needed. In particular, we cast the key to their proper
classes, before printing or altering them. Our hooks are written in Javascript and can be run
by invoking the Frida client from the console, while connected to a rooted smartphone running
a Frida server. Operating with Mi Home, will print logs on the console.

60 60

4.7 Evaluation

In this section, we evaluate the four attacks presented in Section 5.4 against eight attack
scenarios. We cover P1, P2, P3, and P4 ś the proprietary Xiaomi application-layer protocols
reversed in Section 4.4, three popular Xiaomi e-scooters models (i.e., M365, Essential, and Mi
3), őve Xiaomi BLE subsystems (i.e., M365, Pro 1, Pro 2, Essential, and Mi 3), eight e-scooters’
BLE őrmware, and the Mi Home app for Android and iOS. We now describe our setup and
results.

4.7.1 Setup

Our evaluation setup enables experimenting with multiple e-scooters and BLE conőgurations by
using three e-scooters (M365, Essential, and Mi 3) conőgured to host different BLE subsystems
and őrmware. We bought the three e-scooters from Amazon for around 1.000 USD. We get
access to their BLE subsystem board by unscrewing the dashboard and removing the display.
This way, we broaden our evaluation while limiting the evaluation costs. For example, by
installing the Pro 1 and Pro 2 BLE subsystems and őrmware on the M365 e-scooter, we can
test the Pro 1 and Pro 2 subsystems without spending hundreds of USD to buy the actual
e-scooter.

We test őve BLE subsystem boards with eight BLE őrmware. Three boards are original
parts of M365, Essential, and Mi 3 e-scooters. Two are clone boards for Pro 1 and Pro 2. The
M365 and Pro 1 subsystems include an nRF51822 SoC [155] of the QFAA variant (16 KB of
RAM). Instead, the other subsystems use the QFAC variant with 32 KB of RAM. We obtain
the BLE őrmware from the ScooterHacking repositories [156] or the Mi Home app. We identify
each őrmware’s relative proprietary protocol (i.e., BLE072 runs P1, BLE081 runs P2, BLE090
runs P3, BLE122, BLE129, BLE152, and BLE153 run P4v1, BLE157 runs P4v2).

To debug and manage the BLE subsystems, we use the ST-Link V2 debugger [157], which is
compatible with the nRF51 SoC family. Attaching the debugger to a subsystem board requires
manual effort, such as soldering the data (SWDIO), clock (SWCLK), and power wires. We
also remove discrete components to unlock hardware-based debugging (i.e., C16 and R1 on
the M365 BLE board, C2 on the Pro 1 BLE board). Once debugging was unlocked, we could
run a GDB server for runtime debugging and operate on the SoC RAM with tools such as
OPENOCD [158], PySWD [159], MiDu Flasher [160], and nRFSec [161]. Runtime access to
the subsystem boards was essential to produce the presented results. For example, via GDB, we
discovered that the e-scooters store the cleartext password in RAM, and via őrmware ŕashing,
we restored a BLE subsystem in an unbricked state after tampering with it.

On the app side, we test Mi Home for Android and iOS on three smartphones. We evaluate
a rooted Pixel 2 running Mi Home v7.11.704 and Android 11, a rooted Oneplus 3 with Android
9 and a Realme GT with Android 12, both running Mi Home v7.6.704, and an iPhone 7 running
Mi Home 7.12.204 and iOS v15.7. Our attacks do not require rooting a smartphone; we only
need root privileges when dynamically instrumenting Mi Home with Frida.

We run E-Spoofer, the novel toolkit we present in Section 4.6, from two attacking devices.
We deploy our proximity-based MP and SD attacks from a laptop (i.e., Dell Inspiron 15 3000).
We select the desired attack from the command line, the victim e-scooter from a list of nearby
targets, and the script automatically performs MP or SD, displaying visual feedback. We
deploy our remote MP and SD attacks from a smartphone (e.g., Pixel 2). Through the UI of

4.8. Countermeasures 61

our malicious app, we scan for nearby targets, connect to a victim e-scooter, and perform MP
or SD.

4.7.2 Results

Table 5.4 shows our evaluation results. The őrst two columns indicate the BLE őrmware version
and the protocol they run. The third column represents the e-scooter model, which hosts the
BLE subsystem shown in the fourth column. We specify the SoC variant of the BLE subsystem
board in column őve. The remaining columns highlight whether a BLE őrmware version is
vulnerable to MP and SD in their proximity-based and remote variant.

In our attack scenarios, we exploit eight unique BLE őrmware, including the latest őrmware
available on the M365, Essential, and Mi 3. We test the four Xiaomi proprietary protocols we
identiőed, including the two variants of P4 Session (i.e., P4v1 and P4v2), and ŕash them on
őve BLE subsystems from different e-scooter models. We conőrm that BLE subsystems using
the nRF51822 QFAA SoC are incompatible with newer e-scooters models (i.e., Essential, Mi 3),
as the latter requires BLE subsystem boards with the nRF51822 QFAC SoC. Similarly, newer
boards cannot be installed on the M365. We demonstrate that all evaluated BLE subsystems,
regardless of their application-layer protocol, are vulnerable to the MP attacks. This happens
due to authorization and authentication issues in all four Xiaomi protocols that we discuss and
őx in Section 4.8. We also demonstrate that all evaluated BLE subsystems running P4v1 or
P2 are vulnerable to SD to P3 or P1. We highlight that P1, P2, and P3 have no security
guarantees compared to the more secure P4. This fact makes SD from P4v1 to P3 particularly
threatening. We conőrm that P4v2 is immune from the SD attacks, as discussed in Section 4.6.

Our E-Spoofer toolkit proved to be effective on all evaluated Xiaomi e-scooters. Unfortu-
nately, we could not evaluate the Xiaomi Mi 4 e-scooter due to its release time (end of 2022).
E-Spoofer can be easily extended to support any e-scooter ecosystem that protects their com-
munications with a proprietary application-layer protocol on top of BLE, including the Xiaomi
Mi 4 e-scooter. To attain this goal, future researchers will have to reverse-engineer the propri-
etary application-layer protocols run by that speciőc e-scooter ecosystem. We also conőrm that
our toolkit can change the unknown e-scooter password set by an adversary, restoring the user
capability of accessing and managing the e-scooter from Mi Home, as a post-attack defence.

During our experiments, we even identiőed and disclosed a severe UI authentication bug in
Mi Home for Android and iOS. From Mi Home v7.6.704 onwards, the user can lock or unlock a
password-protected e-scooter without entering the password. The cause is a 1 second UI delay
between the app wake-up and the password prompt. We conőrmed this bug using the same
smartphones we describe in Section 4.7.1. Since the password is only checked by Mi Home, due
to the improper e-scooter password enforcement (V3) root cause we discuss in Section 4.5.3,
the attacker can bypass app-based password protection, unlock the e-scooter, and steal it. As
described in the responsible disclosure paragraph, Xiaomi acknowledged this bug, rewarding us
with a bounty, but gave no information about a őx.

4.8 Countermeasures

To address the four impactful attacks described in Section 5.4, we design and evaluate two
usable, backward-compliant, and low-cost countermeasures. The őrst countermeasure stops the

62 62

Table 4.3: Evaluation results. The őrst and second columns represent the BLE őrmware version
and the Xiaomi protocol version. The third column states the e-scooter model, which hosts the
BLE subsystem board, speciőed in the fourth column, indicating if the BLE board is original
from Xiaomi or a clone. The őfth column speciőes the System-on-Chip present on the BLE
subsystem. The last four columns highlight if the evaluated combination is vulnerable to our
proximity-based and remote Malicious Pairing (MP) and Session Downgrade (SD) attacks. A
hyphen (-) means the attack does not apply to that target.

Proximity Remote

Firmware Protocol E-Scooter BLE Sub. Board SoC MP SD MP SD

BLE072 P1 M365 M365 (Original) nRF51822 QFAA ✓ - ✓ -

BLE081 P2 M365 M365 (Original) nRF51822 QFAA ✓ ✓ ✓ ✓

BLE090 P3 M365 Pro 1 (Clone) nRF51822 QFAA ✓ ✗ ✓ ✗

BLE122 P4v1 M365 M365 (Original) nRF51822 QFAA ✓ ✓ ✓ ✓

BLE129 P4v1 M365 Pro 2 (Clone) nRF51822 QFAC ✓ ✓ ✓ ✓

BLE152 P4v1 Essential Essential (Original) nRF51822 QFAC ✓ ✓ ✓ ✓

BLE153 P4v1 Mi 3 Mi 3 (Original) nRF51822 QFAC ✓ ✓ ✓ ✓

BLE157 P4v2 Mi 3 Mi 3 (Original) nRF51822 QFAC ✓ ✗ ✓ ✗

MP attacks by providing a stronger pairing mechanism that is appropriately authorized and
authenticated. The second countermeasure őxes the SD attacks by patching away the hidden
downgrade command from the vulnerable e-scooter BLE őrmware. We now describe them in
detail and release them as part of E-Spoofer.

4.8.1 Authorized and Authenticated Pairing

The MP attacks presented in Section 4.5.1 are enabled by authorization and authentication
issues affecting P1, P2, P3, and P4 Pairing phases. We develop a better pairing phase addressing
both issues in a backward-compatible way. This countermeasure addresses the unauthenticated
pairing (V1), unintentional pairing mode (V2), and improper e-scooter password enforcement
(V3) root causes from Section 4.5.3. We now describe how we provide authorization and
authentication during pairing.

Authorized Pairing Mode We require the Xiaomi Pairing phase to implement a dedicated
pairing activation command that also notifies the user. In particular, to enter pairing mode,
the user must press the headlight button while holding down the left brake. Then, the e-
scooter’s tail light should blink until the completion of Pairing. This őx prevents unexpected
and unnotiőed pairing sessions such as the ones exploited in the MP attacks by waiting until
the victim presses the headlight button. The őx is trivial to implement for Xiaomi as it requires
minimal modiőcations to the BLE őrmware. On our side is challenging to test as we do not
have access to the BLE őrmware source code and build tools.

4.9. Related Work 63

Password-Protected Authenticated Pairing We require a password protected pairing
protocol to prevent an unauthenticated attacker from pairing with a victim e-scooter. This őx
prevents the MP attacks even if the adversary manages to put the e-scooter in pairing mode.
This countermeasure is easy to implement by extending the Mi Home password protection
functionality. In particular, while pairing an e-scooter with Mi Home for the őrst time (including
after a factory reset), the user should set a password via Mi Home. Then, the password should
be stored on Mi Home and the e-scooter and enforced in case of re-pairing. Hence, an attacker
cannot maliciously pair with the e-scooter as she cannot provide the password to the e-scooter.
We successfully evaluated this őx using our toolkit to replicate P4 Pairing between an e-scooter
and Mi Home.

4.8.2 Anti-Downgrade BLE Firmware Patching

The SD attacks presented in Section 4.5.2 are enabled by a vendor-speciőc command, which
downgrades Xiaomi Session P4v1 to P3, and P2 to P1. We focus on patching P4v1 because
e-scooter running the insecure P2 should update their BLE őrmware to the latest version.
Regardless, the downgrade command is present even in recent BLE őrmware versions, including
the latest M365 and Pro 1 BLE őrmware. We release a script capable of őnding and removing
the downgrade command from a vulnerable BLE őrmware to őx this issue. Our script addresses
the downgradable and insecure Session (V5) root cause presented in Section 4.5.3.

The script looks for a speciőc conditional statement and patches it to allow only P4 Session.
Hence, the patch introduces no overheads (e.g., memory, computation). Our scripts opens
the binary őrmware, őnds the function responsible for BLE packet analysis, and alters the
conditional statement that accepts either P3 and P4 packets, causing it to only accept P4
packets. More speciőcally, it replaces the cmp instruction 5a2f with 552f. As a result, the
attacker can neither downgrade P4v1 to P3, nor send any other insecure P3 command.

Developing the script required a one-time manual overhead to understand how to remove
the downgrade command. Then we automated our binary-patching process. We reuse the
BotoX M365 patcher tool [162] to encrypt the patched őrmware with the Tiny Encryption
Algorithm (TEA). We reuse the third-party M365DownG app [163] to ŕash the zipped and
newly encrypted BLE őrmware.

We successfully evaluated our őx on the M365 and Pro 1 e-scooters. We ŕashed a patched
BLE122 őrmware on the e-scooters and deployed the proximity-based and remote SD attacks.
Both attacks failed, as downgrading the protocol from P4v1 to P3 was impossible with our őx.

4.9 Related Work

E-Scooters Security and Privacy Issues Academic research on e-scooter security and
privacy is scarce, especially on personal e-scooters. Zimperium, a mobile security company,
exploits the locking system to stop a running e-scooter [32]. The hacker Lanrat evaluated
M365 authentication, discovering that it is not enforced by the e-scooter [31]. Both attacks
were publicly disclosed in 2019 and only targeted the Xiaomi M365 model. In our work, we
target all Xiaomi e-scooter models from 2016 to 2021.

Security researchers focused on e-scooter rental ecosystems instead of private e-scooters.
In [13], the authors identify some vulnerabilities in the APIs exposed by the Bird e-scooter

64 64

sharing platform, which utilizes M356 e-scooters [164]. Public e-scooters from the Lime sharing
company are weak to a man-in-the-middle attack that allows for arbitrarily swapping audio
őles [33]. N. Vinayaga-Sureshkanth et al. [25] provide an extended evaluation of Android e-
scooter rental applications. In particular, they investigate the user-related data collected and
shared with third parties, which could monitor the users’ schedules and visited locations. In
our work, we perform a security assessment. Therefore, we consider out-of-scope any privacy
study on user data.

E-Scooters Hacking Communities ScooterHacking [165] is the largest e-scooter hacking
community with around 20.000 members. ScooterHacking releases hacking tools [156] and
offers a third-party companion app [166] for Xiaomi e-scooters. Expert users can download
custom DRV and BLE őrmware to alter the e-scooter performances (e.g., maximum speed).
Alternatively, users can build their DRV őrmware with the ScooterHacking Custom Firmware
Toolkit [167] and the BotoX Xiaomi M365 Firmware Patcher [162]. These tools offer limited
customizability as they can only binary patch hardcoded and unsigned portions of the őrmware.

Third-party researchers provided non-peer-reviewed blog posts about the BLE traffic ex-
changed by some Xiaomi e-scooters [57, 58, 59, 168]. These resources helped in the initial
stage of our work but failed short on the technical details and e-scooter coverage. For example,
some report confuses encryption with obfuscation, giving a false sense of security. Or none of
the reports cover the session downgrade command, and the ŕag responsible for it. This work
instead provides the őrst comprehensive and sound description and security evaluation of these
protocols.

Security Analysis of Xiaomi Ecosystems Xiaomi manages multiple ecosystems, including
e-scooters, smartphones, smart home devices, and őtness trackers. In [75], the authors root a
Xiaomi vacuum cleaning robot, inspect its internals, assess data privacy, and ŕash the robot
with custom őrmware. Another previous work [34] also őnds several security issues with Xiaomi
vacuum cleaners. Several researchers [146, 41, 169, 24] highlight the limitations of the Xiaomi
application-layer protocols run over BLE by the Mi Band őtness trackers. These devices were
found vulnerable to eavesdropping, man-in-the-middle, and impersonation. Using a fuzzing
approach, X. Du et al. [20] őnd 95 vulnerabilities in the R1D Xiaomi router. Other Xiaomi
IoT devices evaluated in the academic literature are Xiaomi smart speakers [19] and Xiaomi
security cameras [35, 36].

BLE Misuse in Android Researchers identiőed multiple ŕaws in Android BLE APIs. For
example, Android saves Bluetooth keys in data structures shared among different apps [49,
50], allowing malicious apps to communicate illegitimately with paired devices. In [170], V.
Toubiana et al. present a vulnerability, available from Android 6 to Android 11, that allows
an Android app to perform a BLE scan without requiring location permission. Android ap-
plications may also misuse the BLE link-layer, allowing attackers to bypass encryption and
authentication procedures [17]. In this paper, we focus on application-layer protocols instead
and only utilize Android BLE APIs in our remote threat model.

Attacks on BLE Pairing Several attacks over the years have targeted BLE link-layer pair-
ing. In 2013, Crackle [171] broke the Just Works and Passkey modes of BLE Legacy pairing

4.10. Conclusion 65

by brute-forcing their temporary key. In 2019, the KNOB [172] attack minimized the entropy
of the encryption key in BLE Legacy pairing and Secure Connections, allowing for brute-force
attacks on that key. In 2021, Method Confusion [46] performed a man-in-the-middle attack
on BLE Secure Connections by separately pairing two devices in two different pairing modes.
Xiaomi e-scooters do not utilize BLE link-layer pairing. Instead, we reverse-engineer and attack
the proprietary Xiaomi Pairing phase (and Session) at the application-layer.

4.10 Conclusion

We present the őrst security evaluation of the proprietary security protocols employed by Xiaomi
to protect its e-scooter ecosystem since 2016. We uncover and reverse-engineer four protocols
using ad-hoc Pairing and Session mechanisms at the application-layer on top of an insecure
BLE link-layer. We describe their (lack of) security properties.

We show four novel attacks to exploit protocols at the speciőcation level requiring realistic
and low-cost attacker models (i.e., a proximity-based adversary with a laptop or remote attacker
who installed a malicious app on the victim’s smartphone). The attacks enable stealing a
software-locked and password-protected e-scooter from its owner or preventing the owner from
using the e-scooter via Mi Home. The threats pivot on MP and SD attack strategies and are
enabled by six severe root causes that we also uncover.

We open-source E-Spoofer, a toolkit implementing our attacks and offering RE utilities
for the Xiaomi e-scooter ecosystem (e.g., protocol dissectors, Ghidra scripts, and Frida hooks).
We successfully evaluate our attacks in eight relevant scenarios covering őve e-scooter BLE
subsystems and eight BLE őrmware. We empirically demonstrate that our attacks have a
critical impact on the Xiaomi ecosystem (e.g., all reversed protocols are affected by at least two
of our four attacks), amounting to millions of exploitable devices.

We propose two practical, low-cost, and backward-compliant countermeasures to stop our
attacks and release them in our toolkit. We propose Authorized Pairing Mode and Password-
Protected Authenticated Pairing to őx the MP attacks and a script to stop the SD attacks by
automatically patch the vulnerable e-scooter BLE őrmware.

66 66

Chapter 5

E-Trojans

This contribution, titled "E-Trojans: Ransomware, Tracking, DoS, and Data Leaks on
Battery-powered Embedded Systems", is currently under submission at the IEEE
International Symposium on Hardware Oriented Security and Trust (HOST 2025).

5.1 Introduction

Battery-powered embedded systems (BESs) are an integral part of our society. They include
electric cars, e-scooters, e-bikes, drones, smartphones, and laptops. Electric vehicles alone have
an estimated market size of USD 422.8 billion [173]. While, e-scooters scooters have a market of
USD 37 billion and an estimated annual growth of 10% [174, 175]. These devices carry sensitive
information and if misused can cause security and safety issues. Thus protecting BES against
(remote) attacks is crucial.

Real-world BES internals (i.e., hardware and őrmware) are complex and opaque to re-
searchers. They includes, at least, microcontrollers running closed-source őrmware, a recharge-
able battery, an electric motor, a wireless communication interface such as Bluetooth Low En-
ergy (BLE), and buses including Universal Asynchronous Receiver-Transmitter (UART) and
Inter-Integrated Circuit (I2C). Typically, a user manage a BES directly (e.g., smartphone) or
via a companion app that wirelessly connect to the BES (e..g, e-scooter).

BES internals represent an attractive attack surface which has received limited atten-
tion from the community. There are several research papers about the security of externally
reachable automotive electric control units (ECUs) [176] and controller area network (CAN)
buses [177]. The research on e-scooters focused on external attack surfaces including proprietary
protocols over BLE [178] or studying the privacy of e-scooter rental mobile apps [25]. Drone
literature highlighted issues on the physical layer [179] and communication protocols [180, 181],
such as őrmware update and image transfer. Hence, more research is needed in the area of BES
internals security (please refer to Section 5.2.1 for an extended motivation).

We őll this gap by presenting the őrst evaluation of the internal attack surface of e-scooters,
an important class of BESs. We focus on Xiaomi and its subsidiary Segway-Ninebot [182],
as they are two market leaders. Xiaomi has released seven e-scooters in the last seven years:
M365, Pro, Pro 2, 1S, Essential, Mi 3 (ES3), and Mi 4. We target the M365 and Mi 3 (ES3)
models, as they cover two e-scooter generations (2016 ś 2024) and are used daily by millions
of people [183]. These users include people owning a private e-scooter or ones using rental e-

67

68 68

scooters sold by Xiaomi, such as Bird and Lime [164, 184] We also study Mi Home, the Xiaomi
e-scooter companion app available for Android [132] and iOS [133].

We spent ten months reverse-engineering (RE) the M365 and ES3 internals. We report
our RE őndings, including the e-scooters’ hardware block diagram, őrmware protections, and
battery management details. We discover four design vulnerabilities: unsigned and unencrypted
BMS (V1, V2), and unencrypted and unauthenticated UART/I2C communication (V3, V4).
Being design ŕaws, they are effective on any Xiaomi M365 or Mi 3 e-scooters and possibly
other Xiaomi e-scooters.

Based on the identiőed ŕaws, we propose E-Trojans, four novel BES internals attacks that
violate the safety, security, privacy, and availability of the Xiaomi e-scooter ecosystem. The
attacks combine the vulnerabilities to get (remote) code execution on the BMS and achieve
impactful goals. Among them, we present a BES battery ransomware, that progressively and
irreversibly destroys the e-scooter’s battery via undervoltage, unless the victim pays a ransom.
Or a user tracking attack taking advantage of immutable e-scooter hardware internals. The
attacks are conducted remotely via a malicious app or in proximity of an e-scooter via a BLE
device. Moreover, they generalize to any BES device that has similar vulnerabilities.

We present E-Trojans, a toolkit implementing our attacks and RE őndings with open-
source software and cheap hardware. It contains a binary patcher to transform a stock battery
controller őrmware into a malicious one. It can binary patch ten new capabilities, such as
turning OFF őrmware updates and disabling safety-critical voltage protections. Our toolkit
target STM8 chips, but can be extended to other microcontrollers, including the STM32 [185]
family. We also include an Android ransom payment app, a Django backend, and a MongoDB
database as part of the battery ransomware proof of concept (PoC).

We successfully tested the E-Trojans attacks in a realistic but controlled scenario against up-
to-date M365 and ES3 e-scooters. We empirically conőrm they achieve their goals. For instance,
the undervoltage battery ransomware permanently degrades the M365 battery’s autonomy by
50% in three hours and the tracking attack advertises over BLE a reliable user őngerprint
and leaks sensitive e-scooter data. To őx our attacks we propose four backward-compliant and
low-cost countermeasures. Our őxes guarantee the conődentiality and integrity of the battery
controller őrmware via digital signatures, and protect the UART bus with a secure channel
protocol and rate limiting.

We summarize our contributions as follows:

• We present the őrst security and privacy evaluation of Xiaomi e-scooters internals. We
RE Xiaomi M365 and ES3 e-scooters architecture and uncover four critical design vul-
nerabilities, including unsigned battery controller őrmware enabling to (remotely) exploit
millions of Xiaomi e-scooters.

• We develop four novel attacks exploitable remotely via a malicious application or in
proximity via BLE. The attacks include battery ransomware via undervoltage and user
tracking via e-scooter internals.

• We release E-Trojans, implementing our attacks with open-source software and cheap
hardware. The toolkit is usable to further RE the opaque and proprietary Xiaomi e-
scooter ecosystem and to target other BESs. We will release it after responsible disclosure.

• We conőrm that our four attacks are practical and stealthy by conducting them on M365
and ES3. We propose four effective and legacy-compliant countermeasures to őx attacks.

5.2. Motivation, RE, and Vulnerabilities 69

Disclosure, availability, and ethics In November 2023, we responsibly disclosed our
őndings and PoCs to Xiaomi [148]. Xiaomi acknowledged the report and closed it as informative
in March 2024. In April 2024, we contacted ST Microelectronics (ST) and Texas Instruments
(TI), the manufacturers of the battery management chips we attack. ST responded that our
attacks do not raise any security concern as they are physical. We disagree with their assessment
as our attacks are conducted in wireless proximity or even remotely. TI has not responded. We
will release our toolkit after the publication of this paper. We conducted our experiments in
an ethical way: we tested our own e-scooters and smartphones in a laboratory and minimized
any safety risk, especially during the undervoltage and overvoltage experiments.

5.2 Motivation, RE, and Vulnerabilities

5.2.1 Motivation

The BES internal attack surface has received limited attention from academic researchers. In
particular, the security of the hardware and őrmware used to manage and conőgure BES bat-
teries remains largely unexplored. Evaluating these attack surfaces poses signiőcant challenges
due to the proprietary and vendor-speciőc protocols and designs that govern them. BES in-
ternals are often undocumented and closed-source, creating substantial barriers for security
experts, who must resort to reverse-engineering to analyze them.

Only a few works addressed this research area, such as those exploring a rogue őrmware
update through physical access on a Tesla BMS [186] or discussing theoretical vulnerabilities in
MacBook laptop batteries [187]. However, the internal attack surface extends beyond the BMS
and batteries. It also includes other subsystems and components, such as the radio, motor,
battery monitor, and communication buses. Moreover, there is an abundance of different BES
devices outside of electric cars and laptops, for example electric scooters and bikes, mobile
phones, drones, and wireless headphones. Compromising these devices can pose serious safety
risks to users, including őre hazards and the release of toxic gas.

Given the current literature’s narrow focus on a limited subset of BES devices and insuffi-
cient coverage of the internal attack surface, we highlight a pressing need for more research on
offensive and defensive techniques, as well as tools speciőcally designed for the BES security.
In this work, we őll this research gap by studying the security of e-scooters.

5.2.2 Prior RE on Xiaomi E-Scooters

We now introduce what was known about Xiaomi e-scooters internals and what we discovered
via RE, including four architectural internal vulnerabilities.

Block diagram As shown in Figure 5.1, a Xiaomi e-scooter is composed of three un-
documented and closed-source systems: Bluetooth Low Energy (BTS), Driving (DRV), and
Battery Management (BMS). BTS provides low-power and reliable wireless communication,
DRV controls the electric motor, and BMS manages the battery. Each system has a dedicated
System-On-Chip (SoC) and a closed-source őrmware. The systems communicate using a pro-
prietary protocol over a Universal Asynchronous Receiver-Transmitter (UART) bus. UART
provides a serial, asynchronous, and full-duplex digital communication channel with two wires
(Tx, Rx), typically provided as a SoC hardware peripheral.

70 70

BLE
BTS Board

Remote
Attacker

DRV Board

BMS Board

UART

BES

Batt Charger

BMON

I2C

BCTRL

Proximity
Attacker

UARTUART BLE

V3 V4

V1
V2

Figure 5.1: E-scooter block diagram and attacker models. The green rectangle shows the e-
scooter (BES) internals, such as the BMS, DRV, BTS, and UART communication bus. The
blue rectangle (BMS) shows the components of the BMS board, i.e., a BCTRL and a BMON
connected via I2C. We consider a proximity-based adversary in BLE range of the e-scooter and
a remote adversary who installed a rogue app on the victim smartphone.

Mi Home The user interacts with a Xiaomi e-scooter via the Mi Home application for
Android [132] or iOS [133]. The e-scooter and the app communicate over BLE, using a custom
application-layer protocol. There is no way to (directly) talk with the DRV or the BMS, outside
from physical access (i.e., through a JTAG or SWIM debugging port).

Device discovery involves BLE advertisement packets from the e-scooter containing its name
and BLE address, which the app receives by scanning the BLE spectrum. To connect and
communicate with the e-scooter, the user has to log in with their Xiaomi account on Mi Home
and pair the app and the e-scooter using the app UI. Then, the paired devices connect whenever
they are in BLE range without requiring user interaction. Mi Home offers useful features for
controlling the e-scooter. For example, it allows to set a password to lock the e-scooter, perform
over-the-air (OTA) őrmware updates, and monitor the e-scooter’s battery status.

Prior RE findings There is limited information about hte internals of Xiaomi e-scooters.
In [178], the authors RE the Xiaomi proprietary BLE pairing and session establishment pro-
tocols and exploit them with protocol-level attacks (i.e., malicious pairing and session down-
grade). Research on the Xiaomi 1S e-scooter [188] reports that Xiaomi encrypts the őrmware
using TEA with a leaked encryption key [189] and signs it with ECDSA. Firmware binaries in-
clude a certiőcate chain with a public key for signature veriőcation. The BTS is responsible for
collecting new őrmware from Mi Home and, if needed, decrypting it, verifying its signature, and
distributing it to the DRV or the BMS. The developers of the ScooterHacking Utility Android
app [190, 191] reversed the Xiaomi őrmware update protocol to enable ŕashing of the modded
DRV őrmware. Details about the BTS, DRV, and BMS őrmware and their communications
are still lacking.

5.2.3 New Xiaomi E-Scooters RE Details

Starting from the details presented in Section 5.2.2, we RE the internals of the M365 [192] and
Mi 3 (ES3) [193] Xiaomi e-scooters. Next, we summarize our RE őndings.

5.2. Motivation, RE, and Vulnerabilities 71

Figure 5.2: Disassembled M365 (left) and ES3 (right). We color code the boxes to visualize the
DRV (orange), the BMS (blue), and the soldered ST-Link wires (fuchsia).

Figure 5.3: M365 BMS: a BCTRL STM8 SoC (left) and a BMON BQ73930 SoC (right).

Internals We disassembled the M365 and ES3 to identify their SoCs and internal connec-
tions. As shown in Figure 5.2, we tore the lower deck of the e-scooter to access the DRV, BMS,
and battery pack. We unscrewed the deck, removed the plastic wrapping and the protective
polystyrene from the battery, and pulled out the BMS board. As shown in Figure 5.3, the BMS
includes a battery controller (BCTRL) and a battery monitor (BMON), located on opposite
sides of the BMS board.

The BCTRL is a STM8L151K6 chip [194] from ST with OTA őrmware update capabili-
ties [195]. We discovered that the BCTRL has no hardware debug protection. Therefore, we
identiőed the BCTRL’s VDD, SWIM, GND, and RST pins and soldered them to a ST-Link
v2 programmer/debugger for őrmware extraction and debugging. The BMON is a BQ76930
chip [196] from TI and is conőgurable by the BCTRL. Unlike the BCTRL, the BMON does
not support őrmware updates [197].

The BCTRL and BMON communicate using a proprietary protocol over I2C, a synchronous
serial digital protocol running on two wires (SDA and SCL) and featuring a higher bandwidth
than UART. The BCTRL (master) has control over the BMON (slave). We discovered that
the proprietary I2C protocol lacks encryption and authentication.

Firmware signing and encryption We inspected BMS, BTS, and DRV őrmware gathered
from Mi Home, the Internet, and the JTAG/SWIM debugging interfaces. Our collection ranges
from M365 őrmware released in 2019 up to the most recent őrmware for the ES3 available in
2024. The M365 őrmware is unencrypted and unsigned. The ES3 BTS őrmware is signed with
ECDSA since v1.5.2, the DRV őrmware is signed with ECDSA and encrypted with TEA since
v0.1.7, and the BCTRL őrmware is unprotected.

Battery We RE the relevant M365 and ES3 battery details by physically inspecting them

72 72

Table 5.1: Battery and BMS details. OVT: overvoltage threshold, UVT: undervoltage thresh-
old, LBD: load balancing delta. Preőx d means dangerous, and preőx c means critical.

M365 ES3

Battery

Manuf. Ninebot Ninebot

Type Li-Ion 18650 Li-Ion 18650

Chem. 10INR19/66-3 10INR19/66-3

Cells 30 (10x3) 30 (10x3)

Capacity 7.80Ah/300Wh 7.65Ah/275Wh

Voltage 42V to 36V 42V to 36V

BMS

BCTRL STM8L151K6 STM8L151K6

BMON BQ76930 BQ76930

dOVT 4200mV 4200mV

cOVT 4700mV 4700mV

dUVT 2750mV 2750mV

cUVT 1580mV 1580mV

dLBD 30mV 30mV

cLBD 800mV 800mV

and reviewing public documentation. As summarized in Table 5.1, the e-scooters have similar
lithium-ion (Li-Ion INR) batteries produced by Segway-Ninebot. The battery contains 30 cells
conőgured in 10 series of 3 parallel cells. The M365 battery has more capacity than the ES3
one (i.e., 7.80Ah/300Wh vs. 7.65Ah/275Wh), but supports the same maximum and minimum
voltage thresholds (i.e., 42V at 100% and 36V at 0%) and cell voltage (i.e., between 4.2V and
3.6V).

BMS We RE the M365 and ES3 BMS by studying the unencrypted BCTRL őrmware
and the BMON datasheet. The BMON periodically checks the status of the battery and
relays data (e.g., voltage and temperature) to the BCTRL. The BCTRL manages the battery
based on the data received from the BMON and also initializes the conőguration parameters
of the BMON, including the undervoltage and overvoltage battery protection thresholds. The
undervoltage threshold is set between 1580mV and 2750mV, and the overvoltage threshold is
between 4200mV and 4700mV. We deőne these intervals as critical and dangerous undervoltage
(cUVT = 1580mV, dUVT = 2750mV) and overvoltage (dOVT = 4200mV, cOVT = 4700mV)
intervals. If a battery cell voltage exceeds the established threshold, the BCTRL raises an
internal error and powers OFF the BTS and DRV, shutting down the e-scooter.

Load balancing The BMS has a proprietary load balancing mechanism that is essential
for the battery’s health, as imbalanced cells can reach a state of undervoltage or overvoltage.
These two conditions can severely and irreversibly damage the battery and cause őre hazards
and explosions [198]. Load balancing transfers voltage among battery cells, aiming for a state
where all battery cells possess the same voltage. Load balancing occurs when the device is
charging or in sleep mode (i.e., e-scooter is powered OFF), never when the e-scooter is running
in the streets. According to our experiments, imbalanced cells exceeding the critical load

5.2. Motivation, RE, and Vulnerabilities 73

Algorithm 1 BCTRL initialization and main loop logic.

1: initBCTRL(serial, fwver, dLBD, cLBD)
2: initBMON(dUVT, cUVT, dOVT, cOVT)
3:

4: loop

5: battcells = readBMON(volt, amp)
6: battlevel = compBattlevel(battcells)
7: if battcells.deltaVolt >= cLBD then

8: sleepMode(True)
9: loadBalancing(True)

10: end if

11: if battcells.minCellVolt < cUVT then

12: sleepMode(True)
13: end if

14: if battcells.maxCellVolt > cOVT then

15: sleepMode(True)
16: end if

17:

18: while (sleepMode and !readWakeUpFromUART()) do

19: if battcells.deltaVolt >= dLBD then

20: loadBalancing(True)
21: end if

22: end while

23: readFromUART()
24: writeToUART()
25: end loop

balancing delta (i.e., cLBD = 800mV) cause the BMS to raise an error and power OFF the
BTS and DRV.

BCTRL firmware initialization We RE the BCTRL őrmware initialization and the main
loop by decompiling its stripped binary and debugging its execution with JTAG and gdb. As
shown in Algorithm 1, during initialization the BCTRL (1) loads its conőguration parameters,
including serial number, őrmware version, and load balancing deltas; and (2) conőgures the
BMON over I2C by writing into speciőc BMON registers, including setting the undervoltage
and overvoltage thresholds.

BCTRL firmware main loop Then, the őrmware enters a main loop where it: (5) reads
the battery cells’ voltage and current values from special BMON read-only registers; (6) com-
putes the current battery level (percentage); (7) checks voltage levels against cLBD, (9) enables
load balancing if needed, and (11) checks undervoltage against cUVT and (14) overvoltage
against cOVT. If a critical undervoltage, overvoltage, or balancing check fails, it sends error
messages that power OFF the BTS and DRV, and (18) enters sleep mode and performs load
balancing. During the main loop, the BCTRL (23) reads from and (24) writes to the UART
bus to communicate with the BTS and DRV.

UART bus We RE the proprietary UART protocol used by BCTRL, DRV, and BTS. The
BCTRL utilizes a USART1 peripheral mapped to RAM (address 0x5230). A UART packet
consists of several őelds, including the sender and receiver (e.g., 0x22 corresponds to BCTRL),

74 74

packet type (e.g., read or write), command to execute, payload, and CRC.
I2C bus We RE the proprietary I2C protocol used by BCTRL and BMON. The BCTRL

can directly read and write the BMON registers via I2C. For example, we can set dUVT by
writing into UV_TRIP or read the voltage of speciőc battery cells via VC1, . . . , VC10.

DRV firmware We RE the relevant portions of the DRV őrmware. It runs on an STM3
2F103CxT6 SoC and measures the motor voltage, storing it in a RAM register (offset 0x47).
The DRV performs a voltage safety check independent of the BCTRL. If the motor voltage hits
cUVT, the DRV raises “Error 24 - Supply Voltage out of rangež and powers OFF the e-scooter
after ten seconds.

5.2.4 RE E-Scooter Vulnerabilities

During our RE experiments, we discovered four architectural vulnerabilities affecting the safety,
security, availability, and privacy of the Xiaomi e-scooter ecosystem.

V1: BCTRL firmware is unencrypted An attacker can retrieve the (stripped) BCTRL
őrmware in plaintext (e.g., during a őrmware update) and RE it.

V2: BCTRL firmware is unsigned An attacker can modify the őrmware of the BCTRL,
including its safety thresholds and how it initializes the BMON, and ŕash the modiőed
BCTRL on the victim’s e-scooter.

V3: UART bus lacks integrity protection, encryption, and authentication An at-
tacker with access to the UART bus (e.g., via a malicious BCTRL őrmware) can eavesdrop
on all UART messages, replay or forge them, and impersonate or MitM the DRV and
BTS.

V4: UART bus lacks protection against DoS An attacker with access to the UART bus
can DoS internal (BMS, BTS, and DRV) and external (Mi Home and battery charger)
components.

5.3 Threat Model

Before presenting the attacks, we detail our system and attacker models (i.e., our threat model).
These models are map to real-world Xiaomi e-scooters as they are based on the RE őndings
and vulnerabilities described in Section 6.2.

5.3.1 System Model

Our system model follows the block diagram in Figure 5.1. It includes a user who owns a
Xiaomi e-scooter (BES) and a smartphone running Mi Home for Android or iOS. They paired
Mi Home with the e-scooter and locked it with a password. The user runs the latest version
of the BTS, DRV, BCTRL őrmware, and Mi Home and charges the e-scooter with the original
Xiaomi charger.

5.4. Attacks 75

5.3.2 Attacker Model

We consider two protocol-level attacker models: (i) proximity-based attacker who interact with
the e-scooter wirelessly over BLE (e.g., using a laptop in BLE range with the e-scooter); (ii)
remote attacker who installs a rogue malicious app on the victim’s smartphone and exploits
the e-scooter remotely via said app. Implementation-level attacks including side channel and
fault injection are out of scope.

Goals The attacker wants to violate the safety, security, privacy, and availability of the
e-scooter by exploiting V1, V2, V3, and V4 (i.e., internals architectural vulnerabilities). For
instance, the adversary could try to extort money from the e-scooter driver via a ransomware,
or follow their movements via a tracking attack. These two goals are novel in the domain of
e-scooters and they result in large scale and critical impact as they target the whole Xiaomi
e-scooter ecosystem (e.g., millions of users and devices).

Capabilities The attacker’s knowledge covers the known details (Section 5.2.2) and the
uncovered details and vulnerabilities (Sections 5.2.3 and 5.2.4). The attacker can reuse őndings
and tools from prior works like [178, 190, 188]. For example, they can authenticate to e-scooters
via BLE using the E-Spoofer toolkit [199]. The attacker cannot physically access the victim’s
e-scooter, charger, and smartphone.

5.4 Attacks

We now present E-Trojans, four novel attacks on the internals of Xiaomi e-scooters.

5.4.1 Attacks Initialization

Each attack starts by ŕashing a malicious BCTRL őrmware on the victim’s e-scooter and turn-
ing OFF legitimate őrmware updates (only on the BCTRL). The malicious őrmware contains
custom code enabling malicious functionalities to conduct the attacks described next.

5.4.2 Undervoltage Battery Ransomware (UBR)

UBR is a novel undervoltage ransomware that progressively and irreversibly damages the e-
scooter’s battery, until the victim pays a ransom.The damage is caused by ŕashing a malicious
őrmware that keeps the battery cell voltages below 2750mV or 1580mV (i.e., battery level
below 0%). As a result, the e-scooter’s battery longevity is reduced [200, 201] and, by keeping
the battery undervolted and imbalanced, the attacker can cause short circuits and thermal
runaway [202]. In the optimal scenario, the attacker undervolts a battery cell as low as 0V and
quickly destroys it. We highlight that our attack can be used to damage the battery without
asking for a ransom. Replacing a damaged battery can cost up to USD 139 [203]. UBR has
őve steps, also shown in Algorithm 2:

1. The attacker ŕashes a malicious BCTRL őrmware, that contains the ransomware, using
the remote and proximity-based techniques presented in [178]. The ransomware remains
stealthy, letting the user drive as usual. The user rides the e-scooter, discharging it until
the battery is low. Although UBR does not require a speciőc battery level, batteries

76 76

closer to 0% are faster to undervolt. Then, the user charges the battery using the stock
charger.

2. UBR enters its initialization phase (őrst őve lines of Algorithm 2), where it: (1) disables
undervoltage protections by increasing dUVT to 1580mV and bypassing cUVT safety
checks; (2) disables load balancing by bypassing the dLBD and cLBD safety checks; (3)
disables battery charging by setting the canCharge ŕag to False; (4) activates the anti-
theft software lock to prevent the e-scooter from becoming inactive and automatically
turning OFF; (5) enforces faster discharging by disabling sleep mode and, optionally,
spooőng a UART command that turns ON the headlight and taillight.

3. UBR enters its main loop, where it (8) reads the battery cells’ voltages from the BMON,
and (9) checks for dead cells. Then, for each of the ten series of cells, it checks (12) if any
cell is below cUVT or (14) below dUVT. Since undervoltage and balancing protections are
OFF, the battery discharges below the undervoltage threshold and deteriorates. When a
programmable condition is met (e.g., a cell reaches cUVT), the ransomware (18) reveals
itself. The e-scooter (20) reboots and starts broadcasting over BLE the download link to
the ransom payment app. The link appears in a shortened form (e.g., t.ly/AaBbCc) due
to length restrictions on the e-scooter BLE name.

4. The victim installs the ransom app and can monitor the degradation of the battery. They
stop the attack by transferring money to the attacker’s crypto wallet. Once the app’s
backend conőrms the payment (in cryptocurrency, making it difficult to trace), it reveals
to the app’s frontend a secret unlock code, unique to each infected device. Then, the app
sends a special BLE packet, with the unlock code, that enables őrmware updates on the
BCTRL.

5. The ransom app guides the victim through the recovery procedure. The app ŕashes on
the BCTRL a recovery őrmware that allows charging even when the battery is critically
undervolted. The stock BCTRL őrmware does not allow this for safety reasons (e.g., risk
of short circuit). As soon as the battery is not critically undervolted anymore (i.e., voltage
is higher than cUVT), the app allows the user to ŕash the stock BCTRL őrmware.

5.4.3 User Tracking via Internals (UTI)

UTI is a new user tracking attack that tracks an e-scooter user and exőltrates their private data.
As shown in Figure 5.4, UTI creates a reliable user őngerprint and leaks sensitive e-scooter data.
First, the malicious BCTRL őrmware retrieves the 14-byte DRV serial number (Read DRVId)
by impersonating the BTS and spooőng a read to the DRV. Second, UTI builds a Fingerprint

from the last 8 bytes of DRVId representing the year, month, and day of production, the product
revision, and the unit identiőer (i.e., nth unit produced that day). UTI optionally retrieves via
UART or I2C extra private data from the DRV, BMON, and BTS, like the mileage and battery
level (Read BattLevel and Read Mileage). Then, UTI appends the data to the őngerprint and
creates a 14-byte tracking message (Track). It sends a command to the BTS while spooőng the
DRV to set the tracking message as the BLE name (EscName = Track). The e-scooter reboots
and advertises its new name (Track) over BLE.

5.4. Attacks 77

Algorithm 2 UBR undervoltage ransomware logic.

1: disableUndervoltageChecks(cUVT, dUVT)
2: disableBalancing(cLBD, dLBD)
3: disableCharging() ▷ Sets canCharge to False
4: enableLock() ▷ Keeps the e-scooter ON
5: enableFastDischarge() ▷ Battery discharges faster
6:

7: loop

8: battcells = readBMON(volt, amp)
9: deadcells = checkCellHealth(battcells)

10: log(deadcells)
11: for cell in battcells do

12: if cell < cUVT then ▷ 1580mV
13: log(cell, cUVT)
14: else if cell < dUVT then ▷ 2750mV
15: log(cell, dUVT)
16: end if

17: end for

18: if notifyUser then

19: log(notifyUser)
20: advertiseRansomOverBLE(url) ▷ Reboot
21: end if

22: end loop

The adversary uses Track to identify the user via a proximity-based BLE sniffer or remotely
via a malicious app. UTI is stealthy as the Mi Home UI never shows the e-scooter name and
changing the e-scooter name does not disconnect or unpair the e-scooter from Mi Home, that
only checks the BLE address. Moreover, since the őngerprint persists through factory resets
and őrmware updates, UTI bypasses privacy defenses like BLE address randomization.

5.4.4 Denial of E-Scooter Services (DES)

DES is a collection of seven DoS attacks, including an original denial-of-sleep (DoSL) which is
typically used in sensor networks [204]. DES impacts the availability of internal components (i.e,
BTS, DRV, BCTRL, and BMON), internal buses (i.e., UART and I2C), e-scooter functionalities
(i.e., battery charging, error handling, and sleep mode), external components (i.e., Mi Home
and the battery charger), or even the entire e-scooter. These attacks are particularly effective
as they DoS components from the inside and cannot be őxed by the victim from the outside
(e.g., via Mi Home or by rebooting). We summarize the seven DES attacks.

DES1 drops all UART and I2C packets destined for the BCTRL by altering the őrmware
code for internal bus communications. DES2 forces a supplier-only mode (SHIP mode) that
disables the BMON by issuing a special unauthenticated I2C command. DES3 ŕoods the
UART bus with dummy packets by altering the őrmware code for the UART transmitter
function. DES4 periodically issues lock or reset commands to the DRV by impersonating the
BTS and forging UART packets. As a result, the e-scooter is stuck in a state where the motor is
immediately locked whenever the user tries to unlock it or in an inőnite loop of power ON and

78 78

BTS Mal. BCTRL DRV

Read BattId [14 B]

Read DRVId

DRVId [14 B]

Fingerprint [8 B] =

BattId[10:14] || DRVId[10:14]

Read BattLevel [2 B]

Read Mileage

Mileage [14 B]

Track [14 B] = Fingerprint

|| BattLevel || Mileage

EscName = Track

Reboots

Advertises EscName

Figure 5.4: User Tracking via Internals (UTI). Mal. BCTRL (the attacker) builds a 8-byte
e-scooter őngerprint (Fingerprint) from the electric motor serial number. Then, they append
other sensitive data like mileage and battery level to the őngerprint, creating a 14-byte tracking
message (Track). Finally, they enforce as BLE name change to Track, allowing anyone to track
the user and read their private data in real-time.

OFF. DES5 disables battery charging by setting the canCharge ŕag in the BCTRL EEPROM
to False. DES6 exploits the error handling routines by impersonating BTS, DRV, or BMON
and raising fake errors that put the e-scooter in an irregular state (e.g., alarm noises, locked
motor, unresponsiveness, and forced power OFF). DES7 is a denial-of-sleep attack that keeps
the BCTRL in a resource-intensive mode, instead of letting it switch to sleep mode, by altering
the BCTRL main loop (described in Algorithm 1).

5.4.5 Password Leak and Recovery (PLR)

PLR enables remote and offline brute forcing of the e-scooter lock/unlock password. It retrieves
the password’s SHA256 hash from the DRV by spooőng the BTS, sets the e-scooter BLE name
equal to the hash, and exőltrates it via BLE advertising (similar to UTI). However, the 14-
byte long e-scooter name is too short to őt the 32-byte SHA256 hash of the password. To
solve this, PLR cycles through three e-scooter names containing parts of the hash, causing a
reboot each time the BLE advertisement changes, noticeable by the user. The password is
brute-forceable, being a numeric sequence of exactly 6 digits (e.g., 123456), with a search space
of 106 [205]. Hence, the attacker can use known techniques to recover the password offline,
including password lists and rainbow tables.

5.5. Implementation 79

Table 5.2: Mapping between the four attacks and the four vulnerabilities. All attacks exploit
V1, V2, and V3. Only DES exploits V4.

Attack V1 V2 V3 V4

Undervoltage Battery Ransomware (UBR) ✓ ✓ ✓ ✗

User Tracking via Internals (UTI) ✓ ✓ ✓ ✗

Denial of E-Scooter Services (DES) ✓ ✓ ✓ ✓

Password Leak and Recovery (PLR) ✓ ✓ ✓ ✗

5.4.6 Mapping Attacks and Vulnerabilities

Table 5.2 shows the mapping between the discussed four attacks and four vulnerabilities. All
attacks take advantage of unencrypted BCTRL őrmware (V1) as they implement functionalities
we RE from them (e.g., send valid UART messages from the BCTRL). Moreover, all attacks
exploit the unsigned BCTRL őrmware (V2) to push malicious őrmware on the BCTRL. All
attacks also abuse the unprotected UART bus (V3) as they utilize arbitrary UART messages
without properly encrypting and integrity protecting them and without needing to authenticate
on the bus. Finally, DES exploits the lack of DoS protection on the UART bus (V4) to DoS
internal and external e-scooter components.

5.5 Implementation

We now present E-Trojans, a toolkit that implements our RE őndings and the four attacks
described in Section 5.4. For space reasons, we cannot describe the full implementation. Our
toolkit is extensible to other BESs from Xiaomi or other vendors employing a similar internal
architecture and chips.

5.5.1 BCTRL Firmware Patching and Capabilities

Our Python3 script (payload-patcher.py) binary patches a BCTRL using STM8 assembly
code. During this process, the user can include in the patch up to ten new capabilities un-
available in the stock BCTRL őrmware. We devised these capabilities thanks to our extensive
RE of the BCTRL őrmware. The script writes STM8 assembly code in unused parts of the
őrmware and then updates the őrmware CRC. The resulting binary can be ŕashed over BLE
on the BCTRL of a M365 or ES3 e-scooter. We developed ten capabilities that we describe
next.

DFU: Disable Firmware Updates disables BCTRL őrmware updates from Mi Home
or third-party apps. We introduce a new canFwUpdate ŕag (address 0x04CB), set to False by
default. We rewrite the HandleUART() function (address 0x94C5) to accept or reject őrmware
update packets (starting with 0x07, 0x08, 0x09, or 0x0A), depending on canFwUpdate. This
ŕag is set to True only when the BCTRL receives our new unlock packet (starting with 0xEE
and followed by the correct unlock code). For example, in UBR the user retrieves the unique
unlock code by paying a ransom and utilizes it to enable őrmware updates on the BCTRL.

MUB: Manage UART Bus sends arbitrary packets on UART. Due to V3, MUB can
craft arbitrary UART messages and impersonate internal components (BTS, DRV, BCTRL,

80 80

and BMON) by altering the sender őeld. We rewrite the sendUART() function (address 0xB06C)
to send our forged packets, stored from address 0xD3 onward. For example, Password Leak and
Recovery uses MUB to spoof the BTS and retrieve the SHA256 hash of the e-scooter password
from the DRV.

MIB: Manage I2C Bus sends arbitrary packets on I2C. We rewrite the writeToI2C()

function (address 0x90BE) to send our forged packets, whose data is stored in register A and tar-
get BMON register in register X. This includes special I2C commands such as the one regressing
the BMON into SHIP mode (used in DES7).

DDT: Disable Dangerous Thresholds alters the default BMON undervoltage and over-
voltage thresholds. At BCTRL boot, DDT initializes the BMON UV_TRIP (address 0x923D)
and OV_TRIP (address 0x923D) registers to 1580mV and 4700mV, their lowest and highest val-
ues, instead of the default ones. DDT enables UBR to reach voltages below the undervoltage
threshold (i.e., 2750mV) recommended by Xiaomi, resulting in permanent battery damage and
increased safety risks.

DCT: Disable Critical Thresholds bypasses battery-related errors, including undervolt-
age and overvoltage. We rewrite the BCTRL error handler to replace the critical error check
(address 0xB5A9) with NOPs. For example, we emply DCT in DES5 to raise fake errors, such
as Error 23 - Internal BMS not activated and Error 24 - Supply Voltage out of range, that put
the e-scooter in an abnormal state.

DLB: Disable Load Balancing prevents load balancing of the battery cells. We rewrite
the manageLoadBalancing() function (address 0xA81A) to unset (with MOV) the three CELLBAL
registers that regulate balancing. As a result, battery cells become increasingly more imbalanced
over time. DLB enables UBR to create one extremely imbalanced cell that quickly dies, severely
impacting the battery’s health.

DBC: Disable Battery Charging disallows battery charging. We rewrite the controlC

harge() (address 0x945C) function to always read canCharge ŕag (address 0x42C) as False,
even if the charger is connected. For instance, without DBC, DES5 would not be able to DoS
the battery charger and prevent the battery from charging.

FBD: Fast Battery Discharge accelerates battery consumption. We rewrite the BC-
TRL main loop to permanently assign False to the sleepMode variable (address 0x400), for-
ever disabling sleep mode and forcing the BCTRL to stay in a more resource-intensive mode.
Optionally, FBD can also turn ON the e-scooter’s headlight and taillight to further increase
battery consumption. UBR uses FBD to accelerate battery depletion and reach the critical
undervoltage threshold faster.

CBA: Change BLE Advertising changes the e-scooter’s BLE advertisements, including
its BLE device name. CBA sends an arbitrary e-scooter advertising change packet to the BTS,
also causing a reboot. This packet is composed of a destination őeld (0x20 to indicate BTS), an
operation type őeld (0x50 to indicate a change in BLE advertising), and a payload containing
the new advertisement. In UTI, the attacker tracks the user and exőltrates their private data
by changing the e-scooter’s BLE advertisements with CBA.

SCV: Spoof Cell Voltage spoofs voltage measurements of battery cells. We rewrite the
BCTRL main loop to ignore new BMON measurements and only read the spoofed values we
inject in register X. SCV sends the spoofed voltages to the BTS, which are displayed to the user
via the Mi Home UI. By displaying fake cell voltage measurements instead of real ones, SCV
enables UBR to conceal an undervolted battery from users that check the battery status via
Mi Home.

5.5. Implementation 81

Table 5.3: Mapping between the ten capabilities and the four attacks. All capabilities enable
one or more attacks. All ten capabilities are required to deploy UBR.

Capability UBR UTI DES PLR

Disable Firmware Updates (DFU) ✓ ✓ ✓ ✓

Manage UART Bus (MUB) ✓ ✓ ✓ ✓

Manage I2C Bus (MIB) ✓ ✓ ✓ ✗

Disable Dangerous Thresh. (DDT) ✓ ✗ ✗ ✗

Disable Critical Thresh. (DCT) ✓ ✗ ✗ ✗

Disable Load Balancing (DLB) ✓ ✗ ✗ ✗

Disable Battery Charging (DBC) ✓ ✗ ✓ ✗

Fast Battery Discharge (FBD) ✓ ✗ ✓ ✗

Change BLE Advertising (CBA) ✓ ✓ ✗ ✓

Spoof Cell Voltage (SCV) ✓ ✗ ✗ ✗

Capability usage Table 5.3 shows how we combine the ten capabilities to perform UBR,
UTI, DES, and PLR. We require DFU in all attacks to prevent the user to replace our malicious
BCTRL via BLE őrmware updates. We integrate MUB and MIB in all attacks (except MIB
in PLR), as they require control over the internal UART and I2C buses. We deploy DDT,
DCT, DLB, and SCV in UBR, as they affect the safety of the battery (i.e., undervoltage). We
use DBC in UBR and DES5 as, alongside the e-scooter, they also target the battery charger.
Similarly, we use FBD in UBR and DES7, as they try to accelerate battery consumption by
triggering resource-intensive tasks. For Undervoltage Battery Ransomware, UTI, and PLR, we
rely on CBA to exőltrate data from the e-scooter. UBR requires all capabilities.

5.5.2 UBR App and Backend

As part of UBR, we developed an Android app and a Django and MongoDB backend to test
our ransomware in a controlled but realistic environment. These components cooperate to gen-
erate unique ransomware unlock codes, manage cryptocurrency payments, and handle BCTRL
őrmware recovery. Next, we provide some related technical details.

Android App We developed ScooterToolkit, an Android app given to the ransomware
victim to pay the ransom in cryptocurrency and rebalance the battery. We wrote the code in
Kotlin and we require Bluetooth, Location, and Internet permissions. The app initiates the
BCTRL recovery when the back-end returns the unlock code that enables őrmware updates
(i.e., the user paid the ransom). Under normal battery conditions, the app ŕashes the stock
BCTRL őrmware. If the voltage is lower than 1580mV, a special recovery őrmware is ŕashed
instead.

Django and MongoDB Backend Using Django, we developed a RESTful web service
that exposes two APIs to the ransom app, through the API view class. The simulatePayment()
API simulates a payment made by the user, setting the payment status to Paid. The unloc

kFirmware(serial) API requires the e-scooter’s motor serial as its input and, if the ransom
has been paid, returns their unlock code. We also created a model serializer that converts e-
scooter objects into JSON to interface with our MongoDB database. This database stores the

82 82

Table 5.4: Evaluation results. All four attacks are effective on the M365 and ES3. ✓1: danger-
ous, but not critical, undervoltage.

Attack M365 ES3

Undervoltage Battery Ransomware (UBR) ✓ ✓1

User Tracking via Internals (UTI) ✓ ✓

Denial of E-Scooter Services (DES) ✓ ✓

Password Leak and Recovery (PLR) ✓ ✓

e-scooter’s motor serial and model, 128-bit ransomware unlock code, and the payment status
for each device infected by UBR.

5.6 Evaluation

We evaluated our attacks by using the E-Trojans toolkit (described in Section 6.6) on Xiaomi
M365 and ES3 e-scooters with up-to-date BTS, DRV, and BCTRL őrmware.

5.6.1 Setup

We ran our payload-patcher.py script to generate the malicious BMS őrmware. We select one
of our four attacks in the interactive shell of the script and the target e-scooter model. Then,
we set up each attack by connecting to the e-scooter, gaining authorized access (i.e., through
malicious pairing or session downgrade) and performing a rogue BCTRL őrmware update.

We tested proximity-based attacks on a Dell Inspiron 15 3000 running a Linux-based OS,
performing the attack setup from the BLE range. We tested remote attacks on a Realme GT
(Android 13) and a OnePlus 3 (Android 9), performing the attack setup remotely from the
ScooterToolkit Android app installed on the victim’s smartphone.

Regarding UBR, we monitored the voltage and stopped the experiment upon reaching crit-
ical undervoltage (for safety reasons), or after ten hours. We tested the feasibility of retrieving
the six-digit e-scooter password when deploying PLR. We considered the seven most common
six-digit patterns [206], and randomly generated seventy Xiaomi-compliant passwords (ten for
each pattern). Then, we implemented a rainbow table [207] and populated it with 3 million
randomly generated Xiaomi-compliant passwords, simulating the most basic attacker setup.

5.6.2 Results

As shown in Table 5.4, we successfully conducted our four attacks on the M365 and the ES3.
Our experimental results represent a lower bound as other e-scooters and BESs might be affected
by similar vulnerabilities. For instance, the Xiaomi Pro e-scooter runs BCTRL v1.2.6 (same as
the M365), and the 1S, Essential, and Pro 2 run BCTRL v1.4.1 (same as the ES3) [208]. Next,
we provide attack-speciőc insights.

UBR irreversibly reduced the battery autonomy of the M365 by approximately 50% in three
hours and thirty minutes. We forced a critical undervoltage state and stopped the experiment
when some cells reached 0V (i.e., the most critical undervoltage condition). This group of cells

5.7. Countermeasures 83

now has limited charging capacity (i.e., 75%) and discharges approximately four times faster
than average. Similarly, we reduced the battery autonomy of the ES3 by approximately 10%
in ten hours, spending six of them depleting the battery to 0% (three hours for the M365). We
could not reach a critical undervoltage due to the DRV independently measuring an abnormal
voltage and raising Error 24 - Supply Voltage out of range. For this reason, the ES3 is better
protected than the M365 against UBR, even though it still sustained signiőcant damage. We
also conőrmed that our recovery BCTRL őrmware rebalances undervolted batteries in őve
minutes.

UTI successfully tracks users and exőltrates their private data over BLE. By sniffing BLE
advertisements and looking for speciőc őngerprints (e.g., motor serial number), we could track
the user across an area where we deployed BLE sniffers. Moreover, we could read their mileage
(e.g., 0x01B1 represents 433km), battery level (e.g., 0x2D represents 45%), and any real-time
update. Then, we factory reset the e-scooter and we were still able to track the user.

DES made the e-scooter irresponsive and undrivable. DES1 and DES3 cause the DRV to
raise Error 21 - No Communication with BMS, completely halting the motor, and powering
OFF the e-scooter after ten seconds. DES2 cuts power from all internal systems, immediately
powering OFF the e-scooter and barring it from powering ON again. DES4 prevents battery
charging regardless of the battery charger hardware or the e-scooter status (e.g., powered ON
or OFF). DES5 induces an endless lock state or reboot cycle, rendering the e-scooter unable
to move and forcing it to always stay powered ON. DES6 raises Error 23 - Internal BMS not
activated which induces a constant beeping noise and Error 24 - Supply Voltage out of range
which powers OFF the e-scooter. DES7 ignores all sleep cycles even when the e-scooter is
powered OFF, thus accelerating battery consumption.

PLR successfully leaked the e-scooter password hash and enabled its offline brute forcing.
We recovered the hash by sniffing the three rotating BLE advertisements broadcasted by the
e-scooter. We also conőrmed that retrieving the e-scooter password from the hash is feasible,
as we were able to crack our seventy random passwords with an average time of less than one
second.

5.7 Countermeasures

We propose four practical and backward-compliant countermeasures, each addressing one of the
four vulnerabilities described in Section 5.2.4 (i.e., C1 addresses V1, C2 addresses V2, and so
on). To őx UBR, UTI, and PLR, Xiaomi must implement C1, C2, and C3. To őx all DES
variants, Xiaomi must also implement C4. Next, we describe each countermeasure in detail.

C1: Encrypt the BCTRL firmware with TEA Xiaomi should encrypt the BCTRL
őrmware to protect its conődentiality at rest (e.g., in Mi Home) and in transit (e.g., during
a őrmware update over BLE). We recommend reusing the TEA block cipher already used to
encrypt the DRV őrmware. Its overhead is negligible, as TEA is a lightweight cipher [209].

C2: Sign and verify the BCTRL firmware with ECDSA Xiaomi should digitally sign
and verify the BCTRL őrmware to prevent rogue BCTRL őrmware updates. We recommend
reusing ECDSA, which is FIPS-compliant [210] and already employed to sign/verify the DRV
and BTS őrmware. Its overhead is minimal, as the BTS would have to verify the BCTRL
őrmware during an update using crypto primitives it already supports.

C3: Protect the UART bus with SCP03 Xiaomi should protect the conődentiality,

84 84

integrity, and authenticity of the UART bus. We suggest using standard secure embedded bus
protocols such as Secure Channel Protocol 03 (SCP03) [211]. SCP03 provides conődentiality,
integrity, authenticity, and replay protection using a lightweight scheme based on pre-shared
symmetric keys, authenticated encryption, and AES. Since SCP03 was designed for smart
cards [212], way more constrained than e-scooters, implementing it adds minimal overhead.

C4: Protect the UART bus with rate limiting Xiaomi should protect the UART bus
against DoS attacks or at least mitigate them. We recommend implementing a lightweight
rate-limiting mechanism for UART, such as the leaky bucket algorithm, where excess packets
are discarded if the incoming packet rate exceeds the outgoing rate. C4 can be combined with
C2 to achieve better DoS protection, as an authenticated UART bus discards messages that do
not pass the integrity check.

5.8 Related Work

E-Scooters Security and Privacy Research on e-scooters has studied their proprietary pro-
tocols and rental ecosystems, but no work has focused on their internals. A recent contribu-
tion [178] analyzed the Xiaomi e-scooter ecosystem, identifying issues in the proprietary BLE
protocols used by the e-scooter and Mi Home. The researchers identiőed vulnerabilities [13] in
the Bird e-scooter sharing platform and discovered MitM attacks [33] on the rental e-scooters
of the Lime company. Other studies focused on the privacy of user-related data in e-scooter
rental Android apps [25] and the safety risks of riding e-scooters [213].

E-Scooters Hacking and Modding In 2019, Zimperium revealed vulnerabilities in the
M365 locking system that could halt a running e-scooter [32]. The same year, the hacker
Lanrat found that M365 does not enforce authentication over BLE [31]. ScooterHacking [165],
the largest e-scooter modding community, released hacking tools [156, 190] to interact with
Xiaomi e-scooters, mod DRV őrmware [167] and ŕash it [162]. In our work, we develop custom
BCTRL őrmware with capabilities that are not offered by previous tools and research.

Attacks on Battery The threats concerning battery overheating, overcharging, and me-
chanical damage in electric vehicles have been investigated in [214, 215], where the authors
acknowledge that thermal runaway, shrapnel ejection, and the release of toxic gas are signif-
icant safety hazards. Researchers have proposed a battery drain attack while the ignition is
turned OFF [216], an electromagnetic interference attack [217], and a physical access rogue
őrmware update to a Tesla BMS [186]. Theoretical vulnerabilities in MacBook laptop batter-
ies, capable of overheating or turning it OFF, have been discussed in [187]. The E-Trojans
attacks are orthogonal as they target an e-scooter’s battery and BMS.

Attacks on Embedded Firmware Several studies focused on malicious embedded őrmware,
but none exploit e-scooter internals. Researchers attacked embedded őrmware on programmable
control logic (PCL) [218], object trackers [219], printers [220], mice [221], OS management
systems [222], mobile bootloaders [223], network equipment [224], botnets [225] and recently
industrial wrenches [226].

5.9 Conclusion

We present the őrst evaluation of Xiaomi e-scooters internals and their attack surface. Although
we focus on M365 and ES3, two popular e-scooters, our research is generalizable to any BES with

5.9. Conclusion 85

a comparable system model. We RE the internal systems and communication buses and uncover
four critical ŕaws affecting their BCTRL and UART bus. We exploit these vulnerabilities by
developing four novel attacks we name E-Trojans. Our attacks violate the safety (UBR),
privacy (UTI), availability (DES), and security (PLR) of the Xiaomi e-scooter ecosystem. For
example, we deploy the őrst ransomware for an e-scooter that permanently damages the battery
via undervoltage. Our attacks are conducted in BLE proximity or remotely via a malicious
Android application.

We develop E-Trojans, a toolkit that implements our attacks by leveraging our RE őndings
(e.g., disable safety thresholds). We successfully carried out the attacks on actual devices,
proving their practicality. For instance, UBR irreversibly reduced the M365 battery autonomy
by 50% in three hours and the ES3 battery autonomy by 10% in ten hours. We őx attacks and
their root causes with four backward-compliant countermeasures.

86 86

Chapter 6

CTRAPS

This contribution, titled "CTRAPS: CTAP Impersonation and API Confusion Attacks
and Defenses on FIDO2", will be submitted at the 10th IEEE European Symposium on
Security and Privacy (EURO S&P 2025).

6.1 Introduction

Fast IDentity Online v2 (FIDO2) is the de-facto standard authentication protocol for single-
factor (passwordless), second-factor (2FA), and multi-factor (MFA) authentication. Google,
Dropbox, and GitHub [227] designed it in a joint effort to offer a practical and scalable solution
for authentication. FIDO2 involves three entities: an authenticator that generates and asserts
possession of authentication credentials (e.g., public-private key pairs), a relying party that
authenticates the user (e.g., challenge-response protocol based on credentials), and a client
that manages the communication between the authenticator and the relying party. Typically,
the authenticator is a USB dongle, the relying party is a web server, and the client is a web
browser or a mobile app. The user owns the authenticator, the client, and the device running
the client.

Authenticator and client communicate using the Client to Authenticator Protocol (CTAP)
over Universal Serial Bus (USB), Near Field Communication (NFC), or Bluetooth Low Energy
(BLE). CTAP is an application layer protocol that exposes functionalities via the CTAP Au-
thenticator API. For instance, the API creates, manages, and deletes FIDO2 credentials. API
calls require speciőc authorizations such as User Veriőcation (UV) and User Presence (UP).
Client and relying party communicate using the Web Authentication (WebAuthn) protocol over
TLS.

The introduction of passkeys (i.e., discoverable credentials) and growth of the FIDO ecosys-
tem broadened the CTAP attack surface. Despite the associated challenges [228], passkeys
are gradually replacing passwords by using FIDO2 authenticators as the root of trust. Hence,
authenticators represent attractive targets as they store valuable credentials [61]. Market fore-
casts predict the FIDO market to rapidly grow from USD 230.6 million in 2022 to USD 598.6
million in 2031 [229]. Yubico, a FIDO authenticator market leader, sold more than 22 million
YubiKey authenticators [230] and many big players are transitioning to FIDO, including the
US government [231].

Prior works on FIDO focused on FIDO U2F, client compromises (e.g., malicious FIDO apps),
local attacks (e.g., via browser extensions), and WebAuthn. In [232, 233], the authors developed

87

88 88

models to formally verify scenarios where a FIDO U2F client is compromised (e.g., client
malware). In [234], the authors presented a social engineering attack on WebAuthn requiring
a compromised client running as a malicious application or a browser extension with user-level
and root-level privileges. In [235], the authors considered local (i.e., browser extension) and
physical (i.e., temporary access) attackers targeting WebAuthn to gain unauthorized access to
online accounts registered with FIDO2. Despite its exposure to practical and low-cost attacks,
no prior study evaluated the security of the CTAP Authenticator API. We őll this relevant gap
by presenting a security and privacy assessment of the CTAP Authenticator API against two
realistic and relevant attacker models.

In our work, we propose two novel FIDO2 attack strategies targeting CTAP. We present
the őrst CTAP client impersonation, allowing an attacker (e.g., a malicious NFC reader) to
call arbitrary APIs without authorization or user interaction. We also propose the novel API
confusion technique, where the attacker, such as a malicious USB hub, changes (i.e., confounds)
the API called by the user to a different one. For example, the user wants to create a new
credential through the UI of an uncompromised client, but the attacker leaks the user’s private
data instead.

We uncover eleven attacks, named CTRAPS, violating the security, privacy, and avail-
ability of the FIDO2 ecosystem via CTAP. For example, our attacks can factory reset FIDO2
authenticators to wipe out all credentials, permanently lock them, or leak private data to proőle
and track the user. These attacks can be deployed from remote or by the őrst proximity-based
attacker evaluated in FIDO2. No prior academic work considered a proximity-based threat and
even the FIDO security reference document [236] ignores them (see Section 6.9.1 for a detailed
discussion on its unclear security boundaries and narrow security goals).

Our attacks have widespread consequences on the FIDO2 ecosystem as they target protocol-
level FIDO2 vulnerabilities. They are effective against up to CTAP2.2 and WebAuthnL2,
the most recent and supposedly strongest FIDO2 protocols. Since they target the CTAP
application-layer, they are effective regardless of the CTAP transport (i.e., USB, NFC, or
BLE) or the authenticator’s implementative details. Moreover, the attacks are stealthy because
they employ CTAP-compliant API calls and do not require unexpected user interactions (unlike
phishing).

We isolate seven vulnerabilities, six of which are novel, that enable the CTRAPS attacks.
These root causes include the lack of CTAP client authentication, a single PIN that authorizes
both destructive and non-destructive operations, trackable user identiőers and credentials, and
improper API UV and UP authorizations. The vulnerabilities are critical as they affect CTAP
at the protocol-level and are exploitable on any standard-compliant CTAP implementation.

We implement our Authenticator API attacks in the CTRAPS toolkit. The toolkit contains
three modules. A CTAP testbed with a virtual relying party and a virtual client, allowing for
quick and local testing of authenticators. A CTAP client impersonator implemented for the
Proxmark3 RFID tool and Android smartphones. Extended CTAP dissectors for Wireshark
that simplify binary analysis of CTAP packets and add new useful features such as status codes
and support for credential management.

We exploit popular FIDO2 authenticators and relying parties over different CTAP trans-
ports. We attack six authenticators from Yubico (including a FIPS-compliant one), Feitian,
SoloKeys, and Google. We ran our attacks over USB and NFC. Unfortunately, we could not
őnd FIDO2 authenticators supporting BLE. We empirically conőrm that the API confusion at-
tacks are highly scalable, while the proximity-based ones are less scalable as they require NFC

6.1. Introduction 89

range and (cheap) additional devices. We also exploit ten relying parties offering passkeys and
second-factor authentication, including Microsoft, Apple, GitHub, and Facebook.

We propose seven countermeasures őxing the attacks and root causes while being backward-
compliant. For example, we add stricter authorization requirements for destructive APIs, in-
troduce a dedicated PIN for destructive operations (e.g., credential deletion), and rotate user
identiőers and credentials to mitigate user tracking. Our countermeasures are practical and
backward-compliant, as they rely on mechanisms already available on the authenticator (e.g.,
PIN and LED). Moreover, we őnd a severe implementation flaw on Yubico authenticators,
allowing data leaks and user tracking (see Section 6.9.2 for a detailed discussion).

We summarize our contributions as follows:

• We perform the őrst security and privacy evaluation of the CTAP Authenticator API.
We focus on two practical and relevant attack strategies: CTAP client impersonation
and API confusion. We uncover eleven proximity-based and remote attacks exploiting
seven CTAP protocol level vulnerabilities. For instance, our attacks erase credentials and
master keys, track users, and DoS authenticators.

• We present CTRAPS, a comprehensive and portable toolkit that offers unprecedented CTAP
testing capabilities and reproduces our attacks.

• We demonstrate our attacks’ practicality by conducting a large-scale evaluation. We
exploit six authenticators, two transports, and ten relying parties. The list of affected
vendors includes key players in the FIDO2 ecosystem, like Google, Apple, Microsoft, and
Yubico.

• We őx the attacks and their root causes by proposing seven practical and backward-
compliant countermeasures. We discuss a severe vulnerability in Yubico authenticators,
three issues in the reference FIDO2 threat model related to CTRAPS, and our lessons
learned.

Disclosure, Ethics, and Availability

We responsibly disclosed our őndings to the FIDO Alliance in November 2023 [237]. They
acknowledged our report and shared it with their members. In May 2024, the FIDO Alliance
provided feedback on our work and we are currently discussing with them. In December 2023,
we reported our őndings to the affected authenticator manufacturers (i.e., Yubico, Feitian,
SoloKeys, and Google). Google assigned priority P2 and severity S2 to our report. Yubico
acknowledged the implementation bug we found, pushed a őx in production, published a security
advisory [238], and created CVE-2024-35311 [239]. The other manufacturers acknowledged the
report without commenting on it. We also contacted Apple and Microsoft regarding their weak
credential protection policy that facilitates user tracking and proőling. They responded that
our report has no security implications for their products. However, our evaluation shows that
stronger policies mitigate our user tracking attacks. We will release our toolkit after this paper’s
publication.

90 90

6.2 FIDO2 and CTAP Preliminaries

FIDO2 [240] is an open standard for user authentication based on asymmetric cryptography and
curated by the FIDO Alliance. Four entities compose the FIDO2 ecosystem: an authenticator,
a client, a user, and a relying party. In a typical scenario, a user connects his authenticator to
the client in order to access an online service hosted by a relying party.

The FIDO2 speciőcation includes the WebAuthn and CTAP application-layer protocols.
WebAuthn provides a secure and private communication channel between a relying party and
a client, and its latest version is WebAuthnL2 [241]. CTAP, the focus of this work, enables
a secure and private connection between a FIDO2 authenticator and a client via the CTAP
Authenticator API. For example, calling MakeCred registers a new credential and GetAsserti

on authenticates an existing credential.
A FIDO2 credential is a key pair used to sign and verify challenges by applying standard

cryptographic techniques, such as the Elliptic Curve Digital Signature Algorithm (ECDSA).
Access to the private key of a FIDO2 credential is safeguarded by encryption using a credential
master key, which is unique to each authenticator and securely stored within the authenticator’s
Secure Element. FIDO2 credentials can be discoverable or non-discoverable. Discoverable
credentials, also known as passkeys, are stored on the authenticator. and used for passwordless
authentication. Non-discoverable credentials are stored on the web by the relying party and
used for multi-factor authentication.

A FIDO2 credential is bound to three identiőers: the credential identiőer (CredId), the
relying party identiőer (RpId), and the user identiőer (UserId). CredId is derived from the
credential master key and uniquely identiőes a credential. Before deleting a credential, the
client needs to specify a CredId. The RpId identiőes a relying party, usually coincides with its
origin (e.g., login.microsoft.com), and should be considered public. A relying party randomly
generates a UserId when a user creates his őrst credential and associates the UserId to all
credentials generated by that user. At registration time, a relying party can attach additional
data to a credential, including sensitive or personally identifying information, by using the
optional CredBlob FIDO2 extension.

As part of the FIDO2 speciőcation, the CTAP standard has considerably evolved over
time. CTAP1, also known as FIDO U2F (Universal 2nd Factor), provides phishing-resistant
second-factor authentication. CTAP2.0 maintains backward compatibility with CTAP1 while
introducing passwordless authentication. CTAP2.1 [242] adds the credential protection policy,
discoverable credential management (i.e., the CredMgmt API), and biometric authentication.
The draft for CTAP2.2 [243] is the latest available version, offering new features such as support
for hybrid authenticators equipped with cameras to scan QR codes.

CTAP relies on two core user authorization mechanisms to secure API calls: (i) User Veri-
fication (UV), which requires the user to enter a PIN or biometric data, and (ii) User Presence
(UP), which requires the user to press a button on the authenticator or to bring it into the
client’s NFC range. Table 6.1 shows the most common CTAP Authenticator APIs and their
UV and UP requirements. We describe each API:

• MakeCred registers a new credential bound to an online account with a relying party.

• GetAssertion authenticates to a relying party by asserting (i.e., proving) possession of a
credential.

6.2. FIDO2 and CTAP Preliminaries 91

Table 6.1: CTAP Authenticator API entries, short names (SN), UV and UP authorization
requirements, and support for subcommands. Yes1: depends on client and relying party con-
őguration, Yes2: depends on API subcommand. In the CTAP standard, MakeCred is called
MakeCredential and CredMgmt is called CredentialManagement.

CTAP API SN UV UP Subcmd

MakeCred MC Yes Yes No

GetAssertion GA Yes1 Yes1 Yes

CredMgmt CM Yes No Yes

ClientPin CP Yes2 No Yes

Reset Re No Yes No

Selection Se No Yes No

GetInfo GI No No No

• CredentialMgmt manages the authenticator’s discoverable credentials (e.g., enumerate,
modify, and delete).

• ClientPin handles User Veriőcation (UV) based on a user PIN to be submitted via the
client’s UI.

• Reset factory resets the authenticator (i.e., wipes all discoverable and non-discoverable
credentials by re-generating the credential master key).

• Selection selects an authenticator to operate among the available ones.

• GetInfo returns the authenticator’s details (e.g., manufacturer, transports, extensions,
and settings).

CTAP offers other optional security and privacy mechanisms. The authorization require-
ments for GetAssertion depend on the client and relying party conőguration. A client can
specify the option up=false to skip UP. At registration time, a relying party can enforce ac-
cess control by specifying a credential protection policy via the optional CredProtect extension.
However, the default policy skips UV, resulting in a weak privacy protection. Authentica-
tors may also feature additional security mechanisms unrelated to CTAP, such as the FIDO
authenticator certiőcation level [244] and the FIPS [245] certiőcation.

The GetAssertion, CredMgmt, and ClientPin APIs offer multiple functionalities through
API subcommands. For example, CredMgmt(GetCredsData) returns the amount of stored
discoverable credentials and CredMgmt(DelCreds) deletes all discoverable credentials. Some
API subcommands, compared to their original API, have more relaxed requirements. For
example, ClientPin(KeyAgreement) requests the authenticator’s public key without requiring
UV.

92 92

6.3 Threat Model

6.3.1 System Model

We consider the standard FIDO2 system model composed by an authenticator, a client, and a
relying party. The three entities support up to CTAP2.2 and WebAuthnL2 (i.e., the latest and
supposedly most secure FIDO2 protocols). The user connects his authenticator to the client in
order to access an online service hosted by the relying party.

Authenticator The authenticator is a FIDO2 roaming authenticator: a physical device
carried around by the user that can be connected to the client (e.g., a USB/NFC dongle). The
authenticator runs a CTAP server that exposes the Authenticator API over the USB, NFC, and
BLE transports. It supports the UP (e.g., via a button press) and UV (e.g., via a user PIN)
user authorization mechanisms and stores discoverable credentials and the credential master
key.

Client The FIDO2 client handles communication between the authenticator and the relying
party. This component runs a CTAP client to speak with the authenticator and a WebAuthn
client to speak with the relying party. Typically, the client is a software offering an UI to the
user, such as a web browser, a mobile app for Android [246] or iOS [247], or even a command
line tool like the Yubico CLI [248].

Relying party The relying party is an online service that relies on FIDO2 passwordless or
multi-factor authentication, such as Adobe, Apple, Microsoft, and Facebook. This online service
runs a WebAuthn server that responds to FIDO2 registration and authentication requests (e.g.,
over TLS). In case of multi-factor authentication, the relying party stores the non-discoverabl
e credential, the user identiőer, and the credential identiőer. Certain offline operations on the
authenticator indirectly affect the relying party. For instance, deleting a discoverable credential
will result in the failure of any subsequent authentication attempts.

User The user owns the authenticator and the device (e.g., laptop or smartphone) run-
ning the client. He utilizes his authenticator to register passwordless and multi-factor FIDO2
credentials and to authenticate to the associated relying party. The user authenticates by con-
necting his authenticator to the client and providing UV and UP, if required. The user can also
manage and conőgure the authenticator via the client, without connecting to a relying party.
For example, he can check his discoverable credentials and change the authenticator’s PIN.

6.3.2 Attacker Model

We consider two realistic and relevant attacker models targeting the CTAP Authenticator API,
as shown in Figure 6.1: (i) a CTAP client impersonator spooőng a CTAP client and (ii)
a man-in-the-middle attacker positioned between the authenticator and the client. Our two
attackers are considered proximity-based if they communicate with the authenticator via CTAP
over NFC or remote if they communicate over USB. No prior work evaluated a CTAP client
impersonation attacker model or a proximity-based attacker.

Goals. The attacker’s main goal is to compromise the FIDO2 user’s security and privacy by
exploiting the CTAP Authenticator API (introduced in Section 6.2). She wants to tamper with
the discoverable credentials stored in the authenticator, delete non-discoverable credentials,
track a user via the authenticator, or impersonate a client to an authenticator. She also wants
to interfere with the client and relying party by confounding CTAP API calls and altering their

6.4. Attacks 93

Figure 6.1: Attacker models. The CTAP client impersonator (top-right) communicates with
the authenticator using CTAP over NFC/USB. The man-in-the-middle attacker (left) between
the client and the authenticator targets the latter using CTAP over NFC/USB.

normal behaviour with forged CTAP messages. This is the őrst work to evaluate these goals
and demonstrate their practical feasibility.

Capabilities. The attacker can impersonate a CTAP client, craft valid CTAP commands,
and send them to the authenticator and the client over USB and NFC. She can establish a
MitM position between the authenticator and the client over USB or NFC. During MitM,
she maintains stealthiness by only calling Authenticator APIs when the user is operating the
authenticator and only asking for UV and UP when the user calls an API that requires them.

The CTAP client impersonator can enter the authenticator’s NFC range to deploy the
proximity attacks. She can extend her reach with specialized equiment [249, 250]. The client
impersonator can also remotely communicate with the authenticator, for example via a mali-
cious FIDO2 app installed on the user’s smartphone. The MitM attacker can intercept and
modify the traffic between the authenticator and the client over NFC, as demonstrated in [251],
and over USB (e.g., via a malicious USB hub). The attacker takes advantage of the vulnerabili-
ties we describe in Section 6.5. For example, she abuses the lack of CTAP client authentication
for impersonation, the absence of authenticator feedback to perform API confusion, and the UP
bypass over NFC to perform proximity attacks. She cannot modify the authenticator’s software
(e.g., ŕash new őrmware) and cannot obtain its credential master key. She cannot compromise
a legitimate FIDO2 client or relying party. Physical attackers, including fault injection and
side channel, are out of scope.

6.4 Attacks

We propose eleven attacks, we name CTRAPS, that abuse the lack of CTAP client authentica-
tion and CTAP API bindings and (see Section 6.5). Our attacks exploit CTAP protocol-level
vulnerabilities, making them effective regardless of the CTAP transport (i.e., NFC or USB)
and the implementation details of the authenticator, the client, and the relying party. They
take advantage of novel attack strategies targeting FIDO2, we call CTAP Client Impersonation
(CI) and the API Confusion (AC).

Our attacks compromise the integrity (AC1, CI1, and AC2), confidentiality (AC1, CI2,
AC3, CI4, and AC7), availability (AC4, CI3, AC5, and AC6), and privacy (CI2, AC3, CI4,
and AC7) of the user and the entire FIDO2 ecosystem. For instance, we lost access to our test
Google and Apple ID accounts because we could not pass 2FA after deleting our credentials
with AC1. The CTRAPS attacks can be deployed using cheap and non-specialized equipment

94 94

Authenticator PB Attacker

Reset, UP, NFC

NFC bypasses User Presence (UP)

Deletes
all creds

Resets
settings

Reset OK

Figure 6.2: Factory reset authenticator attack with proximity CI1. While in NFC range, the
attacker calls the Reset API. Over NFC, the authenticator skips UP and instantly factory
resets, deleting all of its discoverable and non-discoverable credentials.

from proximity (e.g., malicious NFC reader) or remotely (e.g., malicious Android application).
Remote attacks require different authorizations compared to proximity ones. For example,
invoking CTAP APIs over NFC bypasses UP.

6.4.1 Client Impersonation (CI) Attacks

We present four CTAP client impersonation (CI) attacks. We are the őrst to perform client
impersonation in FIDO2, as prior work focused on authenticator impersonation. We are also the
őrst to deploy a NFC reader impersonation on NFC tags as powerful and complex as FIDO2
authenticators. The NFC readers proposed in prior works, such as NFCGate [252], cannot
impersonate FIDO2 clients and do not support the advanced cryptography used by FIDO2
authenticators. We now describe the four CI attacks, deployable from proximity or remotely.

Factory reset authenticator with CI1 Figure 6.2 shows how an attacker abuses the Res

et API to factory reset the authenticator. In C1, the attacker connects to the authenticator and
calls Reset, wiping out all discoverable and non-discoverable credentials, user settings and data,
none of which can be recovered. The proximity-based attacker enters NFC range to connect
to the authenticator. According to the CTAP standard, a proximity-based attacker who enters
the authenticator’s NFC range is automatically granted UP, thereby bypassing the required
UP check. As a result, proximity CI1 is a zero-click factory reset. The remote attacker can
achieve the same impact but cannot bypass UP and can only attack authenticators recently
(i.e., up to ten seconds) plugged in the USB port.

Profile and track user with CI2 Figure 6.3 shows how an attacker misuses the GetAsse

rtion API to proőle and track the user. In CI2, the attacker retrieves from the authenticator
unique identiőers, employed as őngerprints, that enable her to track the user. The attacker
prepared a list of relying parties that utilize the weak CredProtect=UVOptional default pol-
icy, such as Microsoft and Apple. When connected to the authenticator over USB or NFC,
she calls GetAssertion, passing the list of weak relying parties as parameters. The remote
attacker skips UP by also passing up=false as an additional parameter. The proximity-based
attacker is automatically granted UP when entering NFC range. As a consequence, she re-
trieves, without user consent, all credential and user identiőers registered with the speciőed
relying parties and uses them to őngerprint the user. Each time the user connects his au-

6.4. Attacks 95

Authenticator Remote Attacker

CredProtect=UVOptional bypasses
User Verification (UV)

GA, RpIdList, up=false, USB

GA OK, CredIdList, UserIdList

FingerprintList =
HASH(CredIdList, UserIdList)

Figure 6.3: Proőle and track user attack with remote CI2. The attacker connects over USB and
calls the GetAssertion API (GA in the őgure). She bypasses UV by only retrieving credential
and user identiőers registered with the weak CredProtect default policy. Then, she őngerprints
the authenticator using the leaked identiőers, allowing her to track the user.

thenticator to a NFC reader or a machine controlled by the attacker, she can track him by
performing CI2 again and looking for matching őngerprints. CI2 can even be performed on
credentials protected by stronger credential protection policies (i.e., CredProtect=UVRequired
and CredProtect=UVOptionalWithCredIDList). However, this requires UV or the knowledge
of one or more credential identiőers.

Force authenticator lockout with CI3 In CI3, the attacker locks the authenticator to
prevent its usage, leading to a mandatory factory reset. The attacker abuses the ClientPin(G

etPinToken) subcommand to submit to the authenticator several wrong PIN guesses in a row.
After three wrong guesses, the authenticator enters a soft lock mode preventing further actions
until a reboot (i.e., leaving and re-entering a client’s NFC range or detaching and re-attaching
to a USB port). After a maximum number of failed PIN attempts (CTAP mandates eight),
the authenticator enters a hard lock mode only restorable through a factory reset, which wipes
out all credentials and can lead to account loss.

Profile authenticator with CI4 In CI4, the attacker proőles the authenticator through
its details. The attacker calls GetInfo to retrieve the authenticator’s details, such as the
manufacturer, model, and FIDO2 version, and the supported algorithms, transports, options,
and extensions. The authenticator also leaks some user settings, such as FIDO2 being disabled
over a speciőc transport. All this information can be used to track the user.

6.4.2 API Confusion (AC) Attacks

We present seven API confusion (AC) attacks, using a novel attack strategy. API confusion is
a protocol-level attack strategy that does not depend on FIDO implementation. Consequently,
any system speaking CTAP, or another protocol with vulnerabilities similar to the ones we
describe in Section 6.5, is susceptible. We are the őrst to propose API confusion, and we imple-
ment it in FIDO2 with a MitM attacker positioned between the client and the authenticator.
Prior MitM attacks on FIDO targeted WebAuthn and required a compromised client (e.g.,
malicious browser extension).

AC Attack Strategy In API confusion, the attacker intercepts a call to API A and changes
(i.e., confounds) it to API B with compatible authorization restrictions. We write malicious API

96 96

Table 6.2: AC combinations. The rows and columns use API short names (full names in
Table 6.1). The user intends to call API A in the őrst column, instead the attacker calls API B

with compatible (same or lower) authorization requirements. ✓1: requires proximity-based
attacker, ✓2: requires default CredProtect=UVOptional if non-mandatory credential protection
is enabled, n/a: not applicable. The last row counts the API combinations for each AC attack.

AC1 AC2 AC3 AC4 AC5 AC6 AC7

CM Re GA MC CP Se GI

MC ✓ ✓ ✓ n/a ✓ ✓ ✓

GA ✓ ✓ n/a ✓ ✓ ✓ ✓

CM n/a ✓1 ✓ ✓1 ✓ ✓ ✓

CP ✓ ✓1 ✓ ✓1 n/a ✓ ✓

Re n/a n/a ✓2 n/a ✓ ✓ ✓

Se n/a ✓ ✓2 n/a ✓ n/a ✓

GI n/a ✓1 ✓2 ✓ ✓ ✓ n/a

Total 3 6 6 4 6 6 6

calls in red. We explain API confusion with a six-step attack strategy :
1 The user calls API A through the client. This API might optionally require UV and/or

UP.
2 If required by API A, the attacker obtains UV by executing the CTAP PIN/UV au-

thentication protocol v1 (via ClientPin). The user inputs the PIN (i.e., 4 up to 63 Unicode
characters) on the client, which encrypts it and submits it to the authenticator. The authenti-
cator responds with an encrypted User Veriőcation Token (UVT), that will be attached to any
API call requiring UV.

3 The attacker confounds the communication by calling a compatible API B rather than
API A (see Table 6.2 for the available AC combinations).

4 If required by API A, the attacker obtains UP from the user, unable to realize he is under
attack. The attacker can only obtain UP once, as multiple requests would alarm the user. This
step is skipped over NFC.

5 The attacker executes API B. For instance, she deletes all credentials instead of creating
a new one. Then, the authenticator returns a success message.

6 Optionally, the attacker can perform AC again by calling API C with compatible autho-
rizations. For example, she can perform AC3 to proőle the user and then AC5 to lock the
authenticator. Finally, the attacker falsely informs the user that API A was successful.

AC Combinations Table 6.2 illustrates all 49 confoundable API combinations of the seven
CTAP APIs available to all FIDO2 authenticators. Multiple (API A, API B) pairs achieve the
same goal. The amount of available pairs depends on their UV and UP requirements and, in
case of AC3, also on the CredProtect policy. The őrst column lists seven APIs the user intends
to call (API A), and the remaining columns represent the API called by the attacker (API B).
For instance, AC1 is available whenever the user calls MakeCred, GetAssertion, or ClientPin,
confounding the call to CredMgmt. Some combinations are only feasible by a proximity-based
attacker or under the default CredProtect policy. An API cannot be confounded with itself or
APIs with incompatible authorization requirements.

6.4. Attacks 97

Authenticator PB Attacker User

API A, UV

User Verification (UV)

CM(GetCredsData), UV, NFC

StoredCredsAmount

CM(EnumRps), UV

RpIdList

CM(EnumCreds), UV, RpIdList

CredIdList

CM(DelCreds), UV, CredIdList

Deletes all
disc. creds

CM(DelCreds) OK API A OK

Figure 6.4: Delete discoverable credentials attack with proximity AC1. The user intends to
call API A, requiring UV but not necessarily UP. For example, GetAssertion, ClientPin, or
MakeCred. The attacker obtains UV from the unsuspecting user. Instead of API A, she calls
CredMgmt (CM in the őgure). She executes four CredMgmt subcommands which list and then
delete all discoverable credentials on the authenticator.

Delete discoverable credentials with AC1 Figure 6.4 shows how an attacker abuses the
CredMgmt API to delete all discoverable credentials stored on the authenticator. The attacker
has a MitM position between the authenticator and the client with access to their traffic,
allowing her to perform API confusion. The user intends to call API A, which requires UV
but not necessarily UP, such as GetAssertion, ClientPin, or MakeCred. Instead, the attacker
executes four separate CredMgmt subcommands, none of which require UP to avoid alarming the
user. First, she checks the existance of discoverable credentials to erase (StoredCredsAmount)
via CredMgmt(GetCredsMetadata). Second, she retrieves the list of relying parties stored on
the authenticator (RpIdList) via CredMgmt(EnumRps). Third, she uses RpIdList to retrieve the
list of stored credential identiőers (CredIdList) via CredMgmt(EnumCreds). Fourth, she uses
CredIdList to delete all discoverable credentials via CredMgmt(DelCreds). Finally, she falsely
returns API A OK to the user.

Factory reset authenticator with AC2 In AC2, the attacker exploits the Reset API to
factory reset the authenticator, similar to CI1. Since Reset only requires UP, an attacker over
USB can confound MakeCred, GetAssertion, and Selection into a Reset call. Additionally,
an attacker over NFC can bypass UP to also confound CredMgmt, ClientPin, and GetInfo.

Profile and track user with AC3 In AC3, the attacker misuses the GetAssertion

API to leak unique identiőers as őngerprints and track the user, similar to CI2. She can
confound MakeCred, CredMgmt, and ClientPin into a GetAssertion call, if she wants to access
to credentials protected by the CredProtect=UVRequired or CredProtect=UVOptionalWithC
redIDList policies. Additionally, the attacker can also confound Reset, Selection, and GetIn

98 98

fo if she only wants to access to credentials protected by the weak CredProtect=UVOptional
default policy.

Fill authenticator credential storage with AC4 In AC4, the attacker repeatedly calls
MakeCred to register new discoverable credentials, until the authenticator’s credential storage
is full. She exploits the rk=true option to enforce the generation of discoverable credentials
over non-discoverable ones. A full storage compromises the authenticator’s availability as the
user cannot register new discoverable credentials.

Force authenticator lockout with AC5 In AC5, the attacker abuses the ClientPin API
to lock the authenticator and force a mandatory factory reset, similar to CI3. Although Clie

ntPin requires UV, the attacker wants to fail multiple PIN attempts (i.e., she does not need
UV). Consequently, she can confound any API call into a ClientPin call, as she does not need
authorization.

Authenticator DoS with AC6 In AC6, the attacker calls the Selection API to trigger
an unwanted UP check keeping the authenticator busy and denying availability. Since the
attacker can detect when the busy state ends (e.g., the user pressed the authenticator’s button
or 30 seconds have passed), she can prolong the attack indeőnitely.

Profile authenticator with AC7 In AC7, the attacker uses the GetInfo API to get the
authenticator’s details and proőle the user, similar to CI4. Due to the lack of authorization,
the attacker can confound any API call into a GetInfo call.

6.4.3 Discussion

The eleven CTRAPS attacks impact the security and privacy of the entire FIDO2 ecosystem
as they exploit protocol level CTAP vulnerabilities (detailed in Section 6.5). Hence, they can
be conducted on any FIDO2-compliant device, regardless of hardware and software details.
Our attacks have severe real-world implications such as deleting FIDO2 credentials to make
users lose their linked account, tracking users, or disabling the authenticator’s functionalities.
Moreover, CI and AC attacks can be combined. For example, the attacker obtains a őngerprint
with AC7 and tracks the user with CI2.

The attacks are practical and low-cost because we propose attacker models also found
in [252, 253] that require minimal equipment (e.g., NFC reader or smartphone). Moreover,
the attacks are stealthy as rely on expected user interaction (i.e., UV and UP) or no user
interaction. We support our claims with the cheap toolkit we present in Section 6.6 and the
experimental results in Section 6.7.

6.5 Vulnerabilities

We discuss seven vulnerabilities found in the CTAP standard, six of which are novel. Only V2
is known, but prior works focused on its implications for WebAuthn, like enabling authenticator
misbinding attacks. In contrast, we őnd a new method to exploit V2 through API confusion.

Table 6.3 maps the seven vulnerabilities (columns) to our eleven CTRAPS attacks (rows).
V1 and V2 are the main root cause for CI and AC attacks, respectively. The remaining
vulnerabilities enhance the effectiveness of our attacks, by increasing their impact, scope, and
stealthiness or by lowering their requirements.

6.5. Vulnerabilities 99

All CI and AC attacks exploit V1, as the authenticator cannot reject the API called by
the attacker. AC1, AC3, and AC4 exploit V2 as they confound APIs to destructive ones.
CI1 and AC2 exploit V3 to factory reset the authenticator without UV. AC1 exploits V4 to
delete discoverable credentials without UP. CI2 and AC3 exploit V5 to track a victim via their
persistent credential and user identiőers. AC6 exploits V6 to DoS an authenticator via periodic
Selection calls. All CI and AC attacks exploit V7, as it allows the attacker to pose as a
trusted CTAP client. All CI and AC attacks exploit V8 to be stealthy, as the victim receives
no feedback from unathorized API calls. Proximity-based AC1, CI1, AC2, CI2, AC3, and AC4
exploit V9 to send unauthorized CTAP commands over NFC.

Table 6.3: Mapping the seven vulnerabilities (columns) to the eleven CTRAPS attacks (rows).

V1 V2 V3 V4 V5 V6 V7

CI1 ✓ ✓ ✓ ✗ ✗ ✓ ✗

CI2 ✓ ✓ ✓ ✗ ✓ ✗ ✗

CI3 ✓ ✓ ✗ ✗ ✗ ✗ ✗

CI4 ✓ ✓ ✗ ✗ ✗ ✗ ✗

AC1 ✓ ✓ ✗ ✓ ✗ ✓ ✗

AC2 ✓ ✓ ✓ ✓ ✗ ✓ ✗

AC3 ✓ ✓ ✓ ✗ ✓ ✗ ✗

AC4 ✓ ✓ ✓ ✗ ✗ ✗ ✗

AC5 ✓ ✓ ✗ ✗ ✗ ✗ ✗

AC6 ✓ ✓ ✗ ✗ ✗ ✓ ✓

AC7 ✓ ✓ ✗ ✗ ✗ ✗ ✗

V1: Unauthenticated CTAP client, V2: No authenticator feedback from API calls, V3: UP over
NFC does not require user interaction, V4: Same PIN authorizes destructive and non-destructive

API calls, V5: Trackable and profilable CredId and UserId, V6: Insufficient UV and UP

requirements for Reset and CredMgmt, V7: Selection can be exploited for DoS

V1: Unauthenticated CTAP client The CTAP client does not authenticate to the user,
the authenticator, or the relying party. FIDO2 clients (and by extension, CTAP clients) have
no identity meaning that the authenticator has no way to distinguish an official client developed
by its manufacturer from a third-party client. The authenticator has no choice but to always
trust any connecting client, including impersonators. V1 enables all CI attacks and lowers the
requirements for all AC attacks (i.e., easier to MitM an unauthenticated channel).

V2: No authenticator feedback from API calls Despite having a LED, the authenti-
cator does not provide the user with visual feedback when invoking APIs or granting UV and
UP. The user cannot conőrm whether the intended API has been called (or confounded) and
which API consumed the UV and UP authorization he just granted. V2 enables all AC attacks
and increases the stealthiness of all CI attacks.

V3: UP over NFC does not require user interaction Authenticators inside the NFC
range of a FIDO2 client automatically obtain UP without user interaction (e.g., without the
user pressing a button on the authenticator). By removing the UP requirement, V3 improves
the effectiveness and stealthiness of proximity attacks. For example, V3 enables a zero-click
NFC factory reset (i.e., CI1) and increases the combinations of confoundable APIs.

100 100

V4: Same PIN authorizes destructive and non-destructive API calls The same
UV PIN to authorizes destructive operations, such as credential deletion (CredMgmt) or factory
reset (Reset), and non-destructive ones, such as authentication (GetAssertion). Moreover, the
user has no way to conőgure the authenticator to disable destructive API calls (e.g., temporarily
turn-off factory resets). V2 allows AC attacks to escalate the confusion from non-destructive
APIs to destructive ones. For example, the user intends to authenticate (non-destructive) by
providing UV and UP, but the attacker factory resets the authenticator instead (destructive).

V5: Trackable and profilable CredId and UserId Discoverable credentials contain
static and unique CredId and UserId, exploitable to reliably proőle and track users. By default,
GetAssertion retrieves CredId and UserId from the authenticator without requiring UV or UP.
V5 enables two zero-click user tracking attacks (i.e., CI2 and AC3). Storing more credentials
on the authenticator makes the user more proőlable and trackable. A relying party can protect
the identiőers with the optional CredProtect extension at registration time, preventing CI2 but
not AC3.

V6: Insufficient UV and UP requirements for Reset and CredMgmt The Reset and
CredMgmt should enforce stricter authorization requirements. Despite being destructive, the R

eset API does not require UV, but only UP. Anyone close to the authenticator can obtain
UP by pressing its button or putting it inside the client’s NFC range. The CredMgmt API does
not require UP, but only UV, to delete discoverable credentials. The user submits the PIN
only once but can delete any number of credentials. In contrast, creating N credentials also
requires N UP checks. V6 allows for a zero-click NFC factory reset (i.e., CI1) and a one-click
discoverable credential deletion (i.e., AC1).

V7: Selection can be exploited for DoS The Selection API does not support temporal
rate limiting. Hence, an attacker can keep the authenticator in an unresponsive state by
periodically requesting unwanted UP checks via Selection. V7 enables a persistent denial-of-
service attack on the authenticator (i.e., AC6).

6.6 Implementation

In this section, we present CTRAPS, a novel toolkit implementing the CTRAPS attacks, and its
three modules: CTAP testbed (Section 6.6.1), CTAP Client impersonation (Section 6.6.2), and
Wireshark dissectors (Section 6.6.3).

6.6.1 CTAP Testbed

We develop a CTAP testbed composed of a virtual relying party and a virtual client in a
Python3 module. The virtual relying party extends python-fido2 [254], Yubico’s open-source
Python library for FIDO2. It includes a customizable WebAuthn server to simulate traffic with
a backend, and CTAP and WebAuthn clients to simulate traffic with an authenticator and
a relying party. This setup has two main beneőts. (i) We perform our experiments locally,
without interacting with real relying parties thus avoiding the constant creation of new dummy
accounts and need for an Internet connection. (ii) We fully customize our relying party to
imitate any existing one, including support for discoverable credentials and extensions (e.g.,
credential protection policy via CredProtect).

The virtual client is a custom CTAP client based on a open-source FIDO library [254],

6.6. Implementation 101

exposing a low-level and customizable CTAP Authenticator API. Our client can send individual
CTAP commands in any order with custom payload values, instead of abstracting them with
high-level APIs. It also allows to set custom authorization requirements for the APIs. For
example, the client app can change the client data (e.g., WebAuthn operation type, challenge,
and origin), and CTAP options (e.g., rk and up to enable/disable discoverable credentials and
user presence, respectively).

We also wrote a malicious library that supports the CTAP over USB (i.e., CTAPHID)
protocol via the node-hid [255] module for Node [256] JavaScript. Our library monitors and
hijacks USB Human Interface Device (HID) communications, enabling us to test the interactions
between the authenticator and the client. Since CTAPHID encapsulates CTAP messages over
USB HID, we had to implement a CTAPHID parser that properly handles CTAPHID packet
fragmentation. Moreover, since CTAP messages are encoded using the Concise Binary Object
Representation (CBOR), we implemented a custom CBOR parser using the cbor [257] module.

Our CTAP testbed requires the user to authorize direct access to the authenticator. Linux
requires adding extra udev rules, MacOS asks to accept a notiőcation on the screen, and
Windows needs admin privileges.

6.6.2 CTAP Client Impersonation

We provide two implementations for a malicious CTAP client impersonation over NFC. First,
we develop custom Lua scripts for the Proxmark3 [258] that deploy our proximity-based CI
attacks. The Proxmark3 is a programmable RFID tool that can function as a NFC reader. We
use it with the built-in (i.e., range of 40 to 85 millimeters) and long range (i.e., range of 100 to
120 millimeters) high frequency antennas.

Second, we develop a malicious library that supports the custom CTAP NFC protocol
encapsulated with the ISO7816/ISO14443 contacless protocol [259]. We also provide a NFC
attacker app that imports our library to impersonate a legitimate FIDO2 app and deploy our
proximity-based CI attacks. We use it to test a proximity-based attacker that has no access to
specialized hardware (e.g., a Proxmark3), but owns a NFC-enabled Android smartphone.

We wrote our library in Java using the android.nfc [260] API. It requires the normal and
roid.permission.NFC permission. The library processes the authenticator as an IsoDep NFC
tag and utilizes the transceive method to exchange binary data over-the-air, that needs to be
interpreted and decoded (e.g., with a custom CBOR parser).

6.6.3 FIDO Wireshark Dissectors

We release our FIDO2 Wireshark dissectors, that we extensively used to analyze the CTAP
traffic during our research and experiments. They simplify the visualization of CTAP transport-
speciőc bindings and their binary content, allowing for faster debugging of communications
between the authenticator and the client (e.g., when crafting arbitrary CTAP packets that
might be rejected). Our dissectors extend the official ones [261] with new and valuable features.
For example, we add support for CredMgmt and we parse WAITING and PROCESSING keepalive
status codes that identify when authenticators are unavailable waiting for UP. Moreover, we
parse the authenticator’s capabilities in the CTAPHID_INIT message, which are useful for testing
AC7. We provide an improved way to display CTAP data when dissecting CTAPHID (USB)

102 102

and ISO7816/ISO14443 (NFC). Finally, we add missing vendor and product identiőers to the
dissector tables. See fido2-dissectors.lua in our toolkit for more details.

6.7 Evaluation

We successfully evaluated our eleven attacks against six popular authenticators from Yubico,
Feitian, SoloKeys, and Google supporting CTAP over USB and NFC, and ten well-known
relying parties, including Microsoft, Apple, GitHub, and Facebook. We tested our two attacker
models by deploying the attacks with our toolkit (presented in Section 6.6).

6.7.1 Setup

Authenticators Table 6.4 shows the speciőcations of the six authenticators we exploited. The
YubiKey 5 NFC, YubiKey 5 NFC FIPS, and Feitian NFC K9 are closed-source and do not
support őrmware updates, The Solo V1, Solo V2 Hacker, and Open Security Key (OpenSK)
have an open-source firmware (OSF), that we updated to their latest version. All authenticators
support both USB and NFC, except for OpenSK which, despite featuring a NFC module, only
supports USB. Unfortunately, we could not őnd any FIDO2 authenticator supporting BLE. The
authenticators store a maximum of 25 (Yubico), 50 (Feitian and SoloKeys), or 150 (OpenSK)
discoverable credentials. The YubiKey 5 FIPS is FIPS140-2 compliant, hence its cryptographic
modules and secrets have high security guarantees. We run OpenSK on an NRF52840 dongle,
but the attacks are effective regardless of its hardware.

Table 6.4: Details about the six authenticators we attack. All authenticators support USB and
NFC, except OpenSK, which only supports USB. FVer: őrmware version, OSF: open-source
őrmware, DCred: discoverable credentials.

Authenticator Manuf Year FVer OSF DCred

YubiKey 5 Yubico 2018 5.2.7 No 25

YubiKey 5 FIPS Yubico 2021 5.4.3 No 25

Feitian K9 Feitian 2016 3.3.01 No 50

Solo V1 SoloKeys 2018 4.1.5 Yes 50

Solo V2 Hacker SoloKeys 2021 2.964 Yes 50

OpenSK Google 2023 2.1 Yes 150

Relying parties We registered our authenticators with ten FIDO2 relying parties (i.e.,
Adobe, Apple, DocuSign, Facebook, GitHub, Hancock, Microsoft, NVidia, Synology, and Vault
Vision). Our list covers pervasive and heterogeneous web services, including software as a
service, social, gaming, cryptographic signing, authentication, and cloud storage. We high-
light that a FIDO2 credential can authenticate accounts from multiple online services. So, by
deleting a Microsoft credential we also jeopardize other services such as OneDrive, Outlook,
and Minecraft. This affects even services not directly supporting FIDO2 but relying on it like
ChatGPT, which utilizes Single Sign-On (SSO) through FIDO2-enabled Microsoft or Apple
credentials.

6.7. Evaluation 103

Table 6.5: CI and AC attacks on six authenticators. The őrst column lists the authenticators’
names. The remaining columns report our four CI and seven AC attacks on CTAP. ✓: attack
is effective on the authenticator, n/a: attack not applicable as the authenticator does not
implement the API.

Authen. CI1 CI2 CI3 CI4 AC1 AC2 AC3 AC4 AC5 AC6 AC7

YubiKey 5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ n/a ✓

YubiKey 5 FIPS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ n/a ✓

Feitian K9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ n/a ✓

Solo V1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ n/a ✓

Solo V2 Hacker ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

OpenSK ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CI1: Factory reset authenticator, CI2: Profile and track user, CI3: Force authenticator lockout,
CI4: Profile authenticator, AC1: Delete discoverable credentials, AC2: Factory reset authenticator,
AC3: Profile and track user, AC4: Fill authenticator credential storage, AC5: Force authenticator

lockout, AC6: Authenticator DoS, AC7: Profile authenticator.

CTAP Testbed We installed our CTAP testbed on a Dell Inspiron 15 3502 laptop (OSes:
Ubuntu 22.04.3 LTS and Windows 11 Home) and on a MacBook Pro M1 (OS: MacOs Ventura
13.4). We installed our Android NFC attacking app on a rooted Google Pixel 2 (OS: Android
11), a non-rooted RealMe 11 Pro (OS: Android 14) and Xiaomi Redmi Plus 5 (OS: Android
8.1). We ran our custom Lua scripts on a Proxmark3 RDV2 using the built-in and the long
range high frequency antennas. We deployed our proximity-based attacks using the Proxmark3
and the Android NFC attacker app by bringing the authenticators inside the malicious device’s
NFC range. We tested multiple NFC attack scenarios such as attacking an authenticator hidden
in the user’s pockets (e.g., a user seated on a bus) or sitting on top of a table that conceals a
malicious NFC reader. We deployed our remote attacks using the CTAP testbed on our two
laptops by plugging the authenticators in one of their USB ports.

6.7.2 Authenticators Results

Table 6.5 shows the evaluation results for the CTAP client impersonation and MitM API
confusion attacks. In total, we tested four CI attacks and seven AC attacks from proximity
and remotely. Despite being a standard CTAP API, only the Solo V2 Hacker and the OpenSK
implement Selection. Consequently, AC6 does not work on the other four authenticators.
The remaining CI and AC attacks are effective on all tested authenticators, including the
FIPS-compliant YubiKey.

The proximity-based CI and AC attacks required 50 to 500 milliseconds within NFC range
to complete, depending on their complexity (e.g., AC1 takes the longest). Allegedly, the NFC
range of smartphones is four centimeters or less [262]. In our experiments, we achieved up to
three centimeters of range, depending on the smartphone model. This reduction is expected, as
our NFC signals travel through solid material (e.g., clothes). The Proxmark3 built-in antenna
also achieved up to three centimeters of range, that we extended up to ten centimeters by using
its long range antenna. However, prior work demonstrated that, with specialized equipment,
the NFC range can be extended up to 50 centimeters [263].

104 104

Table 6.6: CTRAPS attacks on ten relying parties. The őrst and second columns list the relying
parties’ names and identiőers. The third column highlights whether they register discoverable
(D, DW) or non-discoverable (ND) credentials. We indicate with DW a relying party using
the default and weak CredProtect=UVOptional policy. Columns four, őve, and six specify the
effect of each attack. n/a: the attack is not applicable because the relying party currently does
not support discoverable credentials.

Rp RpId Cred Delete Creds Track User DoS Authen

Adobe adobe.com D AC1,CI1,AC2 CI2,AC3 AC4,CI3,AC5,AC6

Apple apple.com DW AC1,CI1,AC2 CI2,AC3 AC4,CI3,AC5,AC6

DocuSign account.docusign.com ND CI1,AC2 n/a CI3,AC5,AC6

Facebook facebook.com ND CI1,AC2 n/a CI3,AC5,AC6

GitHub github.com D AC1,CI1,AC2 CI2,AC3 AC4,CI3,AC5,AC6

Hancock hancock.ink D AC1,CI1,AC2 CI2,AC3 AC4,CI3,AC5,AC6

Microsoft login.microsoft.com DW AC1,CI1,AC2 CI2,AC3 AC4,CI3,AC5,AC6

NVidia login.nvgs.nvidia.com D AC1,CI1,AC2 CI2,AC3 AC4,CI3,AC5,AC6

Synology account.synology.com D AC1,CI1,AC2 CI2,AC3 AC4,CI3,AC5,AC6

Vault Vision auth.vaultvision.com D AC1,CI1,AC2 CI2,AC3 AC4,CI3,AC5,AC6

As expected, since we attack CTAP at the protocol level, the attacks are effective regardless
of the CTAP transport (i.e., USB or NFC), or the authenticator’s software and hardware. We
discovered that the Solo V1 requires a button press to activate the NFC interface, as opposed
to all other authenticators that do not require any user interaction to activate NFC. We also
found an implementation vulnerability on the YubiKey 5 and YubiKey 5 FIPS, that we discuss
in Section 6.9.2.

6.7.3 Relying Parties Results

Our attacks have a direct (AC1, CI1, AC2, CI2, and AC3) or indirect (AC4, CI3, AC5, and AC6)
impact on relying parties, despite the lack of direct communications (via WebAuthn). AC1,
CI1, and AC2 prevent access to a relying party via credential deletion. CI2 and AC3 utilize the
user identiőers provided by a relying party to track users. AC4, CI3, AC5, and AC6 indirectly
affect relying parties by preventing them from authenticating a registered authenticator. AC1
and AC4 are not applicable to non-discoverable credentials (i.e., DocuSign and Facebook).

Table 6.6 shows that all evaluated relying parties are directly or indirectly affected by our
attacks regardless of their credential type (i.e., D or ND). We analyzed eight relying parties
supporting discoverable credentials and two employing non-discoverable ones. We also discov-
ered that Microsoft and Apple ignore the CredProtect extension, making it non-enforceable by
the user. As a consequence, their weak UVOptional credential policy (DW) enables the more
severe (UV-less) CI2 and AC3 attacks.

Since users cannot recover deleted FIDO2 credentials, victims of CTRAPS attacks risk
losing access to their online accounts. For example, when testing AC1, CI1, and AC2, we lost
access to our dummy Apple ID account which we could only recover after two weeks due to
Apple’s policies.

6.8. Countermeasures 105

6.8 Countermeasures

We present the design and evaluation of seven practical and backward-compliant countermea-
sures őxing our eleven attacks and their seven root causes. Each countermeasure reduces the
CTAP attack surface and maps to a speciőc vulnerability (e.g., C1 addresses V1). Our counter-
measures are implementable as amendments to the FIDO2 standard or as FIDO2 extensions.

C1: Trusted CTAP clients We address V1 by recommending that FIDO provide a list
of trusted CTAP clients. FIDO offers several certiőcations, including the FIDO Functional
Certiőcation [264] which only attests the interoperability of clients, servers, and authenticators.
We suggest extending this certiőcation to also cover the trustworthiness of CTAP clients. For
instance, FIDO could implement a Software Bill Of Materials (SBOM) solution to monitor
trusted CTAP clients and their vulnerabilities.

C2: Authenticator visual feedback We address V2 by requiring the authenticator to
provide visual feedback of the called APIs. For instance, the authenticator’s LED could blink
once for non-destructive API calls and twice for destructive ones. The CTAP wink command,
which blinks the LED, must be disabled during this visual feedback.

C3: User interaction for UP over NFC We address V3 by requiring user interaction
during UP checks over NFC. For example, the user could press a button on the authenticator
to grant UP over NFC, similar to UP checks over USB.

C4: Dedicated PIN for destructive APIs We address V4 by introducing a dedicated
PIN to authorize destructive API calls (e.g., CredMgmt and Reset) and by repurposing the
current PIN to authorize non-destructive API calls (e.g., Selection and GetInfo). The new
PIN should have the same or stricter requirements as the non-destructive PIN (i.e., four to
sixty-three Unicode characters [242]).

C5: Dynamic and UV -protected CredId and UserId We address V5 by implementing
dynamic CredId and UserId and mandating CredProtect=UVRequired. CredId and UserId
should rotate after a set amount of logins (e.g., every ten logins) or a time interval (e.g., once
per month). Hence, we raise the bar for user proőling and tracking attacks on authenticators.
Currently, the user can indirectly change a CredId by calling MakeCred to generate a new
credential for his account, replacing the old one. However, the user cannot change the UserId,
which is determined by the relying party and, based on our experience, remains őxed to the
user account.

C6: Reset and CredMgmt must require UV and UP We address V6 by requiring
both UV and UP to call Reset and CredMgmt. Hence, the user must validate a factory
reset by entering a valid PIN and authorize credential deletion one by one, by pressing the
authenticator’s button, making it impossible to delete multiple credentials with a single API
call.

C7: Rate limiting Selection calls We address V7 by enforcing temporal rate limiting on
Selection calls to a maximum of three calls within two minutes. We are not expecting issues
with our rate limiting, akin to the limiting already existing for ClientPin(GetPinToken), as a
client typically calls Selection once per session.

Usability We believe that the stronger security granted by our countermeasures is worth
the inevitable usability trade-offs. C1, C2, and C7 do not affect usability. C5 only introduces
one additional UV and UP check every time the credential and user identiőer need to rotate
out (e.g., once per month), barely affecting usability. On the other hand, C4 requires the user
to remember a second PIN, and C6 add more authorization requirements to Reset and CredM

106 106

gmt. C3 also adds user interaction when connecting to the authenticator over NFC.
Adding a display We do not consider adding a display to a roaming authenticator an opti-

mal solution as it is not backward-compliant. Millions of deployed authenticators would remain
vulnerable. Moreover, it would require signiőcant hardware and software modiőcations, such
as adding a secure display, a display controller őrmware, and a battery, that would introduce
usability, performance, and cost issues.

6.9 Discussion

6.9.1 FIDO2 Reference Threat Model Issues

FIDO2 has a non-normative reference threat model [236] that includes security assumptions,
goals, and threats against clients, authenticators, and relying parties. We found three issues
(IS1, IS2, and IS3) with their threat model:

IS1: Unclear security boundaries The threat model presents six broad security assump-
tions but then violates them when discussing threats. For example, SA-4 states that the FIDO
user device and applications involved in a FIDO operation act as trustworthy agents of the
user. This implies that the FIDO client (e.g., the user’s browser or mobile app) must be inher-
ently trusted. However, the threat model includes threats breaking SA-4 like T-1.2.1: FIDO
client corruption that identiőes an attacker with code execution on a FIDO client. Instead,
security assumptions should hold to enable a security analyst to draw security boundaries (i.e.,
differentiate what we trust from what can be attacked).

IS2: Proximity threats are missing Despite FIDO supporting proximity transports
like NFC and BLE, the threat model classiőes proximity-based threats in the same category
as physical access threats, even though these two threats have signiőcant differences. For
example, compared to physical access, the range of a proximity attack can be extended. Hence,
our proximity attacks, which do not require physical access, cannot be accurately described
within this reference threat model.

IS3: Security goals are narrow The threat model has narrow security goals based
on [265] (2006) and [266] (2012). The security goals focus on web authentication but overlook
FIDO clients and roaming authenticators. For example, there are no security goals for the
Authenticator API (i.e., addressing all AC attacks) or discoverable credentials (i.e., addressing
AC1, CI1, and AC2).

6.9.2 Yubico CredMgmt Implementation Vulnerability

By testing API calls from our CTAP virtual client, we found a CredMgmt implementation vul-
nerability on the YubiKey 5 and YubiKey 5 FIPS that violates the CTAP speciőcation. For
example, the subcommand CredMgmt(EnumRpsGetNextRp) should be executed by the authen-
ticator only if CredMgmt(EnumRpsBegin) was called őrst. Instead, such subcommand is always
available on Yubico’s authenticators due to an incorrect handling of their state.

We exploit this ŕaw to leak conődential data and track users. In particular, we skip calling Cr

edMgmt(EnumRpsBegin), which requires UV, and call CredMgmt(EnumRpsGetNextRp), which does
not require UV. As a consequence, we retrieve all but one relying parties linked to discoverable
credentials stored on the authenticator, without needing UV and regardless of the CredProtect
policy.

6.10. Related Work 107

6.10 Related Work

We review and summarize FIDO and FIDO2 literature. In particular, we focus on attacks,
formal analysis, proposed extensions and enhancements, usability studies, and surveys.

Table 6.7 quantitatively compares our work with a selection of prior attacks on FIDO. Our
CI attacks present the őrst NFC reader impersonation on FIDO and our AC attacks introduce
a new strategy called CTAP API confusion Compared to other works that analyzed contactless
payment and keyless entry, FIDO is a unique case study where the NFC tag is smart and
could, but does not, authenticate to the reader, allowing for impersonation. We are the őrst to
target all CTAP versions and also all transports. We are the őrst to exploit the whole CTAP
Authenticator API, instead of focusing on a speciőc API. Our CI attacks are low-cost as they
do not require a compromised client or user device, or prior knowledge. Our AC attacks have
a moderate cost, as they require a man-in-the-middle position between the authenticator and
the client. The CTRAPS attacks have higher impact than most other previous attacks, as, for
example, they can permanently destroy all credentials and track users.

Attacks on FIDO and FIDO2 Researchers demonstrated practical attacks on older
FIDO versions, such as authenticator rebinding, parallel sessions, and multi-user attacks [268,
269], USB HID man-in-the-middle attacks [253], BLE pairing [270], relying party public key
substitution [61], bypassing push-based 2FA [271], real-time phishing [272], and side channel
attacks [37, 38]. FIDO2 was also found vulnerable to side channel attacks [39] and rogue key or
impersonation threats [267]. Moreover, attacks on lower layers trusted by FIDO2 were presented
including IV reuse on Samsung Keystore [62]. No prior attack investigated API confusion on
CTAP, including its latest version.

Formal Analysis The formal analysis and veriőcation community extensively researched
the FIDO standards. The community formally veriőed FIDO’s Universal Authentication Frame-
work (UAF) [28, 273], FIDO2 (including its privacy, revocation, attestation, and post-quantum
crypto) [60, 274, 68, 69]. Yubico proposed a key recovery mechanism based on a backup au-
thenticator that was proven secure using the asynchronous remote key generation (ARKG)
primitive [67]. The formal analyses are not covering our CI and AC attacks.

Extensions FIDO supports extensions to add optional features in a backward-compliant
way. For instance, FeIDO [275] proposes an extension to recover a FIDO2 credential using
an electronic identiőer. Extensions are not secure by default, and researchers proposed a őx
to protect them against MitM attacks [276]. We suggest to update the CTAP speciőcation
rather than implementing our countermeasures as FIDO extensions that would be optional and
insecure by design.

Enhancements Researchers proposed (cryptographic) enhancements to FIDO protocols.
In [277], the authors present a hybrid post-quantum signature scheme for FIDO2 and tested
it using OpenSK [278] (which we exploit in this work). In [279], the authors propose a global
key revocation procedure for WebAuthn that revokes credentials without communicating to
each individual relying party WebAuthn server. Proposed enhancements are not addressing
our attacks, which are effective regardless of the FIDO2 cryptographic primitives.

Usability Researchers performed extensive usability studies on FIDO U2F [280, 281, 282,
283], FIDO2 roaming authenticators [284, 285], passkeys [286], and cross-site 2FA [287]. Our
paper is orthogonal to usability studies.

Surveys There are several FIDO survey papers. In [288] the authors describe the evolution
of FIDO protocols, security requirements, and adoption factors. In [289], the authors surveyed

108 108

Table 6.7: Comparison between recent attacks on the FIDO protocol. We consider the attack
class, attacked protocols, transports, and surface, whether the attack was implemented and
its requirements. We also assign them a cost and impact. For example, the cost for a MitM
attacker is Mid and for a proximity attacker is Low. Similarly, hijacking a session has a Medium
impact, and permanently destroying credentials has a High impact.

Attack Class Protocol Transp Surface

Auth MitM [233] DH MitM CTAP2.0 All ClientPin

Priv leak [233] Eavesdropping CTAP2.0 All MakeCred

Auth rebind [233] Auth rebind WebAuthn All Creds.create

Parallel sess [233] Session hijack WebAuthn All Creds.get

Evil maid [39] Phys access n/a n/a Auth TEE

Titan phone imp [39] Impersonation U2F BLE Android

Titan key imp [39] Impersonation U2F BLE Google Acc

Auth MitM [267] DH MitM CTAP2.0/2.1 USB ClientPin

Web MitM [267] Session hijack WebAuthn USB Creds.get

Rogue key [267] Auth rebind WebAuthn USB MakeCred

CTRAPS CI Impersonation CTAP2.0/2.1/2.2 All Auth API

CTRAPS AC MitM API confusion CTAP2.0/2.1/2.2 All Auth API

Attack Impl Reqs Cost Impact

Auth MitM [233] ✗ n/a Mid Mid

Priv leak [233] ✗ n/a Low Low

Auth rebind [233] ✗ n/a High High

Parallel sess [233] ✗ n/a Mid Mid

Evil maid [39] ✗ Phys access High High

Titan phone imp [39] ✓ Proximity Low Mid

Titan key imp [39] ✓ Proximity Low Mid

Auth MitM [267] ✓ Mal browser Mid Mid

Web MitM [267] ✓ Mal browser Mid Mid

Rogue key [267] ✓ Mal browser Mid High

CTRAPS CI ✓ Proximity Low High

CTRAPS AC ✓ MitM Mid High

6.11. Conclusion 109

the adoption of passwordless authentication among a large user base, considering users’ percep-
tion, acceptance, and concern with single-factor authentication without passwords. Our paper
is orthogonal to surveys.

6.11 Conclusion

No prior work assessed the security of the CTAP Authenticator API, despite being a core pro-
tocol of the FIDO2 standard. To address this gap, we present the őrst security and privacy
evaluation of FIDO2’s CTAP Authenticator API. We deploy the őrst CTAP client imper-
sonation in FIDO2, enabling an attacker to call CTAP APIs without authorization or user
interaction. We also introduce a novel attack strategy called API confusion, that changes,
without user consent, the API called by the user to an API chosen by the attacker.

We uncover eleven new proximity-based and remote attacks that can severely impact mil-
lions of FIDO2 users. For example, our attacks delete FIDO2 credentials and master keys
(security breach) and track users through their credentials (privacy breach). The attacks are
effective on the entire FIDO2 ecosystem as they target seven vulnerabilities we discovered in
the CTAP speciőcation. These ŕaws include the lack of CTAP client authentication and im-
proper API authorizations. CTRAPS attacks are low-cost, as they do not require specialized
or expensive equipment, and stealthy, as they do not trigger unexpected user interactions.

We develop the CTRAPS toolkit to test our attacks with a low-cost setup and on a large scale.
It includes a CTAP testbed with a virtual relying party and a virtual client, a CTAP client
NFC impersonator (i.e., malicious Proxmark scripts and Android NFC app), and enhanced
Wireshark dissectors for CTAP. We successfully exploit six authenticators and ten relying
parties from leading FIDO2 players such as Yubico, Feitian, Google, Microsoft, and Apple.
We develop seven effective and legacy-compliant countermeasures to őx our attacks and their
root causes.

We share three lessons we learned about FIDO2 credential storage and passwordless-ness,
which are valuable for the current transition from single-factor authentication to 2FA and
passkeys [290, 291]: (i) Being stored on the authenticator, FIDO2 discoverable credentials
are protected from third-party data breaches. However, this introduces new attacks that work
exclusively on discoverable credentials (i.e., AC1, CI2, AC3, and AC4); (ii) FIDO2 users cannot
prevent attacks targeting discoverable credentials, as they cannot choose the type of credentials
they register and their protection policies, decided by the relying party and the client instead.
(iii) FIDO2 core message is to steer away from passwords because they are vulnerable to
phishing. However, digging deeper, we realized that FIDO2 still relies on phishable mechanisms,
even for passwordless authentication. For instance, a passwordless credential is protected by
an alphanumeric PIN (i.e., a phishable sequence the user must remember).

110 110

Chapter 7

Conclusion

In this thesis, we analyzed the security of multiple IoT protocols, underscoring the immaturity
of security and privacy practices. We developed a security testing approach extensible to őtness
trackers, e-scooters, and FIDO2 authenticators. As a result, we release open-source tools for
virtualizing IoT devices (i.e., őtness trackers and e-scooters), clients (i.e., Xiaomi companion
apps and FIDO2 clients), and backend (i.e., relying party) and attack them, analysis tools for
őrmware and code (i.e., e-scooter őrmware patcher and Frida hooks), and protocol dissectors.
We őnd twenty-seven vulnerabilities that enable twenty-three impactful and low-cost attacks
at the protocol-level, utilizing novel attack strategies (e.g., API confusion) and targeting unex-
plored attack surfaces (e.g., e-scooter internals). Among them, we highlight four vulnerabilities
and nine attacks that break user privacy, to the point of reading health data protected by
GDPR. We improve insecure protocols, applying state-of-the-art security mechanisms while
preserving their backward-compatibility, release vulnerability assessment tools to test devices
with known issues, and őrmware patches to protect users utilizing vulnerable devices. We
explored four challenging research questions about improving security testing, őnding new vul-
nerabilities and attacks, securing IoT ecosystems, and reviewing the state of privacy. As a
result to our journey, we now discuss four key takeways from our research.

First, IoT security testing still demands signiőcant manual effort. Despite the variety of
existing techniques, none provided a reliable solution for analyzing closed-source protocols,
especially when working with a limited set of protocol packets and seeking sophisticated at-
tack outcomes. These criteria were essential to our work with proprietary protocols, where
protocols like Mi Band pairing may only involve four messages, and our focus was on criti-
cal security properties like conődentiality and integrity. We envision a framework that: (i)
identiőes high-level device operations (e.g., pairing, session establishment, authentication, and
őrmware updates); (ii) collects data on the IoT attack surface (e.g., device-to-app and app-
to-backend traffic, app execution traces, API endpoints, and őrmware); and (iii) matches this
data to known patterns to reverse-engineer protocol logic and reveal its design. For example,
this framework could detect the use of cryptographic primitives through instrumentation in
companion apps, track session key generation, and decrypt traffic based on observed patterns.
It could also infer that unencrypted packets containing public keys are part of pairing, while
encrypted messages represent session establishment.

Second, the rapid evolution of IoT devices is not met with corresponding security improve-
ments. This results in an ever-expanding range of new features that introduce fresh vulnera-
bilities, making devices more susceptible to stronger attacks over time. For instance, FIDO2’s

111

112 112

introduction of discoverable credentials exposed a new attack surface, allowing attackers to
erase credentials and prevent users from accessing their accounts. We advocate for greater
transparency from vendors, many of whom make bold claims about the security of their prod-
ucts primarily for marketing purposes, rather than to genuinely protect users. FIDO2 advertises
phishing protection, while still relying on a PIN (i.e., a phishable code) and being vulnerable to
many social engineering and UI deception attacks. We also notice that manufacturers offload
security responsibilities onto user instead of addressing the risks themselves. For example, Xi-
aomi’s security approach requires users to be in a secure environment every time they activate
the headlight on their e-scooter, as this also triggers pairing mode, leaving them vulnerable to
malicious pairing attacks. Similarly, the FIDO2 reference threat model assumes the presence
of a legitimate, uncompromised client, overlooking the realistic threat of malware infecting
devices.

Third, despite the availability of robust and cost-effective security mechanisms, manufac-
turers still largely rely on security through obscurity. Even with widespread awareness of the
need for strong authentication, encryption, and integrity protection, many IoT protocols fail to
implement these basic measures. Devices do not encrypt traffic data, lack mutual authentica-
tion, and leave őrmware unsigned, despite modern System-on-Chip (SoC) supporting symmetric
and asymmetric cryptography. Furthermore, manufacturers ignore the security protocols pro-
vided by technologies such as BLE and NFC, even with respect to critical operations involving
conődential or sensitive data.

Finally, privacy remains an afterthought in IoT design. Even with some progress in security,
manufacturers show little interest in limiting the data they collect from users. Closed-source
ecosystems further complicate regulatory oversight, making it difficult for authorities to audit
compliance with GDPR and other privacy regulations. As a result, users have little control over
their privacy, often forced to choose between using a device or not, with no alternatives to reduce
data exposure. Strengthening user awareness of privacy issues and empowering users with tools
to protect their data are critical next steps for improving privacy in IoT environments.

In conclusion, this thesis highlights the signiőcant gaps in IoT security and privacy, under-
scoring the need for more effective testing, proactive vulnerability mitigation, robust defense
mechanisms, and greater transparency from manufacturers. Our research contributions offer
valuable insights into the weaknesses of current practices and pave the way for future improve-
ments. However, the road ahead requires collaboration between researchers, industry, and
regulatory bodies to address these persistent challenges and ultimately create a more secure
and privacy-respecting IoT ecosystem. By building on the foundations laid in this work, we
hope to inspire further advancements in securing the rapidly evolving IoT landscape.

Résumé en Français

Les dispositifs de l’Internet des objets (IoT) sont des systèmes embarqués conçus pour se
connecter et échanger des données avec d’autres systèmes via Internet. Ces dispositifs couvrent
une large gamme, allant des petits gadgets du quotidien comme les bracelets connectés, aux
systèmes sophistiqués comme les trottinettes électriques. Ils sont généralement construits pour
effectuer des tâches spéciőques et limitées, tout en donnant la priorité à l’efficacité énergétique et
à la rentabilité. Par exemple, ils collectent des données des utilisateurs et de leur environnement
grâce à des capteurs. Cependant, leurs contraintes de conception signiőent que les dispositifs
IoT fonctionnent souvent avec une puissance de calcul, une mémoire et un stockage minimaux
aőn de réduire les coûts et prolonger la durée de vie des batteries. Pour assurer la connectivité
tout en économisant de l’énergie, ils s’appuient sur des protocoles sans ől basse consommation
tels que le Bluetooth Low Energy (BLE) et la communication en champ proche (NFC). Leur
format compact limite leur capacité à intégrer du matériel haut de gamme comme des écrans,
le GPS ou des modules cryptographiques avancés.

Compte tenu de ces contraintes, les dispositifs IoT s’appuient généralement sur un écosys-
tème de soutien pour étendre leurs fonctionnalités. Un backend basé sur le cloud, par exemple,
peut prendre en charge des tâches gourmandes en ressources telles que le stockage de données,
l’analyse complexe et l’apprentissage automatique sur les données collectées par les capteurs
de l’appareil. Parallèlement, une application mobile compagnon sert souvent de proxy, perme-
ttant l’interaction avec l’utilisateur et fournissant à l’appareil une connectivité Internet. Cet
écosystème permet à l’appareil d’offrir des fonctionnalités avancées grâce à une infrastructure
externe.

L’un des plus grands déős en matière de sécurité des IoT est de trouver un équilibre en-
tre efficacité, rentabilité et sécurité, cette dernière étant souvent reléguée au second plan. Les
dispositifs IoT doivent s’appuyer sur une cryptographie légère en raison de la puissance de
traitement et de la mémoire signiőcatives requises par les algorithmes de chiffrement forts,
ainsi que du coût et du manque d’espace pour des modules cryptographiques. La plupart
des dispositifs ne prennent pas en charge l’authentiőcation basée sur les certiőcats ou la cryp-
tographie à clé publique. Cela pose particulièrement problème lorsqu’il s’agit de protéger des
opérations critiques en matière de sécurité telles que l’appariement, l’établissement de session
et les mises à jour de őrmware.

Le déploiement massif de dispositifs IoT dans des fonctions critiques Ð allant de la santé
personnelle à la sécurité en ligne et à la mobilité Ð signiőe que des attaques réussies peuvent
avoir des conséquences considérables, affectant non seulement les utilisateurs individuels mais
potentiellement des millions de personnes ainsi que l’ensemble de l’écosystème du fournisseur.
Voici quelques exemples mettant en évidence les effets signiőcatifs des violations de la sécurité
sur la conődentialité, la disponibilité et la sécurité.

113

114 114

Les trackers d’activité physique stockent et gèrent des données personnelles très sensibles,
telles que la fréquence cardiaque, l’activité physique, et même les notiőcations de SMS ou
d’appels entrants. Un attaquant pourrait divulguer ou détourner ces données de santé sensibles,
compromettant ainsi la vie privée de l’utilisateur et l’exposant potentiellement au vol d’identité
ou à une surveillance non désirée. Les authentiőcateurs FIDO2 gèrent des clés cryptographiques
et des identiőants qui sécurisent l’accès aux comptes en ligne. Si un attaquant parvient à
compromettre ces dispositifs, cela pourrait entraîner la perte d’accès à des services en ligne
essentiels tels que les emails, les comptes bancaires ou les comptes professionnels. Cela perturbe
non seulement la vie quotidienne de l’utilisateur, mais ouvre également la voie à d’autres risques
de sécurité, notamment des prises de contrôle de comptes ou des fraudes őnancières. Les
trottinettes électriques surveillent en continu l’état de leur batterie lithium-ion pour assurer la
sécurité du conducteur. Si elles sont compromises, les mécanismes de sécurité d’une trottinette
pourraient être désactivés, ou des données erronées sur l’état de la batterie pourraient être
transmises à l’utilisateur, entraînant des dysfonctionnements voire des incendies de batterie.
Cela met non seulement en danger le conducteur, mais aussi les personnes à proximité. De
plus, les dispositifs IoT sont conçus pour une utilisation en déplacement, et ne pas pouvoir
y accéder au moment voulu peut entraîner des désagréments importants. Par exemple, une
trottinette ou un authentiőcateur verrouillé pourrait empêcher les utilisateurs d’accéder à des
services ou des moyens de transport essentiels à des moments inopportuns.

Énoncé du Problème

Les dispositifs IoT s’appuient sur des transports de communication standards, tels que le BLE,
le NFC et l’USB. Cependant, ces standards ne répondent souvent pas aux exigences spéciőques
des fabricants, les incitant à développer des protocoles ad-hoc sur ces transports. Par exemple,
les services GATT standards de BLE manquent de mécanismes d’authentiőcation adéquats pour
répondre aux besoins d’écosystèmes comme celui de Xiaomi, qui utilise une authentiőcation côté
serveur. De même, dans la norme FIDO2, la communication NFC entre un authentiőcateur
et un client utilise le protocole Client-To-Authenticator (CTAP) sur ISO14443 (une norme de
communication sans contact) et ISO7816-4 (une spéciőcation pour les cartes à puce).

Les fabricants manquent des ressources nécessaires pour concevoir des systèmes IoT sécurisés
tout en réimplémentant les mécanismes de sécurité standards à travers plusieurs protocoles
couches. En comparaison, le groupe de travail Constrained Restful Environments (CoRE [1]) a
mis quatre ans à publier leur protocole de couche applicative, c’est-à-dire le Constrained Appli-
cation Protocol (CoAP [2]), et quatre années supplémentaires pour étendre [3] leur pile réseau
IoT à TCP et TLS. De plus, les fabricants contribuent à la prolifération des protocoles IoT
non sécurisés en refusant de développer un cadre IoT unique et robuste, préférant fragmenter
leur écosystème en plus petits sous-ensembles, chacun avec son propre protocole mal conçu.
En conséquence de la complexité et de la fragmentation des protocoles en couches, les fabri-
cants introduisent fréquemment des vulnérabilités critiques dans des opérations essentielles à
la sécurité telles que l’appariement, l’établissement de session et les mises à jour de őrmware,
mettant ainsi en danger l’ensemble de l’écosystème. Ces problèmes peuvent être présents dans
différentes couches et composants de l’écosystème, tels que la conception du protocole, le code
de l’appareil, le matériel, ou encore l’interaction utilisateur.

Nous nous concentrons sur les problèmes au niveau du protocole, que l’on retrouve dans

115

la conception et la logique des protocoles de communication des IoT. Une vulnérabilité au
niveau du protocole découle de failles dans la manière dont le protocole est déőni, telles que
l’absence d’authentiőcation ou des schémas de chiffrement faibles. Ces vulnérabilités, ainsi que
les attaques les exploitant, ont une portée large qui affecte tous les dispositifs exécutant le
protocole, indépendamment de leur logiciel et matériel. Cela signiőe que même les versions
futures des dispositifs concernés restent vulnérables. Par exemple, nos attaques sur le Mi Band
5 étaient tout aussi efficaces sur le Mi Band 6, même si elles ont été développées avant que nous
ne soyons conscients de l’existence du Mi Band 6.

Corriger les problèmes au niveau du protocole est particulièrement complexe, surtout lorsqu’il
faut tenir compte de la compatibilité descendante. Résoudre ces vulnérabilités nécessite souvent
de redéőnir ou de mettre à jour la spéciőcation du protocole, ce qui, dans le cas de standards
largement adoptés comme BLE et FIDO2, demande une collaboration entre différentes indus-
tries et organismes de normalisation. Par exemple, nous avons préconisé des améliorations aux
protocoles d’appariement et d’établissement de session utilisés par les bracelets connectés Xi-
aomi, et avons participé à des discussions avec la FIDO Alliance pour mettre à jour leur modèle
de menace de référence.

Questions de Recherche

Cette thèse explore quatre questions de recherche fondamentales qui posent des déős majeurs
et non résolus dans le paysage en évolution de la sécurité des objets connectés (IoT). Lors du
choix de nos questions de recherche, nous avons cherché à combler des lacunes critiques dans
la compréhension et la sécurité des écosystèmes IoT, en nous concentrant sur des domaines à
la fois peu développés et ayant un impact signiőcatif.

RQ1 - Comment améliorer les tests de sécurité des protocoles IoT ?

Nous estimons qu’il est essentiel de tenir les fabricants responsables pour une sécurité in-
suffisante, en particulier lorsqu’ils présentent de manière trompeuse les garanties offertes par
leurs produits. Pour ce faire, il est indispensable de disposer d’une base solide en techniques
d’analyse des protocoles et en outils disponibles. Dans l’évaluation d’un écosystème IoT, nous
identiőons deux activités principales : analyser la surface d’attaque et comprendre la logique
sous-jacente de l’appareil, y compris par rétro-ingénierie si nécessaire.

La surface d’attaque des dispositifs IoT varie considérablement en fonction de facteurs tels
que les canaux de communication (par exemple, radio BLE et connecteurs USB), les composants
matériels (par exemple, capteurs et écrans), et l’architecture système (par exemple, la présence
de serveurs backend et de sous-systèmes internes). Par exemple, les trackers d’activité physique
et les trottinettes électriques sont vulnérables à des attaques à longue portée via BLE, tandis
que les authentiőcateurs FIDO2 sont exposés à des menaces de proximité via NFC ou à des
menaces locales via des connexions USB. Certains vecteurs d’attaque exploitent des faiblesses
spéciőques, telles que les attaques d’usurpation d’identité de clients FIDO2, qui tirent parti de
l’absence de retour visuel sur les authentiőcateurs. De même, le protocole d’appariement côté
serveur de Xiaomi peut être manipulé pour dissocier à distance des appareils des comptes de
leurs propriétaires. Le choix du mécanisme de transport inŕuence également la manière dont le
traőc est capturé, déchiffré et analysé. Par exemple, le journal HCI snoop d’Android permet de
surveiller le traőc BLE sans chiffrement de la couche liaison, tandis que le déchiffrement d’une

116 116

session TLS nécessite l’obtention de la clé pré-master. Les tests de sécurité à grande échelle
doivent prendre en compte tous ces scénarios et variables.

De nombreux fabricants s’appuient sur la sécurité par l’obscurité, en gardant leurs protocoles
fermés et non documentés. Cette pratique rend l’analyse des protocoles fortement dépendante
de l’efficacité de la rétro-ingénierie (RE). La RE est nécessaire pour déchiffrer les messages
de la couche application (par exemple, ceux échangés après l’accord de clés) et comprendre
le format binaire et la sémantique des communications du protocole. De plus, la RE est un
effort continu, car les protocoles propriétaires peuvent évoluer au ől du temps avec la sortie
de nouveaux correctifs ou de nouvelles générations de dispositifs. Par exemple, le Mi Band
4 utilise un protocole d’appariement différent du Mi Band 3 et a subi une autre mise à jour
majeure en 2021. Malgré l’existence d’outils tiers développés par des experts en sécurité, ceux-ci
sont trop spéciőques à certains dispositifs, offrent des capacités de test limitées, et deviennent
obsolètes dès que les protocoles évoluent. Il est nécessaire de disposer de meilleurs outils et
d’un environnement de test stable qui ne nécessite pas l’achat ou l’exécution du matériel.

RQ2 - Comment trouver des vulnérabilités et des attaques au niveau des pro-
tocoles IoT ?

Les écosystèmes IoT présentent une gamme de déős de sécurité qui, malgré leur appar-
ente simplicité, se sont avérés difficiles à résoudre et persistent depuis plus d’une décennie de
recherches. Ces déős proviennent de problèmes inhérents tels que les ressources limitées des
appareils, les protocoles fragmentés, et la délégation injuste des responsabilités de sécurité aux
utilisateurs őnaux. Faire progresser la sécurité des IoT nécessite une compréhension approfondie
de ces problèmes persistants et l’élaboration de solutions à leurs causes profondes. Ci-dessous,
nous soulignons une sélection des risques de sécurité critiques que nous avons évalués.

Une authentiőcation faible ou non-mutuelle ouvre la porte aux attaques d’usurpation d’identité
et de spooőng. Un chiffrement inadéquat et une protection insuffisante de l’intégrité exposent
les communications à l’écoute clandestine, à des messages falsiőés, et à des attaques par rejeu.
Des mises à jour de őrmware non sécurisées exposent les dispositifs à des compromissions par
des logiciels malveillants ou des modiőcations non autorisées. Un protocole défectueux ou une
négociation de version de őrmware vulnérable les rendent sensibles aux attaques de rétrograda-
tion, réduisant leurs garanties de sécurité à celles d’une version plus faible du protocole ou du
őrmware. Une prise de conscience insuffisante de l’utilisateur et des conőrmations trompeuses
dues à une mauvaise interface utilisateur et à des avertissements non transparents lors de dé-
cisions critiques en matière de sécurité. La dépendance excessive des fabricants à la sécurité
par l’obscurité plutôt qu’à des mécanismes de sécurité solides conduit à des protocoles sans
garanties de sécurité dès qu’ils sont rétro-ingéniés.

RQ3 - Comment concevoir des protocoles IoT sécurisés ?
De nombreux travaux académiques ont tenté de résoudre les risques de sécurité précédem-

ment discutés. Une stratégie courante consiste à adapter des versions allégées de mécanismes
de sécurité établis. Par exemple, l’introduction de CoAP, un protocole web similaire à HTTP
mais optimisé pour les environnements contraints, ainsi que le développement de DTLS pour les
environnements contraints (DICE [4]), qui implémente des primitives cryptographiques comme
Elliptic Curve Diffie-Hellman Ephemeral (ECDHE), également utilisé dans TLS. Une deuxième
approche consiste en la création de solutions ad hoc adaptées à des écosystèmes IoT spéciőques.
Un exemple est le développement d’extensions FIDO2 pour améliorer la sécurité, ou la refonte

117

de protocoles aőn d’utiliser plus efficacement les primitives cryptographiques existantes. Par
exemple, nous avons exploité l’implémentation par Xiaomi de l’algorithme de chiffrement Tiny
Encryption Algorithm (TEA) pour chiffrer le őrmware.

La principale limitation de ces contre-mesures réside dans leur manque de compatibilité
ascendante et d’interopérabilité. Les chercheurs conçoivent souvent de nouveaux protocoles
entièrement incompatibles avec les existants ou proposent l’ajout de nouveaux composants
matériels aux appareils. Par exemple, plusieurs travaux liés à FIDO2 suggèrent de résoudre
l’usurpation d’identité des clients en intégrant un affichage sécurisé. Cependant, de nombreuses
solutions ne sont pas (facilement) portables entre les appareils en raison des différences de logi-
ciels, d’architectures ou de transport. Par exemple, bien que nous ayons pu corriger une vul-
nérabilité de rétrogradation de session dans le őrmware des trottinettes électriques, l’extension
de cette correction à d’autres versions du őrmware a nécessité des efforts de codage supplé-
mentaires et de rétro-ingénierie. Il est irréaliste d’attendre des utilisateurs qu’ils remplacent
leurs appareils et passent à de nouveaux modèles simplement pour corriger des failles de sécu-
rité qu’ils n’ont pas causées. Les chercheurs devraient aider à développer des contre-mesures
applicables à un large éventail d’appareils, idéalement sans nécessiter l’intervention des fabri-
cants. Améliorer les mécanismes d’interaction utilisateur et publier des outils pour corriger les
appareils permettraient aux utilisateurs de prendre le contrôle de leur propre sécurité, au lieu
de dépendre uniquement des mises à jour officielles. Nous ne traitons pas de la fragmentation
actuelle des protocoles IoT, mais nous nous concentrons sur la résolution de concepts de sécu-
rité de haut niveau adaptables à divers protocoles, laissant les détails d’implémentation aux
développeurs.

RQ4 - Comment concevoir des protocoles IoT respectueux de la vie privée ?

Garantir la conődentialité dans l’IoT est un déő critique, car la prolifération des disposi-
tifs interconnectés génère d’énormes quantités de données personnelles, souvent collectées et
transmises sans consentement explicite des utilisateurs. L’importance de traiter les préoccu-
pations relatives à la conődentialité réside dans les conséquences potentielles des violations de
données, qui peuvent entraîner le suivi des utilisateurs, le proőlage, une infraction au RGPD, et
la manipulation du comportement des utilisateurs. Actuellement, la conődentialité dans l’IoT
n’est pas régulée, les fabricants se contentant de publier un document arbitraire (par exemple,
la notice de conődentialité des trackers d’activité Xiaomi [5]) qui ne les rend pas responsables
en cas d’atteinte à la vie privée (c’est-à-dire que Xiaomi n’a jamais reconnu nos nombreuses
attaques divulguant des données de santé et privées des utilisateurs). La Fondation Mozilla
s’est engagée dans l’initiative "Privacy Not Included" [6], publiant sa propre évaluation de la
conődentialité des produits IoT.

Nous considérons qu’il est inacceptable qu’à l’heure actuelle, les appareils qui collectent le
plus de données personnelles soient ceux qui les protègent le moins et les exposent à des acteurs
malveillants, à des fabricants peu scrupuleux et à des publicitaires. Plusieurs tentatives de
systématisation de la sécurité IoT ont été faites, telles que le cadre Fitbit Golden Gate [7] qui
promeut des communications őables et sécurisées, mais sans volonté explicite de garantir la
conődentialité. Nous considérons les attaques contre la vie privée aussi importantes que celles
contre la sécurité, et nous les corrigeons, par exemple en proposant une rotation dynamique
des annonces BLE sur les trackers d’activité et des identiőants d’authentiőcation FIDO2. Nous
soulignons l’absence de mécanismes permettant à l’utilisateur de gérer quelles données sont
collectées par ses appareils et quelles données sont envoyées au backend pour traitement. Ce

118 118

serait une étape cruciale pour permettre aux utilisateurs de prendre le contrôle de leur propre
vie privée.

Contributions

Cette thèse apporte quatre contributions clés à l’étude des techniques d’analyse, des vulnérabil-
ités, des attaques et des contre-mesures dans les systèmes IoT. Nous mettons particulièrement
l’accent sur les vulnérabilités au niveau du protocole en raison de leur impact signiőcatif, tant
académique que dans le monde réel, ce qui a conduit à des améliorations fondamentales en
matière de sécurité et de conődentialité. Nos recherches exposent des failles critiques dans
la logique et la structure sous-jacentes des protocoles utilisés par des dispositifs tels que les
trackers d’activité, les trottinettes électriques et les authentiőcateurs FIDO2, et plaident pour
une transition vers des principes de sécurité dès la conception de la part des fabricants. Nous
résumons maintenant les principales contributions de cette thèse et discutons de la manière
dont chaque travail répond aux questions de recherche dans son contexte respectif.

BreakMi

La contribution "BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosys-
tem" [8] a été publiée dans les IACR Transactions on Cryptographic Hardware and Embedded
Systems (CHES 2022).

Dans BreakMi, nous analysons les trackers d’activité, démontrant comment même les ap-
pareils les plus petits et les moins chers peuvent avoir un impact signiőcatif sur les utilisateurs
et l’écosystème du fabricant. Nous répondons à RQ1 en publiant un tracker d’activité virtuel et
une application compagnon qui communiquent en utilisant le protocole Xiaomi. Nous publions
les services GATT de Xiaomi, leurs caractéristiques et fonctions, ainsi que des dissectors pour
les paquets Xiaomi et leur format binaire. Nous répondons à RQ2 en identiőant six attaques à
distance et de proximité issues de dix vulnérabilités. Nos attaques contournent les mécanismes
de sécurité et permettent l’injection de fausses données dans le tracker ainsi que dans le système
backend. Nous répondons à RQ3 en améliorant les protocoles d’appairage et d’authentiőcation
de Xiaomi, renforçant ainsi les garanties de sécurité sans compromettre la compatibilité ascen-
dante ou les performances. Enőn, nous répondons à RQ4 en démontrant comment les trackers
d’activité divulguent des données conődentielles, telles que les données de santé et les horaires
de sommeil, et peuvent être utilisés pour suivre les utilisateurs.

E-Spoofer

La contribution "E-Spoofer: Attacking and Defending Xiaomi Electric Scooter Ecosystem" [9]
a été publiée dans les actes de la 16e Conférence ACM sur la sécurité et la vie privée dans les
réseaux mobiles et sans ől (WiSec 2023).

Dans E-Spoofer, nous effectuons la rétro-ingénierie et exploitons les protocoles d’appairage
et d’établissement de session des trottinettes personnelles Xiaomi. Nous répondons à RQ1
en publiant une trottinette virtuelle et une application compagnon qui répliquent exactement

119

les communications BLE d’origine, permettant ainsi des tests sans avoir besoin d’acheter du
matériel. Nous systématisons les quatre protocoles de Xiaomi et fournissons des outils pour
vériőer les primitives cryptographiques en usage (par exemple, aucune, AES ou ECDH). Nous
répondons à RQ2 en présentant deux attaques à distance et de proximité exploitant six vulnéra-
bilités. Une attaque d’appairage malveillant permet à un attaquant d’usurper l’application et
de déverrouiller une trottinette à distance, facilitant ainsi le vol. Une attaque de rétrogradation
de session exploite un oubli des développeurs concernant la rétrogradation de version du proto-
cole. Nous répondons à RQ3 en repensant les protocoles de Xiaomi avec un geste d’appairage
intentionnel et une authentiőcation mutuelle. Nous publions également un outil pour détecter
les őrmwares vulnérables à nos attaques, ainsi qu’un őrmware corrigé pour un modèle qui n’est
plus mis à jour par Xiaomi. Enőn, nous répondons à RQ4 en obtenant un accès non autorisé
à la trottinette et à toutes les informations privées qu’elle contient, y compris le kilométrage et
le temps passé sur la course en cours.

E-Trojans

La contribution "E-Trojans: Ransomware, Tracking, DoS, and Data Leaks on Battery-powered
Embedded Systems" est actuellement en cours de soumission au Symposium international IEEE
sur la sécurité matérielle et la conőance (HOST 2025).

Dans E-Trojans, nous démontrons comment un attaquant interne peut compromettre la
sécurité du conducteur d’une trottinette électrique, entraînant des dangers tels que des courts-
circuits et des risques d’incendie. Nous répondons à RQ1 en publiant un outil d’analyse et de
correction de trottinettes électriques capable d’introduire des capacités malveillantes dans le
őrmware du système de gestion de batterie légitime. Nous répondons à RQ2 en présentant qua-
tre attaques exécutables depuis le őrmware du système de gestion de batterie des trottinettes.
Nos découvertes incluent le premier cas de ransomware par sous-tension de batterie ainsi qu’une
série d’attaques par déni de service (DoS). Nous identiőons quatre vulnérabilités facilitant ces
attaques, y compris l’absence de vériőcation de la signature du őrmware. Nous répondons à
RQ3 en sécurisant le őrmware grâce au chiffrement et à la vériőcation de la signature, en pro-
tégeant le bus UART interne avec un protocole sécurisé tel que SCP03, et en mettant en œuvre
des mesures de limitation de débit. Enőn, nous répondons à RQ4 en proposant une attaque de
suivi des utilisateurs qui utilise l’empreinte des détails de la batterie et divulgue des données
personnelles via la publicité BLE.

CTRAPS

La contribution "CTRAPS: CTAP Impersonation and API Confusion Attacks and Defenses on
FIDO2" sera soumise au 10e Symposium européen IEEE sur la sécurité et la vie privée (EURO
S&P 2025).

Dans CTRAPS, nous proposons deux stratégies d’attaque pour compromettre la sécurité
et la conődentialité de FIDO2, une norme d’authentiőcation open-source et robuste. Nous
répondons à RQ1 en développant un banc d’essai FIDO2 virtuel, comprenant un client virtuel
pour l’invocation arbitraire de l’API Authenticator et une partie de conőance virtuelle capable
d’enregistrer tout type d’identiőants sur un authentiőcateur. Nous améliorons également les

120 120

IoT Device

Sensors

Actuators

User

Application-layer
protocol over transport

Companion
App

Backend

Application-layer
protocol over TLS

API
Endpoint

● Open debug ports
 -> Disable ports
● Insecure updates
 -> Signed firmware

● Weak authentication
 -> Mutual authentication
● Obfuscation over
encryption
 -> Encrypted session
● Downgradable protocol
 -> Version enforcement

● No link-layer security
 -> Enable link-layer security
● Weak user authorization
 -> Contextual confirmation

● No authentication
 -> API authentication
● Unencrypted data
 -> Encrypted and
integrity-protected data

● Authorization
 -> API authorization
● Data exposure
 -> Access control

App-to-backend traffic
analysis (e.g., MitM Proxy)

Device-to-app traffic (e.g.,
BLE) and protocol analysis

Static (e.g., decompilation) and dynamic
analysis (e.g., instrumentation)

API analysis (e.g.,
endpoint enumeration)

Debug interface analysis
(e.g., JTAG port)

Figure 7.1: High-level system model for an IoT ecosystem. The IoT device (left) collects data
via sensors and actuators. Users interact with the device through a companion app (middle),
connected to the vendor’s backend (right). We indicate available analysis techniques in teal.
We report common vulnerabilities in red and a possible defense against them in blue.

dissectors FIDO2 existants pour capturer plus de paquets et mieux visualiser les informations.
Nous répondons à RQ2 en présentant onze attaques de proximité et à distance et en discutant
de leurs sept causes racines, ainsi que des limites du modèle de menace de référence FIDO2,
irréaliste. Nos stratégies d’attaque incluent l’usurpation d’identité du client (par exemple,
lecteur NFC) capable d’attaques zero-click, ainsi qu’une nouvelle technique de confusion API,
où les autorisations accordées par l’utilisateur pour certaines requêtes API sont détournées pour
d’autres requêtes potentiellement destructrices. Nos attaques démontrent que l’introduction de
nouvelles fonctionnalités (par exemple, les identiőants découvrables conçus pour protéger contre
les violations de données tierces) peut involontairement créer de nouveaux vecteurs d’attaque
(par exemple, la suppression d’identiőants découvrables via l’API de gestion des identiőants).
Nous répondons à RQ3 en proposant sept contre-mesures, y compris l’authentiőcation du client
CTAP et l’amélioration des mécanismes d’autorisation. Nous analysons comment nos solutions
impactent l’utilisabilité tout en maintenant la compatibilité ascendante et des coûts faibles,
contrairement aux solutions matérielles (par exemple, ajouter un écran). Enőn, nous répondons
à RQ4 en démontrant une extraction non autorisée, sans interaction de l’utilisateur, de toutes
les parties de conőance et des identiőants d’authentiőcation stockés sur l’authentiőcateur.

Contexte

Nous fournissons des informations contextuelles pertinentes sur l’écosystème IoT aőn d’établir
une compréhension fondamentale des contenus de cette thèse.

La Figure 7.1 présente un aperçu général d’un écosystème IoT typique. Dans ce modèle,
un appareil IoT collecte des données de son environnement via des capteurs (par exemple,

121

accéléromètre et moniteur de fréquence cardiaque) et interagit avec l’utilisateur par le biais
d’actionneurs (par exemple, boutons tactiles). Le propriétaire de l’appareil interagit princi-
palement avec le système à travers une application compagnon installée sur son smartphone.
La communication entre l’appareil IoT et le smartphone s’effectue par des transports sans ől
(par exemple, BLE et NFC) ou physiques (par exemple, USB), utilisant soit des protocoles pro-
priétaires (par exemple, Xiaomi), soit des normes ouvertes (par exemple, FIDO2). L’application
compagnon se connecte au backend du fabricant via Wi-Fi, généralement sécurisé par un canal
TLS. Le backend est responsable de la gestion des opérations gourmandes en ressources qui
dépassent les capacités de calcul de l’appareil ou du smartphone, tout en gérant également le
stockage et le traitement des données utilisateur. Ce modèle de système fournit un cadre clair
pour identiőer les points clés où l’analyse des protocoles, l’évaluation des vulnérabilités et les
améliorations de sécurité peuvent être appliquées.

Dans les sections suivantes, nous comparons les travaux existants liés au contenu de notre
thèse. Nous examinons comment d’autres chercheurs ont tenté de répondre à nos questions
de recherche, discutons de leurs résultats et les comparons à notre contribution. Pour plus
d’informations concernant les travaux connexes spéciőques à chaque contribution présentée
dans cette thèse, veuillez vous référer à la Section 3.10 pour BreakMi, à la Section 4.9 pour
E-Spoofer, à la Section 5.8 pour E-Trojans, et à la Section 6.10 pour CTRAPS.

RQ1

Comment pouvons-nous améliorer les tests de sécurité des protocoles IoT ? Les chercheurs ont
analysé et testé les protocoles en utilisant diverses approches que nous catégorisons en fonction
de la surface ciblée, comme l’illustre la Figure 7.1. Nous passons en revue les points d’entrée
pour effectuer une analyse sur les écosystèmes IoT.

Analyse du trafic entre l’application et le backend et analyse des API. Le traőc
entre l’application et le backend contient souvent des opérations critiques pour la sécurité,
telles que le couplage, et des données sensibles comme les mesures de santé et les routines
quotidiennes de l’utilisateur. Dans [10], les auteurs ont vériőé l’intégrité et le chiffrement des
communications des traqueurs d’activité avec le backend du fabricant en utilisant une attaque
de type homme du milieu (MitM) via un proxy HTTPS. De même, dans [11], les chercheurs
ont reverse-engineered la mise à jour du őrmware et le traőc backend des appareils Xiaomi
pour la maison intelligente, y compris les robots aspirateurs, leur permettant de déconnecter
les appareils du cloud de Xiaomi et de les ajouter à un cloud isolé. BurnFit [12] a testé la
résistance de trois backends de suivi d’activité aux attaques par spooőng DNS, découvrant des
vulnérabilités dans les trois. L’analyse des API a également été un axe d’analyse du traőc. Par
exemple, un hacker a exploité des points d’API non sécurisés du backend du service de location
de trottinettes Bird pour réserver à distance des trottinettes ou déclencher des alarmes [13].
Dans [14], les chercheurs ont exploité une vulnérabilité dans l’API de Fitbit pour effectuer
un couplage non autorisé côté serveur, déconnectant ainsi l’utilisateur d’origine de son Fitbit
Charge 2.

Analyse du trafic entre le dispositif et l’application. L’analyse du traőc entre le dis-
positif et l’application varie en difficulté en fonction du protocole de transport. Le Bluetooth
Low Energy (BLE) est un transport courant pour les appareils IoT, et la capture du traőc
BLE est relativement simple si l’utilisateur a le contrôle sur le smartphone de communica-

122 122

tion. Sur Android, les utilisateurs peuvent activer le journal de surveillance HCI pour collecter
le traőc BLE. En utilisant cette technique, un chercheur a appris à simuler des notiőcations
sur le Mi Band 3 et a reverse-engineered son serveur GATT, y compris des services de trans-
fert BLE standard (par exemple, fréquence cardiaque, pas) et personnalisés de Xiaomi [15].
Le protocole de couplage Magic Pairing d’Apple pour un couplage BLE transparent a été
reverse-engineered dans [16], révélant des détails sur la publicité BLE et la communication avec
iCloud. Periscope [17] a examiné des applications Android qui conőgurent des smartphones en
périphériques BLE, utilisant des techniques d’analyse statique comme la décompilation de code
pour étudier le traőc BLE. Lorsque l’accès physique à l’appareil n’est pas disponible, le traőc
BLE peut être intercepté sans ől à l’aide d’outils de capture comme Ubertooth, comme cela a
été fait dans [18] pour découvrir des attaques par corrélation.

Analyse automatisée des protocoles. Le reverse-engineering de protocoles binaires
fermés et non documentés est une tâche difficile. Les méthodes automatisées comme le fuzzing
et la criminalistique s’adaptent bien à l’augmentation des données d’entrée, permettant aux
chercheurs de détecter rapidement des vulnérabilités et d’explorer divers chemins d’exécution.
Dans [19], les auteurs ont appliqué la criminalistique numérique aux haut-parleurs intelligents
Xiaomi, utilisant le traitement du langage naturel et l’extraction de texte pour associer des
modèles de discours aux intentions des utilisateurs. En analysant les protocoles propriétaires
de Xiaomi, ils ont identiőé des événements spéciőques comme la lecture de musique. Les auteurs
de [20] ont développé AFLIoT, un fuzzer greybox pour les binaires IoT basés sur Linux, leur
permettant de fuzz des dispositifs du monde réel tels que le routeur Xiaomi R1D et de découvrir
des plantages uniques. Le cadre Avatar [21] était capable d’une analyse statique en temps réel et
d’une émulation d’appareil, indépendamment de la présence de périphériques. Frankenstein [22]
a émulé des dispositifs BLE dans un environnement virtuel, exécutant de larges portions de
code et permettant l’injection de trames sans ől. Incision [23] a élargi ces cadres en utilisant
une boucle de rétroaction améliorant progressivement le reverse-engineering du protocole, de
manière automatisée.

Analyse manuelle des protocoles. Les méthodes manuelles, telles que la décompila-
tion de code et l’instrumentation dynamique, impliquent plus d’efforts humains mais révèlent
souvent des vulnérabilités plus complexes. Dans [24], les chercheurs ont effectué une analyse sta-
tique de code sur des applications de suivi d’activité en décompilant le bytecode de l’application
en Java ou en Smali si nécessaire. De même, les auteurs de [25] ont analysé les préoccupations
en matière de conődentialité dans les applications de trottinette électrique en utilisant des out-
ils d’analyse statique comme MobSF pour examiner les autorisations de l’application et les
bibliothèques tierces. Le débogage du őrmware a été utilisé par [26] pour trouver une porte
dérobée dans le őrmware de Fitbit Charge HR, et par [27], où des ports JTAG dans un Fitbit
Charge 2 ont été accessibles pour extraire son őrmware et ses clés de chiffrement. Les méthodes
de vériőcation formelle, bien que partiellement automatisées, nécessitent une modélisation du
protocole pour prouver des garanties de sécurité. Par exemple, dans [28], les auteurs ont dé-
montré que l’authentiőcation FIDO U2F est compromise lorsque l’identiőant de l’application
serveur n’est pas validé. De plus, la vériőcation formelle a été utilisée dans d’autres protocoles
IoT comme EDHOC et MQTT pour découvrir des problèmes de sécurité [29, 30].

Nos améliorations. Dans notre recherche, nous avons appliqué une variété de ces tech-
niques pour reverse-engineerer et analyser les protocoles dans des traqueurs d’activité, des trot-

123

tinettes électriques et des authentiőcateurs FIDO2. Nous avons développé des outils d’analyse
et de test de sécurité personnalisés avec des capacités uniques non disponibles auparavant, et
les avons rendus publics. Nos améliorations incluent : (i) environnements virtuels permettant
des tests de sécurité sans nécessiter de dispositifs IoT physiques ou leurs applications com-
pagnon ; (ii) kits d’outils d’attaque implémentés sous forme de scripts en ligne de commande et
d’applications Android, facilitant la reproductibilité de nos attaques ; (iii) dissécteurs Wireshark
pour améliorer la visualisation et la compréhension des paquets de protocoles personnalisés ;
et (iv) crochets Frida qui extraient des informations en temps réel sur l’exécution du protocole
en temps réel.

RQ2

Comment pouvons-nous trouver des vulnérabilités et des attaques au niveau des protocoles IoT
? La communauté académique a largement étudié et rapporté des vulnérabilités et des attaques
dans la sécurité IoT. Cependant, la diversité et l’évolution continue des écosystèmes IoT en-
traînent constamment de nouvelles découvertes. Ci-dessous, nous présentons une sélection des
attaques les plus pertinentes pour cette thèse.

Attaques sur les écosystèmes IoT. Les chercheurs en sécurité ont exploité des vulnéra-
bilités à travers diverses couches des écosystèmes IoT, y compris les dispositifs, les applica-
tions compagnon et les backends. De nombreux traqueurs de őtness, une cible populaire, ont
été victimes d’écoutes, d’usurpation d’identité, d’attaques de l’homme du milieu et de fuites
de données. Les causes profondes de ces attaques proviennent généralement d’un manque
d’authentiőcation et de chiffrement dans les communications entre le traqueur de őtness, son
application compagnon et le backend. Ces problèmes ont été identiőés soit au niveau du pro-
tocole, soit causés par des négligences dans l’implémentation de la part des fabricants. Par ex-
emple, les protocoles d’authentiőcation du Fitbit Charge HR ont été rétro-ingénierés dans [26],
tandis que des chercheurs dans [14] ont pu fuites des données privées du Fitbit Charge 2 et ef-
fectuer une mise à jour de őrmware malveillante sur l’appareil. Les trottinettes électriques, bien
que moins fréquemment étudiées, ont également été ciblées. La Xiaomi M365, par exemple, a
montré des failles d’authentiőcation mutuelle entre l’appareil et l’application compagnon [31].
D’autres exploits comprenaient des mécanismes de verrouillage qui freinent brusquement la
trottinette [32] et une attaque de l’homme du milieu (MitM) pour insérer des őchiers audio
personnalisés dans les trottinettes Lime [33]. Des API vulnérables dans l’application Bird
ont permis aux attaquants de contourner la vériőcation du code QR [13]. L’écosystème IoT
diversiőé de Xiaomi a également attiré l’attention. Des chercheurs ont rétro-ingénéré des as-
pirateurs Xiaomi dans [34], contournant le démarrage sécurisé, déchiffrant les communications
avec le backend, fuyant des données et injectant de faux enregistrements. D’autres cibles de
Xiaomi comprennent des haut-parleurs intelligents [19], des caméras de sécurité [35, 36] et des
routeurs [20]. Les attaques par canaux auxiliaires se sont également révélées efficaces sur les
authentiőcateurs, comme le montrent [37, 38, 39].

Attaques sur la sécurité BLE. En tant que couche de transport la plus répandue dans
les dispositifs IoT, le BLE a été soumis à de nombreuses attaques. La négociation de clés
dans le BLE a été compromise par des attaques de rétrogradation qui forcent un chiffrement
à faible entropie [40] ou exploitent des fonctionnalités du BLE [41]. Toutes les itérations des
mécanismes de couplage BLE, y compris le couplage hérité [42], le couplage simple [43, 44],

124 124

et le mode uniquement sécurisé [45], ont été attaquées avec succès. La confusion de méth-
ode [46] permet des attaques de type homme du milieu en associant des dispositifs utilisant
deux modes différents, ce qui est difficile à détecter pour les utilisateurs. Les attaques sur la vie
privée, telles que le suivi des utilisateurs via des adresses MAC, ont été démontrées par le biais
de botnets [47] ou en exploitant la publicité BLE à travers des applications [48]. Une étude
à grande échelle dans [49] a examiné des applications Android partageant des canaux BLE,
révélant le potentiel d’abus par des applications malveillantes. BLECryptracer [50] a exploité
cette faille pour effectuer des mises à jour de őrmware indésirables sur des dispositifs BLE. Les
protocoles de couche application construits sur le BLE ont également été examinés. Par exem-
ple, des chercheurs dans [51] ont compromis le protocole ZeroConf dans l’écosystème d’Apple,
leur permettant d’intercepter les canaux Bluetooth utilisés par les applications Tencent QQ et
Scribe.

Mauvaise utilisation de la cryptographie dans l’IoT. Malgré son rôle critique dans
la sécurisation de l’IoT, la cryptographie est souvent mal appliquée. L’extraction de clés cryp-
tographiques a été un domaine d’attention majeur, en particulier dans les systèmes automo-
biles. Des vulnérabilités ont été trouvées dans les systèmes d’entrée sans clé, y compris les
Tesla Model S [52] et X [53], et les systèmes d’entrée basés sur KeeLoq [54]. Les faiblesses des
transpondeurs qui immobilisent les voitures, telles que Hitag2 [55] et Megamos Crypto [56], ont
également été exploitées. Les dispositifs Xiaomi ont montré des faiblesses cryptographiques,
allant d’une dépendance excessive à l’obfuscation [57, 58] à des fuites de clés de déchiffrement de
őrmware [59]. Les protocoles cryptographiques de FIDO2, y compris la vie privée, la révocation,
l’attestation et la sécurité post-quantique, ont été formellement vériőés dans [60]. Cependant,
une attaque de substitution de clé publique a été identiőée dans [61] pour FIDO2, exploitant
l’accès en écriture à la base de données du serveur. Dans [62], le Keymaster de Samsung Trust-
Zone, responsable de la gestion des identiőants FIDO2, a été trouvé vulnérable à une attaque
de réutilisation de IV AES-GCM en raison d’une rétrogradation qui permettait d’utiliser un IV
őxe au lieu d’un aléatoire.

Nos améliorations. Dans notre recherche, nous avons trouvé de nouvelles attaques et vul-
nérabilités impactantes et peu coûteuses dans les traqueurs de őtness, les trottinettes électriques
et les authentiőcateurs FIDO2. Nos améliorations comprennent : (i) vingt-sept vulnérabilités
IoT telles que le couplage non authentiőé, la session reproductible, le őrmware non signé et
les dispositifs traçables ; (ii) vingt-trois attaques IoT telles que le premier ransomware de bat-
terie et une réinitialisation d’authentiőcateur à un clic à distance et de proximité ; et (iii) la
stratégie d’attaque de confusion API qui dirige l’utilisateur vers l’appel d’une API CTAP non
intentionnelle.

RQ3

Comment concevoir des protocoles IoT sécurisés ? Le domaine de l’IoT a un besoin constant de
contre-mesures robustes face aux menaces croissantes auxquelles il fait face. La direction de la
recherche ne consiste pas à corriger les protocoles, mais à détecter des signes de manipulation ou
la présence d’un acteur malveillant. C’est une approche sensée pour l’utilisateur aőn d’atténuer
les dommages, mais cela ne résout pas les problèmes fondamentaux au niveau des protocoles,
laissant le système éternellement vulnérable. Nous discutons de deux moyens courants de
défendre les dispositifs IoT.

125

Détection d’intrusions et d’anomalies. Les systèmes de détection d’intrusions (IDS)
atténuent l’impact d’un attaquant déjà inőltré dans un système, acceptant qu’il soit parfois
impossible de corriger la conception du protocole. Les auteurs de [63] ont proposé un IDS su-
pervisé pour les maisons intelligentes, utilisant l’apprentissage automatique sur des captures de
traőc pour classer les paquets légitimes et malveillants. Passban [64] a tenté de résoudre le prob-
lème selon lequel les dispositifs IoT en périphérie ne peuvent pas déployer efficacement des IDS
basés sur des signatures en raison de leurs ressources limitées et des mises à jour peu fréquentes,
en s’appuyant sur la détection d’anomalies. La détection d’anomalies a également été utilisée
par [65], un IDS pour les environnements IoT qui détecte les attaques classiques sur les réseaux,
telles que l’empoisonnement ARP, le spooőng DNS et les inondations via COAP/HTTP. Oa-
sis [66] est un cadre BLE capable d’injecter des algorithmes de détection d’intrusion dans le
őrmware des contrôleurs BLE. Son module de détection repose sur l’instrumentation et utilise
des heuristiques pour chaque attaque spéciőque.

Attestation à distance. L’objectif de l’attestation à distance est de garantir que le logiciel
exécuté sur le dispositif IoT est légitime et n’a pas été manipulé. Cette pratique n’est souvent
pas prise en charge par les dispositifs ou d’autres composants de l’écosystème. Des chercheurs
ont analysé l’attestation à distance dans les authentiőcateurs Yubico [67], constatant que le
mécanisme proposé de génération de clés à distance asynchrone produit des signatures déőables
et impossibles à falsiőer. D’autres modes de mécanismes d’attestation ont été évalués, tels
que [68], fournissant une révocation de clé globale et l’anonymat au schéma de chiffrement sous-
jacent à l’emballage de clé, et [69], proposant différents modes d’attestation. Des alternatives
à l’attestation à distance ont été discutées dans la littérature. Par exemple, dans [70], les
chercheurs présentent des mécanismes de conőance efficaces qui empêchent les attaques Sybil
dans les réseaux IoT ayant un accès constant au backend, comme les réseaux intelligents en
agriculture. Des environnements d’exécution de conőance ont été utilisés pour garantir un accès
autorisé aux ressources, comme dans [71], où des politiques de contrôle d’accès sont mises en
place et les applications enfreignant les politiques au sein de TEE sont examinées. L’Internet
Engineering Task Force (IETF) a proposé Software Updates for Internet of Things (SUIT) pour
des mises à jour logicielles sécurisées, qui ont été testées avec succès sur des dispositifs à faibles
ressources par [72]. Les auteurs de [73] ont conçu un moniteur d’intégrité des données en ligne
pour les systèmes de capteurs gérant les défaillances de données et la récupération.

Nos améliorations. Dans notre recherche, nous avons proposé des défenses pratiques et
rétrocompatibles pour corriger nos attaques et résoudre leurs causes profondes au niveau des
protocoles. Nous avons divulgué de manière responsable nos découvertes aux vendeurs, qui
les ont ignorées (c’est-à-dire, Xiaomi), corrigées (c’est-à-dire, Google) ou qui évaluent actuelle-
ment (c’est-à-dire, FIDO2 et Microsoft) nos retours. Nos améliorations comprennent : (i) des
améliorations protocolaires fortes qui augmentent leur sécurité et leur conődentialité avec des
contre-mesures robustes, telles que l’authentiőcation mutuelle, la conőrmation contextuelle de
l’utilisateur, la vériőcation du őrmware et les clients de conőance ; (ii) des outils d’évaluation
des vulnérabilités qui vériőent si un dispositif est affecté par nos attaques, comme nos signa-
tures Yara pour le őrmware de la trottinette Xiaomi et notre application Android testant une
vulnérabilité d’implémentation Yubico ; et (iii) des correctifs pour les utilisateurs qui protè-
gent leurs dispositifs sans s’appuyer sur des mises à jour de sécurité du vendeur, comme notre
correctif pour le őrmware Xiaomi M365.

126 126

RQ4

Comment concevoir des protocoles IoT respectueux de la vie privée ? Le domaine de l’IoT a
un besoin constant de contre-mesures robustes face aux menaces croissantes auxquelles il fait
face. La direction de la recherche ne consiste pas à corriger les protocoles, mais à détecter des
signes de manipulation ou la présence d’un acteur malveillant. C’est une approche sensée pour
l’utilisateur aőn d’atténuer les dommages, mais cela ne résout pas les problèmes fondamentaux
au niveau des protocoles, laissant le système éternellement vulnérable. La vie privée peut être
compromise par le fabricant, qui n’est pas intrinsèquement malveillant, ou par des attaquants
tiers ayant des intentions malveillantes.

Violations de la vie privée par les fabricants. Les dispositifs téléchargent fréquem-
ment des données vers le backend du fabricant en raison de limitations de stockage et pour
le traitement des données côté serveur. Cependant, il n’existe souvent pas de méthode trans-
parente pour vériőer quelles informations sont transmises, ce qui soulève des préoccupations
concernant un éventuel partage excessif des données privées des utilisateurs. Par exemple,
les auteurs de [18] ont découvert que les traqueurs Fitbit Flex collectent plus de données que
ce qui est officiellement divulgué. Ils ont trouvé des preuves d’enregistrements d’activité par
minute envoyés au backend, informations qui ne sont jamais partagées avec l’utilisateur. De
plus, les fabricants ne respectent pas toujours les normes de conődentialité qu’ils annoncent.
Dans une étude évaluant onze vendeurs, les chercheurs de [74] ont identiőé deux vendeurs qui
ne respectaient pas leurs propres politiques de conődentialité. Une solution potentielle pour
atténuer l’interférence des vendeurs est de découpler les dispositifs de leurs backends. Par exem-
ple, dans [75], un expert en sécurité a développé un őrmware personnalisé pour un aspirateur
Xiaomi qui se connecte à des points d’extrémité cloud personnels alternatifs, plus sécurisés.
Cependant, la mise en œuvre de telles modiőcations nécessite généralement un accès root, ce
qui n’est pas faisable pour la plupart des dispositifs. De plus, les applications compagnon IoT
partagent souvent des informations sensibles avec des entreprises de publicité, qui utilisent ces
données pour des campagnes de marketing ciblées. Les auteurs de [76] soulignent le volume
alarmant de données conődentielles pouvant être extraites des réseaux de capteurs.

Violations de la vie privée par des tiers. Des tiers malveillants exploitent les canaux
de communication des dispositifs IoT pour divulguer des données conődentielles et suivre les
utilisateurs. Les auteurs de [47] ont démontré comment la publicité BLE peut être utilisée pour
identiőer les utilisateurs en fonction des schémas de traőc de leurs traqueurs de őtness. L’outil
d’analyse BLEScope [77] extrait des UUID de services et de caractéristiques des applications
BLE et les identiőe en fonction d’informations statiques. Il évalue également si les applications
chiffrent et authentiőent le traőc de couche application en analysant les appels d’API cryp-
tographiques. Dans une autre étude [10], les chercheurs ont évalué la sécurité du traőc Wi-Fi
entre les traqueurs de őtness et le backend, trouvant un manque de chiffrement et de protection
de l’intégrité, ce qui permet aux attaquants d’écouter les informations de connexion Web des
utilisateurs et des données sensibles telles que des dossiers de santé. De même, les auteurs
de [78] ont révélé que les attaquants peuvent lire, modiőer et supprimer des enregistrements
stockés dans les banques de mémoire de Fitbit, exposant toutes les données qu’elles contiennent.
Comme démontré dans [79], un FAI malveillant ou un observateur du réseau pourrait déduire
des activités privées à domicile en analysant le traőc Internet chiffré des appareils intelligents.
Dans [80], les auteurs ont découvert qu’exploiter des états illégaux et des connexions non au-

127

torisées pourrait même donner aux attaquants accès aux enregistrements vidéo de caméras de
sécurité privées.

Nos améliorations. Dans notre recherche, nous trouvons et discutons des vulnérabilités,
des attaques et des contre-mesures impliquant la vie privée et les données de santé protégées
par le RGPD. Nos améliorations comprennent : (i) quatre vulnérabilités liées à la vie privée,
telles que la mémoire sensible non protégée dans le őrmware de la trottinette et les identiőants
de credential traçables dans FIDO2 ; et (ii) neuf attaques portant atteinte à la vie privée, telles
que l’imitation de traqueurs de őtness (c’est-à-dire, lire les messages SMS depuis le téléphone)
et le suivi des utilisateurs via des trottinettes et des authentiőcateurs FIDO2.

Conclusion

Dans cette thèse, nous avons analysé la sécurité de plusieurs protocoles IoT, soulignant l’immaturité
des pratiques en matière de sécurité et de vie privée. Nous avons développé une approche de
test de sécurité extensible aux trackers d’activité, aux trottinettes électriques et aux authen-
tiőcateurs FIDO2. En conséquence, nous avons publié des outils open-source pour virtualiser
les appareils IoT (c’est-à-dire, les trackers d’activité et les trottinettes électriques), les clients
(c’est-à-dire, les applications compagnon Xiaomi et les clients FIDO2), ainsi que le backend
(c’est-à-dire, la partie de conőance) et les attaquer, ainsi que des outils d’analyse pour le
őrmware et le code (c’est-à-dire, le patcher de őrmware pour trottinettes électriques et les
hooks Frida), et des disecteurs de protocoles.

Nous avons découvert vingt-sept vulnérabilités qui permettent vingt-trois attaques impac-
tantes et à faible coût au niveau des protocoles, utilisant des stratégies d’attaque novatrices
(par exemple, la confusion d’API) et ciblant des surfaces d’attaque inexplorées (par exemple,
les internals des trottinettes électriques). Parmi elles, nous soulignons quatre vulnérabilités
et neuf attaques qui compromettent la vie privée des utilisateurs, au point de lire des don-
nées de santé protégées par le RGPD. Nous améliorons les protocoles non sécurisés, appliquant
des mécanismes de sécurité à la pointe de la technologie tout en préservant leur compatibilité
descendante, publions des outils d’évaluation des vulnérabilités pour tester les appareils avec
des problèmes connus, et des correctifs de őrmware pour protéger les utilisateurs utilisant des
appareils vulnérables.

Nous avons exploré quatre questions de recherche difficiles concernant l’amélioration des
tests de sécurité, la découverte de nouvelles vulnérabilités et attaques, la sécurisation des écosys-
tèmes IoT, et la révision de l’état de la vie privée. À la suite de notre parcours, nous discutons
maintenant de quatre enseignements clés de notre recherche.

Tout d’abord, les tests de sécurité IoT nécessitent encore un effort manuel signiőcatif. Mal-
gré la variété des techniques existantes, aucune n’a fourni une solution őable pour analyser les
protocoles fermés, surtout lorsque l’on travaille avec un ensemble limité de paquets de protocole
et en recherchant des résultats d’attaque sophistiqués. Ces critères étaient essentiels à notre
travail avec des protocoles propriétaires, où des protocoles comme l’appairage Mi Band peu-
vent impliquer seulement quatre messages, et notre attention était portée sur des propriétés de
sécurité critiques comme la conődentialité et l’intégrité. Nous envisageons un cadre qui : (i)
identiőe les opérations de haut niveau des appareils (par exemple, l’appairage, l’établissement
de session, l’authentiőcation, et les mises à jour de őrmware) ; (ii) collecte des données sur la
surface d’attaque IoT (par exemple, le traőc entre appareil et application et entre application et

128 128

backend, les traces d’exécution d’application, les points de terminaison d’API, et le őrmware) ;
et (iii) associe ces données à des modèles connus pour rétroconcevoir la logique des protocoles
et révéler leur conception. Par exemple, ce cadre pourrait détecter l’utilisation de primitives
cryptographiques par instrumentation dans les applications compagnon, suivre la génération
de clés de session et déchiffrer le traőc en fonction des modèles observés. Il pourrait également
déduire que les paquets non chiffrés contenant des clés publiques font partie de l’appairage,
tandis que les messages chiffrés représentent l’établissement de session.

Deuxièmement, l’évolution rapide des appareils IoT n’est pas accompagnée d’améliorations
correspondantes en matière de sécurité. Cela entraîne une gamme toujours croissante de nou-
velles fonctionnalités qui introduisent de nouvelles vulnérabilités, rendant les appareils plus sus-
ceptibles d’être la cible d’attaques plus puissantes au ől du temps. Par exemple, l’introduction
par FIDO2 de credentials découvrables a exposé une nouvelle surface d’attaque, permettant aux
attaquants d’effacer des identiőants et d’empêcher les utilisateurs d’accéder à leurs comptes.
Nous plaidons pour une plus grande transparence de la part des fournisseurs, dont beaucoup
font des déclarations audacieuses sur la sécurité de leurs produits principalement à des őns
marketing, plutôt que pour protéger réellement les utilisateurs. FIDO2 annonce une protec-
tion contre le phishing, tout en s’appuyant toujours sur un code PIN (c’est-à-dire, un code
susceptible d’être phished) et en étant vulnérable à de nombreuses attaques d’ingénierie sociale
et de tromperie d’interface utilisateur. Nous constatons également que les fabricants déchar-
gent les responsabilités en matière de sécurité sur les utilisateurs au lieu de traiter les risques
eux-mêmes. Par exemple, l’approche de sécurité de Xiaomi exige que les utilisateurs se trou-
vent dans un environnement sécurisé chaque fois qu’ils activent le phare de leur trottinette
électrique, car cela déclenche également le mode d’appairage, les rendant vulnérables à des at-
taques d’appairage malveillantes. De même, le modèle de menace de référence FIDO2 suppose
la présence d’un client légitime et non compromis, négligeant la menace réaliste d’un logiciel
malveillant infectant les appareils.

Troisièmement, malgré la disponibilité de mécanismes de sécurité robustes et rentables,
les fabricants continuent de s’appuyer principalement sur la sécurité par obscurité. Même
avec la prise de conscience généralisée de la nécessité d’une authentiőcation forte, d’un chiffre-
ment et d’une protection de l’intégrité, de nombreux protocoles IoT échouent à mettre en
œuvre ces mesures de base. Les appareils ne chiffrent pas les données de traőc, manquent
d’authentiőcation mutuelle, et laissent le őrmware non signé, malgré le soutien des systèmes
sur puce (SoC) modernes au chiffrement symétrique et asymétrique. De plus, les fabricants
ignorent les protocoles de sécurité fournis par des technologies telles que le BLE et le NFC,
même pour des opérations critiques impliquant des données conődentielles ou sensibles.

Enőn, la vie privée reste une préoccupation secondaire dans la conception des IoT. Même
avec certains progrès en matière de sécurité, les fabricants montrent peu d’intérêt à limiter les
données qu’ils collectent auprès des utilisateurs. Les écosystèmes fermés compliquent encore
la surveillance réglementaire, rendant difficile pour les autorités d’auditer la conformité avec le
RGPD et d’autres réglementations en matière de vie privée. Par conséquent, les utilisateurs ont
peu de contrôle sur leur vie privée, souvent contraints de choisir entre utiliser un appareil ou
non, sans alternatives pour réduire leur exposition aux données. Renforcer la sensibilisation des
utilisateurs aux problèmes de vie privée et leur fournir des outils pour protéger leurs données
sont des étapes cruciales pour améliorer la vie privée dans les environnements IoT.

En conclusion, cette thèse met en évidence les lacunes signiőcatives dans la sécurité et la vie
privée des IoT, soulignant la nécessité de tests plus efficaces, de mesures proactives d’atténuation

129

des vulnérabilités, de mécanismes de défense robustes, et d’une plus grande transparence de
la part des fabricants. Nos contributions à la recherche offrent des perspectives précieuses sur
les faiblesses des pratiques actuelles et ouvrent la voie à des améliorations futures. Cependant,
le chemin à parcourir nécessite la collaboration entre chercheurs, industriels et autorités régle-
mentaires pour aborder ces déős persistants et, en őn de compte, créer un écosystème IoT plus
sûr et respectueux de la vie privée. En nous basant sur les fondations posées dans ce travail,
nous espérons inspirer de nouvelles avancées pour sécuriser le paysage IoT en rapide évolution.

130 130

References

[1] CoRE Working Group. IETF CoRE Working Group. https://core-wg.github.io, 2024.

[2] IETF CoRE Working Group. RFC 7252 - The Constrained Application Protocol (CoAP).
https://datatracker.ietf.org/doc/html/rfc7252, 2014.

[3] IETF CoRE Working Group. RFC 8323 - CoAP (Constrained Application Protocol) over
TCP, TLS, and WebSockets. https://datatracker.ietf.org/doc/html/rfc8323, 2018.

[4] IETF CoRE Working Group. DTLS In Constrained Environments (DICE). https:

//datatracker.ietf.org/wg/dice, 2014.

[5] Huami. Huami Privacy Note. https://upload-cdn.huami.com/tposts/9250, 2020.

[6] Mozilla Foundation. Privacy Not Included - Mi Band 5. https://foundation.mozilla.
org/en/privacynotincluded/mi-band-5/, 2020.

[7] Fitbit. Golden Gate. https://github.com/Fitbit/golden-gate, 2023.

[8] IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022(3):330ś366,
2022.

[9] Marco Casagrande, Riccardo Cestaro, Eleonora Losiouk, Mauro Conti, and Daniele An-
tonioli. E-spoofer: Attacking and defending xiaomi electric scooter ecosystem. In Pro-
ceedings of the 16th ACM Conference on Security and Privacy in Wireless and Mobile
Networks, page 85ś95, 2023.

[10] Hossein Fereidooni, Tommaso Frassetto, Markus Miettinen, Ahmad-Reza Sadeghi, and
Mauro Conti. Fitness Trackers: Fit for Health but Unőt for Security and Privacy. In
2017 IEEE/ACM International Conference on Connected Health: Applications, Systems
and Engineering Technologies (CHASE ’17), pages 19ś24. IEEE, 2017.

[11] Dennis Giese. Having fun with IoT: Reverse Engineering and Hacking of Xiaomi
IoT Devices. https://dontvacuum.me/talks/DEFCON26/DEFCON26-Having_fun_with_

IoT-Xiaomi.html, 2018.

[12] Dongkwan Kim, Suwan Park, Kibum Choi, and Yongdae Kim. Burnőt: Analyzing and
exploiting wearable devices. In Ho-won Kim and Dooho Choi, editors, Information Secu-
rity Applications, pages 227ś239. Springer International Publishing, 2016.

[13] The App Analyst. App Analysis: Bird. https://theappanalyst.com/bird.html, 2019.

131

132 132

[14] Jiska Classen, Daniel Wegemer, Paul Patras, Tom Spink, and Matthias Hollick. Anatomy
of a Vulnerable Fitness Tracking System: Dissecting the Fitbit Cloud, App, and
Firmware. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies (IMWUT ’18), 2(1):1ś24, 2018.

[15] Yogesh Ojha. I hacked MiBand 3, and here is how I did it. Part I. https://medium.com/
@yogeshoa/i-hacked-xiaomi-miband-3-and-here-is-how-i-did-it-43d68c272391,
2018.

[16] Dennis Heinze, Jiska Classen, and Felix Rohrbach. MagicPairing: Apple’s Take on Se-
curing Bluetooth Peripherals. In Proceedings of the 13th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, pages 111ś121, 2020.

[17] Qingchuan Zhao, Chaoshun Zuo, Jorge Blasco, and Zhiqiang Lin. Periscope: Compre-
hensive vulnerability analysis of mobile app-deőned bluetooth peripherals. In Proceedings
of the 2022 ACM on Asia Conference on Computer and Communications Security, page
521ś533, New York, NY, USA, 2022. Association for Computing Machinery.

[18] Britt Cyr, Webb Horn, Daniela Miao, and Michael Specter. Security Analysis of Wearable
Fitness Devices (Fitbit). Massachusetts Institute of Technology, 1, 2014.

[19] Li Lin, Xuanyu Liu, Xiao Fu, Bin Luo, Xiaojiang Du, and Mohsen Guizani. A non-
intrusive method for smart speaker forensics. In ICC 2021 - IEEE International Confer-
ence on Communications, pages 1ś6, 2021.

[20] Xuechao Du, Andong Chen, Boyuan He, Hao Chen, Fan Zhang, and Yan Chen. Aŕiot:
Fuzzing on linux-based iot device with binary-level instrumentation. Computers & Secu-
rity, 122:102889, 2022.

[21] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide Balzarotti. Avatar: A
framework to support dynamic security analysis of embedded systems’ őrmwares. In
NDSS 2014, Network and Distributed System Security Symposium, 23-26 February 2014,
San Diego, USA, 2014.

[22] Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick. Frankenstein: ad-
vanced wireless fuzzing to exploit new bluetooth escalation targets. In Proceedings of the
29th USENIX Conference on Security Symposium, 2020.

[23] Sam L. Thomas, Jan V. den Herrewegen, Georgios Vasilakis, Zitai Chen, Mihai Ordean,
and Flavio D. Garcia. Cutting Through the Complexity of Reverse Engineering Embed-
ded Devices. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021:360ś389, 2021.

[24] Andrew Hilts, Christopher Parsons, and Jeffrey Knockel. Every step you fake: A compar-
ative analysis of őtness tracker privacy and security. Open Effect Report, 76(24):31ś33,
2016.

[25] Nisha Vinayaga-Sureshkanth, Raveen Wijewickrama, Anindya Maiti, and Murtuza Jadli-
wala. An investigative study on the privacy implications of mobile e-scooter rental apps.

References 133

In Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, page 125ś139, New York, NY, USA, 2022. Association for Computing
Machinery.

[26] Maarten Schellevis, Bart Jacobs, Carlo Meijer, and Joeri de Ruiter. Getting Access to
Your Own Fitbit Data. Master’s thesis, Radboud University, 2016.

[27] Hossein Fereidooni, Jiska Classen, Tom Spink, Paul Patras, Markus Miettinen, Ahmad-
Reza Sadeghi, Matthias Hollick, and Mauro Conti. Breaking Fitness Records Without
Moving: Reverse Engineering and Spooőng Fitbit. In Research in Attacks, Intrusions,
and Defenses - 20th International Symposium (RAID ’17), pages 48ś69, 2017.

[28] Olivier Pereira, Florentin Rochet, and Cyrille Wiedling. Formal analysis of the FIDO
1. x protocol. In Foundations and Practice of Security: 10th International Symposium,
FPS 2017, Nancy, France, October 23-25, 2017, Revised Selected Papers 10, pages 68ś82.
Springer, 2018.

[29] Karl Norrman, Vaishnavi Sundararajan, and Alessandro Bruni. Formal analysis of edhoc
key establishment for constrained iot devices, 2021.

[30] Mujahid Mohsin, Zahid Anwar, Ghaith Husari, Ehab Al-Shaer, and Mohammad Ashiqur
Rahman. Iotsat: A formal framework for security analysis of the internet of things (iot).
In 2016 IEEE Conference on Communications and Network Security (CNS), pages 180ś
188, 2016.

[31] Ian D. Foster. Xiaomi M365 Scooter Authentication Bypass. https://lanrat.com/

xiaomi-m365/, 2019.

[32] Rani Idan (Zimperium). Don’t Give Me A Brake ś Xiaomi Scooter Hack Enables Dan-
gerous Accelerations And Stops For Unsuspecting Riders. https://blog.zimperium.com/
dont-give-me-a-brake-xiaomi-scooter-hack-enables-dangerous-accelerations-and-stops-for-

2019.

[33] BBC News. Scooters Hacked To Play Rude Messages To Riders. https://www.bbc.com/
news/technology-48065432, 2019.

[34] Fabian Ullrich, Jiska Classen, Johannes Eger, and Matthias Hollick. Vacuums in ihe
cloud: Analyzing security in a hardened iot ecosystem. In 13th USENIX Workshop on
Offensive Technologies (WOOT 19), Santa Clara, CA, 2019. USENIX Association.

[35] Mathy Vanhoef. Fragment and Forge: Breaking Wi-Fi Through Frame Aggregation and
Fragmentation. In 30th USENIX Security Symposium (USENIX Security 21), pages 161ś
178. USENIX Association, 2021.

[36] Zouheir Trabelsi. Investigating the robustness of iot security cameras against cyber at-
tacks. In 2022 5th Conference on Cloud and Internet of Things (CIoT), pages 17ś23,
2022.

[37] Thomas Roche, Victor Lomné, Camille Mutschler, and Laurent Imbert. A side journey
to titan. In 30th USENIX Security Symposium (USENIX Security 21), pages 231ś248,
2021.

134 134

[38] Michal Kepkowski, Lucjan Hanzlik, Ian Wood, and Mohamed Ali Kaafar. How Not to
Handle Keys: Timing Attacks on FIDO Authenticator Privacy. In Proceedings on Privacy
Enhancing Technologies, volume 4, pages 705ś726, 2022.

[39] Victor Lomne. An Overview Of The Security Of Some Hardware FIDO(2) Tokens. https:
//www.youtube.com/watch?v=hpOp9X4sMaE, 2022.

[40] Daniele Antonioli, Nils O. Tippenhauer, and Kasper Rasmussen. Key Negotiation Down-
grade Attacks on Bluetooth and Bluetooth Low Energy. ACM Transactions on Privacy
and Security, 23(3), 2020.

[41] Jiliang Wang, Feng Hu, Ye Zhou, Yunhao liu, Hanyi Zhang, and Zhe Liu. BlueDoor:
Breaking the Secure Information Flow via BLE Vulnerability. In Proceedings of the 18th
International Conference on Mobile Systems, Applications, and Services (MobiSys ’20),
page 286ś298. Association for Computing Machinery, 2020.

[42] Mike Ryan. Bluetooth: With Low Energy Comes Low Security. In Proceedings of the 7th
USENIX Conference on Offensive Technologies (WOOT’13), page 4. USENIX Associa-
tion, 2013.

[43] Eli Biham and Lior Neumann. Breaking the Bluetooth Pairing ś The Fixed Coordinate
Invalid Curve Attack. In Selected Areas in Cryptography (SAC ’19), pages 250ś273.
Springer International Publishing, 01 2020.

[44] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen Fu. Breaking
Secure Pairing of Bluetooth Low Energy Using Downgrade Attacks. In 29th USENIX
Security Symposium (USENIX Security ’20), pages 37ś54. USENIX Association, 2020.

[45] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen Fu. Breaking
Secure Pairing of Bluetooth Low Energy Using Downgrade Attacks. In 29th USENIX
Security Symposium (USENIX Security ’20), pages 37ś54. USENIX Association, 2020.

[46] Maximilian von Tschirschnitz, Ludwig Peuckert, Fabian Franzen, and Jens Grossklags.
Method confusion attack on bluetooth pairing. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 1332ś1347, 2021.

[47] Aveek K. Das, Parth H. Pathak, Chen-Nee Chuah, and Prasant Mohapatra. Uncovering
Privacy Leakage in BLE Network Traffic of Wearable Fitness Trackers. In Proceedings of
the 17th International Workshop on Mobile Computing Systems and Applications (Hot-
Mobile ’16), page 99ś104, 2016.

[48] Aleksandra Korolova and Vinod Sharma. Cross-App Tracking via Nearby Bluetooth Low
Energy Devices. In Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy (CODASPY ’18), page 43ś52. Association for Computing Machin-
ery, 2018.

[49] Muhammad Naveed, Xiaoyong Zhou, Soteris Demetriou, Xiaofeng Wang, and Carl
Gunter. Inside job: Understanding and mitigating the threat of external device mis-
bonding on android. In NDSS, 2014.

References 135

[50] Pallavi Sivakumaran and Jorge Blasco. A study of the feasibility of co-located app at-
tacks against BLE and a Large-Scale analysis of the current Application-Layer security
landscape. In 28th USENIX Security Symposium (USENIX Security 19), pages 1ś18,
Santa Clara, CA, 2019. USENIX Association.

[51] Xiaolong Bai, Luyi Xing, Nan Zhang, XiaoFeng Wang, Xiaojing Liao, Tongxin Li, and
Shi-Min Hu. Staying secure and unprepared: understanding and mitigating the security
risks of Apple Zeroconf. In 2016 IEEE Symposium on Security and Privacy (SP), pages
655ś674, 2016.

[52] Lennert Wouters, Eduard Marin, Tomer Ashur, Benedikt Gierlichs, and Bart Pre-
neel. Fast, Furious and Insecure: Passive Keyless Entry and Start Systems in Mod-
ern Supercars. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2019(3):66ś85, 2019.

[53] Lennert Wouters, Benedikt Gierlichs, and Bart Preneel. My Other Car is Your Car: Com-
promising the Tesla Model X Keyless Entry System. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(4):149ś172, 2021.

[54] Andrey Bogdanov. Linear Slide Attacks on the KeeLoq Block Cipher, page 66ś80. 2007.

[55] Roel Verdult, Flavio D. Garcia, and Josep Balasch. Gone in 360 seconds: Hijacking with
hitag2. page 37, 2012.

[56] Roel Verdult, Flavio D. Garcia, and Baris Ege. Dismantling megamos crypto: Wire-
lessly lockpicking a vehicle immobilizer. In 22nd USENIX Security Symposium (USENIX
Security 13), 2013.

[57] CamiAlfa. M365 55AA BLE Protocol. https://github.com/CamiAlfa/

M365-BLE-PROTOCOL, 2017.

[58] Piotr Dobrowolski. M365 5AA5 BLE Protocol. https://github.com/Informatic/py9b,
2019.

[59] Daljeet Nandha and Florian Bruhin. EC MiAuth Library. https://github.com/dnandha/
miauth, 2022.

[60] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi. Provable
security analysis of FIDO2. In Advances in Cryptology–CRYPTO 2021: 41st Annual
International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021,
Proceedings, Part III 41, pages 125ś156. Springer, 2021.

[61] Michael Scott. FIDOśThat Dog Won’t Hunt. In Security and Privacy in New Computing
Environments: EAI Conference, SPNCE 2020, pages 255ś264. Springer, 2021.

[62] Alon Shakevsky, Eyal Ronen, and Avishai Wool. Trust Dies in Darkness: Shedding
Light on Samsung’s TrustZone Keymaster Design. In 31st USENIX Security Symposium
(USENIX Security 22), pages 251ś268, 2022.

136 136

[63] Eirini Anthi, Lowri Williams, Małgorzata Słowińska, George Theodorakopoulos, and Pete
Burnap. A supervised intrusion detection system for smart home iot devices. IEEE
Internet of Things Journal, 6(5):9042ś9053, 2019.

[64] Mojtaba Eskandari, Zaffar Haider Janjua, Massimo Vecchio, and Fabio Antonelli. Passban
ids: An intelligent anomaly-based intrusion detection system for iot edge devices. IEEE
Internet of Things Journal, 7(8):6882ś6897, 2020.

[65] Parth Bhatt and Anderson Morais. Hads: Hybrid anomaly detection system for iot
environments. In 2018 International Conference on Internet of Things, Embedded Systems
and Communications (IINTEC), pages 191ś196, 2018.

[66] Romain Cayre, Vincent Nicomette, Guillaume Auriol, Mohamed Kaâniche, and Aurélien
Francillon. Oasis: An intrusion detection system embedded in bluetooth low energy
controllers. In Proceedings of the 2024 ACM Asia conference on Computer and Commu-
nications Security (ASIACCS), 2024.

[67] Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, Mark Manulis, and
Dain Nilsson. Asynchronous Remote Key Generation: An Analysis of Yubico’s Proposal
for W3C WebAuthn. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 939ś954, 2020.

[68] Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. Token meets wallet: Formalizing
privacy and revocation for FIDO2. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 1491ś1508. IEEE, 2023.

[69] Nina Bindel, Nicolas Gama, Sandra Guasch, and Eyal Ronen. To attest or not to attest,
this is the questionśprovable attestation in ődo2. Cryptology ePrint Archive, 2023.

[70] Jawad Hassan, Adnan Sohail, Ali Ismail Awad, and M. Ahmed Zaka. Letm-iot: A
lightweight and efficient trust mechanism for sybil attacks in internet of things networks.
Ad Hoc Networks, 163, 2024.

[71] Anum Khurshid, Sileshi Demesie Yalew, Mudassar Aslam, and Shahid Raza. Tee-
watchdog: Mitigating unauthorized activities within trusted execution environments in
arm-based low-power iot devices. Security and Communication Networks, 2022(1), 2022.

[72] Koen Zandberg, Kaspar Schleiser, Francisco Acosta, Hannes Tschofenig, and Emmanuel
Baccelli. Secure őrmware updates for constrained iot devices using open standards: A
reality check. IEEE Access, 7:71907ś71920, 2019.

[73] Gong-Xu Liu, Ling-Feng Shi, and Dong-Jin Xin. Data integrity monitoring method
of digital sensors for internet-of-things applications. IEEE Internet of Things Journal,
7(5):4575ś4584, 2020.

[74] Alanoud Subahi and George Theodorakopoulos. Ensuring Compliance of IoT Devices
with Their Privacy Policy Agreement. In 2018 IEEE 6th International Conference on
Future Internet of Things and Cloud (FiCloud), pages 100ś107, 2018.

References 137

[75] Daniel AW Dennis Giese. Unleash Your Smart-Home Devices: Vacuum Cleaning Robot
Hacking. https://media.ccc.de/v/34c3-9147-unleash_your_smart-home_devices_

vacuum_cleaning_robot_hacking, 2017.

[76] Dong Chen, Phuthipong Bovornkeeratiroj, David Irwin, and Prashant Shenoy. Private
memoirs of iot devices: Safeguarding user privacy in the iot era. In 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS), pages 1327ś1336,
2018.

[77] Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. Automatic Finger-
printing of Vulnerable BLE IoT Devices with Static UUIDs from Mobile Apps. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’19), London, United Kingdom, page 1469ś1483, 2019.

[78] Mahmudur Rahman, Bogdan Carbunar, and Madhusudan Banik. Fit and Vulnerable:
Attacks and Defenses for a Health Monitoring Device. ArXiv, abs/1304.5672, 2013.

[79] Noah J. Apthorpe, Dillon Reisman, Srikanth Sundaresan, Arvind Narayanan, and Nick
Feamster. Spying on the Smart Home: Privacy Attacks and Defenses on Encrypted IoT
Traffic. CoRR, 2017.

[80] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao, Peng Liu, and Yuqing
Zhang. Discovering and Understanding the Security Hazards in the Interactions between
IoT Devices, Mobile Apps, and Clouds on Smart Home Platforms. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1133ś1150, 2019.

[81] Mahmudur Rahman, Bogdan Carbunar, and Umut Topkara. Secure Management of Low
Power Fitness Trackers. IEEE Transactions on Mobile Computing, 15(2):447ś459, 2016.

[82] International Data Corporation. Shipments of Wearable Devices Leap to 125 Million
Units, Up 35.1% in the Third Quarter, According to IDC. https://www.idc.com/getdoc.
jsp?containerId=prUS47067820, 2020.

[83] Rohit Goyal, Nicola Dragoni, and Angelo Spognardi. Mind the Tracker You Wear: A
Security Analysis of Wearable Health Trackers. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing (SAC ’16), Pisa, Italy, page 131ś136, 2016.

[84] Statcounter. Mobile and Tablet Android Version Market Share Worldwide (Nov
2020 - Nov 2021). https://gs.statcounter.com/android-version-market-share/

mobile-tablet/worldwide, 2021.

[85] Bluetooth SIG. Bluetooth Core Speciőcation v5.2. https://www.bluetooth.org/docman/
handlers/downloaddoc.ashx?doc_id=478726, 2019.

[86] Xiaomi Inc. Mi Band Homepage. https://www.mi.com/global/miband.

[87] Huami Inc. Amazőt Homepage. https://www.amazfit.com/en/.

[88] Huami Inc. Huami Homepage. https://www.huami.com/investor.

138 138

[89] Anhui Huami Information Technology Co. Mi Fit for Android. https://play.google.

com/store/apps/details?id=com.xiaomi.hm.health&hl=en_US&gl=US.

[90] Huami Inc. Mi Fit for iOS. https://apps.apple.com/us/app/mi-fit/id938688461.

[91] Huami Inc. Zepp (formerly Amazőt) for Android. https://play.google.com/store/

apps/details?id=com.huami.watch.hmwatchmanager&hl=en_US&gl=US.

[92] Huami Inc. Zepp (formerly Amazőt) for iOS. https://apps.apple.com/us/app/

zepp-formerly-amazfit/id1127269366.

[93] Mozilla Foundation. Privacy Not Included - Mi Band 5. https://foundation.mozilla.
org/en/privacynotincluded/mi-band-5/, 2020.

[94] Mozilla Foundation. Privacy Not Included - Mi Band 6. https://foundation.mozilla.
org/en/privacynotincluded/mi-band-6/, 2020.

[95] Mozilla Foundation. Privacy Not Included - Amazőt Fitness trackers. https:

//foundation.mozilla.org/en/privacynotincluded/amazfit-fitness-trackers/,
2020.

[96] Rene Mayrhofer, Jeffrey V. Stoep, Chad Brubaker, and Nick Kralevich. The Android
Platform Security Model. ACM Transactions on Privacy and Security, 24(3), 2021.

[97] Ravie Lakshmanan. Over 750.000 Users Downloaded New Billing Fraud
Apps From Google Play Store. https://thehackernews.com/2021/04/

over-750000-users-download-new-billing.html, 2021.

[98] Ravie Lakshmanan. Attention! FluBot Android Banking Malware Spreads Quickly Across
Europe. https://thehackernews.com/2021/04/attention-flubot-android-banking.

html, 2021.

[99] Ravie Lakshmanan. WhatsApp-based wormable Android malware spot-
ted on the Google Play Store. https://thehackernews.com/2021/04/

whatsapp-based-wormable-android-malware.html, 2021.

[100] Platon Kotzias, Juan Caballero, and Leyla Bilge. How Did That Get In My Phone?
Unwanted App Distribution on Android Devices. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 53ś69, 2021.

[101] Philippe Biondi and the Scapy Community. Scapy. https://scapy.net/, 2021.

[102] Kimi Newt. Pyshark. https://pypi.org/project/pyshark/, 2021.

[103] Wireshark. Wireshark. https://www.wireshark.org/, 2021.

[104] Python Cryptographic Authority. Python Cryptography. https://cryptography.io/

en/latest/, 2021.

[105] Skylot. JADX. https://github.com/skylot/jadx, 2021.

[106] Ole André Vadla Ravnås. Frida. https://frida.re/, 2023.

References 139

[107] Sandeep Mistry. Bleno. https://github.com/noble/bleno, 2021.

[108] Sandeep Mistry. Noble. https://github.com/noble/noble, 2021.

[109] Freezed or frozen. Pymb1a. https://github.com/freezed-or-frozen/pymb1a, 2019.

[110] Dialog Semiconductor. Dialog Semiconductor. https://www.dialog-semiconductor.

com/, 2021.

[111] Virtualabs. BtleJack: a new Bluetooth Low Energy swiss-army knife. https://github.

com/virtualabs/btlejack, 2021.

[112] Mike Ryan. Bluetooth: With Low Energy Comes Low Security. In 7th USENIX Workshop
on Offensive Technologies (WOOT 13). USENIX Association, 2013.

[113] Inc. Fitbit. Fitbit Homepage. https://www.fitbit.com/global/it/home.

[114] Inc. Fitbit. Fitbit app for Android. https://play.google.com/store/apps/details?

id=com.fitbit.FitbitMobile&hl=en_US&gl=US.

[115] Roger M. Needham and David J. Wheeler. TEA Extensions. Report, Cambridge Univer-
sity, 1997.

[116] Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX Mode of Operation. In
International Workshop on Fast Software Encryption, pages 389ś407. Springer, 2004.

[117] Nordic Semiconductor ASA. nRF Connect for Mobile. https://play.google.com/

store/apps/details?id=no.nordicsemi.android.mcp, 2021.

[118] Freeyourgadget. Gadgetbridge a free and cloudless replacement for your gadget ven-
dors’ closed source Android applications. https://codeberg.org/Freeyourgadget/

Gadgetbridge, 2021.

[119] Maxim Krasnyansky, Marcel Holtmann, and Fabrizio Gennari. Hcidump. https://

manpages.debian.org/testing/bluez-hcidump/hcidump.1.en.html, 2021.

[120] Android. Capture and Read Bug Reports. https://developer.android.com/studio/

debug/bug-report, 2021.

[121] Mitmproxy Project. Mitmproxy. https://mitmproxy.org/, 2022.

[122] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. Statistical Deob-
fuscation of Android Applications. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, page 343ś355. Association for Computing
Machinery, 2016.

[123] Caleb Fenton. Simplify Android Deobfuscator. https://github.com/CalebFenton/

simplify, 2020.

[124] Samczsun. Java Deobfuscator. https://github.com/java-deobfuscator/

deobfuscator, 2020.

140 140

[125] iBotPeaches. Apktool. https://ibotpeaches.github.io/Apktool/, 2021.

[126] Ajin Abraham. Mobile Security Framework. https://github.com/MobSF/

Mobile-Security-Framework-MobSF, 2021.

[127] Anthony Desnos and Geoffroy Guegue. Androguard. https://github.com/androguard/
androguard, 2019.

[128] Henrik Blidh and David Lechner. Bleak. https://pypi.org/project/bleak/, 2021.

[129] Creotiv. Mi Band 2 - Python Library. https://github.com/creotiv/MiBand2, 2019.

[130] Yogeshojha. Mi Band 3 - Python Library. https://github.com/yogeshojha/MiBand3,
2019.

[131] Satcar77. Mi Band 4 - Python Library. https://github.com/satcar77/miband4, 2021.

[132] Xiaomi Inc. Mi Home for Android. https://play.google.com/store/apps/details?

id=com.xiaomi.smarthome&hl=it&gl=US.

[133] Ltd Beijing Xiaomi Co. Mi Home for iOS. https://apps.apple.com/us/app/

mi-home-xiaomi-smart-home/id957323480.

[134] AV-TEST Team. Analysis of Fitbit Vulnerabilities. https://www.av-test.org/

fileadmin/pdf/avtest_2016-04_fitbit_vulnerabilities.pdf, 2015.

[135] Taher Issoufaly and Pierre U. Tournoux. BLEB: Bluetooth Low Energy Botnet for Large
Scale Individual Tracking. In 1st International Conference on Next Generation Computing
Applications (NextComp ’17), pages 115ś120, 2017.

[136] Kassem Fawaz, Kyu-Han Kim, and Kang G. Shin. Protecting Privacy of BLE Device
Users. In 25th USENIX Security Symposium (USENIX Security ’16), pages 1205ś1221.
USENIX Association, 2016.

[137] Maximilian von Tschirschnitz, Ludwig Peuckert, Franzen Franzen, and Jens Grossklags.
Method Confusion Attack on Bluetooth Pairing. In 2021 IEEE Symposium on Security
and Privacy (SP ’21), pages 213ś228. IEEE Computer Society, 2021.

[138] Sławomir Jasek. Gattacking Bluetooth Smart Devices. Black Hat USA Conference, 2016.

[139] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Dave J. Tian, Antonio Bianchi, Math-
ias Payer, and Dongyan Xu. BLESA: Spooőng Attacks against Reconnections in Blue-
tooth Low Energy. In 14th USENIX Workshop on Offensive Technologies (WOOT ’20).
USENIX Association, 2020.

[140] Armis Inc. BLEEDINGBIT: The Hidden Attack Surface Within BLE Chips. https:

//armis.com/bleedingbit/, 2019.

[141] Matheus Garbelini, Sudipta Chattopadhyay, and Chundong Wang. SweynTooth: Un-
leashing Mayhem over Bluetooth Low Energy. https://asset-group.github.io/

disclosures/sweyntooth/sweyntooth.pdf, 2020.

References 141

[142] Mohit Sethi, Aleksi Peltonen, and Tuomas Aura. Misbinding Attacks on Secure De-
vice Pairing and Bootstrapping. In Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security (Asia CCS ’19), page 453ś464. Association for
Computing Machinery, 2019.

[143] Muhammad Naveed, Xiao yong Zhou, Soteris Demetriou, XiaoFeng Wang, and Carl A.
Gunter. Inside Job: Understanding and Mitigating the Threat of External Device Mis-
Binding on Android. In 21st Annual Network and Distributed System Security Symposium
(NDSS ’14), 2014.

[144] Pallavi Sivakumaran and Jorge Blasco. A Study of the Feasibility of Co-located App At-
tacks against BLE and a Large-Scale Analysis of the Current Application-Layer Security
Landscape. In 28th USENIX Security Symposium (USENIX Security ’19), pages 1ś18.
USENIX Association, 2019.

[145] iResearch. iResearch Coverage On Xiaomi. http://www.iresearchchina.com/Upload/

201808/20180824143739_3256.pdf, 2018.

[146] Marco Casagrande, Eleonora Losiouk, Mauro Conti, Mathias Payer, and Daniele Anto-
nioli. Breakmi: Reversing, exploiting and őxing xiaomi őtness tracking ecosystem. IACR
Transactions On Cryptographic Hardware And Embedded Systems, 2022(3):330ś366, 2022.

[147] Enrico Punsalang from InsideEVs. Segway-Ninebot Has Sold More Than
One Million E-Scooters In China. https://insideevs.com/news/613420/

segway-ninebot-one-million-sold-china/, 2022.

[148] Xiaomi. Xiaomi Bug Bounty Program On HackerOne. https://hackerone.com/xiaomi?
type=team, 2022.

[149] Reuters. Xiaomi-backed Chinese őrm acquires iconic scooter maker Segway. https://

www.reuters.com/article/us-ninebot-xiaomi-investment-idUSKBN0N60GN20150415,
2015.

[150] Sandeep Mistry. Noble NodeJS BLE Central Module (Abandonware). https://www.

npmjs.com/package/@abandonware/noble, 2022.

[151] Dariusz Seweryn. Rxandroidble library. https://github.com/dariuszseweryn/

RxAndroidBle, 2022.

[152] NSA. Ghidra Reverse Engineering Suite. https://ghidra-sre.org/, 2022.

[153] MiEcosystem. Mijia BLE Libraries. https://github.com/MiEcosystem/mijia_ble,
2019.

[154] VirusTotal. Yara. https://virustotal.github.io/yara/, 2022.

[155] Nordic SemiConductor. nRF51822 System-on-Chip. https://www.nordicsemi.com/

Products/nRF51822, 2022.

[156] ScooterHacking. ScooterHacking Github. https://github.com/orgs/scooterhacking/

repositories, 2022.

142 142

[157] STM Electronics. ST-LINK Debugger V2. https://www.st.com/en/

development-tools/st-link-v2.html, 2022.

[158] OPENOCD. OPENOCD. https://openocd.org/, 2022.

[159] Pavel Revak. PySWD. https://github.com/cortexm/pyswd, 2019.

[160] VooDooShamane from Rollerplausch.com. MiDu Flasher. https://rollerplausch.com/
threads/midu-flasher-st-link-downgrade-unbrick.5399/, 2022.

[161] Buildxyz. nRFSec. https://github.com/buildxyz-git/nrfsec, 2020.

[162] BotoX. Xiaomi M365 Firmware Patcher. https://github.com/BotoX/

xiaomi-m365-firmware-patcher, 2022.

[163] CamiAlfa. M365Downg. https://play.google.com/store/apps/details?id=com.

m365downgrade, 2022.

[164] Brian Benchoff. Security Engineering: Inside the Scooter Startups. https://hackaday.

com/2019/02/12/security-engineering-inside-the-scooter-startups/, 2019.

[165] ScooterHacking. ScooterHacking Website. https://scooterhacking.org/, 2022.

[166] ScooterHacking. ScooterHacking Utility App. https://play.google.com/store/apps/

details?id=sh.cfw.utility, 2022.

[167] ScooterHacking. ScooterHacking Firmware Toolkit. https://mi.cfw.sh/, 2022.

[168] ScooterHacking. ScooterHacking Ninebot EC Protocol. https://wiki.scooterhacking.
org/doku.php?id=nbdocs, 2022.

[169] Hossein Fereidooni, Tommaso Frassetto, Markus Miettinen, Ahmad-Reza Sadeghi, and
Mauro Conti. Fitness trackers: Fit for health but unőt for security and privacy. In 2017
IEEE/ACM International Conference on Connected Health: Applications, Systems and
Engineering Technologies (CHASE), 2017.

[170] Vincent Toubiana and Mathieu Cunche. No need to ask the android: Bluetooth-low-
energy scanning without the location permission. In ACM WiSec, page 147ś152, New
York, NY, USA, 2021. Association for Computing Machinery.

[171] Mike Ryan. Bluetooth: With low energy comes low security. In Proceedings of the 7th
USENIX Conference on Offensive Technologies, page 4, USA, 2013. USENIX Association.

[172] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Rasmussen. The KNOB is Bro-
ken: Exploiting Low Entropy in the Encryption Key Negotiation Of Bluetooth BR/EDR.
In 28th USENIX Security Symposium (USENIX Security 19), pages 1047ś1061, Santa
Clara, CA, 2019. USENIX Association.

[173] Statista. Battery electric vehicles - worldwide. https://www.statista.com/outlook/

mmo/electric-vehicles/battery-electric-vehicles/worldwide, 2024.

References 143

[174] Grand View Research. Electric Scooters Market Size, Share & Trends Analy-
sis Report (2024- 2030). https://www.grandviewresearch.com/industry-analysis/

electric-scooters-market, 2024.

[175] Grand View Research. Micro-mobility market size, share & trends analysis report by
vehicle type (electric kick scooters, electric skateboards, electric bicycles), by battery, by
voltage, by region, and segment forecasts, 2021 - 2028. https://www.grandviewresearch.
com/industry-analysis/micro-mobility-market-report, 2024.

[176] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno.
Comprehensive experimental analyses of automotive attack surfaces. In 20th USENIX
security symposium (USENIX Security 11), 2011.

[177] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
et al. Experimental security analysis of a modern automobile. In 2010 IEEE symposium
on security and privacy, pages 447ś462. IEEE, 2010.

[178] Marco Casagrande, Riccardo Cestaro, Eleonora Losiouk, Mauro Conti, and Daniele An-
tonioli. E-Spoofer: Attacking and Defending Xiaomi Electric Scooter Ecosystem. In
Proceedings of the 16th ACM Conference on Security and Privacy in Wireless and Mobile
Networks, WiSec ’23, New York, NY, USA, 2023. Association for Computing Machinery.

[179] Aaron Luo. Multidimensional Attack Vectors and
Countermeasures. https://media.defcon.org/DEF%20CON%

2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%

20Aaron-Luo-Drones-Hijacking-Multi-Dimensional-Attack-Vectors-And-Countermeasures-UPDATED.

pdf, 2016.

[180] Moritz Schloegel and Nico Schiller. Unchained Skies: A Deep Dive into Reverse Engi-
neering and Exploitation of Drones. https://cfp.recon.cx/2023/talk/HLHH89/, 2023.

[181] Pedro Cabrera. Parrot Drones Hijacking. https://www.rsaconference.com/Library/

presentation/USA/2018/parrot-drones-hijacking, 2018.

[182] Univ Datos. Folding Electric Scooter Market: Current Analysis and Forecast (2023-2030).
https://univdatos.com/report/folding-electric-scooter-market/, 2022.

[183] Ma Si. Segway-Ninebot Eyes Bigger Market Share in Country. https://global.

chinadaily.com.cn/a/202204/28/WS6269ee14a310fd2b29e59d1f.html, 2022.

[184] Tech We Want. Who Makes Bird and Lime Scooters? https://techwewant.com/

this-is-who-makes-bird-lime-and-jump-scooters-review-b3f6be32221e, 2018.

[185] STMicroelectronics. Migration of Applications from the
STM8L and STM8S Series to the STM32C0 Series Microcon-
trollers. https://www.st.com/resource/en/application_note/

an5775-migration-of-applications-from-the-stm8l-and-stm8s-series-to-the-stm32c0-series-

pdf, 2022.

144 144

[186] Patrick Kiley. Reverse Engineering the Tesla Battery Management System to Increase
Power Available. https://www.youtube.com/watch?v=UV2zvgyIF0I, 2020.

[187] Charlie Miller. Battery őrmware hacking. Black Hat USA, pages 3ś4, 2011.

[188] Daljeet Nandha. Exploring Xiaomi’s New Firmware Security Measures. https://

robocoffee.de/?p=193, 2022.

[189] BotoX. Xiaomi M365 Firmware Patcher (GitHub). https://github.com/BotoX/

xiaomi-m365-firmware-patcher/blob/master/xiaotea/xiaotea.py, 2024.

[190] ScooterHacking. ScooterHacking Utility App. https://play.google.com/store/apps/

details?id=sh.cfw.utility, 2022.

[191] ScooterHacking. ScooterHacking Utility Homepage. https://utility.cfw.sh/, 2023.

[192] Scootered. Xiaomi M365 Full Specs. https://www.scootered.co.uk/

electric-scooter-specs/xiaomi-m365-electric-scooter-full-specification.

html, 2024.

[193] Scootered. Xiaomi Mi 3 Full Specs. https://www.scootered.co.uk/

electric-scooter-specs/xiaomi-mi-3-electric-scooter-full-specification.

html, 2024.

[194] STMicroelectronics. Ultra-low-power 8-bit MCU with 32 Kbytes Flash, 16 MHz CPU,
integrated EEPROM. https://www.st.com/en/microcontrollers-microprocessors/

stm8l151k6.html, 2018.

[195] STMicroelectronics. STM8L151K6 Datasheet. https://www.st.com/resource/en/

datasheet/stm8l151r6.pdf, 2018.

[196] Texas Instrument. 6 to 10-Series Cell Li-Ion and Li-Phosphate Battery Monitor. https:
//www.ti.com/product/BQ76930, 2022.

[197] Texas Instrument. BQ769x0 Datasheet. https://www.ti.com/lit/ds/symlink/

bq76930.pdf, 2022.

[198] Texas Instruments Yevgen Barsukov. Battery Cell Balancing: What to Balance and
How. https://www.ti.com/download/trng/docs/seminar/Topic%202%20-%20Battery%

20Cell%20Balancing%20-%20What%20to%20Balance%20and%20How.pdf, 2009.

[199] Marco Casagrande. E-Spoofer (GitHub). https://github.com/Skiti/ESpoofer, 2024.

[200] Shashank Sripad, Sekar Kulandaivel, Vikram Pande, Vyas Sekar, and Venkatasubrama-
nian Viswanathan. Vulnerabilities of Electric Vehicle Battery Packs to Cyberattacks on
Auxiliary Components. arXiv preprint arXiv:1711.04822, 2017.

[201] Texas Instruments. How To Protect 48-V Batteries from Overcurrent and Undervoltage.
https://www.ti.com/lit/an/snoaa65/snoaa65.pdf, 2020.

References 145

[202] Rui Guo, Minggao Ouyang, Languang Lu, and Xuning Feng. Mechanism of the Entire
Overdischarge Process and Overdischarge-induced Internal Short Circuit in Lithium-ion
Batteries. Scientific Reports, page 30248, 2016.

[203] Xiaomi. Query Estimated Spare Parts Price. https://www.mi.com/uk/support/

spare-parts-price/?name=xiaomi-electric-scooter-4-pro-2nd-gen, 2024.

[204] Jason Uher, Ryan G Mennecke, and Bassam S Farroha. Denial of Sleep Attacks in
Bluetooth Low Energy Wireless Sensor Networks. In MILCOM 2016-2016 IEEE Military
Communications Conference, pages 1231ś1236. IEEE, 2016.

[205] Philipp Markert, Daniel V Bailey, Maximilian Golla, Markus Dürmuth, and Adam J
Aviv. This pin can be easily guessed: Analyzing the security of smartphone unlock pins.
In 2020 IEEE Symposium on Security and Privacy (SP), pages 286ś303. IEEE, 2020.

[206] Ding Wang, Qianchen Gu, Xinyi Huang, and Ping Wang. Understanding human-chosen
pins: Characteristics, distribution and security. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, ASIA CCS ’17, New York, NY,
USA, 2017. Association for Computing Machinery.

[207] Charles Lu and Jialin Ding. Rainbow Table Attack on 6-Digit PINs (GitHub). https:

//github.com/clu8/RainbowTable, 2015.

[208] ScooterHacking. ScooterHacking Firmware (GitHub). https://github.com/

scooterhacking/firmware/, 2023.

[209] David J Wheeler and Roger M Needham. TEA, a tiny encryption algorithm. In Fast
Software Encryption: Second International Workshop Leuven, Belgium, December 14–16,
1994 Proceedings 2, pages 363ś366. Springer, 1995.

[210] NIST. FIPS 186-5 ś Digital Signature Standard (DSS). https://nvlpubs.nist.gov/

nistpubs/FIPS/NIST.FIPS.186-5.pdf, 2023.

[211] Global Platform. Secure Channel Protocol 03. https://globalplatform.org/

wp-content/uploads/2014/07/GPC_2.3_D_SCP03_v1.1.2_PublicRelease.pdf, 2019.

[212] NXP. CardLogix SCP03. https://www.cardlogix.com/glossary/

scp03-secure-channel-protocol-3/, 2019.

[213] Qingyu Ma, Hong Yang, Alan Mayhue, Yunlong Sun, Zhitong Huang, and Yifang Ma.
E-scooter safety: The riding risk analysis based on mobile sensing data. Accident Analysis
and Prevention, 2021.

[214] Yan Cui, Jianghong Liu, Xin Han, Shaohua Sun, and Beihua Cong. Full-scale experimen-
tal study on suppressing lithium-ion battery pack őres from electric vehicles. Fire Safety
Journal, page 103562, 2022.

[215] Binghe Liu, Yikai Jia, Chunhao Yuan, Lubing Wang, Xiang Gao, Sha Yin, and Jun Xu.
Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading:
A review. Energy Storage Materials, pages 85ś112, 2020.

146 146

[216] Kyong-Tak Cho, Yuseung Kim, and Kang G Shin. Who killed my parked car? arXiv
preprint arXiv:1801.07741, 2018.

[217] Marcell Szakály, Sebastian Köhler, Martin Strohmeier, and Ivan Martinovic. Assault and
Battery: Evaluating the Security of Power Conversion Systems Against Electromagnetic
Injection Attacks. arXiv preprint arXiv:2305.06901, 2023.

[218] Luis Garcia, Ferdinand Brasser, Mehmet Hazar Cintuglu, Ahmad-Reza Sadeghi, Osama A
Mohammed, and Saman A Zonouz. Hey, My Malware Knows Physics! Attacking PLCs
with Physical Model Aware Rootkit. In NDSS, pages 1ś15, 2017.

[219] Thomas Roth, Fabian Freyer, Matthias Hollick, and Jiska Classen. Airtag of the clones:
shenanigans with liberated item őnders. In 2022 IEEE Security and Privacy Workshops
(SPW), pages 301ś311. IEEE, 2022.

[220] Ang Cui, Michael Costello, and Salvatore Stolfo. When őrmware modiőcations attack: A
case study of embedded exploitation. In NDSS, 2013.

[221] Jacob Maskiewicz, Benjamin Ellis, James Mouradian, and Hovav Shacham. Mouse trap:
Exploiting őrmware updates in USB peripherals. In 8th USENIX Workshop on Offensive
Technologies (WOOT 14), 2014.

[222] Duha Ibdah, Nada Lachtar, Abdulrahman Abu Elkhail, Anys Bacha, and Haőz Malik.
Dark őrmware: a systematic approach to exploring application security risks in the pres-
ence of untrusted őrmware. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), pages 413ś426, 2020.

[223] Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, Antonio Bianchi, Eric
Gustafson, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. Bootstomp:
on the security of bootloaders in mobile devices. In 26th USENIX Security Symposium
(USENIX Security 17), pages 781ś798, 2017.

[224] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. A Large-scale
analysis of the security of embedded őrmwares. In 23rd USENIX security symposium
(USENIX Security 14), pages 95ś110, 2014.

[225] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime
Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis Kallitsis, et al.
Understanding the Mirai botnet. In 26th USENIX Security Symposium (SEC), pages
1093ś1110, 2017.

[226] PCmag. Network-Connected Torque Wrench Used in Facto-
ries Is Vulnerable to Ransomware. https://www.pcmag.com/news/

network-connected-torque-wrench-used-in-factories-is-vulnerable-to-ransomware,
2024.

[227] Juan Lang, Alexei Czeskis, Dirk Balfanz, Marius Schilder, and Sampath Srinivas. Secu-
rity keys: practical cryptographic second factors for the modern web. In International
Conference on Financial Cryptography and Data Security, pages 422ś440. Springer, 2016.

References 147

[228] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano. The quest
to replace passwords: A framework for comparative evaluation of web authentication
schemes. In 2012 IEEE symposium on security and privacy, pages 553ś567. IEEE, 2012.

[229] Transparency Market Research. FIDO Authentication Market Forecast. https://www.

transparencymarketresearch.com/fido-authentication-market.html, 2023.

[230] Yubico. Q3 Interim Report. https://investors.yubico.com/en/wp-content/uploads/
sites/2/2023/03/Q3-investor-morning-presentation-231110.pdf, 2023.

[231] FIDO Alliance. U.S. General Services Administration’s Roll-
out of FIDO2 on login.gov. https://fidoalliance.org/

u-s-general-services-administrations-rollout-of-fido2-on-login-gov/, 2023.

[232] Charlie Jacomme and Steve Kremer. An Extensive Formal Analysis of Multi-Factor
Authentication Protocols. ACM Transactions on Privacy and Security (TOPS), 24(2):1ś
34, 2021.

[233] Jingjing Guan, Hui Li, Haisong Ye, and Ziming Zhao. A Formal Analysis of the FIDO2
Protocols. In European Symposium on Research in Computer Security (ESORICS), pages
3ś21, 2022.

[234] Dhruv Kuchhal, Muhammad Saad, Adam Oest, and Frank Li. Evaluating the Security
Posture of Real-World FIDO2 Deployments. In Proceedings of the ACM conference on
computer and communications security (CCS), 2023.

[235] Tarun Kumar Yadav and Kent Seamons. A Security and Usability Analysis of Local At-
tacks Against FIDO2. In 31th Annual Network & Distributed System Security Symposium
(NDSS’24), 2024.

[236] FIDO Alliance. FIDO Security Reference, Review Draft 23 May 2022. https://

fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-ps-20220523.pdf,
2022.

[237] FIDO Alliance. FIDO Security Secretariat. https://fidoalliance.org/certification/
secretariat/, 2024.

[238] Yubico. Security Advisory YSA-2024-02 FIDO Relying Party Enumeration. https:

//www.yubico.com/support/security-advisories/ysa-2024-02, 2024.

[239] Yubico. CVE-2024-35311. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2024-35311, 2024.

[240] FIDO Alliance. FIDO Alliance Speciőcations Overview. https://fidoalliance.org/

specifications, 2024.

[241] W3C. Web Authentication: An API for accessing Public Key Credentials - Level 2.
https://www.w3.org/TR/webauthn-2, 2021.

148 148

[242] FIDO Alliance. CTAP 2.1 Proposed Standard with Errata. https://fidoalliance.

org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.

1-ps-errata-20220621.html, 2022.

[243] FIDO Alliance. CTAP 2.2 Review Draft 01. https://fidoalliance.org/

specs/fido-v2.2-rd-20230321/fido-client-to-authenticator-protocol-v2.

2-rd-20230321.html, 2023.

[244] FIDO Alliance. FIDO Certiőed Products. https://fidoalliance.org/certification/
fido-certified-products/, 2024.

[245] National Institute of Standards and U.S. Department of Commerce Technol-
ogy. NIST Special Publication 800-63B, Digital Identity Guidelines, Authentica-
tion and Lifecycle Management. https://pages.nist.gov/800-63-3/sp800-63b.html#

-5112-memorized-secret-verifiers, 2017.

[246] Feitian. Feitian Android App. https://play.google.com/store/apps/details?id=com.
ft.entersafe.iepassmanager, 2022.

[247] Feitian. Feitian iOS App. https://apps.apple.com/us/app/iepassmanager/

id1504200260, 2022.

[248] Yubico. Yubikey Manager CLI. https://github.com/Yubico/yubikey-manager, 2023.

[249] Ilan Kirschenbaum and Avishai Wool. How to Build a Low-Cost, Extended-Range RFID
Skimmer. In USENIX security symposium, volume 4, 2006.

[250] Yuyi Sun, Swarun Kumar, Shibo He, Jiming Chen, and Zhiguo Shi. You Foot the Bill!
Attacking NFC With Passive Relays. IEEE Internet of Things Journal, 8(2):1197ś1210,
2021.

[251] Sajeda Akter, Sriram Chellappan, Tusher Chakraborty, Taslim Areőn Khan, Ashikur
Rahman, and A. B. M. Alim Al Islam. Man-in-the-Middle Attack on Contactless Payment
over NFC Communications: Design, Implementation, Experiments and Detection. IEEE
Transactions on Dependable and Secure Computing, pages 3012ś3023, 2021.

[252] Steffen Klee, Alexandros Roussos, Max Maass, and Matthias Hollick. NFCGate: Opening
the Door for NFC Security Research with a Smartphone-Based Toolkit. In 14th USENIX
Workshop on Offensive Technologies (WOOT 20), 2020.

[253] Thanh Bui, Siddharth Prakash Rao, Markku Antikainen, Viswanathan Manihatty Bojan,
and Tuomas Aura. Man-in-the-Machine: Exploiting Ill-Secured Communication Inside
the Computer. In 27th USENIX security symposium (USENIX Security 18), pages 1511ś
1525, 2018.

[254] Yubico. Yubico FIDO2 Python Library. https://github.com/Yubico/python-fido2,
2023.

[255] node-hid package developers. node-hid - Access USB HID devices from Node.js. https:

//www.npmjs.com/package/node-hid, 2023.

References 149

[256] Node.js developers. Node.js is an open-source, cross-platform JavaScript runtime envi-
ronment. https://nodejs.org/en, 2024.

[257] CBOR package developers. CBOR - Encode and parse data in the CBOR data format.
https://www.npmjs.com/package/cbor, 2023.

[258] Proxmark. Proxmark RFID Tool. https://proxmark.com, 2024.

[259] ISO. ISO/IEC 7816-4:2013. https://www.iso.org/standard/54550.html, 2013.

[260] Android developers. Android NFC basics. https://developer.android.com/develop/

connectivity/nfc/nfc, 2023.

[261] z4yx. FIDO Wireshark protocol dissectors over USB HID. https://gist.github.com/

z4yx/218116240e2759759b239d16fed787ca, 2019.

[262] Android. Near Field Communication (NFC) Overview. https://developer.android.

com/develop/connectivity/nfc, 2024.

[263] Ziv Kőr and Avishai Wool. Picking Virtual Pockets using Relay Attacks on Contactless
Smartcard. In First International Conference on Security and Privacy for Emerging Areas
in Communications Networks (SECURECOMM’05), pages 47ś58, 2005.

[264] FIDO Alliance. FIDO Functional Certiőcation. https://fidoalliance.org/

certification/functional-certification/, 2024.

[265] Tsai Chwei-Shyong, Lee Cheng-Chi, and Min-Shiang Hwang. Password Authentication
Schemes: Current Status and Key Issues. International Journal of Network Security,
2006.

[266] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. The Quest
to Replace Passwords: A Framework for Comparative Evaluation of Web Authentication
Schemes. In 2012 IEEE Symposium on Security and Privacy, 2012.

[267] Manuel Barbosa, André Cirne, and Luís Esquível. Rogue key and impersonation attacks
on FIDO2: From theory to practice. In Proceedings of the 18th International Conference
on Availability, Reliability and Security. Association for Computing Machinery, 2023.

[268] Kexin Hu and Zhenfeng Zhang. Security analysis of an attractive online authentication
standard: FIDO UAF protocol. China Communications, 13(12):189ś198, 2016.

[269] Hui Li, Xuesong Pan, Xinluo Wang, Haonan Feng, and Chengjie Shi. Authenticator
rebinding attack of the UAF protocol on mobile devices. Wireless Communications and
Mobile Computing, 2020:1ś14, 2020.

[270] Christiaan Brand. Advisory: Security Issue with Bluetooth Low Energy (BLE) Titan
Security Keys. https://security.googleblog.com/2019/05/titan-keys-update.html,
2019.

150 150

[271] Mohammed Jubur, Prakash Shrestha, Nitesh Saxena, and Jay Prakash. Bypassing push-
based second factor and passwordless authentication with human-indistinguishable noti-
őcations. In Proceedings of the 2021 ACM Asia Conference on Computer and Commu-
nications Security, pages 447ś461, 2021.

[272] Enis Ulqinaku, Hala Assal, AbdelRahman Abdou, Sonia Chiasson, and Srdjan Capkun.
Is Real-time Phishing Eliminated with FIDO? Social Engineering Downgrade Attacks
against FIDO Protocols. In 30th USENIX Security Symposium (USENIX Security 21),
pages 3811ś3828, 2021.

[273] Haonan Feng, Hui Li, Xuesong Pan, Ziming Zhao, and T Cactilab. A Formal Analy-
sis of the FIDO UAF Protocol. In Network & Distributed System Security Symposium
(NDSS’21), 2021.

[274] Nina Bindel, Cas Cremers, and Mang Zhao. FIDO2, CTAP 2.1, and WebAuthn 2:
Provable security and post-quantum instantiation. In 2023 IEEE Symposium on Security
and Privacy (SP), pages 1471ś1490. IEEE, 2023.

[275] Fabian Schwarz, Khue Do, Gunnar Heide, Lucjan Hanzlik, and Christian Rossow. FeIDo:
Recoverable FIDO2 Tokens Using Electronic IDs. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, pages 2581ś2594, 2022.

[276] Andre Büttner and Nils Gruschka. Protecting FIDO Extensions Against Man-in-the-
Middle Attacks. In International Workshop on Emerging Technologies for Authorization
and Authentication, pages 70ś87. Springer, 2022.

[277] Diana Ghinea, Fabian Kaczmarczyck, Jennifer Pullman, Julien Cretin, Rafael Misoczki,
Stefan Kölbl, Luca Invernizzi, Elie Bursztein, and Jean-Michel Picod. Hybrid post-
quantum signatures in hardware security keys. In 4th ACNS Workshop on Secure Cryto-
graphic Implmentation, 2023.

[278] Google. OpenSK: a Rust Implementation of a FIDO2 Authenticator. https://github.

com/google/OpenSK, 2024.

[279] Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. Token meets Wallet: Formalizing
Privacy and Revocation for FIDO2. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 1491ś1508, 2023.

[280] Jessica Colnago, Summer Devlin, Maggie Oates, Chelse Swoopes, Lujo Bauer, Lorrie
Cranor, and Nicolas Christin. “It’s not actually that horriblež Exploring Adoption of
Two-Factor Authentication at a University. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, pages 1ś11, 2018.

[281] Sanchari Das, Andrew Dingman, and L Jean Camp. Why Johnny doesn’t use two factor
a two-phase usability study of the FIDO U2F security key. In International Conference
on Financial Cryptography and Data Security, pages 160ś179. Springer, 2018.

[282] Stéphane Ciolino, Simon Parkin, and Paul Dunphy. Of Two Minds about Two-Factor:
Understanding Everyday FIDO/U2F Usability through Device Comparison and Experi-
ence Sampling. In Fifteenth Symposium on Usable Privacy and Security (SOUPS 2019),
pages 339ś356, 2019.

References 151

[283] Leona Lassak, Annika Hildebrandt, Maximilian Golla, and Blase Ur. It’s Stored, Hope-
fully, on an Encrypted Server: Mitigating Users’ Misconceptions About FIDO2 Biometric
WebAuthn. In 30th USENIX Security Symposium (USENIX Security 21), pages 91ś108,
2021.

[284] Florian M Farke, Lennart Lorenz, Theodor Schnitzler, Philipp Markert, and Markus
Dürmuth. You still use the password after allśExploring FIDO2 Security Keys in a Small
Company. In Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020), pages
19ś35, 2020.

[285] Kentrell Owens, Olabode Anise, Amanda Krauss, and Blase Ur. User Perceptions of the
Usability and Security of Smartphones as FIDO2 Roaming Authenticators. In Seventeenth
Symposium on Usable Privacy and Security (SOUPS 2021), pages 57ś76, 2021.

[286] Michal Kepkowski, Maciej Machulak, Ian Wood, and Dali Kaafar. Challenges with
Passwordless FIDO2 in an Enterprise Setting: A Usability Study. arXiv preprint
arXiv:2308.08096, 2023.

[287] Sanam Ghorbani Lyastani, Michael Backes, and Sven Bugiel. A systematic study of the
consistency of two-factor authentication user journeys on top-ranked websites. In 30th
Annual Network & Distributed System Security Symposium (NDSS’23), 2023.

[288] Anna Angelogianni, Ilias Politis, and Christos Xenakis. How many FIDO protocols
are needed? Surveying the design, security and market perspectives. arXiv preprint
arXiv:2107.00577, 2021.

[289] Sanam Ghorbani Lyastani, Michael Schilling, Michaela Neumayr, Michael Backes, and
Sven Bugiel. Is FIDO2 the Kingslayer of User Authentication? A Comparative Usability
Study of FIDO2 Passwordless Authentication. In IEEE Symposium on Security and
Privacy, pages 268ś285, 2020.

[290] Mike Hanley (GitHub CSO). Securing millions of developers through 2FA. https://

github.blog/2024-04-24-securing-millions-of-developers-through-2fa/, 2024.

[291] Google Safety and Security. The beginning of the end of
the password. https://blog.google/technology/safety-security/

the-beginning-of-the-end-of-the-password/, 2023.

	Introduction
	Problem Statement
	Research Questions
	Contributions
	Thesis Outline

	Background
	RQ1
	RQ2
	RQ3
	RQ4

	BreakMi
	Introduction
	Background
	Bluetooth Low Energy (BLE)
	Xiaomi Fitness Tracking Ecosystem

	Analysis of Xiaomi Fitness Tracking
	Reverse-Engineered Protocols
	Protocol-level Vulnerabilities

	Proposed Attacks
	System Model
	Attacker Model
	OTA Tracker Impersonation Attack
	OTA App Impersonation and MitM Attacks
	SB App Impersonation Attack
	OTA and SB Eavesdropping Attacks
	Discussion

	Implementation
	Protocol Dissector Module
	Security Mechanisms Module
	Attacks Module

	Evaluation
	Setup
	Results

	Countermeasures
	Comparison with Fitbit
	Architecture and Protocols
	Vulnerabilities and Attacks
	Attacking Fitbit with breakmi
	Porting our Xiaomi Countermeasures to Fitbit

	Reverse-Engineering Methodology
	Trackers and Apps Reconnaissance
	BLE and Web Traffic Analysis
	Mobile Companion Apps Analysis
	Development of Scripts

	Related Work
	Conclusion

	E-Spoofer
	Introduction
	Xiaomi E-Scooter Ecosystem
	Threat Model
	System Model
	Attacker Models

	Reversed Xiaomi Security Protocols
	No Security (P1)
	XOR Obfuscation (P2)
	AES-ECB and XOR Obfuscation (P3)
	ECDH and AES-CCM (P4)

	Attacks
	Malicious Pairing (MP)
	Session Downgrade (SD)
	Root Causes

	Implementation
	Proximity Attack Module
	Remote Attack Module
	Reverse-Engineering Module

	Evaluation
	Setup
	Results

	Countermeasures
	Authorized and Authenticated Pairing
	Anti-Downgrade BLE Firmware Patching

	Related Work
	Conclusion

	E-Trojans
	Introduction
	Motivation, RE, and Vulnerabilities
	Motivation
	Prior RE on Xiaomi E-Scooters
	New Xiaomi E-Scooters RE Details
	RE E-Scooter Vulnerabilities

	Threat Model
	System Model
	Attacker Model

	Attacks
	Attacks Initialization
	Undervoltage Battery Ransomware (UBR)
	User Tracking via Internals (UTI)
	Denial of E-Scooter Services (DES)
	Password Leak and Recovery (PLR)
	Mapping Attacks and Vulnerabilities

	Implementation
	BCTRL Firmware Patching and Capabilities
	UBR App and Backend

	Evaluation
	Setup
	Results

	Countermeasures
	Related Work
	Conclusion

	CTRAPS
	Introduction
	FIDO2 and CTAP Preliminaries
	Threat Model
	System Model
	Attacker Model

	Attacks
	Client Impersonation (CI) Attacks
	API Confusion (AC) Attacks
	Discussion

	Vulnerabilities
	Implementation
	CTAP Testbed
	CTAP Client Impersonation
	FIDO Wireshark Dissectors

	Evaluation
	Setup
	Authenticators Results
	Relying Parties Results

	Countermeasures
	Discussion
	FIDO2 Reference Threat Model Issues
	Yubico CredMgmt Implementation Vulnerability

	Related Work
	Conclusion

	Conclusion
	Résumé en Français
	Énoncé du Problème
	Questions de Recherche
	Contributions
	Contexte
	Conclusion

