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Abstract

High-dimensional data is everywhere, and the amount and quality of this data keep increasing,

even though analysing it remains time-consuming. Two-sample testing is a common method

for comparing two datasets, but it often does not provide enough information for humans to

understand, intuit, and comprehend the results.

In this thesis, we investigate variable selection for comparing a pair of high-dimensional

datasets, enabling humans to gain insights without time-consuming analysis work. The

variable selection is performed during two-sample testing and identifies the variables (or

dimensions) responsible for the discrepancies between the two distributions.

We focus on Maximum Mean Discrepancy (MMD), which is a distance metric between prob-

ability distributions, and an optimisation problem of its estimator. This problem optimises

the Automatic Relevance Detection (ARD) weights in a kernel function. The kernel function is

defined for individual variables to maximise the power of the MMD-based test. We extend

this optimisation problem into the variable selection task by adding sparse regularisation.

Since this regularisation term requires an arbitrary parameter, we develop algorithms to find

appropriate regularisation parameters.

Furthermore, we address a variable selection problem with a set of high-dimensional time-

series data. Our main aim is to identify important variables that reflect the differences between

two probability distributions. To accomplish this, we have devised an algorithm for selecting

variables from pairs of time-series data. The algorithm divides a set of time steps into a certain

number of buckets and applies a variable selection method for each bucket. We empirically

show that MMD-based variable selection methods are a suitable approach for this task.

Finally, we demonstrate that a model parameter calibration task, which involves estimating

a suitable parameter for a black-box model (e.g., an intractable simulation model), can be

conducted in a human-in-the-loop style by introducing the MMD-based variable selection

method. The calibration method employs KernelABC of which distance metric is an optimised

MMD estimator.

Overall, this work provides advancements in variable selection methods, significantly improv-

ing the interpretability and efficiency of high-dimensional data analysis in various applica-

tions.

iii





Résumé

Les données de haute dimension sont omniprésentes, et leur quantité ainsi que leur qualité

continuent d’augmenter, bien que leur analyse reste chronophage. Le «Two-Sample Testing»

est une méthode courante pour comparer deux ensembles de données, mais il ne fournit

souvent pas suffisamment d’informations pour que les humains puissent comprendre et

interpréter les résultats de la comparison par le Two-Sample Testing.

Cette thèse étudie la sélection de variables pour comparer une paire de données de haute

dimension, permettant ainsi aux humains d’obtenir un aperçu sans avoir à effectuer des

travaux d’analyse longs et fastidieux. La sélection de variables est réalisée lors du Two-Sample

Testing et permet d’identifier les variables (ou dimensions) responsables des écarts entre les

deux distributions de probabilités.

Cette thèse porte sur «Maximum Mean Discrepancy» (MMD), une métrique de distance

entre deux distributions de probabilités, ainsi que sur un problème d’optimisation de MMD

estimateur. Ce problème optimise les paramètres de «Automatic Relevance Detection» (ARD)

dans une «Kernel fonction». La fonction objective vise à maximiser l’approximation de la «Test

Power» du test basé sur la MMD. Nous étendons ce problème d’optimisation à la sélection

de variables (sélection de caractéristiques) en ajoutant une «sparse régularisation». Étant

donné que cette régularisation nécessite un hyperparamètre arbitraire, nous développons des

algorithmes permettant de déterminer automatiquement les paramètres de régularisation

optimaux.

De plus, nous abordons un problème de sélection de variables avec un ensemble de données

temporelles de haute dimension. Le principal objectif est d’identifier les variables importantes

dans une paire de séries temporelles, qui reflètent les différences entre deux distributions de

probabilité. À cette fin, nous avons développé un algorithme de sélection de variables pour

une paire de séries temporelles.

Enfin, nous démontrons qu’une calibration de paramètres de modèle, qui consiste à estimer un

paramètre adapté à un modèle «Black-Box»(par exemple, un modèle de simulation intractable),

peut être réalisée avec l’intervention humaine en utilisant la méthode de sélection de variables

basée sur la MMD. La calibration de modèle avec l’intervention humaine est une approche

efficace lorsque le modèle Black-Box nécessite des coûts computationnels élevés, que ce soit

en termes de puissance de calcul ou de temps.
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Chapter 1

Introduction

Since the 1990s, high-dimensional data has been ubiquitous not only in scientific communities

but also in society (Fan and Li, 2006). Data comparisons are fundamental parts of data analysis

when humans need to make decisions based on the results or derive insights from them. Two-

sample testing is an objective method for comparing pairs of high-dimensional data. However,

its binary outcome often provides insufficient information for humans to effectively handle

high-dimensional data. The main goal of this thesis is to develop such practical analysis tools

that provide sufficient information for humans for their analysis works.

The central focus of this thesis is on high-dimensional data comparison, with a specific

emphasis on human interpretability. This is achieved through Two-Sample Testing (TST)

combined with variable selection using Maximum Mean Discrepancy (MMD).

1.1 High-Dimensional Data and their Comparison

Data comparisons are essential for data analysis when making decisions or deriving insights. In

our society, we frequently come across situations where we compare sets of high-dimensional

data1. For example, image data, where each pixel represents a variable2, is a typical high-

dimensional data, with 4,096 variables when the image size in pixel is 64×64 (Deng et al.,

2009). As another example, tabular data, such as time-series or transactional data, often

comprises many variables, represented by columns (Dau et al., 2019).

1There is no clear criterion for distinguishing “high” dimensionality. For instance, Liu et al. (2017) consider
dimensionality to be high when the number of variables exceeds three, while the bioinformatics field deals
with data containing more than 1,000 variables and refers to it as “high dimension.” High dimensionality is
generally understood to occur when the Curse of Dimensionality impacts a target application, leading to degraded
performance or efficiency in machine learning or statistical applications.

2The field of machine learning often uses the term “feature” instead of “variable”. In this thesis, we consistently
use the term “variable”.
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Chapter 1. Introduction

Data comparison involves checking the compatibility or equivalence of data for integrating

high-dimensional data (Shi et al., 2005). Before merging two datasets, a data operator must

confirm that they are the same, compatible, or similar. However, manually comparing high-

dimensional data, such as DNA microarray data that can have up to 12,600 dimensions, is

difficult and time-consuming (Borgwardt et al., 2006).

The comparison of interest could involve probability distributions, such as generative mod-

els (Goodfellow et al., 2020) that produce high-dimensional data. However, in practice, the

shapes of probability distributions are unknown in most cases; therefore, it is impossible to

compare these distributions directly. Instead, we sample high-dimensional data from these

distributions and then compare the samples. For instance, we might want to determine

whether a surrogate model is compatible or equivalent to the distribution it approximates.

Similar to the data integration example, the manual comparison is hard and time-consuming

work.

Given these challenges, there is a need for effective methods that bridge the gap between

theoretical distribution comparisons and practical applications of high-dimensional data.

Indeed, high-dimensional data poses challenges for humans due to several reasons. Firstly,

humans struggle to manage a large number of variables (Liu et al., 2017). Secondly, when

dealing with high-dimensional data, the number of variable combinations grows exponentially.

This is because variables may have interdependencies, leading to a vast number of variable

combinations that become difficult for humans to manage.

Therefore, our goal is to offer a solution that empowers humans to make informed decisions

and gain valuable insights. To achieve this, two essential requirements must be met;

1. Helping determine whether a comparison pair is the same (similar) or not.3

2. Providing humans with evidence, factors, or reasons for the difference, when the com-

parison pair is not the same.

1.2 High-Dimensional Data Comparisons by Two Sample Testing

Two-Sample Testing (TST) is the preferred objective method for comparing pairs of high-

dimensional datasets, as it requires fewer subjective decisions compared to other approaches.

Graphical comparisons following dimensionality reduction methods such as PCA or t-SNE (Cu-

tura et al., 2020) rely on human interpretation. While plotting histograms has been a long-

standing method for data comparison (Thas, 2010), it is limited to univariate analysis and is

not suitable for high-dimensional data.

3We assume the comparison pair does not necessarily have to be the same. Yet, the pair should be similar such
that people, who handle data, commonly agree on the similarity.
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1.3 Challenges in Two-Sample Testing and Proposed Solution

In the context of TST, we translate “same (similar)“ or “not” into acceptance and rejection of the

null hypothesis H0. The null hypothesis, in this case, asserts that the two samples are drawn

from the same underlying distribution. Therefore, accepting the null hypothesis suggests that

the distributions are the same or pretty similar, whereas rejecting it indicates a significant

difference between them. In TST settings, there are two probability distributions P,Q of which

shapes are unknown; however, we are able to sample datasets X ,Y from P,Q, respectively. The

null hypothesis H0 represents P =Q, and the alternative hypothesis H1 is for P 6=Q. When P

and Q are different, TST rejects H0, otherwise the acceptance of the H0.

Historically, TST of high-dimensional data has been challenging since the 1990s notably in

computational biology, health studies, financial engineering, and risk management, which is

driven by the rapid growth in information technology and data collection capabilities (Fan

and Li, 2006). Maximum Mean Discrepancy (MMD) (Gretton et al., 2012a) has become a well-

known and often-used de facto standard in recent studies (Kübler et al., 2022a; Kübler et al.,

2022b). It is recognised as a robust distance metric in high-dimensional spaces, particularly

effective when the available datapoints are limited (Gretton et al., 2012a).

By applying MMD to high dimensional TST, we can meet the first requirement mentioned ear-

lier: helping determine whether a comparison pair is the same (similar) or not. However, the

second requirement, providing humans with evidence, factors, or reasons for the difference,

remains unmet. In the next section, we explain the limitation of the high dimensional TST.

1.3 Challenges in Two-Sample Testing and Proposed Solution

Although TST is an objective method for comparisons, the binary outcome of TST (acceptance

or rejection of the H0) is not sufficient for humans in handling high-dimensional data. When

the H0 is rejected, there is no further guidance on what to do next.

TST can provide various statistics, including the p-value. However, this information alone may

not be enough for humans. The p-value simply indicates the likelihood of observing a test

statistic under the assumption that the two samples come from the same distribution. As a

result, it does not offer humans explanations for differences in high-dimensional data4.

We propose a solution by manual analysis supported by variable selection. This manual

analysis fulfils the second condition, which is to provide humans with evidence, factors,

or reasons for the difference. Humans can review the selected variables and make further

decisions. There could be several reasons for the rejection of the H0; discrepancies may exist in

4Foremost, we should avoid relying on the p-value alone. The American Statistical Association warned of
overusing the p-value in scientific and business fields, saying “Scientific conclusions and business or policy
decisions should not be based only on whether a p-value passes a specific threshold.” (Wasserstein and Lazar,
2016).
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Chapter 1. Introduction

specific areas of a data domain that are not the main focus of the comparison, or the rejection

could result from errors in data preprocessing.

Two-sample testing through hypothesis testing can address the first requirement of deter-

mining whether a comparison pair is similar or not. However, the binary outcome does not

satisfy the second requirement of providing humans with evidence, factors, or reasons for the

difference, which can be achieved through variable selection.

In the literature, there have been various efforts to realise variable selection based on two-

sample testing. Here, we briefly introduce some of these works. Yamada et al. (2019) and

Lim et al. (2020) proposed this combination by applying the test independently to each

dimension. Although their methods can meet the two requirements, they are unable to

account for interdependencies among variables. Thus, the selected variables may become

redundant if one probability distribution, P , has correlations among variables while the

counterpart, Q, does not. As discussed earlier in Section 1.1, high-dimensional data usually

involves interdependencies among variables, requiring additional analysis to sharply detect

relevant variables. Therefore, a preferred variable selection method should consider the

interdependency structure among variables to ensure accurate selection. Another issue is that

the number of selected variables is a hyperparameter, which is often unknown in practice.

Wang et al. (2023) proposed another approach to variable selection based on TST. However,

this method shares the same issue regarding the hyperparameter of the number of selected

variables, requiring humans to have some prior knowledge about the two distributions. We

will review these works later in Section 3.1.

Our variable selection method is based on TST and selects variables by solving an optimisation

problem that takes into account interdependencies among variables. Crucially, it does not

require a hyperparameter for the number of selected variables. As a result, our proposal meets

both requirements, sharply selecting relevant variables without the need to know the exact

number of selected variables in advance. The proposed method is based on optimising an

MMD estimator to maximise the ability to distinguish a pair of given samples. This maximising

problem optimises ARD weights in a kernel function, and the variable selection method

selects a set of notably weighted variables. Our proposal consists of two parts, 1) introducing

a regularisation term to the optimisation problem of the MMD estimator, 2) developing an

automated method for selecting the optimal regularisation parameter.

1.4 Application Examples of Our Variable Selection

Our variable selection method is broadly applicable to a variety of scenarios requiring the

comparison of high-dimensional data. We provide two application examples to illustrate its

utility: data analysis and model validation for model development.
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1.4 Application Examples of Our Variable Selection

1.4.1 Variable Selection for Data Analysis

Demonstration Showcase: Image Analysis

Figure 1.1: Example of discovered variables for the data analysis by comparisons. Two datasets
X ,Y are sets of images of cats’ and dogs’ faces. The highlighted yellow dots depict the variables
selected by the proposed method in this thesis work. Details are in Section 3.5.4.

The demonstration case represents the data analysis by comparisons of images. The full

description is in Section 3.5.4, and we briefly introduce the demonstration here.

The AFHQ dataset (Choi et al., 2020) contains a collection of face images of cats and dogs.

Comparing images of cats and dogs is a general case that does not require specific background

knowledge to interpret the variable detection results. More practical applications of image

comparison are, for example, medical image analysis (Litjens et al., 2017).

We assume that two probability distributions P,Q generate these images. The face images

are greyscale and have a resolution of 64×64 pixels, resulting in samples of 4,096 variables.

Although the differences are visually apparent, we aim to identify the variables (pixels) that

contribute to these differences. This approach can be useful in other applications, such as

medical imaging and anomaly detection, where pinpointing the exact pixels that differentiate

between classes is crucial for diagnosis and accurate analysis.

We apply the variable selection method to the image datasets to identify the variables that

influence the rejection of the H0. The yellow dots in Figure 1.1 represent these variables,

highlighting the variations in the shapes of eyes and noses.
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Chapter 1. Introduction

1.4.2 Variable Selection for the Model Validation

A model is designed to represent a system or a process in the real-world (Sargent, 2010). A

model may improperly approximate the real-world system if errors lie in model logic designs

or inappropriately set parameters5. Therefore, we need to validate a model before deploying it

to applications. Model validation is a procedure to confirm that model outcomes fall within

the acceptable range of accuracy expected by the application (Sargent, 2010)6. In the context

of two-sample testing, model validation involves evaluating the null hypothesis (H0) where

MP represents the model and Q is the counterpart probability distribution.

In practice, tests will reject the H0 if the sample size is large enough, even for practically in-

significant differences, with some small vanishing probability of the rejection being a result of

random chance alone. As an aphorism “all models are wrong” (Box, 1979), it is inherently im-

possible to perfectly model a real-world system. Additionally, as discussed in Section 1.3, there

are numerous reasons for the rejection of the H0, especially dealing with high-dimensional

outcomes. Consequently, model validators spend a significant amount of time analysing and

comparing the model outcomes with their counterpart.

A solution is manual validation supported by the variable selection. As Box (1979) said “but

some (models) are useful”, some models can achieve acceptable accuracy and validity for spe-

cific applications. The information derived from these useful models can be highly beneficial.

Our variable selection method accurately identifies the variables contributing to the rejection

of the null hypothesis (H0), allowing humans to review these variables and make informed

decisions about model validation.

Demonstration Showcase: Model Validation of Fluid Particle Surrogate Model

The demonstration is focused on validating a surrogate model for fluid-particle simulations.

The full description is in Section 4.5, and we briefly introduce the demonstration here. A

physic-model based simulator (Bender et al., n.a) is prepared as MP , and MQ is a surrogate

model approximated by a deep neural network (Prantl et al., 2022). Given that the model MP

involves high computational costs, the surrogate model MQ is expected to offer a practical

solution for rapid predictions. Our goal is to establish a well-approximated surrogate model

MQ that is suitable for the application, and then validate MQ by comparing it with MP .

We sample a pair of model outcomes, specifically the counts of fluid particles, from MP and

MQ and apply our variable selection method. Figure 1.2 illustrates outcomes from MP (blue

5A certain model may be without parameters. This thesis does not distinguish between models with or without
parameters.

6Sargent (2010) distinguishes model validation from model verification. The model verification handles errors
in model logic designing or in implementation. The model validation aims at confirming appropriate parameters.
This thesis regards model validation, including model verification.
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1.4 Application Examples of Our Variable Selection

(a) At t = 0.

(b) At t = 325. (c) At t = 565.

Figure 1.2: A pair of model outcomes from MP (blue particles) and MQ (green particles). Two
outcomes start at time t = 0 and end at time t = 599. The red boxes are detected variables by
the variable selection method.

particles) and MQ (green particles) at steps t = 0 , t = 325 and t = 565. The red boxes are the

variables detected by the variable selection method.

At t = 325,565, the visualisation of blue and green particles reveals major differences between

the two models. However, the proposed variable selection method revealed slight differences

between the two models, such as particles located in the upper-left corner at time t = 565.

A few green particles (by the surrogate model) adhere to the upper-left corner, while no

corresponding blue particles (by the physic-model-based simulator) are present.

Visual representation alone cannot adequately highlight subtle differences, leading humans

to potentially overlook significant implications. By combining the visual representation and

variable selection results, the visualisation can offer an intuitive yet powerful interpretation

for humans.

Demonstration Showcase: Model Validation of Macroscopic Traffic Simulation

This demonstration focuses on the model validation of a realistic macroscopic traffic sim-

ulation scenario in Monaco (Codeca and Härri, 2018). The full description is provided in
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Chapter 1. Introduction

(a) A simulation model MP . (b) The perturbed model MQ .

(c) Selected variables caused by the perturbation. The roads
affected by the red “X” blocks in the model MQ .

Figure 1.3: (Left) A simulation model MP . (Right) The counterpart perturbed model MQ . Red
“X” marks are the blocked roads. Colour arrows are vehicles’ rerouting paths caused by the
perturbation. Each colour represents a rerouting group. (Bottom) Variable selection results
by the proposed method. The green-colour lines are selected variables that are reasons and
factors for rejecting the H0.

Section 4.6, but we briefly introduce the demonstration here. Two simulation models are

prepared: MP represents the model, while MQ represents a perturbed model created by

blocking some major roads in the study area. In this scenario, the model validation results in

the rejection of the null hypothesis (H0). However, our primary interest lies in identifying the

variables that contribute to this rejection.

Figure 1.3 (left, right) illustrates differences between the two models. The simulation model

MQ represents the perturbed model, where the red “X” marks and the coloured arrows in-

dicate the blocked roads and the rerouting paths of vehicles, respectively, caused by the

perturbation (each colour represents a rerouting group)7. The model MP is the counterpart

without the perturbation. Apart from the perturbation, all configurations are the same be-

7The rerouting groups are identified manually, without using variable selection methods.
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tween these two simulation models. We sampled traffic count values per road from both MP

and MQ and applied our variable selection method. The bottom figure shows the result, with

selected variables highlighted in green colour. Among 4,404 variables (roads), the selected

green lines represent the variables that are reasons and factors contributing to the rejection of

the null hypothesis (H0). These roads are primarily impacted by the roadblocks in the model

MQ . Without the variable selection method, manual analysis would be time-consuming and

challenging. With the selected variables, a model validator can focus on variables with high

priorities in comparing the two models.

1.5 Thesis Contributions and Structure

This thesis contributes to the field of comparing pairs of high-dimensional data. An effective

comparison tool for humans must meet the two requirements clarified in Section 1.1. The

analysis tool developed in this thesis not only meets these two requirements but also offers

the following three contributions:

Automated Variable Selection. We propose an automated and data-driven variable selection

method that does not require specifying the number of selected variables as a hyperparameter,

addressing a limitation present in related works (Yamada et al., 2019; Lim et al., 2020; Wang

et al., 2023). Our proposed method is based on a regularised optimisation problem of an MMD

estimator. Since the regularised optimisation problem demands an appropriate regularisa-

tion parameter, we developed automated methods for selecting the optimal regularization

parameter. Based on the optimisation result, we select variables. We empirically demonstrate

that our automated methods are more accurate than existing variable selection methods. The

proposed methods are detailed in Chapter 3, and these findings were previously presented in

(Mitsuzawa et al., 2023).

Automated Variable Selection for High Dimensional Time-Series Data. Using the proposed

methods, we develop a variable selection framework for comparing pairs of high-dimensional

time-series data. In practical validation scenarios, there is a demand for rigorously under-

standing a model’s behaviour by focusing on a single pair or a few pairs of high-dimensional

time-series, often spatial-temporal data. The key question addressed is: "Which variables are

significantly different at certain time ranges?". We empirically demonstrate that the proposed

framework successfully addresses this question. The framework is generic and allows for

the use of any variable selection algorithms; however, our empirical results show that the

proposed automated variable selection method is the most preferred choice. These studies

are detailed in Chapter 4, and these findings were previously presented in (Mitsuzawa et al.,

2024).
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Chapter 1. Introduction

Automated Variable Selection for Human-in-Loop Parameter Calibration. We focus on the

black-box model calibration (parameter estimation) problem, where the model outcomes are

high-dimensional data and the black-box model requires significant computational resources,

such as computational power or time. Human-in-the-loop model calibration offers a solution

where manual analysis informs decisions on whether to continue or halt the calibration

process. However, analysing high-dimensional data is time-consuming and labour-intensive.

Thus we propose the human-in-loop model calibration supported by the automated validation

selection. These contents are detailed in Chapter 5 and are based on research collaboration

with an industrial partner. The proposed algorithm is part of preliminary research8; therefore,

additional empirical results are needed, and further empirical validation is preferred.

Thesis Structure This thesis is organised as follows. Chapter 2 provides preliminaries on

Maximum Mean Discrepancy (MMD) and Two Sample Testing (TST) (Gretton et al., 2012a),

as well as methods for optimising an MMD estimator in a data-driven manner (Sutherland

et al., 2017). Chapter 3 goes in-depth into the variable selection based on the optimisation of

the MMD estimator. In Chapter 4, we report an extension of the variable selection method to

compare a pair of high-dimensional time-series data. Chapter 5 shows our work on “Human-

in-loop model calibration“ by integrating the variable selection method into a parameter

estimation task. Empirical assessments and analysis demonstrations are found at ends of

each chapter. The appendix contains supplementary materials, including theoretical analysis,

additional experiments, and details of data generation procedures for empirical assessments

and demonstrations.

8Indeed, all work was completed during the author’s first year
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Chapter 2

Maximum Mean Discrepancy and

Optimisation of a Maximum Mean

Discrepancy Estimator

In Chapter 2, we will provide the necessary background and definition of Maximum Mean

Discrepancy (MMD) and the optimisation of its estimator. Before diving into the specifics of

MMD, we will briefly introduce the literature on high-dimensional two-sample testing (TST)

in Section 2.1 to emphasise the advantages of using MMD for TST. Section 2.2 will introduce

MMD, and the optimisation problem will be discussed in Section 2.3, which is connected to

variable selection in Chapter 3.

We first introduce notations used in the following sections. Let P and Q probability distribu-

tions on the D-dimensional Euclidean space RD . Let X := {X 1, . . . , X n} ⊂ RD be a dataset

of n i.i.d. (independently and identically distributed) sample vectors from P , and Y :=
{Y 1, . . . ,Y m} ⊂ RD be a dataset of i.i.d. sample vectors of size m from Q. The task of TST

is to test the null hypothesis H0 : P =Q against the alternative hypothesis H1 : P 6=Q using the

two datasets X and Y. For evaluating a TST method, a “test power” is often used. The test power

is the probability of the test correctly rejecting the null hypothesis H0 when the alternative

hypothesis H1 is true, where this probability is with respect to the random generation of the

i.i.d. samples X and Y. Thus, we interpret that a TST method with a greater test power is

preferred.
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Chapter 2. Maximum Mean Discrepancy and Optimisation of a Maximum Mean
Discrepancy Estimator

2.1 Challenges of High-Dimensional Two-Sample Testing

To the best of our knowledge, there is no clear definition or common understanding of “high-

dimension” in the context of TST. As a result, the term “high-dimension” may encompass and

refer to “multivariate” and “large p, small n” situations. This thesis does not clearly distinguish

these three terms and regards them all as “high-dimensional“ settings. “Multivariate,” has

been used since the early days to denote data with multiple variables (Marinković, 2008).

“Large p, small n” refers to situations where the number of variables p exceeds the number of

observations n (West, 2003; Kosorok and Ma, 2007).1 Lastly, “high dimensional” is often used

in a similar context to “large p, small n” implying that while the data dimension is high, the

sample size is relatively small (Chen and Qin, 2010). However, it does not necessarily meet the

same criteria as “large p, small n.”

Multivariate hypothesis testing dates back to Hotelling’s T 2 test in 1931 (Hotelling, 1992),

a multivariate extension of the Student’s t-test (Student, 1992). Subsequently, various ap-

proaches were proposed for multivariate two-sample testing, and research attention shifted

to high-dimensional data in the late 1990s and 2000s (Fan and Li, 2006). Understanding the

evolution of high-dimensional TST and comparing with MMD is crucial for appreciating the

advancements that our work builds upon. Below, we briefly introduce major approaches to

treating multivariate and high-dimensional data.

Parametric Tests

The parametric test, especially Hotelling’s T 2 statistic, was widely used for TST as late as

2014 (Biswas and Ghosh, 2014), although Bai and Saranadasa (1996) demonstrated and pointed

out its limitations that is degrading test power with higher dimensionality. The degradation is

primarily caused by the assumption in the test that the two Gaussian distributions must have

the same covariance. In real-world high-dimensional settings, non-Gaussian data distribu-

tions are common, which makes the Gaussian assumption often unrealistic (Bono et al., 2017).

To address this problem, Bai and Saranadasa (1996) proposed a new test statistic that does not

rely on the assumption of Gaussian distributions. However, this approach still necessitates the

assumption of homoscedasticity between the two covariances. This assumption of covariance

homoscedasticity is once again impractical when applying TST to high-dimensional data, e.g.

dataset shift adaptation (Quionero-Candela et al., 2009).

The test statistic proposed by Chen and Qin (2010) addressed the issue of covariance het-

eroscedasticity, specifically tailored for high-dimensional gene data. Instead of relying on the

covariance matrix, the test statistic compares the sum of three inner products: two self-inner

1Some studies use the term “High-Dimension and Low-Sample-Size (HDLSS)” (Aoshima and Yata, 2018).
However, this term does not appear to be mainstream.
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products of X , Y , and an inner product between X and Y . While this test offers more flexi-

bility than previous methods, it is not robust in high-dimensional spaces characterised by a

“spike” where some eigenvalues of the covariance matrix are significantly larger than others,

as pointed out in (Aoshima and Yata, 2018).

When comparing with parametric tests, MMD does not require the assumption of underlying

distributions. This property, often referred to as nonparametric and distribution free (Dodge,

2008), is a strong motivation for employing MMD as the test statistic.

Ranking Based Tests

Ranking-based tests do not require the assumption of underlying distributions, unlike para-

metric tests; therefore it falls into a category of non-parametric tests. Despite this advantage,

nonparametric testing, including the ranking-based test, has a significant drawback: it gener-

ally yields lower test power compared to appropriately set parametric tests (Dodge, 2008). As a

result, more samples are required to achieve a test power comparable to that of parametric

methods. This increased sample requirement often discourages the use of the ranking-based

test in situations involving high-dimensional data.

A well-known ranking-based test is Mann-Whitney U test (Mann and Whitney, 1947)2, which

ranks combined data points from both datasets and uses these ranks for statistical analysis.

Thompson’s ranking test (Thompson, 1990) is multivariate extension of the Mann-Whitney

U test. However, the test is challenging to apply to high-dimensional data. That is because a

monotone transformation of assigning ranks to datapoints is inappropriate to complex corre-

lated variable structure in high-dimensional data, and therefore test power degrades (Bathke

et al., 2008; Zhou and Chen, 2023).

In (Zhou and Chen, 2023)3, the limitation of monotone transformation was identified and a

graph-based ranking test was proposed. This test combines a distance between two datasets

and graph-based representations. The sophisticated graph representation enables the han-

dling of high-dimensional data and complex correlation structures.

The combination of graph-based and ranking-based tests is powerful, but MMD has its own

advantages. Firstly, MMD outperforms the test power of the proposed method in certain distri-

bution settings, for example when a multivariate Gaussian distribution has subtle differences

in its locations between two probability distributions (Zhou and Chen, 2023, Setting I(b) in

Table 1 and Setting III(b) in Table 3, respectively). Considering that the kernel function is not

2Mann-Whitney U test is also known as the Wilcoxon rank-sum test. There is a similarly named test, Wilcoxon
signed-rank test, which is a paired difference test where the two samples must have a paired relationship.

3Zhou and Chen (2023) provides a comprehensive overview of recent developments in high-dimensional
ranking tests.
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well-tuned in the assessment of Zhou and Chen (2023), a well-tuned kernel function may lead

to better test powers4. Additionally, MMD is able to be flexibly customised by swapping a

kernel function of Eq. (2.2) while the proposal of Zhou and Chen (2023) allows for less cus-

tomisation. For example, Gao et al. (2021) proposed a Deep-Neural-Network-based kernel

function for detecting adversarial attacks.

Inter-Point Distance Tests

Inter-Point Distance (Rosenbaum, 2005) employs a metric of measuring distances between

two datasets for a test statistic. Regarding measuring a distance between two datasets, MMD

has a connection with the inter-point distance test.

A frequency-based inter-point test was proposed by (Friedman and Rafsky, 1979), whose

test statistic counts frequencies of X ,Y label pairs in a minimal spanning tree. Variations of

(Friedman and Rafsky, 1979) were presented in Henze (1988); Schilling (1986), which use the

K-nearest neighbour (K-NN) instead of the minimal spanning tree. A test statistic of Cross-

match test (Rosenbaum, 2005) is the frequency count of data pairs composed by datapoints of

both datasets X ,Y . The cross-match test may be effective in high-dimensional data settings,

but the computational costs are prohibitively expensive, requiring O (m +n)3, where m,n

represent the number of datapoints from X and Y , respectively.5

Biswas and Ghosh (2014) proposed a distance-based test statistic. Roughly say, this test

statistic is based on inter-point Euclidean distances and the difference in the means of the

inter-point distances between the two distributions.

Comparing the methods mentioned above with MMD, it is important to note that the Eu-

clidean distance can be a limiting factor. Since the test statistics of these methods depend on

the Euclidean distance, they may not be robust when such distance is not a suitable distance

measure. For instance, in cases where probability distributions have manifold-shaped struc-

tures, the Euclidean distance is not suitable (Gu and Xu, 2006), while kernel-based methods

are more robust (Sedghi et al., 2020). The use of MMD for the manifold-structure distributions

is further discussed in Briol et al. (2019).

4Zhou and Chen (2023) used a R package kerTests (Song and Chen, 2023) whose MMD estimator is with a
Gaussian kernel having a length scale computed by median heuristic (Garreau et al., 2018).

5Since methods of Friedman and Rafsky (1979); Henze (1988); Schilling (1986); Rosenbaum (2005) construct a
graph-structure composed of datapoints, we can categorise them in graph-based approach, as Zhou and Chen
(2023) does.

18



2.2 Maximum Mean Discrepancy (MMD)

2.2 Maximum Mean Discrepancy (MMD)

MMD is a distance metric between probability distributions (Gretton et al., 2012a), thus

enabling quantifying how the two distributions P and Q differ.

To define MMD, we need to introduce a kernel function k(x, x ′) on RD , which defines the simi-

larity between input vectors x, x ′ ∈RD . More precisely, let k :RD ×RD 7→R be a positive semi-

definite kernel, examples including the linear kernel k(x, x ′) = x>x ′, the polynomial kernel

k(x, x ′) = (x>x ′+c)`, where c ≥ 0 and ` ∈N, the Gaussian kernel k(x, x ′) = exp(−a2
∥∥x −x ′∥∥2)

with a > 0, and the Laplace kernel k(x, x ′) = exp(−a
∥∥x −x ′∥∥) (Schölkopf and Smola, 2002).

For a given kernel k, the MMD between probability distributions P and Q is then defined as

MMD2
k (P,Q) := EX ,X ′∼P [k(X , X ′)]+EY ,Y ′∼Q [k(Y ,Y ′)]

−2EX∼P, Y ∼Q [k(X ,Y )],
(2.1)

where X , X ′ ∈RD are independent random vectors from P and Y ,Y ′ ∈RD are those of Q and

the expectation E is taken for the random vectors in the subscript.

Intuitively, the MMD compares the average similarities between random vectors within each

distribution, i.e., EX ,X ′∼P [k(X , X ′)] and EY ,Y ′∼Q [k(Y ,Y ′)], with the average similarities be-

tween random vectors across the two distributions, i.e., 2EX∼P, Y ∼Q [k(X ,Y )]. As such, we have

MMD2
k (P,Q) = 0 if P =Q. It is known that we have MMD2

k (P,Q) ≥ 0 for any P and Q. Moreover,

if k has the property called characteristic (Fukumizu et al., 2007), we have MMD2
k (P,Q) = 0 if

and only if P =Q. That is, whenever P 6=Q we have MMD2
k (P,Q) > 0. Therefore, if the kernel k

is characteristic and the MMD can be estimated from data, the estimated MMD can be used as

a test statistic for TST. Among the kernels mentioned above, the Gaussian and Laplace kernels

are characteristic (Sriperumbudur et al., 2010).

Given i.i.d. samples X = {X 1, . . . , X n} i .i .d .∼ P and Y = {Y 1, . . . ,Y m} i .i .d .∼ Q, one can estimate the

MMD by replacing the expectations in Eq. (2.1) by the corresponding empirical averages:

�MMD
2
U (X,Y) := 1

n(n −1)

∑
1≤i 6=i ′≤n

k(X i , X i ′)

+ 1

m(m −1)

∑
1≤ j 6= j ′≤m

k(Y j ,Y j ′)− 2

nm

n∑
i=1

m∑
j=1

k(X i ,Y j ).
(2.2)

This is an unbiased estimate of the MMD Eq. (2.1), and converges at the rate Op (min(n,m)−1/2)

as n,m →∞ provided that supx∈Rd k(x, x) <∞ (Gretton et al., 2012a, Theorem 10). As men-

tioned, one can use the estimate Eq. (2.2) as a test statistic for TST, as a larger value of it implies

that the two distributions would be more different, and a similar value implies they would be

more similar.
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2.3 Automatic Relevance Detection (ARD)

We now describe the approach of Sutherland et al. (2017) to optimise an MMD estimator for

TST. In the MMD estimate Eq. (2.2), it uses the so-called ARD kernel defined as

k(x, y) = exp

(
− 1

D

D∑
d=1

a2
d (xd − yd )2

γ2
d

)
(2.3)

x := (x1, . . . , xD )> ∈RD , y := (y1, . . . , yD )> ∈RD ,

where a1, . . . , aD ≥ 0 are called ARD weights and γ1, . . . ,γD > 0 length scales. Intuitively, each

ARD weight ad represents the importance of the d-th variable (xd and yd ) in measuring the

similarity of the input vectors x and y : If ad is larger, the difference xd − yd in the d-th variable

has a larger effect on the kernel value, and a smaller ad implies a smaller effect on the kernel

value. On the other hand, the length scale γd unit-normalises the scale of the d-th variable

based on the data distribution on this variable, and can be specified by the variable-wise

median heuristic described in Section E.

Sutherland et al. (2017) proposed to optimise the ARD weights a1, . . . , aD to maximise the

test power of the MMD TST. The test power is the probability of the test correctly rejecting

the null hypothesis H0 : P =Q when the alternative hypothesis H1 : P 6=Q is true, where this

probability is with respect to the random generation of the i.i.d. samples X and Y. While the

test power cannot be directly computed (as it depends on the unknown P and Q), one can

calculate its asymptotic approximation (Gretton et al., 2012b). Thus, Sutherland et al. (2017)

proposed to maximise this approximation, which results in the following objective function:

`
(
a1, . . . , aD

)
:=

�MMD
2
U (X,Y)√

V̂n,m(X,Y)+C
(2.4)

where �MMD
2
U (X,Y) is the unbiased MMD estimate in Eq. (2.2) and C ≥ 0 is a small constant.

The quantity V̂n,m(X,Y) in Eq. (2.4) is an unbiased estimate of the variance of �MMD
2
U (X,Y) ∈R,

where the variance is calculated for the randomness of datasets X and Y. Intuitively, it measures

the stability of �MMD
2
U (X,Y) against a slight perturbation of X and Y. For n = m, it is given by6

V̂n,m(X,Y) := 4

n3

n∑
i=1

(
n∑

j=1
Hi j

)2

− 4

n4

(
n∑

i , j=1
Hi j

)2

, (2.5)

where Hi , j := k(X i , X j )+k(Y i ,Y j )−k(X i ,Y j )−k(Y i , X j ).

The objective function Eq. (2.4) can be understood as follows. First, both �MMD
2
U (X,Y) in

6This estimator is the version of Liu et al. (2020, Eq. (5)), which is simpler than the estimator of Sutherland et al.
(2017, Eq. (5)).
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the numerator and V̂n,m(X,Y) in the denominator depend on the kernel Eq. (2.3) and thus

on the ARD weights a1, . . . , aD . The estimate �MMD
2
U (X,Y) in the numerator becomes large

if the ARD weights serve to separate well the two datasets X and Y. On the other hand, the

variance V̂n,m(X,Y) in the denominator becomes small if the ARD weights make the estimate�MMD
2
U (X,Y) stable, i.e. if the estimate does not change substantially even if the datasets X

and Y are slightly perturbed. There is a trade-off between these two requirements; good ARD

weights should balance the trade-off.

The constant C in the denominator exists to prevent the objective function from being numer-

ically unstable, which can happen when the variance V̂n,m(X,Y) is extremely small. Following

Liu et al. (Liu et al., 2020), we set the value C = 10−8 throughout our experiments.
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Chapter 3

Variable Selection via MMD

Optimisation

This chapter describes the proposed methods. Related works are introduced in Section 3.1.

Section 3.2 introduces notations for the variables selection task. Section 3.3 discusses an issue

in optimising the ARD weights and introduces a regularisation method to address it. Sections

3.4.1 and 3.4.2 propose two approaches to perform variable selection based on regularised

ARD optimisation.

3.1 Related Works

We discuss two topics of related works separately: the “Sample-selection approach” and the

“Variable-selection approach”.

3.1.1 Sample-Selection Approach

The sample-selection approach selects sample locations x ∈ RD on which the probability

densities (or their masses) P (x) and Q(x) of the two probability distributions P and Q differ

significantly. Although this approach selects a set of representative sample locations, humans

have to conduct an analysis work to understand the differences between two datasets, which

is a disadvantage we discussed in Chapter 1. The variable-selection approach is advantageous

since it can select such representative sample locations once variables are selected.

Duong and Koch (2009); Duong (2013) proposed to estimate the density functions of P and

Q using a non-parametric density estimation method, and then obtain the sample locations

where the two density estimates differ significantly. Instead of estimating the density functions,
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Lloyd and Ghahramani (2015), Jitkrittum et al. (2016) and Kim et al. (2016) proposed to estimate

the kernel mean embeddings of P and Q and obtain the sample locations where the two mean

embeddings differ significantly. Cazals and Lhéritier (2015) and Kim et al. (2019) formulated

TST as a regression problem of predicting whether a given sample point is from P or Q. They

proposed to solve this regression problem using a non-parametric method and obtain sample

locations where the discrimination of P or Q is the easiest (which are the locations where the

densities of P and Q differ significantly).

3.1.2 Variable-Selection Approach

The variable selection approach selects a subset S ⊂ {1,2, . . . ,D} of variables (or coordinates)

out of the D variables x = (x1, . . . , xD )> ∈RD on which the marginal distributions PS and QS of

P and Q differ significantly.

The classifier TST approach (Friedman, 2003; Hido et al., 2008; Lopez-Paz and Oquab, 2017),

which is closely related to the regression approach above Cazals and Lhéritier (2015); Kim et al.

(2019), first assigns positive labels to sample points from P and negative labels to those from

Q, and then learns a classifier to discriminate the two samples; the resulting classification

accuracy, which becomes higher if P and Q are more different, is used as a test statistic.1 Hido

et al. (2008) and Lopez-Paz and Oquab (2017) performed qualitative (but not quantitative)

experiments suggesting that the learned classifier’s features may be used for understanding the

features (variables) responsible for the discrepancies between P and Q. Even though classifier

approaches are effective for TST problems, it is not for the variable selection task mainly

due to the interdependent variable structures. Their objective functions will satisfactorily

discriminate two given samples even though classifiers select variables that are dependent on

other variables, as pointed out by (Wang et al., 2023).

Hara et al. (2017) and Zheng et al. (2020) proposed to construct a D ×D matrix where the

(i , j )-th element with i , j ∈ {1, . . . ,D} is the estimated distance between the bivariate marginals

P{i , j }(xi , x j ) and Q{i , j }(xi , x j ), where the distance metric is the Kullback-Leibler divergence

in (Hara et al., 2017) and the Wasserstein distance in (Zheng et al., 2020). By computing a

sparse submatrix with large positive entries from this D ×D matrix, they obtain variables

for which the univariate or bivariate marginal distributions of P and Q differ. Mueller and

Jaakkola (2015) proposed optimising the data vectors’ linear projections onto the real line

R to maximise the Wasserstein distance between these projections. The optimised weights

defining the projections may be used for selecting informative variables for the discrepancies

1MMD-based TST, including ours, can be related to classifier TST in that the MMD (or integral probability
metrics in general, such as the Wasserstein distance) can be lower-bounded by the smoothness of the optimal
classifier discriminating P and Q (Sriperumbudur et al., 2012, Prop. 2.6); if the optimal classifier is smoother, the
discrimination is easier, and thus P and Q are more different and the MMD becomes larger. See also (Liu et al.,
2020, Section 4).
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3.1 Related Works

between distributions P and Q. These approaches, however, are nonconvex problems and

possibly result in local optimal solutions, as noted by (Wang et al., 2023). Furthermore, these

methods mainly rely on distances of univariate, bivariate, or projection; therefore, there is

a possibility that these representations are improper and unable to represent the original

distribution shapes correctly.

Each of the above methods has explicitly or implicitly a hyperparameter specifying the number

of selected variables or the strength of regularisation. In practice, an appropriate value of such

a hyperparameter is typically unknown. Our methodological contribution is to develop two

methods for addressing this issue. Moreover, as variable selection in TST is a relatively new

topic in the literature, the definition of the task itself, or that of the “ground-truth” variables,

has not been established. We propose a mathematically rigorous definition and analyse its

properties in the next section.

3.1.3 Variable Selection Approaches employing MMD

As we show already in Section 2.3, Sutherland et al. (2017, Section 4) proposed to optimise the

ARD weights to maximise the test power in an MMD test; however, their work did not conduct

qualification assessments of the optimised ARD weights. As we show in Sections 3.3 and 3.5.2,

their optimisation problem does not realise satisfactory variable selection.

The following studies (Yamada et al., 2018; Lim et al., 2020; Wang et al., 2023) are related work

in terms of employing MMD for the variable selection task; however, these works require the

number of variables to be selected as a hyperparameter. Usually, the number of variables to

be selected is unknown in practice, and an algorithm, ideally and preferably, could work with

fewer hyperparameters. Our proposal automatically selects the number of variables to be

selected and the regularisation parameter, which is a significant advantage over these works.

Yamada et al. (2019) and Lim et al. (2020) proposed MMD-based post-selection inference

methods for selecting variables xi with i ∈ {1, . . . ,D} such that the one-dimensional marginal

distributions Pi (xi ) and Qi (xi ) of P and Q differ. By definition, these methods cannot detect

discrepancies appearing only in multivariate marginal distributions. For example, for i , j ∈
{1, . . . ,D} with i 6= j , suppose that P and Q have equal one-dimensional marginals Pi (xi ) =
Qi (xi ) and P j (x j ) =Q j (x j ), and that P has a correlation for xi and x j while Q does not have.

In this case, their approaches cannot detect the discrepancy between the bivariate marginals

P{i , j }(xi , x j ) and Q{i , j }(xi , x j ), as demonstrated in Section 5.3.

Wang et al. (2023)2 employ similar concepts to our work in terms of designing a kernel function

2We did not compare our method with theirs empirically since their codebase was not public when we conducted
assessments in Section 3.5.2.
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with ARD weights3, yet their proposal requires the number of variables to be selected as a

hyperparameter. Indeed, this work, similar to our work, is motivated by optimising an MMD

estimator (Sutherland et al., 2017). However, their optimisation approach, differently from

ours, employs Sparse Trust Region Subproblem (STRS) which is an optimisation problem of

selecting a subset. Since STRS is a non-convex and NP-hard problem, they propose a heuristic

algorithm to solve it by simulated annealing. Their objective function is found at Eq. 7, and

the heuristic algorithm for the STRS is in Algorithm 3. From a viewpoint of applications, the

significant difference from us is in requiring two hyperparameters; 1. the number of variables

to be selected which is d in Eq. 3; 2. a set of regularisation parameters G in Algorithm 3.

3.2 Problem Formulation

We first define TST. Let P and Q probability distributions on the D-dimensional Euclidean

space RD . Let X := {X 1, . . . , X n} ⊂ RD be a dataset of n i.i.d. (independently and identically

distributed) sample vectors from P , and Y := {Y 1, . . . ,Y m} ⊂ RD be a dataset of i.i.d. sample

vectors of size m from Q. The task of TST is to test the null hypothesis H0 : P =Q against the

alternative hypothesis H1 : P 6=Q using the two datasets X and Y.

We define necessary notation. Let S ⊂ {1, . . . ,D} be a subset of variable indices, and {1, . . . ,D}\S

be its complement. Let PS and P{1,...,D}\S be the marginal distributions of P on S and {1, . . . ,D}\S,

respectively: PS(xS) := ∫
P (x)d x{1,...,D}\S and P{1,...,D}\S(x{1,...,D}\S) := ∫

P (x)d xS , where x =
(xS , x{1,...,D}\S) ∈ RD . Likewise, let QS and Q{1,...,D}\S be the marginal distributions of Q on

S and {1, . . . ,D}\S, respectively.

For any disjoint subsets S,U ⊂ {1, . . . ,D}, we define PS ⊗PU as the product distribution of the

marginal distributions PS and PU , i.e., PS ⊗PU (xS , xU ) := PS(xS)PU (xU ) for (xS , xU ) ∈R|S|+|U |.
Recall that, if PS∪U = PS ⊗PU (i.e., the joint and product distributions are equal), then for a

random vector (XS , XU ) ∼ PS∪U , the subvectors XS and XU are statistically independent.

As variable selection in TST is relatively new in the literature, no established mathematical

definition exists for it.4 We thus provide a rigorous mathematical definition below, which may

be of independent interest.

Definition 1. Variable selection in TST is defined as finding a subset S ⊂ {1, . . . ,D} that satisfies

the following:

3Wang et al. (2023) do not use the term “ARD weights” but employ the same concept, e.g. a Gaussian kernel at
(Wang et al., 2023, Eq. (6)).

4Most existing works in Section 3.1 do not mathematically define the task of variable selection in TST. The
only exception is Hara et al. Hara et al. (2017, Problem 1), where the task is to find S ⊂ {1, . . . ,D} such that
P{1,...,D}\S =Q{1,...,D}\S and P{d}∪{1,...,D}\S 6=Q{d}∪{1,...,D}\S for all d ∈ S. However, this definition has the following
issue. Suppose D = 2, P{1} =Q{1}, P{2} =Q{2} and P 6=Q. In this case, according to the definition of Hara et al. (2017),
one can either select S = {1} or S = {2}, but not S = {1,2}. However, ideally, S = {1,2} should be selected, because the
difference between P and Q only appears when the distributions on the two variables {1,2} are compared.
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1. There is no subset U ⊂ S such that PU =QU , PS = PU ⊗PS\U and QS =QU ⊗QS\U .

2. S is the largest among such sets. That is, we have S 6⊂ S′ for any S′ ⊂ {1, . . . ,D} satisfying 1).

Condition 1) in Definition 1 requires that S does not contain any redundant variables U such

that a) the marginal distributions PU and QU on U are identical, and that b) U are independent

of the rest of the variables S\U in that PS = PU ⊗PS\U and QS =QU ⊗QS\U . On the other hand,

suppose that there is a subset A ⊂ S such that P A = Q A holds but either PS = P A ⊗PS\A or

QS =Q A⊗QS\A does not hold; such A is informative for distinguishing PS and QS . For example,

suppose that D = 2, P{1} =Q{1}, P{2} =Q{2}, P = P{1} ⊗P{2}, and Q 6=Q{1} ⊗Q{2}, so that P 6=Q. If

S = {1,2} and A = {1}, we have P A =Q A and PS = P A ⊗PS\A but QS 6=Q A ⊗QS\A . In this case,

this subset A ⊂ S is needed to distinguish PS(= P ) and QS(=Q).

Condition 2) requires that S be the largest among subsets satisfying condition 1). The following

proposition shows that such S is unique. It also provides an “explicit” expression of S and the

resulting decompositions of P and Q.

Proposition 1. Suppose P 6= Q, and let S ⊂ {1, . . . ,D} be the subset satisfying the conditions

in Definition 1. Then S is unique. Moreover, let U ⊂ {1, . . . ,D} be the largest subset such that

P = PU ⊗P{1,...,D}\U , Q =QU ⊗Q{1,...,D}\U and PU =QU . Then we have S = {1, . . . ,D}\U , and thus

P = PS ⊗P{1,...,D}\S , Q =QS ⊗Q{1,...,D}\S ,

where PS 6=QS , P{1,...,D}\S =Q{1,...,D}\S , (3.1)

Proof. In Section C.1.

Proposition 1 shows that S in Definition 1 is given as S = {1, . . . ,D}\U with U the largest “redun-

dant” variables such that PU =QU , P = PU ⊗P{1,...,D}\U and Q =QU ⊗Q{1,...,D}\U . Consequently,

we have the decompositions P = PS ⊗P{1,...,D}\S and Q = QS ⊗Q{1,...,D}\S in Eq. (3.1), where

S is the variables where distributional changes occur, PS 6= QS , and {1, . . . ,D}/S =U are the

redundant variables.

3.3 Regularisation for Variable Selection

We propose to optimise the ARD weights in the kernel (1) of the MMD by solving the following

L1 regularised optimisation problem (Tibshirani, 1996).

min
a∈RD

− log
(
`
(
a1, . . . , aD

))+λ D∑
d=1

|ad |, (3.2)
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where ` is the objective function in Eq. (2.4), and λ≥ 0 is a regularisation parameter. If λ= 0,

this minimisation problem is equivalent to the maximisation of the objective function Eq. (2.4).

Figure 3.1: Optimised ARD weights without regularisation (Left) and with regularisation (Right).
Here, S = {1,4} are the true variables for distinguishing P and Q, and U = {0,2,3,5, . . . ,19} are
the redundant variables with zero-variance marginal distributions. Without regularisation,
the redundant variables’ ARD weights do not change from their initial value 1, and bury
the weights of the informative variables. With regularisation, these redundant variables are
successfully eliminated. The details of the setting are described in Section 3.5.2 (“Redundant
Dirac”).

Regularisation works in variable selection by penalising large weights associated with redun-

dant variables. For example, consider Example 1, where, for the d-th variable with d ∈ {1, . . . ,D},

P and Q have the identical marginal distribution Pd =Qd = δξ that is the Dirac distribution

at ξ ∈ R (say ξ = 1.43). Then, for i.i.d. sample vectors X = {X 1, . . . , X n} ⊂ RD from P and

those Y = {Y 1, . . . ,Y m} ⊂ RD from Q, their values for the d-th variable are all identical to ξ:

X 1
d = ·· · = X n

d = Y 1
d = ·· · = Y m

d = ξ. Therefore the d-th variable is redundant for distinguishing

P and Q. However, as we have a2
d (X i

d − X j
d )2 = 0, a2

d (Y i
d −Y j

d )2 = 0, a2
d (X i

d −Y j
d )2 = 0 for all

possible i and j , the value of the ARD weight ad does not affect the ARD kernel (1) and thus

the objective function Eq. (2.4). Therefore, without regularisation, the maximisation of the

objective Eq. (2.4) (or the minimisation of (3.2) with λ= 0) does not make the ARD weight ad

small. Regularisation can fix this issue by penalising non-zero weights associated with such

redundant variables. Figure 3.1 demonstrates how regularisation works.

The question is how to set the regularisation parameter λ in Eq. (3.2). If λ is too large, most

optimised ARD weights may become zero, leading to false negatives. If λ is too small, the

optimised ARD weights associated with redundant variables may not become zero, leading to

false positives as we exemplified in Section 3.3.2. Our main methodological contributions are

two approaches to the regularisation parameter selection, as described in Sections 3.4.1 and

3.4.2.
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3.4 Variable Selection Algorithms

3.3.1 Variable Selection using the Optimised Weights

As preliminaries to Sections 3.4.1 and 3.4.2, we explain how to select variables using the

optimised ARD weights a∗ = (a∗
1 , . . . , a∗

D ), the solution of Eq. (3.2). One way is to set a threshold

πthr ≥ 0 and select variables whose weights are above the threshold: Ŝ := {d ∈ {1, . . . ,D} | a∗
d >

πthr}. The question is how to set the threshold. Our preliminary experiments revealed that

the use of a fixed threshold, such as πthr = 0 and πthr = 0.1, does not work well. The reason is

that the range of the ARD weights changes drastically depending on the given dataset. For

example, the maximum and minimum of the ARD weights can be 10−3 and 10−7, respectively,

for one dataset, while they can be 102 and 10−1 for another dataset. In either case, however,

the ARD weights distribution indicates each variable’s relative importance.

Consequently, we use the following data-driven method for determining the threshold πthr

based on the histogram of optimised ARD weights. The idea is to set the threshold as the

smallest local minimum in the histogram. For instance, if D = 5, a∗
1 = 0.01, a∗

2 = 0.02, a∗
3 = 0.02,

a∗
4 = 0.03, a∗

5 = 0.1, we set π∗
thr = 0.03, and the 5th variable is selected as a∗

5 = 0.1 > 0.03.

Algorithmically, the method first constructs a histogram of the optimised ARD weights (with

100 bins as a default setting). Subsequently, it identifies bins with zero frequency. Among

these bins, the one with the smallest value is selected as threshold πthr.

3.3.2 Comparison of Effects by the Regularisation Parameter λ

We study how the choice of the regularisation parameter λ in Eq. (3.2) affects the variable se-

lection performance. To this end, we set λ as each of the candidate values from 10−3,10−3+0.25,

10−3+0.5, . . . ,101.25,101, optimise the ARD weights by numerically solving Eq. (3.2) (see Sec-

tion 3.5.1 for details), and perform variable selection as in Section 3.3.1. Figure 3.2 describes

the F score, Precision and Recall for each value of λ and each setting, where the means and

standard deviations are obtained from the results of 10 independently repeated experiments.

One can observe that the optimal value of λ varies depending on the setting of distributions

P and Q. For example, the highest precision is attained with λ = 10−1.5 for the “Narrower

variances” setting, but it is attained with λ = 1.0 for the other settings. The dependence

of the best regularisation parameter on the setting of P and Q highlights the difficulty of

manually selecting an appropriate regularisation parameter. This fact motivates the proposed

approaches of Algorithms 1 and 2.

3.4 Variable Selection Algorithms

We propose two algorithms for variable selection: MMD Model Selection (Algorithm 1) in

Section 3.4.1, MMD CV Aggregation (Algorithm 2) in Section 3.4.2. There are two major
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Figure 3.2: Effects of the regularisation parameter on the variable selection performance,
discussed in Appendix 3.3.2. The top, middle and bottom figures show the F score, Precision
and Recall for each setting of distributions P and Q, where the horizontal axis indicates the
regularisation parameter λ used.

differences in these two algorithms; 1) MMD Model Selection relies on the given training

datasets and validation datasets, while MMD CV Aggregation employs the cross-validation

approach, 2) MMD Model Selection chooses the best λ parameter and its associated ARD

weights, while MMD CV Aggregation combines a set of ARD weights obtained by several λ

parameters.

Two algorithms require a set of candidate regularisation parametersΛ as an input. We intro-

duce an automatic method of selectingΛ in Appendix D. However, one can also manually set

Λ based on the preference.
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3.4.1 MMD Model Selection: Data-driven Regularisation Parameter Selection

We describe a method for selecting the regularisation parameterλ in the optimisation problem

Eq. (3.2). Below, let aλ ∈ RD be the (numerical) solution of Eq. (3.2), and Ŝλ be the selected

variables (as done in Section 3.3.1).

We combine two criteria to select the regularisation parameter. One is the value of the objective

function Eq. (2.4) evaluated for the optimised ARD weights aλ on held-out validation data:

we denote this by `val(aλ). The other is the P-value of a permutation TST performed on the

selected variables Ŝλ. We select λ with the highest `val(aλ) among candidates whose P-values

are less than 0.05. The concrete procedure is described in Algorithm 1.

Procedure of Algorithm 1

First, we split the data (X,Y) into training data (Xtrain,Ytrain) and validation data (Xval,Yval). Let

Λ be a set of candidate parameters (see Section D.1). We perform the following for each λ ∈Λ
(lines 2-5). Line 2 obtains optimised ARD weights aλ by numerically solving Eq. (3.2) using λ

and (Xtrain,Ytrain). Line 3 then evaluates the objective function Eq. (2.4) on (Xval,Yval) using the

ARD weights aλ; let `val(aλ) be this value. Line 4 selects variables Ŝλ ⊂ {1, . . . ,D} using aλ as in

Section 3.3.1. Line 5 performs a permutation TST (e.g., (Efron and Tibshirani, 1994, Chapter

15)) on the validation data Xval([:, Ŝλ]) and Yval([:, Ŝλ]) where only the selected variables Ŝλ
are used (e.g., if Xval is given as a nval ×D matrix, then Xval([:, Ŝλ]) is a nval ×|Ŝλ| matrix); let

0 ≤ pλ ≤ 1 be the resulting P-value. Once the above procedure is applied for all λ ∈Λ, line 8

selects λ∗ with maximum `val(aλ) among those with pλ < 0.05, and returns the corresponding

variables Ŝλ as the final selected variables. If there exists no λ ∈Λwith pλ < 0.05, line 10 selects

λ∗ with minimal P-value pλ, and returns the corresponding variables Ŝλ∗ .

For the permutation test on the selected variables Ŝλ, one can use, in principle, any test

statistic for TST applicable to multivariate data. We found in our preliminary analysis that

the sliced Wasserstein distance (Bonneel et al., 2014) performs well while running faster than

re-optimising the ARD weights on the selected variables Ŝλ, so we use the former in our

experiments.

Mechanism

We now discuss the mechanism of the proposed approach of using the two criteria. This

approach is based on the following ideas:

1. A high `val(aλ) implies that the selected variable Ŝλ contains many of the true variables

S;
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2. A low pλ implies that Ŝλ does not contain many of the redundant variables U :=
{1, . . . ,D}\S.

Point 1) is because the objective function Eq. (2.4) becomes high when the ARD weights aλ
lead to a high power of the resulting MMD TST. To see point 2), suppose that D = 5, the

ground-truth variables are S = {1,3}, the redundant ones are U = {2,4,5}, and the selected

variables are Ŝλ = {1,2,3,4,5}. As Ŝλ contains redundant variables U , the permutation test

using Ŝλ may fail to distinguish P and Q, since U adds “noises” to “signals” S. Accordingly, the

P-value pλ would not become small.

To understand the mechanism better, suppose that the objective value is high, but the P-value

is not small. This happens when the selected variables Ŝλ contain many of the true variables S

but also many of the redundant variables U . For instance, consider Example 1, where the ARD

weights on the redundant variables U \V do not influence the objective value Eq. (2.4). In this

case, the objective value can be large, even if the weights of the redundant variables are large

so that the redundant variables are selected. Consequently, the P-value would not be small

while the objective value is large.

On the other hand, suppose the objective value is not high, but the P-value is small. This

happens when the selected variables Ŝλ contain some of the true variables S but miss some.

To see this, suppose again D = 5, S = {1,3}, and that both variables 1 and 3 have equally

different marginal distributions, i.e., P1 and Q1 are as different as P3 and Q3. In this setting,

assume that the ARD weights aλ = (aλ,1, . . . , aλ,5) have a large weight only for variable 1 (e.g.,

aλ = (1.6,0.1,0.12,0.2,0.3)), so that only variable 1 is selected: Ŝλ = {1}. As P1 and Q1 are

different, the permutation test using Ŝλ = {1} would lead to a small P-value. However, because

the weight for variable 3 is not large (aλ,3 = 0.12), the objective value `val(aλ) would not become

as high as alternative ARD weights where both variables 1 and 3 have large weights (e.g.,

aλ = (1.5,0.2,1.4,0.2,0.1)). Therefore, the P-value is small in this example, but the objective

value would not be high.

To summarise, if the objective value `val(aλ) is high and the P-value pλ is small, the selected

variables Ŝλ would contain many of the true variables S but do not contain many redundant

variables U . Algorithm 1 selects such a regularisation parameter λ.

3.4.2 MMD CV Aggregation: Cross Validation based Aggregation

Rather than selecting variables based on one “best” regularisation parameter, our second

method aggregates the outputs of different regularisation parameters. This method extends

our first method by applying cross-validation and computing aggregated scores for the individ-

ual variables. It draws inspiration from the Stability Selection algorithm in high-dimensional
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Algorithm 1 Data-driven Regularisation Parameter Selection

Input: Λ: a set of candidate regularisation parameters. (Xtrain,Ytrain): training data. (Xval,Yval):
validation data.

Output: Ŝλ∗ ⊂ {1, . . . ,D}: selected variables with the best regularisation parameter λ∗ ∈Λ.

1: for all λ ∈Λ do
2: Obtain ARD weights aλ ∈RD by numerically solving Eq. (3.2) using (Xtrain,Ytrain) and λ.
3: Compute `val(aλ) > 0 by evaluating Eq. (2.4) on (Xval,Yval).
4: Select variables Ŝλ ⊂ {1, . . . ,D} using aλ as in Section 3.3.1.
5: Compute P-value 0 ≤ pλ ≤ 1 by performing a permutation TST on (Xval[:, Ŝλ],Yval[:, Ŝλ]).
6: end for
7: if there exists λ ∈Λwith pλ < 0.05 then
8: λ∗ = argmaxλ∈Λ{`val(aλ) | pλ < 0.05}.
9: else

10: λ∗ = argminλ∈Λ pλ.
11: end if

statistics (Meinshausen and Bühlmann, 2010). (See Section I.5 for a systematic comparison

with other candidate aggregation strategies for Algorithm 2.)

Procedure of Algorithm 2

Algorithm 2 describes the procedure of the method. For each candidate regularisation pa-

rameter λ ∈ Λ, lines 1 to 10 perform the following. Let K be the number of splits in cross-

validation (e.g., K = 10). For each split i = 1, . . . ,K , line 3 randomly splits the data (X,Y) into

training data (Xi
train,Yi

train) and validation data (Xi
val,Yi

val) by the ratio ρtrain: 1−ρtrain, where

0 < ρtrain < 1. We set ρtrain = 0.5 as a default value. Lines 4 to 7 perform lines 2 to 5 of Algorithm

1 using (Xi
train,Yi

train) and (Xi
val,Yi

val); let ai
λ
∈ RD be the ARD weights, Ŝi

λ
⊂ {1, . . . ,D} be the

selected variables, `val(ai
λ

) be the objective value, 0 ≤ p i
λ
≤ 1 be the P-value. (See Section

3.4.1 for the explanation.) Line 8 normalises the ARD weights ai
λ
= (ai

λ,1, . . . , ai
λ,D ) by dividing

them by the largest weight maxd∈{1,...,D} ai
λ,d so that the largest weight of the normalised ones

ãi
λ
= (ãi

λ,1, . . . , ãi
λ,D ) becomes 1, i.e., maxd∈{1,...,D} ãi

λ,d = 1. This normalisation is needed for the

aggregation performed later.

Line 10 computes the D-dimensional score vector

Π̂λ := 1

K

K∑
i=1

I (p i
λ < 0.05)`val(ai

λ)ãi
λ ∈RD ,

where I (p i
λ
< 0.05) = 1 if p i

λ
< 0.05 and I (p i

λ
< 0.05) = 0 if p i

λ
≥ 0.05. This vector is the

average, over the K splits i = 1, . . . ,K , of the normalised ARD weight vector ãi
λ

multiplied by
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the objective value `val(ai
λ

) such that the P-value pλ is smaller than 0.05. Line 12 computes

the average, over candidate regularisation parameters λ ∈Λ, of the score vector Π̂λ to obtain

the aggregated score vector

Π̂ := 1

|Λ|
∑
λ∈Λ

Π̂λ ∈RD .

Lastly, line 13 selects variables based on the aggregated score Π̂.

Mechanism

To simplify the explanation, suppose K = 1, in which case the data (X,Y) are split into training

data (Xtrain,Ytrain) and validation data (Xval,Yval) only once as in Algorithm 1. As K = 1, we do

not write the superscript i here. The final score vector Π̂ in Algorithm 2 is then

Π̂= 1

|Λ|
∑
λ∈Λ

I (pλ < 0.05)`val(aλ)ãλ ∈RD . (3.3)

This score vector is the weighted average, over different regularisation parameters λ ∈Λ, of

the normalised ARD weight vector ãλ ∈RD weighted by the objective value `val(aλ), such that

the P-value pλ is less than 0.05.

As discussed in Section 3.4.1, a large P-value suggests that the selected variables Ŝλ contain

many redundant variables. Therefore, the indicator function I (pλ < 0.05), which becomes 0

if pλ ≥ 0.05, effectively excludes such λ leading to the selection of redundant variables from

the score vector Eq. (3.3). In the score vector Eq. (3.3), a higher contribution is made by the

normalised ARD weights ãλ ∈RD with a higher objective value `val(aλ).

For example, suppose that D = 5,Λ= {0.01,0.1,1.0}, and

ã0.01 = (0.9,0.8,1.0,0.7,0.6), `val(a0.01) = 12.8, p0.01 = 0.4

ã0.1 = (0.5,0.4,1.0,0.02,0.01), `val(a0.1) = 7.4, p0.1 = 0.01

ã1.0 = (0.2,0.1,1.0,0.0,0.0), `val(a1.0) = 3.1, p1.0 = 0.01.

Then, even if the objective value `val(a0.01) = 12.8 for λ= 0.01 is the highest, the normalised

ARD weights ã0.01 for λ= 0.01 do not contribute to the score vector Eq. (3.3), because the P-

value p0.01 = 0.4 is higher than the threshold 0.05. As p0.1 < 0.05 and p1.0 < 0.05, the normalised

ARD weight vectors ã0.1 and ã1.0 contribute to the score vector Eq. (3.3). Because the objective

value `val(a0.1) = 7.4 for λ= 0.1 is higher than `val(a1.0) = 3.1 for λ= 1.0, the normalised ARD

weights ã0.1 for λ= 0.1 contribute to the score vector more significantly than the normalised

ARD weights ã1.0 for λ= 1.0. The score vector then becomes Π̂= (4.32,3.27,10.5,0.148,0.074).

Applying the procedure in Section 3.3.1 to Π̂, the first three variables would be selected:

Ŝ = {1,2,3}.
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A critical difference between the algorithms is that Algorithm 1 selects one “best” regularisation

parameter λ maximising the objective value `val(aλ) among candidates with small P-values,

while Algorithm 2 aggregates the scores (as given by the normalised ARD weights) from

different regularisation parameters (with small P-values) by weighting with the objective

values. In the above example, Algorithm 1 would only use the ARD weights aλ with λ= 0.1,

while Algorithm 2 uses the (normalised) ARD weights ãλ for λ = 0.1 and λ = 1.0 with their

associated objective values. Therefore, Algorithm 2 exploits more information and thus could

perform more stable variable selection. Another difference is that Algorithm 2 uses cross-

validation, which can effectively improve the stability of the score vector when the sample

sizes n,m are small. On the other hand, Algorithm 1 is faster to compute and thus more

advantageous for large sample sizes.

Algorithm 2 Cross Validation based Aggregation

Input: Λ: a set of candidate regularisation parameters. X = {X 1, . . . , X n} ⊂ RD and Y =
{Y 1, ...,Y m} ⊂ RD : data. K : the number of cross-validation splits. ρtrain ∈ (0,1): training-
validation splitting ratio (default value: 0.5).

Output: Ŝ ⊂ {1, . . . ,D}: selected variables.

1: for all λ ∈Λ do
2: for all i ∈ {1, ...,K } do
3: Randomly split (X,Y) into (Xi

train,Yi
train) and (Xi

val,Yi
val) by the ratio ρtrain : 1−ρtrain.

4: Obtain ARD weights ai
λ
∈RD by optimising Eq. (3.2) using (Xi

train,Yi
train) and λ.

5: Compute `val(ai
λ

) > 0 by evaluating Eq. (2.4) on (Xi
val,Yi

val).

6: Select variables Ŝi
λ
⊂ {1, . . . ,D} using ai

λ
as in Section 3.3.1.

7: Compute P-value 0 ≤ p i
λ
≤ 1 by performing a permutation two-sample test on

(Xval[:, Ŝi
λ

],Yval[:, Ŝi
λ

]).

8: Compute ãi
λ

:= ai
λ

/
(
maxd∈{1,...,D} ai

λ,d

)
∈RD

9: end for
10: Compute Π̂λ := 1

K

∑K
i=1 I (p i

λ
< 0.05)`val(ai

λ
)ãi

λ
∈RD .

11: end for
12: Compute Π̂ := 1

|Λ|
∑
λ∈Λ Π̂λ ∈RD .

13: Select variables Ŝ ⊂ {1, . . . ,D} using Π̂ as in Section 3.3.1.

3.5 Empirical Assessment and Demonstration

This section describes empirical assessments of the proposed methods.

Section 3.5.1 explains common settings for different experiments. Section 3.5.2 describes

experiments with synthetic datasets. Section 3.5.3 reports experiments using data generated

from a traffic simulator, and Section 3.5.4 describes demonstration of the variable selection
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for the image data.

3.5.1 Common Settings

We compare the proposed Algorithms 1 and 2 with three baseline methods. The first baseline

is the approach by Sutherland et al. (2017, Section 5), which we call here mmd-baseline. It op-

timises the ARD weights by maximising the objective function Eq. (2.4) (or minimising Eq. (3.2)

with λ= 0) and performs variable selection using the optimised ARD weights as in Section

3.3.1. The second baseline is the approach by Lim et al. (2020), referred to as mskernel-star;

see Section 3.1 for its explanation. We use the implementation by the authors.5 This method

requires the number of selected variables as a hyper-parameter; we set it to the number of

ground-truth variables. The third baseline uses the L1-regularised logistic regression, and we

call it regression-baseline. This method performs a classifier TST using L1-regularised lin-

ear logistic regression.6 The learned coefficients of the regression model are used for variable

selection as in Section 3.3.1. We tune this method’s regularisation parameter by grid search of

its inverse from the range [−4,4] by performing 5-fold cross-validation.

We refer MMD Model Selection (Algorithms 1) and MMD CV Aggregation (Algorithms 2) as

model-selection and CV-aggregation, respectively. In addition to these methods, we re-

port the results for mmd-tuning-best-F1, which optimises the regularised objective Eq. (3.2)

using the regularisation parameter tuned to maximise the F score (introduced below). In

practice, this method cannot be implemented because the F score is unavailable as it re-

quires knowing the ground-truth variables; we show its results to provide the best possible

performance of Algorithm 1.

We use the Gaussian ARD kernel Eq. (2.3) for the kernel-based approaches. We set the length-

scale parameters γ1, . . . ,γD by the variable-wise median heuristic described in Appendix E.

We use the Adam optimiser to optimise Eq. (3.2) for the ARD weights. For its learning rate, we

use the ReduceLROnPlateau7 learning rate scheduler of PyTorch, which starts from 0.01 and

adaptively reduces the learning rate based on the changes in objective values. The initial value

for each ARD weight is set to 1.

The early stopper convergence based stopper is configured as described in Appendix G.18.

we set the maximum number of epochs to 99,999.

5https://github.com/jenninglim/multiscale-features In mskernel-star, “star” indicates that the number of
selected variables is known.

6We use the code from https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html .

7https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
8We did not use variable selection based stopper in assessments of this section since convergence

based stopper sufficiently works.
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3.5 Empirical Assessment and Demonstration

For Algorithms 1 and 2, we obtain candidateΛ regularisation parameters by the heuristic-
lambda-range described in Section D.1. For Algorithm 1, we set the number of cross-

validation splits to K = 10. To compute the p-values using the sliced Wasserstein distance for

Algorithms 1 and 2; We use the POT Python package (Flamary et al., 2021).

3.5.2 Synthetic Data Experiments

We report experiments on synthetically generated datasets where the ground-truth variables

are available for evaluation. Various assessments are conducted to evaluate in Appendix I.

Below, letN(µ,Σ) be the D-dimensional Gaussian distribution with mean vectorµ= (µ1, . . . ,µD )> ∈
RD and covariance matrix Σ ∈RD×D .

Data Generation Processes and Evaluation Criteria

We generate datasets X = {X 1, . . . , X n} i .i .d .∼ P and Y = {Y 1, . . . ,Y n} i .i .d .∼ Q as i.i.d. samples from

probability distributions P and Q on RD , where n = 200 and D = 20. Another assessment in

case of higher D is found in Section I.3. We explain below how to define these probability

distributions P and Q.

Let P = N (0D , ID ), where 0D := (0, . . . ,0)> ∈ RD and ID ∈ RD×D is the identity matrix. We

define Q as follows. Let S ⊂ {1, . . . ,D} be a set of ground-truth variables with the cardinality

|S| = bρ×Dc, where ρ ∈ (0,1). Here, we set ρ = 0.1, so |S| = 2 (see Appendix I.1 for experiments

with ρ = 0.8). We define QS as a marginal distribution on R|S| such that QS 6= PS , where

PS = N (0|S|, I|S|) is the marginal distribution of P on S. Then we define Q :=QS ⊗P{1,...,D}\S ,

where P{1,...,D}\S = N (0D−|S|, ID−|S|) is the marginal distribution of P on {1, . . . ,D}\S. More

specifically, we consider the following five different ways of defining QS (and thus Q):

1. Shifted means: QS =N (0.5|S|, I|S|), where 0.5|S| = (0.5, . . . ,0.5)|S| ∈R|S|.

2. Wider variances: QS =N (0|S|,1.5I|S|).

3. Narrower variances: QS =N (0|S|,0.5I|S|).

4. Laplace distribution: QS =L (0|S|, I|S|) is the Laplace distribution on R|S| with the same

mean 0|S| and covariance matrix I|S|.

5. Correlated Gaussian: the random vector (y1, . . . , y|S|) ∼QS is defined as follows. Gener-

ate y1 ∼N (0,1) and set y2 = ·· · = y|S| = y1.

We also consider the following setting corresponding to that discussed in Sections C and 3.3.
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6. Redundant Dirac: PS = N (0|S|, I|S|), QS = N (0.5|S|, I|S|) and P{1,...,D}\S = Q{1,...,D}\S =
δ0D−|S| , where δ0D−|S| is the Dirac distribution at 0D−|S| = (0, . . . ,0)> ∈RD−|S|.

For each of these settings, we generate datasets X = {X 1, . . . , X 200} i .i .d .∼ P = PS ⊗P{1,...,D}\S and

Y = {Y 1, . . . ,Y 200} i .i .d .∼ Q = QS ⊗P{1,...,D}\S , run each method to select variables Ŝ ⊂ {1, . . . ,D},

and evaluate the Recall (Re), Precision (Pr) and the F score w.r.t. the ground-truth variables

S ⊂ {1, . . . ,D}. These evaluation criteria are defined as

Pr = |Ŝ ∩S|
|Ŝ| , Re = |Ŝ ∩S|

|S| , F = 2×Pr×Re

Pr+Re
(3.4)

The precision is the ratio of the true positives among the selected variables, the recall is the

ratio of the true positives among the ground-truth variables, and the F score is their harmonic

mean; higher values indicate better variable selection performance. We repeat the above

procedure 10 times independently, and compute averages and standard deviations of the

criteria.

Results

Figure 3.3 describes the results. For 1) Shifted means, 2) Wider variances, 3) Narrower variances

and 4) Laplace distribution, the three baseline methods (regression-baseline, mskernel-
star and mmd-baseline) consistently yield low F scores, indicating the difficulty of variable

selection in these settings where the differences between P and Q are subtle. These low F

scores are due to many false positives, as evidenced by the low precisions and high recalls.

For 5) Correlated Gaussian, mskernel-star fails to detect any correct variables, resulting in

zero precision and zero recall. This is because mskernel-star only examines the differences

between univariate marginal distributions (i.e., Pd v.s. Qd for each d = 1. . . ,D); however, the

univariate marginals distributions for 5) are all the same; the differences appear only in the

correlation structures of P and Q, which cannot be detected by mskernel-star.

For 6) Redundant Dirac, mmd-baseline exhibits a significant drop in recall compared with

the other settings. This is because in 6) the regularisation is necessary to eliminate the ARD

weights of redundant variables; Figure 3.1 shows a visualisation of the issue.

Algorithms 1 and 2 (model-selection and CV-aggregation) yield higher F scores than the

three baselines for most settings, indicating that the proposed methods address the above

challenges. CV-aggregation performs better than or comparably with model-selection.

Notably, CV-aggregation even outperforms mmd-tuning-best-f1 for some settings. Recall

that mmd-tuning-best-f1 is not implementable in practice and is meant to provide the best

possible F score of Algorithm 1.
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Figure 3.3: Results of the synthetic data experiments in Section 3.5.2. Top, middle and bottom
plots show the F score, precision and recall, respectively. The groups correspond to the six
settings. Each bar reports mean and standard deviation over 10 experiment executions.

Figure 3.4 describes how the F score of each method changes as the sample size n increases for

the 4) Laplace distribution setting. The F scores of model-selection and CV-aggregation
increase with higher sample size, suggesting that the methods identify ground-truth variables

with subtle distributional changes with large enough samples. On the other hand, the F scores

of the baseline methods do not improve for larger sample sizes and they are significantly lower

than model-selection and CV-aggregation. CV-aggregation achieves a high F score

of 0.87 with sample size 600, while model-selection requires sample size 1200 to reach a

similar F score. This suggests that CV-aggregation makes a more effective use of data than

model-selection as remarked in Section 3.4.2.

3.5.3 Demonstration: Variable Selection for Traffic Simulation Model Validation

We demonstrate how the proposed methods can be applied to exploratory data analysis. As an

illustrative example, suppose we are interested in analysing datasets obtained from a city-scale
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Figure 3.4: F scores for different sample sizes in the Laplace distribution setting in Section
3.5.2. The horizontal axis indicates sample size n. For each sample size and each method, the
confidence interval shows the standard deviation of the F scores over 10 experiments.

traffic system. The form of data is a matrix X ∈ RDsensor×Dtime , where Dsensor is the number of

sensors located in the road network and Dtime is the number of time intervals. The (d , t)-th

entry Xd ,t of X represents the number of vehicles detected by the d-th sensor during the

t-th time interval. For example, in our experiments below, we have Dsensor = 64 sensors and

Dtime = 12 time intervals, where each time interval is for 5 minutes; thus, one matrix X records

the traffic flows observed by the 64 sensors for the duration of 60 = 12×5 minutes.

Suppose now that we have two sets of such data matrices X = {X 1, . . . , X n} ⊂RDsensor×Dtime and

Y = {Y 1, . . . ,Y m} ⊂RDsensor×Dtime from two different settings. For example, one dataset X may be

generated from a traffic simulator modelling the rush hours (8 pm - 9 pm) of the city, and the

other dataset Y may consist of real observations from the city’s rush hours. By analysing how

the two datasets X and Y differ, one can understand which aspects the simulator fails to model

the city’s real traffic system; such insights can be used for improving the simulator.

We demonstrate how our CV-aggregation (Algorithm 2) can be used to analyse such datasets.

To this end, we treat each data matrix X ∈ RDsensor×Dtime as a D = Dsensor ×Dtime-dimensional

vector. Each variable d ∈ {1, . . . ,D} corresponds to one specific pair of a sensor and a time

interval. Therefore, X = {X 1, . . . , X n} and Y = {Y 1, . . . ,Y m} can be regarded as two sets of D-

dimensional vectors, and CV-aggregation can be used for selecting variables (= sensor-time

pairs) where traffic flows in the two datasets differ significantly.

Experiment Setup

We briefly describe the data generation process. For details, see Appendix J. We generate

both datasets X and Y from a microscopic stochastic traffic simulator9 but from two different

scenarios. We define a grid-like road network consisting of 8 intersections and Dsensor = 64

9We use the SUMO simulator: https://www.eclipse.org/sumo/
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sensors, and define one scenario where vehicles travel to their destinations for the duration of

60 minutes; we call it scenario P . We define another scenario, which we call scenario Q, as a

perturbed version of scenario P where two specific roads are blocked for the first 40 minutes.

We define Dtime = 12 time intervals, each 5 minutes. As mentioned, one simulation yields

a matrix of the form X ∈RDsensor×Dtime , where the (d , t)-th element Xd ,t of the matrix X is the

number of vehicles detected by the d-th sensor during the t-th time interval (d = 1, . . . ,Dsensor

and t = 1, . . . ,Dtime). We generate X = {X 1, . . . , X n} ⊂ RDsensor×Dtime from scenario P with n

random seeds, and Y = {Y 1, . . . ,Y n} ⊂RDsensor×Dtime from scenario Q with n random seeds, with

n = 400.

We use CV-aggregation with the same configuration as Section 3.5.1 with one modification

on the choice of the length-scale parameters γ1, . . . ,γD with D = Dsensor×Dtime. A preliminary

analysis showed that the variable-wise median heuristic in Section E yields zeros for some

of γ1, . . . ,γD in this setting (which is problematic, as the length-scales should be positive by

definition). The reason is each data matrix in the datasets X and Y contain many entries whose

values are zero; these entries are sensor-time pairs in which no vehicle was detected. We

therefore use the variable-wise mean instead of median for setting γ1, . . . ,γD here.

Analysis Demonstration with CV-aggregation (Algorithm 2)

Figure 3.5: The right bottom heat map describes the score matrix Π̂ ∈ RDsensor×Dtime , which
is normalised so that the highest value is 1. The vertical axis indexes Dsensor = 64 sensors,
and the horizontal axis indexes the Dtime = 12 time intervals. The sensor-time pair in red
has the highest score, and the sensor-time pair in blue has the lowest score among the se-
lected variables. For each sensor-time pair, the two histograms represent the empirical dis-
tributions of the vehicle counts in the datasets X = {X 1, . . . , X 400} ⊂ RDsensor×Dtime (left) and
Y = {Y 1, . . . ,Y 400} ⊂RDsensor×Dtime (right) at this sensor-time pair. Note that the horizontal axis
of each histogram is the number of vehicles observed in the time-interval of 5 minutes (= 300
seconds) per second; thus, for example, the value 0.02 indicates that the 0.02×300 = 6 vehicles
were observed in the time interval.

Without any knowledge about the fact that two roads are blocked in the scenario Q dataset
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Y, we apply CV-aggregation to the two datasets X and Y and see whether it can identify

sensor-time pairs where the traffic flows are affected by this road blocking (the results of other

methods are in the next section). Note, however, that it is not straightforward to define the

“ground truth” for this experiment, as the blocking of the roads would affect not only the traffic

flows of the blocked roads during the 40 minutes of the road blocking, but also the traffic flows

of the surrounding roads and subsequent periods. Therefore, we demonstrate explanatory

data analysis using the proposed method.

As a result of applying CV-aggregation, we obtained 22 variables (= sensor-time pairs)

selected from D = 64×12 = 768 variables, together with the score matrix Π ∈RDsensor×Dtime in

Algorithm 2. Figure 3.5 describes Π̂ as a heat map, along with the sensor-time pairs with

the highest (highlighted in red) and lowest scores (highlighted in blue) among the selected

variables. The two histograms for each sensor-time pair represent the empirical distributions

of the 400 vehicle counts in the two datasets X = {X 1, . . . , X 400} and Y = {Y 1, . . . ,Y 400} at this

sensor-time pair.

At the sensor-time pair with the highest score (red), the traffic patterns in the two datasets

differ significantly. Indeed, the left histogram indicates active traffic flows in the dataset X,

while the right histogram shows no traffic flow in the dataset Y at this sensor-time pair. In

an actual explanatory analysis, one could hypothesise that there is a road blocking around

this sensor and investigate the neighbouring sensors and time periods. The sensor-time pair

associated with the lowest score among the selected variables (blue) also provides insights into

the difference between the two datasets X and Y. While the two histograms look similar, there

are subtle differences in the probability masses in the lower and upper limits of the histograms.

This time interval is around the end of the road blocking, and thus this sensor-time pair

provides a hint about the end time and final effects of the unknown incident (= road blocking)

in the scenario Q.

Results of Other Approaches

We perform the same experiments using regression-baseline, mmd-baseline and model-
selection. Figure 3.6 visualises the score matrix obtained from each approach. The result of

regression-baseline indicates an apparent failure, as it produces false positives and does

not effectively identify relevant variables. mmd-baseline selects 18 variables, fewer than the

22 variables selected by CV-aggregation. On the other hand, model-selection selects 40

variables, which surpasses the other approaches.
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(a) Optimised ARD weights obtained without regu-
larisation (mmd-baseline).

(b) Coefficients of the L1-penalised linear regres-
sion (regression-baseline).

(c) Optimised ARD weights obtained with Algo-
rithm 1 (model-selection).

(d) The number of variables selected by each
method.

Figure 3.6: Score matrices obtained by (a) mmd-baseline, (b) regression-baseline and (c)
model-selection, represented as heatmaps, along with (d) the number of variables selected
by each method.

3.5.4 Demonstration: Image Comparison Analysis

We demonstrate the application of the proposed approaches in analysing image datasets. We

use a subset of the AFHQ dataset (Choi et al., 2020) consisting of high-resolution images of

cats’ and dogs’ faces, as described in Figure 3.7. The aim here is to select variables (= pixel

coordinates) that indicate differences between cats’ and dogs’ faces.

As preprocessing, we downscale the resolution of each image data to 64×64 pixels, resulting in

a total of 4,096 dimensions. We convert each pixel’s RGB values into a greyscale value ranging

from 0 to 255. For our experiments, we randomly selected 1,000 images from the AFHQ dataset

containing 5,000 images. Here, we optimise the ARD weights using the Adam optimiser using

100 batches in each iteration. See Section 3.5.1 for other details.

Figure 3.8 describes the score matrices obtained with mmd-baseline, model-selection
and CV-aggregation. As CV-aggregation performs the best in our other assessments, we
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(a) flickr_cat_000060.jpg (b) pixabay_cat_000588.jpg

(c) flickr_dog_000039.jpg (d) pixabay_dog_000969.jpg

Figure 3.7: Examples of cats’ and dogs’ face images from the AFHQ dataset. The caption of
each image indicates the file name in the dataset.

examine the variables selected by CV-aggregation. Figure 3.9 shows some cats’ and dogs’

face images on which the selected variables (pixel positions) are highlighted as yellow dots.

By examining Figure 3.9, we can observe that the selected variables capture discrepancies

between cats’ and dogs’ faces in mainly four areas: 1) the shape of the left eye, 2) the shape

of the right eye, 3) the shape from the nose to the chin, and 4) the position of the forehead.

Regarding the eyes’ shapes, cats’ eyes are typically wide and oval-shaped, while dogs’ eyes tend

to be elongated ellipse-shaped. In addition to the shapes/positions of parts of a face, colour

depths (i.e., greyscale values from 0 to 255) may also contribute to the discrepancies between

cats’ and dogs’ faces. For example, cats’ eyes tend to be transparent (resembling glass), while

dog’s eyes are darker. Differences between cats and dogs in the shape from the nose to the

chin are also noticeable. A cat’s nose is small and pointy, and its chin shapes a gentle curve,

while a dog has a larger and rounded black-blob-shaped nose and a more acute chin.

For further analysis, we compare the histograms of greyscale values in the datasets at specific

pixel positions: the pixel at the 27th row and the 21st column (located on the upper left of the

left eye) and at the pixel at the 47th row and the 36th column (located on the right side of the

nose). These pixels have the highest and second scores given by CV-aggregation. Figure 3.10

shows the histograms at these pixels. Examining the histogram of the pixel at the 27th row

and the 21st column, we observe that dog images have higher frequencies in low greyscale

values than cat images. Since low greyscale values indicate darker colours, this may indicate
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(a) Optimised ARD weights obtained by mmd-
baseline

(b) Optimised ARD weights obtained by model-
selection

(c) The score matrix obtained from CV-
aggregation

Figure 3.8: Score matrices obtained with (a) mmd-baseline, (b) model-selection and (c)
CV-aggregation.

the presence of dark iris colours in dogs’ eyes. Similarly, for the pixel at the 47th row and the

36th column, dog images have higher frequencies in low greyscale values (dark colours). This

pixel is often associated with a part of the nose, implying differences in the nose shapes and

colours between cats and dogs.
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Figure 3.9: Example images of cats’ and dogs’ faces after preprocessing (down-scaled to 64×64
pixels, with colours transformed to greyscale values), corresponding to Figure 3.7, where the
pixel positions (=variables) selected by CV-aggregation are highlighted in yellow.

Figure 3.10: Histograms of greyscale values for the pixel at the 27th row and the 21st column
(left two histograms) and those at the 47th row and 36th row (right two histograms).
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Chapter 4

Variable Selection on

High-Dimensional Time-Series Data

In this chapter, we introduce an extension of the proposed variable selection to high-dimensional

time-series data. We first introduce related works in Section 4.1. Section 4.2 describes the

proposed framework for the variable selection. We note that the proposed framework is

generic, thus a choice of variable selection algorithm is left to users. Empirical assessments

are in Section 4.4, and evaluations are too. Demonstrations are in Section 4.5 and Section 4.6.

We are interested in comparing a single (or a few of) pair(s) of time-series data, where each

time step is high dimension. This comparison case is ubiquitous in handling time-series data;

however, a common example case is in model validation of spatio-temporal models. The main

interest is in identifying differences in the spatio-temporal model outcome compared with the

counterpart (either the real world data or another model).

Since each time step consists of high-dimensional data and such numerous time steps exist

in series; therefore, manual comparison and analysis are challenging. Manual comparison

using graphical representation (e.g. animation) is probably an analysis approach (Balci, 1994).

However, this approach is subjective analysis and requires a lot of time and effort.

A solution to this problem is variable selection by splitting a set of time steps into a certain

number of buckets and selecting variables in each bucket, that are significantly different

between the two time-series data.

There are two differences from the previous chapter, Chapter 3. First, this chapter focuses

on a pair of time-series data, while Chapter 3 can handle both time-series data (e.g. the

demonstration in Section 3.5.3) or others. Second, Chapter 3 assumes that a certain number

of samples are available and that the comparison considers several possibilities (e.g. sampling
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from a model with various random seeds). On the other hand, in this chapter, we target a

few specific conditions (e.g. a few random seeds) and compare the time-series data precisely

under the conditions. The question is: “Which variables are different in specific time periods”.

The proposed method in this chapter is a more specific and detailed comparison than the

previous section. The proposed method in this chapter can answer the question, by showing

the variables at a certain time.

The proposed method in this chapter has a second effect regarding the available sample

size. In certain cases, it is impossible or difficult to prepare enough samples for comparison.

Probably, a model, especially a simulation model, requires a long time to execute, and it is

difficult to prepare a sufficient number of samples. For example, Chen et al. (2017) report

that a climate simulation model which requires ten hours in a single machine of 32 CPUs

needs even so four hours with a distributed computer cluster equipped with 160 CPUs1. Other

examples of simulation in long execution time are also in (Behrens and Dias, 2015; Bharti et al.,

2023; Zych et al., 2022; Najdek et al., 2021; Vijitpornkul and Marurngsith, 2015). The other case

of the limited sample size is where the real world data is limited, such as the case of natural

disasters. In both cases, the available pair is a few; therefore, the proposed method in this

chapter is effective.

4.1 Related Work

We briefly introduce related works that focus on the variable selection task for time-series data

and TST for time-series data. To our knowledge, quite a few studies focus on the intersection

of TST and variable selection for high-dimensional time-series. First, we introduce a related

work in the intersection. TST for time-series and variable selection for time-series are fields

with long histories of research; hence, we review remarkable studies separately.

4.1.1 Two-Sample Testing and Variable Selection for High-Dimensional Temporal

Data

Cortés et al. (2020) proposed TST for grid meshed time-series data (ex. grid mesh of the earth

temperature) along with detecting grids that contribute to rejecting the null hypothesis H0.

The number of grids corresponds to the dimensionality D in our work. Combining all tests of

the grids in a multiple-testing framework, they propose a method to control the family-wise

error rate and identify which grids are significant in rejecting H0. These processes can be

regarded as a variable selection task, even if the authors do not explicitly call it so. A major

1The simulation model will become more lightweight in the future; therefore, the computational costs will
be reduced. However, society and the scientific community would hope for more accurate and more realistic
simulation models, which require more computational power. Thus, we assume that the computational costs will
remain an issue.
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difference from our work is in the variable treatment: Cortés et al. (2020) treat the variables as

a set of independent uni-variables time-series. Since the test is uni-variate, it may not handle

inter-dependent variables, and the variable detection result will be redundant. On the other

hand, we treat it as a D dimensional vector over time steps and cope with the inter-dependent

variable structure. Another major difference is in computational costs. The approach executes

permutation tests per grid, it requires a lot of tests as the dimension (grid) increases, whereas

our proposal requires a smaller number of tests. Despite the drawback in handling variables,

the multiple-testing approach could serve as a powerful analytical tool when integrated with

the chosen variables outlined in our proposal. By reducing the number of permutation tests,

we can mitigate the computational cost drawback of this work.

4.1.2 Two-Sample Testing for Time-series Data

TST for Functional Data Analysis (FDA) regards an observed time-series as a function. Wynne

and Duncan (2022) proposed solving the FDA TST problem using Maximum Mean Discrepancy

(MMD) constructed on the functional data space. This work regards a sequence of observed

values as a sequence of data points evaluated by a function, constructing a kernel function on

the function space, named Squared-Exponential T kernel (“SE-T kernel”). The SE-T kernel

enables the construction of an MMD on the function space using the SE-T kernel between two

probability distributions on a Hilbert space of functions. A key concept of the SE-T kernel is

that a linear operator “T” on the Hilbert space of the functions maps to a real space. This work

explores various choices of the “T” linear operator, such as functional principle components

or squaring feature expansion. They demonstrate the effectiveness of the proposed method

with a small number of pairs of observations (samples), such as five pairs. Thus, this method

may be suitable for testing pairs of time-series data, although it has yet to undergo empirical

assessments.

Change-point detection is a task designed to detect specific points where the distribution

of time-series data changes, i.e. detecting shifts in signal patterns. Sinn et al. (2012) handle

the change point detection problem using MMD that compares two probability distribu-

tions before and after a certain time step t . For representing time-series as the empirical

distributions, this work constructs the ordinal pattern describing increasing or decreasing

observed values. For instance, if values are monotonically increasing over time intervals

(t −2, t −1, t ), the time-series is represented by the ordinary pattern of "increase at [t −2, t −1]",

"increase at [t−1, t ]". This method counts frequencies of these ordinal patterns and constructs

empirical distributions before and after the study point t . Scharwächter and Müller (2020)

handle an event detection task, a variant of the change point detection, where the given data

consists of a time-series paired with an event sequence. The whether these events goal is to

determine whether the event influences the time-series or not. Thus, the null hypothesis is

H0 : P (X t |E<t ) = P (X t ), where X t is a value at the time t and E<t are all events until the time t ,
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meaning there is no information shared between the time-series and the events of interest.

For conducting this TST, Scharwächter and Müller (2020) proposed an algorithm consisting

of multiple TST. Having a hyperparameter K ∈ N for adjusting a range of time steps after

event occurrences, the algorithm executes a set of TST for all pairs of k,k ′ ∈ {1, ...,K },k 6= k ′.
For representing the time-series data, this work composes two samples by collecting a set of

time steps at k step after all occurred events and the same procedure for k ′. Each TST does

not represent time-series structure, however, the algorithm can handle the time-series by

multiple testing over a pair of k,k ′ ranges. Both Sinn et al. (2012); Scharwächter and Müller

(2020) employ unique sample representation instead of the given time-series data. Given that

our proposal does not consider temporal relations directly, these representations might offer

valuable alternatives.

4.1.3 Variable selection for Time-series Data

A common approach in time-series forecasting involves predicting the state at the next time

step, hence features variable selection for predicting the next time step. For example, a

random forest model predicts the next time step by squeezing out effective variables for the

prediction (Tyralis and Papacharalampous, 2017). Time-series data are well-studied in the

field of functional data analysis (FDA). Aneiros et al. (2022) reviewed variable selection and

FDA, mostly focusing on regression problems. The Lasso regularisation (Tibshirani, 1996) is a

well-known technique for variable selection in regression models, which can also be applied

in nonlinear regression models within FDA, using techniques like B-spline expansions to

approximate the non-linear functions. However, these variable selection methods do not

guarantee the rejection of the null hypothesis as TST.

4.2 Proposed Framework

4.2.1 Data and Purpose

Suppose we have two D-by-T matrices X ∈ RD×T and Y ∈ RD×T , each representing a time-

series of D-dimensional vectors of length T :

X = (x1, x2, . . . , xT ) ∈RD×T , where xt = (xt ,1, . . . , xt ,D )> ∈RD (t = 1, . . . ,T ),

Y = (y1, y2, . . . , yT ) ∈RD×T , where yt = (yt ,1, . . . , yt ,D )> ∈RD (t = 1, . . . ,T ).

For example, X may be generated from a traffic simulator, and Y from the same simulator

but under a different parameter setting. The comparison of X and Y amounts to analysing

the effects of changing the parameter setting. Each element xd ,t (or yd ,t ) may represent the

observed data, such as traffic flow, from the d-th sensor (where d = 1, . . . ,D) during the t-th
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Figure 4.1: Illustration of the Proposed Framework in Chapter 4

time interval (where t = 1, . . . ,T ) in the simulated traffic system.

We are interested in how the two time-series X and Y differ. In particular, the question is; “at

which times t = 1, . . . ,T and for which variables (dimensions) d = 1, . . . ,T , do X and Y differ

significantly?” In the traffic simulation example, such times and variables are the times and

locations in the traffic system where the traffic flows differ due to the change of the parameter

setting. We will propose a framework for identifying such differing times and variables.

4.2.2 Procedure

We describe here the proposed procedure, which is illustrated in Figure 4.1 and summarised

in Algorithm 3.

1. Time splitting. The main idea is to split the entire time interval [1,T ] := (1,2, . . .T ) into B

disjoint subintervals for some B < T :

[0,T ] = [t0 +1, t1]∪ [t1 +1, t2]∪·· ·∪ [tB−1 +1, tB ], (4.1)

where 0 =: t0 < t1 < t2 < ·· · < tB−1 < tB := T.
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These are the time points where we split the entire time interval [1,T ]. Note that here we use

the notation [tb−1+1, tb] := (tb−1+1, tb−1+2, . . . , tb) for b = 1, . . . ,B . For example, one may split

[1,T ] into equal-size intervals: If T = Bm for some m ∈N, one sets

t1 = m, t2 = 2m, . . . , tB−1 = (B −1)m,

so that each interval [tb−1 +1, tb] consists of m time points. We use this uniform splitting in

our experiments.

The idea is that we split each of X and Y according to the subintervals Eq. (4.1), and make a

comparison on each subinterval. That is, we first split X into B sub time-series X1, . . . , XB and

Y into B sub time-series Y1, . . . ,YB :

X = (X1, . . . , XB ), where Xb := (xtb−1+1, . . . , xtb ) ∈RD×(tb−tb−1) (b = 1, . . . ,B),

Y = (Y1, . . . ,YB ), where Yb := (ytb−1+1, . . . , ytb ) ∈RD×(tb−tb−1) (b = 1, . . . ,B).

For the b-th subinterval (b = 1, . . . ,B), the sub time-series Xb is a set of D-dimensional

vectors xtb−1+1, . . . , xtb ∈ RD , and the sub time-series Yb is a set of D-dimensional vectors

ytb−1+1, . . . , ytb ∈RD .

2. Two-sample variable selection. For each subinterval b = 1, . . . ,B , we now perform two-

sample variable selection and TST. Let ρtrain ∈ (0,1) be a constant. We randomly split each of

Xb = (xtb−1+1, . . . , xtb ) and Yb = (ytb−1+1, . . . , ytb ) into “training” and “test” subsets in the ratio

ρtrain : 1−ρtrain; denote the resulting subsets by

X (tr)
b ∈RD×(tb−tb−1)ρtrain , X (te)

b ∈RD×(tb−tb−1)(1−ρtrain),

Y (tr)
b ∈RD×(tb−tb−1)ρtrain , Y (te)

b ∈RD×(tb−tb−1)(1−ρtrain).

Here, we assume (tb − tb−1)ρtrain and (tb − tb−1)(1−ρtrain) are integers for simplicity.

We then perform two-sample variable selection on X (tr)
b and Y (tr)

b to select a subset of variables

(or dimensions/features)

Ŝb ⊂ {1,2, . . . ,D}

on which the two datasets X (tr)
b and Y (tr)

b differ significantly. Here, as we propose a generic

framework, the algorithm choice is left to the user. The user can choose an algorithm that is

most suitable for their purpose (in terms of, e.g., available computational resources, familiarity

with the algorithm, etc.).

Lastly, for each b = 1, . . . ,B , one performs a two-sample permutation test based on the datasets
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X (te)
b and Y (te)

b using only the selected variables Ŝb to obtain a p-value,

0 ≤ pb ≤ 1.

Here, the null hypothesis is H0 : Pb = Qb , where Pb and Qb are the stationary distributions

of Xb = (xtb−1+1, . . . , xtb ) and Yb = (ytb−1+1, . . . , ytb ), respectively. If the p-value is small (e.g.,

pb ≤ 0.052), there is an indication that these distributions are different, suggesting that there is

a difference in the two time-series on the b-th interval. As for variable selection, the concrete

algorithm depends on one’s choice: one can use TST based on, e.g., the MMD, the sliced

Wasserstein distance (Bonneel et al., 2014), etc; see Section 4.3 for details.

Remark 1 (Multiple Pairs of Time-Series). While this thesis focuses on the situation where only

one pair of time-series, X ∈ RD×T and Y ∈ RD×T , are available, here we describe one possible

way to extend the proposed framework when there are multiple pairs (X (1),Y (1)), . . . , (X (N ),Y (N ))

of time-series are available, where X (i ) ∈RD×T and Y (i ) ∈RD×T for i = 1, . . . , N with N ∈N.

For each i = 1, . . . , N , we apply Algorithm 3 to the pair (X (i ),Y (i )) to obtain a sequence of se-

lected variables Ŝ(i )
1 , . . . , Ŝ(i )

B , where Ŝ(i )
b ⊂ {1, . . . ,D} for b = 1, . . . ,B. Then, for each subinterval

b = 1, . . . ,B, we aggregate the N sets of selected variables by taking their union, Ŝb =∪N
i=1Ŝ(i )

b ,

or taking their intersection Ŝb =∩N
i=1Ŝ(i )

b . We leave an investigation of such aggregation algo-

rithms for future research.

4.2.3 Example and Discussion

Figure 4.2 shows an example of the time-splitting operation. The top tow figures describe two

given time-series data X = (x1, . . . , xT ) ∈RD×T and Y = (y1, . . . , yT ) ∈RD×T with D = 5 variables

and T = 130 time points. The two variables indicated by the violet and light-blue trajectories

are generated from different stochastic processes for X and Y .

We split each time-series into B = 3 subintervals, with t1 = 50, t2 = 100 and t3 = 130, which are

shown in the bottom two figures. Here, on each subinterval b = 1, . . . ,B , we randomise the

time order of data vectors within Xb = (xtb−1+1, . . . , xtb ) and those within Yb = (ytb−1+1, . . . , ytb ).

This is to illustrate that, by applying two-sample variable selection and TST on Xb and Yb , we

essentially treat data vectors in Xb (and those in Yb) as independent, since we break the time

structure within Xb and that within Yb when applying these approaches.

Let us discuss how the proposed approach would work for this example.

• Regarding the light-blue trajectories, whose underlying stochastic processes are different

for X and Y , the empirical distributions of Xb and Yb for this variable are noticeably

2This is not our suggestion of using p = 0.05 for decision-making. As Wasserstein and Lazar (2016) recommends,
the p-value should not be a supportive criterion of any scientific or business decisions.
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Figure 4.2: An example of time-splitting applied to two time-series data X = (x1, . . . , xT ) ∈RD×T

and Y = (y1, . . . , yT ) ∈ RD×T with D = 5 and T = 130, with t1 = 50, t2 = 100 and t3 = 130 = T .
The top plots show the two-time-series X and Y , where 5 different colours correspond to
the 5 variables (or dimensions). In each plot, the horizontal axis represents time points, and
the vertical axis the values of each variable. The two variables represented by the violet and
light-blue colours follow different stochastic processes for X and Y . The bottom figures show
the results of applying the time-splitting and randomisation in each subinterval.

different for each subinterval b = 1,2,3. Therefore, a two-sample variable selection

would be able to identify this variable as differing for each of b = 1,2,3.

• The violet trajectories, which clearly differ for X and Y , are deliberately constructed

to illustrate an "unfortunate" situation where time-slicing makes the two time-series

indistinguishable. After the time-slicing, the empirical distributions of Xb and Yb for this

variable become very similar (actually, here, we constructed them so that they become

exactly the same) for each interval b = 1,2,3. In this case, the proposed approach would

not be able to detect the difference between the two time-series for this variable.

The issue with the violet trajectories could have been avoided if there were many more time-

splicing points (i.e., B is larger) so that each subinterval was shorter and thus could capture

the difference in the two trajectories. This is demonstrated in the experiments in Section 4.4.

This example suggests that the proposed framework would work well if

1. the time length of each subinterval [tb−1 + 1, tb] is short enough so that the Xb =
(xtb−1+1, . . . , xtb ) and Yb = (ytb−1+1, . . . , ytb ) are (approximately) stationary, while
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Algorithm 3 Proposed Framework
. Input: Two time-series data X := (x1, ...,xT ) ∈ RD×T and Y := (y1, ..., yT ) ∈ RD×T . Time-
splitting points 0 =: t0 < t1 < ·· · < tB−1 < tB := T . Ratio 0 < ρtrain < 1 of training-test splitting
on each subinterval.
. Output: Selected variables Ŝb ⊂ {1,2, . . . ,D} for each b = 1, . . . ,B . P-value pb ∈ [0,1] of TST
for each b = 1, . . . ,B .

1: for all b = 1, . . . ,B do
2: Set Xb = (xtb−1+1, . . . , xtb ) ∈RD×(tb−tb−1) and Yb = (ytb−1+1, . . . , ytb ) ∈RD×(tb−tb−1).
3: Randomly split Xb into X (tr)

b ∈RD×(tb−tb−1)ρtrain and X (te)
b ∈RD×(tb−tb−1)(1−ρtrain).

4: Randomly split Yb into Y (tr)
b ∈RD×(tb−tb−1)ρtrain and Y (te)

b ∈RD×(tb−tb−1)(1−ρtrain).

5: Perform two-sample variable selection on X (tr)
b and Y (tr)

b to obtain Ŝb ⊂ {1,2, . . . ,D}.

6: Perform a permutation TST on X (te)
b and Y (te)

b using the selected variables Ŝb to obtain
a p-value pb ∈ [0,1] for the null hypothesis Pb =Qb .

7: end for

2. the number of sample vectors tb − tb−1 in Xb and Yb is large enough so that the Xb and

Yb are statistically distinguishable.

In point 1, the “time length” means that in the physics sense; recall that tb − tb−1 is the number

of time steps within the subinterval, not the time length. For example, suppose we consider a

traffic simulation from 8 am to 9 am and set the total number of time steps to T = 1,000. Then

the total time length is 3,600 seconds, and the time length of one time step is 3,600/1,000 = 3.6

seconds. If the number of subintervals is B = 4, and the slicing points are t1 = 250, t2 = 500,

t3 = 750 and t4 = 1,000, then the time length of each subinterval is 3,600/4 = 900 seconds, and

the number of time steps within the subinterval is 250.

There is a trade-off between points 1 and 2 above. That is, if we make the time length of

each interval shorter (or longer), then the time steps within one interval become smaller (or

larger). For example, in the above example, if we change the number of subintervals to B = 40,

then the time length of each subinterval is 90 seconds, while the number of time steps within

the subinterval is 25. In this case, the traffic flows within each subinterval would remain

unchanged (and thus can be regarded as stationary), while we only have a small number of

observations, making statistical estimation more challenging.

4.2.4 Practical Settings of the Time-splitting Points

The proposed algorithm requires the time-splitting points to disjoint the given time interval

[1,T ] into B subintervals. Although we set these splitting-points uniformly in our assessments,

one may consider other strategies. In practice, there will be two strategies for setting the

splitting points.
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One strategy is utilising the domain knowledge or pre-observable information. For example, in

the traffic simulation example, one may be aware of time-changing points where the traffic flow

is expected to change significantly. In this case, one can set the splitting points around these

time points. Even when the domain knowledge is not available, one may know tendencies of

the time-changing points by a summary statistic (e.g. the average) of the time-series data.

A more sophisticated strategy is to use a change-point detection algorithm to determine the

splitting points. Sinn et al. (2012); Scharwächter and Müller (2020) proposed a change-point

detection algorithm. The algorithm detects the time points where the distribution of time-

series data changes, i.e. detecting shifts in signal patterns. Once the change-point detection

algorithm tells us the time points where the distribution changes, we can set the splitting

points around these time points.

4.3 Two-Sample Variable Selection Algorithms

The proposed framework in Section 4.2 requires a variable selection algorithm that can identify

variables on which two datasets differ significantly. Since the proposed framework is generic,

the choice of the variable selection algorithm is left to the user. The first choice is the MMD

optimisation based variable selection that we introduce in Chapter 3. For comparison, we

also consider other variable selection algorithms that we try in our experiments. We shortly

describe them.

4.3.1 Variable Selection by Marginal Distribution Comparisons

One approach to two-sample variable selection is based on the comparisons of one-dimensional

marginal distributions. To describe this, let P and Q be probability distributions on RD . For

d = 1, . . . ,D , let Pd and Qd be the marginal distributions of P and Q on the d-th variable. Let

dist(µ,ν) be a distance metric between two probability distributions µ and ν on R, such as the

MMD and the Wasserstein distance (e.g., Villani, 2009). We then define a weight wd for each

variable d = 1, . . . ,D as the distance of each pair of one-dimensional marginal distributions Pd

and Qd :

wd := dist(Pd ,Qd ) (d = 1, . . . ,D). (4.2)

In practice, one needs to estimate these weights using samples x1, . . . , xn
i .i .d .∼ P and y1, . . . , yn

i .i .d .∼
Q, where xi = (xi ,1, . . . , xi ,D )> ∈ RD and yi = (yi ,1, . . . , yi ,D )> ∈ RD for i = 1, . . . ,n. For each

d = 1, . . . ,D, let P̂d := 1
n

∑n
i=1δxd ,i be the empirical distribution of x1,d , . . . , xn,d ∈R, and Q̂d :=

1
n

∑n
i=1δyi ,d be the empirical distribution of y1,d , . . . , yn,d ∈ R, where δz for z ∈ R denotes the

Dirac distribution at z. The P̂d and Q̂d are respectively consistent approximations of Pd and
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Qd . Thus, one can estimate the weights Eq. (4.2) by using P̂d and Q̂d as

ŵd := dist(P̂d ,Q̂d ) (d = 1, . . . ,D).

We use the following distance metrics in our experiments.

1. Wasserstein distance. We compute the Wasserstein-1 distance between P̂d and Q̂d ,

which is identical to the L1 distance between the cumulative distribution functions F̂d

of P̂d and Ĝd of Q̂d :

ŵd :=W1(P̂d ,Q̂d ) =
∫
R

∣∣F̂d (t )−Ĝd (t )
∣∣d t (d = 1, . . . ,D).

We compute it using the implementation of SciPy library (Virtanen et al., 2020). We use

the histogram-based thresholding algorithm in Section 3.3.1 to the weights ŵ1, . . . , ŵD

to select variables Ŝ ⊂ {1, . . . ,D}.

2. Maximum Mean Discrepancy.

We consider the approach of Lim et al. (2020). For each d = 1, . . . ,D, it computes the

MMD between P̂d and Q̂d ,

ŵd := MMDk1 (P̂d ,Q̂d ),

where the kernel k1 on R is the Gaussian kernel whose bandwidth is determined by

the median heuristic in Section E or the IMQ (inverse multi-quadratic) kernel.3 From

ŵ1, . . . , ŵD , it then selects variables Ŝ ⊂ {1, . . . ,D} based on post-selection inference. This

approach requires the number of candidate variables to be selected as a hyperparameter.

To avoid confusion with the MMD-based approach in Chapter 3, we call this method

Mskernel, following the naming of the authors’ code, which we use in our experiments.4

4.4 Assessment

We investigate how the proposed framework in Algorithm 3 works based on synthetically

generated data, for which we know ground-truth variables and time points where changes

occur.

4.4.1 Data Setting

We set D = 5 and T = 1,000. We consider the following two different settings for data genera-

tion.

3More precisely, Lim et al. (2020) use the linear-time MMD estimator of Gretton et al. (2012a, Section 6).
4https://github.com/jenninglim/multiscale-features
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Setting 1. We generate two time-series data X := (x1, . . . , xT ) ∈ RD×T and Y := (y1, . . . , yT ) ∈
RD×T , where xt = (xt ,1, . . . , xt ,D )> ∈RD and yt = (yt ,1, . . . , yt ,D )> ∈RD for t = 1, . . . ,T , as

xt ,d = t/T +εt ,d for d = 1, . . . ,D and t = 1, . . . ,T,

yt ,d =
0.25+ε′t ,d for d = 4 and t = 251, . . . ,500,

t/T +ε′t ,d otherwise,
(4.3)

where εt ,d
i .i .d .∼ N (0,σ2) and ε′t ,d

i .i .d .∼ N (0,σ2) are independence zero-mean Gaussian noises

with variance σ2 = 0.01. We constructed X and Y so that they differ only in the 4-th variable,

from time index t = 250 to 500. This information is not known to each method, and the aim is

to identify them only from X and Y . Figure 4.3 shows one realisation of X and Y .

Setting 2. We generate X = (x1, . . . , xT ) ∈RD×T and Y = (y1, . . . , yT ) ∈RD×T as

xt ,d = t/T +εt ,d for d = 1, . . . ,D and t = 1, . . . ,T,

yt ,d =
0.5− (t −250)/T +ε′t ,d for d = 4 and t = 251, . . . ,500,

t/T +ε′t ,d otherwise,
(4.4)

where εt ,d
i .i .d .∼ N (0,σ2) and ε′t ,d

i .i .d .∼ N (0,σ2) with σ2 = 0.01. See Figure 4.4 for illustration.

Two time-series X and Y differ in the variable d = 4 on the period t = 251, . . . ,500, i.e.,

x251,4, . . . , x500,4 and y251,4, . . . , y500,4, which are the same as the previous setting in Eq. (4.3). The

difference from the previous setting is that we generate y251,4, . . . , y500,4 so that their marginal

distribution becomes the same as x251,4, . . . , x500,4. Therefore, if one of subintervals [tb−1+1, tb]

contains the period [251,500] entirely, then the proposed framework would fail to detect the

change between x251,4, . . . , x500,4 and y251,4, . . . , y500,4.

Time-splitting Points. We use equally-spaced time-split points 0 < t1 < ·· · < tB−1 < tB = T ,

with two options for the number B of the subintervals: B = 10 and B = 2.

Train-Test Ratio and Test Statistic. In Algorithm 3, we set ρtrain = 0.8, and use the Sliced

Wasserstein distance (Bonneel et al., 2014) as a test statistic in the permutation test statistics

for each subinterval.

Evaluation Metrics. To evaluate each variable selection method applied to each subinterval,

we compute Precision = |Ŝ ∩S|/|Ŝ| and Recall = |Ŝ ∩S|/|S|, where S ⊂ {1, . . . ,D} is the set of

ground-truth variables and Ŝ ⊂ {1, . . . ,D} is the set obtained by the variable selection method.
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Figure 4.3: Illustration of two time-series data X ∈ RD×T and Y ∈ RD×T in Eq. (4.3). Each
subfigure shows the trajectories of X and Y in each variable d = 1, . . . ,D , i.e., x1,d , . . . , xT,d and
y1,d , . . . , yT,d . The variable d = 4 from t = 251 to t = 500 is where X and Y differ.

Figure 4.4: Illustration of two time-series data X ∈ RD×T and Y ∈ RD×T in Eq. (4.4). Each
subfigure shows the trajectories of X and Y in each variable d = 1, . . . ,D , i.e., x1,d , . . . , xT,d and
y1,d , . . . , yT,d . The variable d = 4 from t = 251 to t = 500 is where X and Y differ.

4.4.2 Algorithm Configurations

Variable Selection Methods. For variable selection in Algorithm 3 (Line 5), we consider the

following six methods. Three methods are based on MMD-based variable selection described

in Section 3.4: (1) MMD-Selection, (2) MMD-CV-AGG, and (3) MMD-Vanilla, which optimises

Eq. (3.2) without regularisation (the same method as in (Sutherland et al., 2017)). The other

three are those based on marginal distribution comparisons: (4) Wasserstein, which com-

putes the Wasserstein-distances of marginal distributions, (5) Mskernel IMQ, which com-

putes the MMDs of marginal distributions using the IMQ kernel, and (6) Mskernel Gaussian,

which uses the Gaussian kernel. As the Mskernel methods require the number of variables

to be selected as an input, we give the true number of ground-truth variables (which is 1, as

defined above).
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Configurations for MMD based Variable Selection Methods The MMD optimisation prob-

lem is implemented by the Adam optimiser of Pytorch (Paszke et al., 2019). The Adam optimiser

starts the optimisation with the learning rate of 0.01. A learning rate scheduler5 monitors the

objective value and decreases the learning rate by a factor of 0.5 until it reaches to 0.001. This

learning rate scheduler waits for 10 epochs and updates the learning rate if the objective value

does not dramatically change otherwise no updates. Two early stopping criteria are set to halt

the optimisation, otherwise, the optimisation continues until 9,999 epochs. Please refer to

Appendix G.1 for more details of these early stopping criteria.

The MMD selection and MMD CV-AGG are methods that automatically seek the regularisation

parameter λ. MMD selection employs an automatic λ search described in Appendix F. An

automated method in Appendix D.2 is for selecting the Λ input parameter of MMD CV-AGG.

MMD CV-AGG is with the 5 cross-validations by the 6 candidates of λ.

4.4.3 Results

For ease of comparison, we summarise the results for B = 10 in Figure 4.5 and B = 2 in

Figure 4.6. Each of Figures 4.5 and 4.6 shows the means and standard deviations of p-values,

precision, and recall over three independent experiments for each Settings 1 and 2. Precision

and recall scores are shown only for subintervals overlapping the period [251,500] where

changes in X and Y occur (as the recall is not well-defined for the other subintervals where

there exists no ground-truth variables S). MMD-Vanilla, MsKernel-Gaussian and MsKernel-
IMQ, failed to identity the differing variable d = 4 on the 3rd, 4th and 5th intervals in most

settings, leading to zero precision and zero recall. We thus focus on discussing the other three

methods.

Let us first study the case B = 10 in Figure 4.5, where each subinterval consists of 100 points.

The 3rd ([201,300]), 4th ([301,400]) and 5th ([401,500]) intervals overlap the period [251,500]

where X and Y differ. We can make the following observations.

• In Setting 1, MMD-CV-AGG, MMD-Selection and Wasserstein gave low p-values on

intervals 4 and 5, suggesting that these methods selected the correct variable (d =
4). (Recall that all methods use the same test statistic for the permutation test, so

they only differ in the select variables.) Indeed, the recall is 1 for these methods on

intervals 4 and 5: the correct variable is included in their selected variables. On the other
5The learning scheduler is defined as ReduceLROnPlateau in Pytorch. The documentation is at https://pytorch.

org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
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Setting 1 with B = 10. Setting 2 with B = 10.

Figure 4.5: Results of the experiments in Section 4.4 with B = 10 in Setting 1 (left column) and
Setting 2 (right column). Top: The p-values over the B = 10 subintervals obtained by each
method, where each line and the shaded area represent the means and standard deviations
computed over three independent realisations of X and Y . The red dotted horizontal line
indicates the value 0.05. The three blue stars indicate the three subintervals, 3, 4 and 5,
that intersect with the changing period [251,500]. Middle: The precision scores for each
method, where the bars and error bars represent the means and standard deviations over three
independent realisations of X and Y . The numbers on the horizontal axis (3, 4 and 5) indicate
the subintervals that intersect the changing period [251,500]. Bottom: The corresponding
recall sores. Note that the precision and recall for MsKernel-Gaussian, MsKernel-IMQ and
MMD-Vanilla were zero, so they are not shown.

hand, the precision is about 0.8 for MMD-CV-AGG and MMD-Selection and about 0.4 for

Wasserstein, suggesting that Wasserstein selected more redundant variables.
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P-values for B = 2

Left: Setting 1. Right: Setting 2.

Precision for B = 2

Left: Setting 1. Right: Setting 2.

Recall for B = 2

Left: Setting 1. Right: Setting 2.

Figure 4.6: Results of the experiments in Section 4.4 with B = 2. In each figure, the left and right
subfigures are the results for Settings 1 and 2, respectively. The top figure shows the p-values,
the bottom left the precision scores, and the bottom right the recall scores. For details, see the
caption of Figure 4.5.

• On interval 3 in Setting 1, the p-values are not small for these methods. The precision

and recall are also lower than intervals 4 and 5. This is because variable selection is more

difficult for interval 3. Indeed, the intersection of interval 3 and the differing period

[251,500] is [251,300], which contains only 50 points and half of those for intervals 4

and 5. Moreover, as can be seen from Figure 4.3 (d = 4), the difference between X and Y

appears only slightly on interval 3.

• In Setting 2, the p-values are small on intervals on 3 and 5 for MMD-CV-AGG, MMD-Select
and Wasserstein. As the recall is 1 and the precision is from 0.5 to 0.8 for these methods,

they were able to select the correct variable d = 4 on these intervals. As can be seen in

Figure 4.4 (d = 4), the difference between X and Y is clear on these intervals, so correct

variable selection was also possible for interval 3.
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• On the other hand, interval 4 is more difficult for Setting 2, as the difference between X

and Y is more subtle, thus producing large p-values. (The sample size of 100 may not

be sufficient to identify the difference).

• Producing large p-values outside intervals 3, 4 and 5 is correct, as there is no difference

between the generating processes of X and Y .

These observations suggest that Algorithm 3, using MMD-CV-AGG, MMD-Select or Wasserstein,

can perform correct variable selection (at least in the considered settings) on the subintervals

intersecting with the changing period and thus can detect such a period, if the differences

between X and Y are clear enough for given sample sizes.

Now let us see the case B = 2 in Figure 4.6, where the entire interval is divided into two

subintervals [1,500] and [501,1000], each consisting of 500 points. The changing period

[251,500] is contained in the first interval [1,500]. The following can be observed:

• In Setting 1, the p-values are small for MMD-CV-AGG, MMD-Selection and Wasserstein
on interval 1, where the recall is 1 and the precision is higher than 0.5 for these methods.

Since interval 1 contains the changing period [251,500], this suggests that these methods

were able to select the correct variable d = 4.

• In Setting 2, the p-values for interval 1 are large for all the methods, suggesting the

failure of variable selection. Indeed, the precision of each method is lower than Setting

1. As can be seen from Figure 4.4 (d = 4), if we ignore the time order of points on

interval 1 (which is essentially done by Algorithm 3), the marginal distributions for d = 4

are (nearly) identical for X and Y by construction. Therefore, one cannot detect the

difference between X and Y on interval 1 by just looking at the marginal distributions

for d = 4, so variable selection is harder than Setting 1. (Compare this situation with the

case of B = 10, where variable selection was possible even in Setting 2.)

• However, variable d = 4 is correlated with other variables, and this correlation structure

differs for X and Y . Therefore, it would still be possible to select variable d = 4 by

identifying the change in the correlation structure. Indeed, the precision of MMD-CV-AGG
and MMD-Selection is about 0.5, so they could identify the change for d = 4 to some

extent. On the other hand, the precision of Wasserstein is about 0.2, which is the

level of precision achievable by selecting all the five variables. This is unsurprising

as the algorithm of Wasserstein, as designed here, does not consider the correlation

structure among variables.

We can summarise the above observations as follows: If we make the number of subintervals

B too small, each subinterval becomes longer, making it harder to detect changing variables.
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Therefore, it is important to make B not too small so that each subinterval is short enough to

detect the changes.

4.5 Demonstration: Surrogate Model Validation for Particle-based

Fluid Simulation

We demonstrate how our approach can be used to validate a Deep Neural Network (DNN)

model that emulates a particle-based fluid simulator. Motivated by the need for accelerating

computationally expensive fluid simulations, there has been a recent surge of interest in

developing DNN models that learn to approximate fluid simulations (e.g., Ummenhofer et al.,

2020; Sanchez-Gonzalez et al., 2020; Prantl et al., 2022). However, model validation of a

DNN emulator against the original simulator remains challenging, as both produce high-

dimensional spatio-temporal outputs. Here, we demonstrate that our approach may be used

to produce interpretable features that could be used by the human modeller for validation

purposes.

4.5.1 Setup

Simulator. The ground-truth simulator is Splish-Splash (Bender et al., n.a), an open-source

particle-based fluid simulator. Specifically, we consider the WaterRamp scenario from Sanchez-

Gonzalez et al. (2020), which simulates water particles in a box environment, as illustrated in

Figure 4.7.

DNN model. As the DNN model for learning the simulator, we use the Deep Momentum-
Conserving Fluids (DMCF) model of Prantl et al. (2022), using the authors’ code6, trained

with the default configuration on the dataset provided by the authors.7

Data Representation. Each of the simulator and the DNN model produces an output consist-

ing of an array in RP×T×C , where P = 1,444 is the number of particles8, T = 600 is the number

of time steps, and C = 2 is the number of coordinates for each particle’s position (i.e., two

dimensions). We convert this array to a matrix in RD×T , by dividing the two-dimensional

coordinate space into D = 256 = 16×16 grids of equal-size squares. Thus, for a given output

X = (xt ,d ) ∈ RD×T , each xt ,d represents the number of particles on the d-th grid at the t-th

time step, where d = 1, . . . ,D and t = 1, . . . ,T . Intuitively, each grid represents a “sensor” that

6https://github.com/tum-pbs/DMCF/blob/main/models/cconv.py
7https://github.com/tum-pbs/DMCF/blob/96eb7fcdd5f5e3bdda5d02a7f97dfff86a036cfd/download_

waterramps.sh
8The number of particles varies depending on the simulation random seed, which we set to 0.
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counts the number of particles that pass the grid.

Figure 4.7: Snapshots of water particle distributions of the WaterRamp scenario in Section 4.5.1,
at time t = 0 (left two figs) and time t = 325 (right two figs). The blue particles are from Splish-
Splash, the ground-truth simulator, while the green ones are from the learned DMCF model.

Setting of Algorithm 3. We split the T = 600 time steps into B = 6 subintervals, each consisting

of 100 steps: t1 = 100, t2 = 200, . . . , t6 = 600. For variable selection in Algorithm 3, we consider

three methods: Wassertstein, MMD-Selection, and MMD-CV-AGG, as they performed better

for the experiments in Section 4.4. We use the same configurations as Section 3.5.1 for these

methods, with one modification. For the MMD-based methods, we use the dimension-wise

mean (instead of median) heuristic (Section E) to set the length scales γ1, . . . ,γD of Eq. (2.3),

as this leads to more stable results when the data is sparse, i.e., having many zeros, like the

current setting.

4.5.2 Results

Figure 4.8 shows selected results of variable selection; other results are available in Appendix K.

More informative GIF animations illustrating selected variables are available on the authors’

website9. Figure 4.9 shows p-values obtained with each variable selection method on each

subinterval. We can make the following observations:

• Generally, selected variables (= red-highlighted grids) can indicate the discrepancies

between the ground-truth simulator and the DNN model. For example, let us look at the

grids selected by MMD-CV-AGG on the 4th interval [301,400] (Figure 4.8f). Many grids are

selected along the blue particles’ wave-like curve formed in the middle of the box (the

ground-truth). However, such a wave-like curve does not exist for the green particles

from the DNN model. Thus these selected grids capture successfully this discrepancy

between the simulator and the DNN model.

• There are differences between the variables selected by the three methods. For example,

9https://kensuke-mitsuzawa.github.io/#/publications/mmd-paper-demo-particle-simulation
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(a) Wasserstein (1st subinterval [1,100]) (b) Wasserstein (4th subinterval [301,400])

(c) MMD-Selection (1st subinterval [1,100]) (d) MMD-Selection (4th subinterval [301,400])

(e) MMD-CV-AGG (1st subinterval [1,100]) (f) MMD-CV-AGG (4th subinterval [301,400])

Figure 4.8: Selected results from the experiments in Section 4.5.2. The top row shows the
selected variables using Algorithm 3 with Wasserstein, the middle row with MMD-Selection,
and the bottom row with MMD-CV-AGG. In each row, the left two figures show the selected
variables for the 1st subinterval [1,100], and the right two figures for the 4th subinterval
[301,400]. The red grids represent the selected variables, the blue particles are those from the
ground-truth simulator and the green ones are from the DNN model (at time t = 90 for the left
and t = 325 for the right). Other results are available in Appendix K.

Wasserstein and MMD-Selection only partially capture the above discrepancy regard-

ing the wave-like curve. On the other hand, MMD-Selection selects one grid along the

ceiling of the box, which captures another discrepancy between the simulator and the

DNN model: While there is no particle from the simulator, there are a few particles from

the DNN model sticking on the ceiling, which are not physically plausible.
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Figure 4.9: P-values obtained with Algorithm 3 on each subinterval with the MMD-Selection,
MMD-CV-AGG and Wasserstein for the experiments in Section 4.5. “Time-bucket index” in
the horizontal axis indicates the six subintervals. The red dashed line indicates the value 0.05.

• Let us look at Figure 4.9 on p-values. On the second to sixth subintervals, the p-values

are all less than 0.05 for each method, indicating that the simulator and the DNN model

are significantly different on these subintervals. On the first subinterval [1,100], MMD-
CV-AGG and Wasserstein lead to p-values less than 0.05, while MMD-Selection yield

a p-value higher than 0.05. The latter would be because MMD-Selection selects only

two variables (the two red grids in Figure 4.8), which may not be enough for capturing

the discrepancies between the two datasets on the 1st interval. (MMD-Selection tends

to select few variables than MMD-CV-AGG in general.)

• On the other hand, the fact that MMD-Selection gives a larger p-value on the first

subinterval suggests that the discrepancies between the simulator and the DNN model

are less significant than the other subintervals. This is indeed the case, as the initial

states are the same for the simulator and the DNN model.

From these observations, when using Algorithm 3 in practice, we recommend the user to try

different variable selection methods (if possible) and compare the results. In this way, a more

thorough analysis becomes possible.

4.6 Demonstration: Comparison of Microscopic Traffic Simulation

Models

The model comparison analysis is an exploratory analysis for discovering and understanding

discrepancies between models. This analysis becomes time-consuming work as a model has

more variables. We apply the time slicing variable selection for this comparison to reduce the

analysis workload.

67



Chapter 4. Variable Selection on High-Dimensional Time-Series Data

The authors’ website10 provides further media content about this demonstration: animations

of simulations and variable selection results.

4.6.1 Setup

We use SUMO (Lopez et al., 2018), a popular microscopic traffic simulator. We consider the

simulation scenario named MoST (Monaco Sumo Traffic) developed by Codeca and Härri

(2018). It models a realistic, large-scale traffic scenario inside the Principality of Monaco and

the surrounding area on the French Riviera, as described in Figure 4.10. The scenario simulates

various modes of transportation, such as passenger cars, public buses, trains, commercial

vehicles, and pedestrians. Here, we focus on the simulation from 4 a.m. until 2 p.m., the

duration being 6 hours (= 36,000 seconds).11

Simulation Scenarios. We consider two versions of the MoST scenario, one original and

the other a modified version. We define the modified version12 by blocking three roads, A8
(highway), D2564 and D51, in the original MoST scenario, at the locations marked “X” in red

in Figure 4.10. This road blocking affects the vehicles that originally planned to use the A8
highway (where the top “X” blocks) to change their routes. One group of vehicles travel on the

roads next to the A8 highway, as indicated by the purple arrows in Figure 4.10. As light-blue

arrows indicate, another group changes their route to the south and passes inside Monaco,

making the traffic there heavier than in the original scenario. These two groups of vehicles

meet again at a junction13 near the bottom “X” and travel back to the A8 highway, as indicated

by orange arrows.14

Data Representation. We simulate both scenarios using the same random seed.15 Let

D = 4,404 be the number of road segments16 in the simulation area, and T = 3,600 be the

number of time steps from 4 a.m. to 2 p.m. (= 36,000 seconds) where each time step is 10

seconds.17 For the original scenario, let xd ,t be the number of vehicles on the road segment

d = 1, . . . ,D during the time step t = 1, . . . ,T , and define the data matrix as X = (xt ,d ) ∈RD×T .

For the modified scenario, we construct Y = (yt ,d ) ∈RD×T similarly.

10https://kensuke-mitsuzawa.github.io/#/publications/mmd-paper-demo-sumo-most
11In the SUMO implementation of the MoST scenario, this duration is from the 14,400th step to the 50,400th step,

where one step corresponds to one second in the real world.
12This modified scenario is available on https://github.com/Kensuke-Mitsuzawa/sumo-sim-monaco-scenario
13The geographical coordinate of this junction is (43.7522398630394,7.425510223260723).
14The vehicles in the opposite direction (towards the west) also change their routes similarly.
15We set the random seed value to 42.
16While “edge" is the proper SUMO terminology, we call it “road segment” for ease of understanding.
17Because each step in the SUMO simulator corresponds to one second, this means that we aggregate each 10

SUMO steps to form one time step in our data representation.
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Figure 4.10: The simulated area of the MoST scenario inside and around Monaco in Section 4.6.
The three red “X" marks indicate the blocked locations in the A8 highway (top), D2564 (middle)
and D51 (bottom), in the modified scenario. The blue circles indicate ramps to the A8 highway.
The purple and light-value arrows indicate the rerouting paths of vehicles that originally
planned to travel via the A8 highway.

Variable Selection Methods. For variable selection in Algorithm 3, we try Wasserstein,

MMD-Selection and MMD-CV-AGG, with the same configurations as Section 4.5.2. We set the

time-splitting points as t1 = 500, t2 = 1,000, ... t7 = 3,500 and t8 = 3,600, resulting in B = 8

subintervals.

4.6.2 Results

Selected Road Segments. To save space, we only describe road segments selected by MMD-
CV-AGG, which performed well in the previous experiments, on interval 1 (4:00 am - 5:23 am),

interval 3 (6:46 am - 8:09 am) and interval 5 (9:32 am - 10:55 am) in Figure 4.11. The purpose

is to understand how the discrepancies between the two scenarios evolve over time. We can

make the following observations:

• Interval 1 (4:00 am - 5:23 am). The A8 highway, indicated by the thick curve north

of Monaco, is mainly selected. (Other road segments are also selected, but they are

scattered.) The vehicles that travel on the A8 highway in the original scenario cannot

pass there due to the road blocking in the modified scenario, and this discrepancy

appears to be captured by the selected road segments.

• Interval 3 (6:46 am - 8:09 am). In addition to the A8 highway, many other road segments

are selected. Particularly, the road running to the south direction from the west side

of A8, the roads around the east side of A8, and the roads along the A8, are selected.
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They correspond to the roads indicated by the light blue, orange and purple arrows in

Figure 4.10. Moreover, more roads are selected in Monaco city than in interval 1. We can

interpret this as follows: The traffic on these roads increased because the vehicles that

could not pass A8 changed their routes to bypass A8 in the modified scenario.

(a) Selected road segments on interval 1 (4:00
am - 5:23 am).

(b) Selected road segments on interval 3 (6:46
am - 8:09 am.

(c) Selected road segments on interval 5 (9:32
am - 10:55 am).

Figure 4.11: Road segments selected by MMD-CV-AGG on the 1st (a), 3rd (b) and 5th (c) subin-
tervals in the experiments of Section 4.6.

MMD-CV-AGG successfully selects roads where discrepancies are observed by rerouting vehicle

groups as we illustrate in Figure 4.10. Among these buckets b1,b3,b5, the highway A8 is

constantly selected. Plots at b3,b5 depict roads of two rerouting groups (purple and orange

arrows in Figure 4.10). Roads by the rerouting group of light-blue arrow are observed at b3.

Figure 4.12 represent time-series X ,Y of the traffic count metrics at two representative roads.

From the left plot, we affirm a high discrepancy between X ,Y starting at the first bucket (4

a.m. until 5:23 a.m.), and this discrepancy continues until the seventh bucket (11 a.m. until

12:23). The right plot conveys a high discrepancy between X ,Y mainly starting at the second

bucket; the difference in a bucket of starting this discrepancy is due to travelling time. The

right plot is at a road that is located at the west part of the scenario, and the left plot is at a
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Figure 4.12: Time-series x1,d , . . . , xT,D from the original scenario (blue) and y1,d , . . . , yT,D from
the modified scenario (orange) for two specific road segments d . The left figure is where the
road segment d is at the centre of commune La Turbie (road id 153451#7; near the left most
purple arrow in Figure 4.10). The right figure is where d is at an entrance ramp to the A8
highway and is located at the north part of commune Dondéa (road id 152527; near the blue
circle in the right side of Figure 4.10). These are road segments selected by all the methods.

road that is located at the east part of the scenario.

Permutation Tests. Figure 4.13 (left) shows p-values on each subinterval obtained with the

three variable selection methods. From interval 2 to interval 5, all the methods resulted in

low p-values, suggesting that the original and modified scenarios differ significantly on these

subintervals. On the rest of the intervals, Wasserstein yielded high p-values, the reason of

which may be that Wasserstein tends to select more redundant variables (thus leading to

low precision), as the previous experiments suggest. On interval 7, MMD-CV-AGG selected no

variable, and it returned p-value 1.0 (by definition of the algorithm; see Section G.2).
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Figure 4.13: P-values (left) and the number of selected variables (right) of the three variable
selection methods of the traffic count. The red dashed line represents p = 0.05 in the p-
value plot (left) and zero variables in the variable count plot (right). More descriptions are in
Section 4.6.2.
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Chapter 5

Human-in-Loop Model Calibration with

Variable Selection and MMD

In this chapter, we introduce an application of MMD as a distance metric for parameter

calibration. The research content in this chapter mainly focuses on traffic simulation and

its parameter calibration, which was requested by our industrial partner. First, we introduce

related works in Section 5.1. The proposed parameter estimation (Kernel ABC with MMD) is in

Section 5.2.3, and necessary notations are found in Section 5.2.1. Since the proposal realises

the qualification of uncertainty, we elaborate on it in Section 5.2.2. A preliminary assessment

of the parameter estimation task is in Section 5.3.

The research motivation is variable selection during model calibration. Model calibration

is a procedure for estimating model parameters especially when the model is a black-box

model (e.g. stochastic simulation model). In model calibration frameworks, we define a

distance function between a model outcome and the counterpart (the real-world data or the

other model’s outcome), and we infer model parameters that minimise the distance.

An issue in model calibration is when the model outcome and the counterpart are high-

dimensional data. Since a distance value is merely a summary statistic, it does not guarantee

the validity of the calibrated parameter with the minimum distance in practice. Therefore, as

we described in Section 1.4.2, model validation is necessary before deploying a model to social

applications.

Although model validation confirms the validness of a model, ideally model calibration proce-

dure is also able to provide humans with evidence, factors, or reasons for model calibration

procedures. An example case of such model calibration is when computation costs (e.g. com-

putational power or time) are expensive to execute simulations (Chen et al., 2017; Behrens
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and Dias, 2015; Bharti et al., 2023; Zych et al., 2022; Najdek et al., 2021; Vijitpornkul and

Marurngsith, 2015). Human-in-loop model validation is a practical solution to the calibration

with expensive computation costs: the manual decision of halting or continuing calibration in

every iteration. To realise the human-in-loop model calibration, humans are required to ob-

serve model outcomes and their counterparts and make decisions. However, this comparison

analysis work is hard and time-consuming when the pair is high-dimensional data.

A solution is a variable selection approach during model calibration. At each iteration of

model calibration, humans review the selected variables and decide if they continue model

calibration or not. Selected variables and qualified uncertainty would be sufficient information

for humans.

In this chapter, we introduce a preliminary work of integrating the proposed MMD-based

variable selection into the model calibration algorithm. The proposed model calibration

algorithm is Kernel ABC estimation employing an MMD estimator as a distance function (See

Eq. (5.5)). The MMD estimator is optimised and selects variables during model calibration (See

Chapter 3). Compared with other approaches (See the next section), the proposed calibration

algorithm is superior in these two points; 1) humans can understand how model calibration

goes, which is necessary information for human-in-loop calibration, 2) humans can review

quantified uncertainty that is intuitive information for manual decision-making (detailed in

Section 5.2.2).

5.1 Related Works regarding Parameter Calibration of Traffic Simu-

lators

The parameters of a microscopic traffic simulator include those for vehicles (driving be-

haviours), the traffic control system, and the road network structure. These parameters affect

the simulators’ output, which includes all the vehicles’ movements, in a complex way. Thus

it is difficult to describe the functional relationship between the parameters and simulation

output in the form of algebraic or differential equations. Consequently, previous works have

handled a microscopic traffic simulator as a black-box function, and parameter calibration as

black-box optimisation.

Simultaneous Perturbation Stochastic Approximation (SPSA) and Genetic Algorithm (GA),

which are classic methods for black-box optimisation, have been popular choices in previous

works on traffic simulator calibration. Indeed, Sha et al. (2020) listed 18 papers on traffic simu-

lator calibration, of which 8 papers use SPSA and 2 papers use GA. However, both methods

have some drawbacks in terms of accuracy and computational costs. SPSA is essentially a

gradient descent algorithm with automatic differentiation. As such, SPSA approximates the

gradient at each iteration numerically by evaluating the black-box function (i.e., by running
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the simulator); therefore SPSA is computationally expensive. Moreover, since it is essentially

a gradient descent algorithm, the optimal parameters found by SPSA are not guaranteed to

be a global optimum (Islam et al., 2020). A drawback of GA is that it has its own hyperpa-

rameters that need to be determined appropriately. According to Islam et al. (2020), GA may

produce “unpredictable results” because of its architecture, and the selection of appropriate

hyperparameters that produce stable results may require several try-and-errors.

Approximate Bayesian Computation (ABC) is a generic approach to computing the posterior

distribution of unknown parameters of a simulation model (Rubin, 1984; Sisson et al., 2018);

see Section 5.2.3 for a formal definition of ABC. Rejection ABC is the simple and well-known

version of ABC; it constructs the posterior distribution by accumulating candidate parameters

that a distance of simulation output and the counterpart is less than the given threshold value.

The posterior distribution computed by ABC is a conditional probability distribution of param-

eters given observed data. Therefore, the posterior distribution provides not only estimates

of the parameters but also their uncertainties. This capability of quantifying uncertainties

for model parameters is a major advantage of ABC (or Bayesian inference in general) over

the optimisation-based approaches described above, since the latter can only produce point

estimates and not their uncertainties. One can use the posterior distribution obtained with

ABC for uncertainty quantification of simulation results as well. This can be done by first

sampling several model parameters from the posterior distribution, and then running the

simulator for each sampled parameter.

ABC has been widely used in many scientific disciplines relying on simulation modelling (Sis-

son et al., 2018). For example, in computational biology, ABC has been widely used for

inferring the parameters of a simulation model for population genetics, where the parameters

include those for population sizes, human gene evolution, rates of recombination and gene

conversion, the strength of positive selection, and so on Csilléry et al. (2010).

In particular, we use Kernel ABC (Nakagome et al., 2013; Fukumizu et al., 2013), which is an

extension of the common Rejection ABC algorithm. Kernel ABC is based on the Reproducing

Kernel Hilbert Space (RKHS) methodology (Schölkopf and Smola, 2002), and can use more

efficient simulations than Rejection ABC. One drawback of Rejection ABC is the need for speci-

fying an appropriate threshold to determine which simulated data to accept; the specification

of this threshold is not easy in practice, and it affects the computed posterior distribution

significantly. On the other hand, Kernel ABC does not require specifying such a threshold.

We propose a new approach to making Kernel ABC “parameter-free”, which makes Kernel

ABC much easier to use than Rejection ABC. This is one of our technical contributions to the

literature. See Section 5.2.3 for details.
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ABC Algorithms and Distance Metrics In general, any ABC-type algorithm requires an ap-

propriate distance metric between observed and simulated datasets. Most works on ABC first

summarise each of the observed and simulated datasets using summary statistics (such as

the mean and variance), and then compute the Euclidean distance between the computed

summary statistics. For example, the original paper of Kernel ABC (Nakagome et al., 2013) use

the Euclidean distance between datasets. However, in general, it is difficult to manually define

appropriate summary statistics. If the summary statistics do not capture relevant characteris-

tics of datasets for inferring the model parameters, the resulting posterior distribution can

become unreliable. Indeed, this problem occurs with traffic simulations. As Bhattacharyya

et al. (2020) point out, many existing works on traffic simulator calibration use the mean of

a dataset as a summary statistic, but the use of the mean does not capture the variations in

the distributions of observed and simulated data, while such variations may be relevant for

inferring the model parameters.

To overcome the difficulty of using summary statistics, we use MMD (Gretton et al., 2012a); See

Section 2.2. MMD provides a distance metric between datasets without losing any information

in the distributions of the datasets. Park et al. (2016) first propose to use MMD in ABC and

show its advantage over ABC algorithms using summary statistics. Note that MMD itself

contains hyperparameters, which have a strong influence on the effectiveness of MMD. Park

et al. (2016) use the median heuristic (Garreau et al., 2018) to determine the hyperparameters;

See Section E. Instead of using the median heuristic, we obtain a kernel function of MMD of

which ARD parameters are optimised by the regularised optimisation problem in Section 3.4,

and variables are already selected. We demonstrate that MMD with optimised ARD parameters

improves Kernel ABC significantly compared with MMD solely with the median heuristic.

5.2 Simulator Calibration with Uncertainty Quantification

This section describes our approach to calibrating the parameters in a traffic simulation model

and quantifying the uncertainties in the parameters and the resulting simulation outputs.

These two tasks, calibration and uncertainty quantification, are vital for reliably using the

simulator in traffic engineering applications. We introduce mathematical formulations for

the calibration problem in Section 5.2.1, and uncertainty quantification of simulation outputs

in Section 5.2.2, where we use the Bayesian approach in our formulations. We describe

how to solve these problems by Kernel Approximate Bayesian Computation (Kernel ABC) in

Section 5.2.3.

5.2.1 Basic Framework of the Bayesian Approach

To describe the Bayesian framework, we mathematically formulate our problem.
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Model parameters. Let Θ be a set of parameter vectors of the simulation model. For in-

stance, if there are q ∈ N scalar parameters in the simulator, we may define Θ := Rq , and

each parameter vector θ = (θ1, . . . ,θq )> ∈ Θ consists of q scalar constants. Each parameter

vector θ = (θ1, . . . ,θq )> ∈Θ specifies all the configuration of the traffic simulator. Some of the

parameters may specify the configuration of the road network, and others may specify the

configuration of the driver model. For example, θ1 may specify the width of a certain road

segment, θ2 the acceleration of the driver model, etc. One should include all uncertain aspects

of the simulator configuration as parameters.

Simulator. We can interpret the traffic simulator as a black box that takes a parameter vector

θ ∈Θ as input and produces data Y as an output. This Y takes a different form depending on

how we define it. For instance, Y may take the form of a matrix of size D ×T , where D is the

number of detectors and T is the total number of time points: Y := (yd ,t ) ∈RD×T . In this case,

each element yd ,t may represent a certain statistic (e.g. traffic flow) at detector d = 1, . . . ,D

and time point t = 1, . . . ,T . If we are interested in multiple statistics, we may define the output

Y as Y = (Y1, . . . ,YM ), where M is the number of statistics and each Ym = (ym
d ,t ) ∈ RD×T is a

D ×T matrix such that each element ym
d ,t represents the value of the m-th statistic (say speed)

at detector d = 1, . . . ,D and time point t = 1, . . . ,T . From now on, without loss of generality,

we define Y as a D ×T matrix, Y ∈RD×T , but an extension to the case of multiple statistics is

straightforward.

The traffic simulator is stochastic in the sense that, even if one uses precisely the same

parameters, the simulator produces different outputs for different runs if the random seeds

are different. Therefore, the simulator as a black box can be mathematically defined as a

conditional probability distribution P (Y |θ) of output data Y given a parameter vector θ ∈Θ.

To capture the characteristics of the simulator for a given parameter θ, one should run the

simulator multiple times to obtain a set of output data:

Sθ := {Y1, . . . ,YL}, Y1, . . . ,YL
i .i .d .∼ P (Y |θ),

where L is the number of simulation runs (e.g., L = 20) and Y` ∈ RD×T for `= 1, . . . ,L. Here,

Y1, . . . ,YL
i .i .d .∼ P (Y |θ) denotes that Y1, . . . ,YL are generated from the simulator in an indepen-

dently and identically distributed (i.i.d.) manner.

Real Data. We assume that we are given observed data from the real traffic system of interest.

We assume that this is also given as a set of data:

Sreal := {Yreal,1, . . . ,Yreal,L∗}, (5.1)
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where each Yreal,` should have the same form as the ones from the simulator. For example, if

Y ∈RD×T , then we should have Yreal,` ∈RD×T . Each Yreal,` may represent traffic flows recorded

at D detectors and T time points on day `= 1, . . . ,L∗. The set Sreal should consist of data sets

Yreal,1, . . . ,Yreal,L∗ that share the same common characteristics (e.g., the same day of a week;

the same weather condition, etc.).

Prior distribution. We usually have specific prior knowledge or belief about plausible values

of the parameters θ of the traffic simulator, such as the possible range of each parameter. In

the Bayesian approach, such expert knowledge is expressed as a prior probability distribution

π(θ) on the parameter spaceΘ, i.e. calibrated parameters in different conditions. This prior

distribution may express our initial uncertainties about the simulation model parameters.

Posterior distribution. The focus of the Bayesian approach is to compute the posterior

distribution on the parameter space Θ given the observed data Sreal from the real traffic

system:

Pπ(θ|Sreal) =
P (Sreal|θ)π(θ)

Z (Sreal)
, (5.2)

where P (Sreal|θ) is the conditional probability of observing Sreal given that the simulation

model with parameters θ is true, and Z (Sreal) := ∫
P (Sreal|θ)π(θ)dθ is the normalisation con-

stant. The right-hand side is Bayes’ theorem, and the left-hand side is the posterior distribution,

which is the conditional distribution of the parameters θ given the real data Sreal. The posterior

distribution Pπ(θ|Sreal) can be interpreted as possibilities over the parameters after observing

the real data Sdata updated from the initial possibilities π(θ).

5.2.2 Uncertainty Quantification with the Posterior Distribution

We explain here how the posterior distribution in Eq. (5.2) can be used for uncertainty quan-

tification of simulations. To this end, suppose that the posterior Pπ(θ|Sreal) (5.2) has been

obtained.

To illustrate the idea, we generalise the notation for the simulator using the conditional

probability distribution as

P (Y |θ, a), θ ∈Θ, a ∈A ,

where A is a set of possible actions or interventions to the traffic system, such as different signal

schedules. For the calibration task (i.e., the posterior distribution computation discussed

later), we assume that the intervention a0 ∈A used for obtaining real data is known. Therefore,

the previous notation for the simulator is recovered as P (Y |θ) := P (Y |θ, a0).
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Suppose that we are interested in the effects of a certain intervention a∗ ∈ to the traffic system

(e.g., a candidate signal schedule). Denote by K1, . . . ,Kν ∈ R be key performance indicators

(KPIs)1 that one is interested in, where ν ∈N. Each of these KPIs can be seen as a function

of traffic data Y , and thus can be written as K` := f`(Y ) for an appropriate function f` for

` = 1, . . . ,ν. We are interested in quantifying uncertainties of these KPIs when using the

intervention a∗, by taking into account also uncertainties on the simulator parameters θ.

What we need first is to derive the probability distribution of Y under the intervention a∗,

which is given by

P (Y |a∗) :=
∫

P (Y |θ, a∗)Pπ(θ|Sreal)dθ. (5.3)

Since the KPIs K1, . . . ,Kν are the functions of the data Y , their probability distributions are given

by the probability distribution of Y (the so-called push-forward measures). The probability

distribution in Eq. (5.3) is called the Bayesian predictive distribution.

In practice, the integral in Eq. (5.3) cannot be computed, because it involves the simulator

P (Y |θ, a∗). Therefore in practice, the integral is approximated by a Monte Carlo average. More

precisely, we first perform sampling from the posterior distribution Pπ(θ|Sreal) to generate a

set of parameter vectors:

θ(1), . . . ,θ(N ) i .i .d .∼ Pπ(θ|Sreal),

where N ∈N is a user-specified number. Then, for each i = 1, . . . , N , we run the simulator using

the parameter vector θ(i ) and obtain the corresponding output data Y (i ):

Y (i ) ∼ P (Y |θ(i ), a∗), i = 1, . . . , N .

The predictive distribution in Eq. (5.3) is then approximated as

P̂ (Y |a∗) := 1

N

N∑
i=1

δ(Y −Y (i )),

where δ(Y −Y (i )) is the Dirac delta distribution at Y (i ) (i.e., the point mass at Y (i )). Accordingly,

the probability distributions of the KPIs can be approximately computed as

P̂ (K` | a∗) := 1

N

N∑
i=1

δ(K`− f`(Y (i ))), `= 1, . . . ,ν,

where, as defined earlier, f` is a function that computes KPI K` from data Y . These probability

distributions of KPIs are our uncertainty estimates for the KPIs. One can use them for one’s

own purpose.

1We dare to use the term “KPI” to clearly distinguish it from other types of metrics.
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For example, suppose that we are interested in the mean and the variance of the KPI K`. These

can be computed as

µ̂` := 1

N

N∑
i=1

f`(Y (i )), σ̂2
` := 1

N −1

N∑
i=1

(µ̂`− f`(Y (i )))2.

If the variance σ̂2
`

is extensive, our uncertainty about the KPI K` is significant, and vice versa.

One can also use the values f`(Y (1)), . . . , f`(Y (N )) to construct a histogram, which provides the

landscape of the distribution P̂ (K`|a∗).

5.2.3 Approximate Bayesian Computation (ABC)

A challenge of the Bayesian approach is the computation of the posterior distribution Eq. (5.2)

itself. In particular, in our setting, the conditional probability distribution P (Y |θ) cannot be

written as a mathematical function since it is implicitly defined through the simulator. We can

only access the conditional distribution P (Y |θ) via simulations (sampling), i.e., given some

θ′ ∈Θ, we run the simulator and obtain the corresponding output Y ′ ∼ P (Y |θ′). Thus, we need

to compute the posterior distribution by making use of this sampling procedure.

Approximate Bayesian Computation (ABC) is a Bayesian method for computing the posterior

distribution by sampling from the conditional distribution P (Y |θ) (Rubin, 1984; Sisson et al.,

2018). The main idea is to run the simulator multiple times for different parameter vectors

and compare the obtained simulation outputs with the real observed dataset. Here, the com-

parison between simulated and real data is done by using an appropriately defined distance

metric between two datasets. We propose to use MMD (Gretton et al., 2012a) explained in

Section 2.2.

Rejection ABC

We first describe the simplest ABC approach named Rejection ABC.

We first generate parameters vectors θ(1), . . . ,θ(N ) ∈Θ from the prior distribution π(θ) on the

parameter spaceΘ:

θ(1), . . . ,θ(N ) i .i .d .∼ π(θ),

where N ∈N is a user-specified number.

For each i = 1, . . . , N , we run the simulator using the parameter vector θ(i ) multiple times and

obtain a set of data:

Sθ(i ) := {Y (i )
1 , . . . ,Y (i )

L }, Y (i )
1 , . . . ,Y (i )

L
i .i .d .∼ P (Y |θ(i )).
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Thus, we have obtained N simulated datasets Sθ1 , . . . ,SθN . Now, we compare these datasets to

the real data Sreal in Eq. (5.1). To this end, as mentioned above, we use MMD.

Let ε > 0 be a user-specified small constant. We compute MMD between Sreal and each of

the simulated datasets Sθ(1) , . . . ,Sθ(N ) , and only keep a subset of the simulated datasets whose

MMD values are less than ε. More precisely, let Jε ⊂ {1, . . . , N } be a set of indices such thati ∈ Jε if �MMDU (Sreal,Sθ(i ) ) < ε

i 6∈ Jε if �MMDU (Sreal,Sθ(i ) ) ≥ ε,

where �MMDU (Sreal,Sθ(i ) ) is the MMD estimate Eq. (2.2) computed for the two datasets Sreal

and Sθ(i ) . Intuitively, the indices i in Jε are such that the corresponding simulated dataset Sθ(i )

are “similar” to the real dataset Sreal, as measured by MMD. Then, the posterior distribution

Pπ(θ|y∗) in Eq. (5.2) is approximated by the empirical distribution:

Pπ(θ|Sreal) ≈ P̂π(θ|Sreal) := 1

|Jε|
∑

i∈Jε

δ(θ−θ(i )), (5.4)

where |Jε| is the cardinality of Jε and δ(θ−θ(i )) denotes the Dirac delta distribution (or “point

mass”) at θ(i ) ∈Θ. This entire procedure is called Rejection ABC.

One can perform uncertainty quantification for simulations in the way we explained in the

previous section, by regarding the set of parameter vectors {θ(i ) | i ∈ Jε} as generated from the

posterior distribution Pπ(θ|Sreal).

Rejection ABC is simple and illustrative for describing the idea of ABC in general. However,

Rejection ABC is not efficient in the sense that a large number N of simulations may be

needed for the approximate posterior P̂π(θ|Sreal) to be “close” to the true posterior Pπ(θ|Sreal).

Intuitively, this is because we need to take the threshold ε to small enough to make the

approximate posterior accurate; but if ε is too small the probability of generating simulated

data Sθ(i ) such that MMD(Sreal,Sθ(i ) ) < ε becomes small; thus the resulting number |Jε| of

“accepted” parameter vectors becomes small, and the resulting posterior approximation

Eq. (5.4) becomes inaccurate.

We thus propose to use a more sophisticated and efficient ABC technique, which is Kernel ABC

explained in the next subsection.

Kernel ABC

Kernel ABC is a more efficient version of ABC based on kernel methods in machine learn-

ing (Nakagome et al., 2013; Kisamori et al., 2020). A theoretical backbone of the approach is

the framework called kernel mean embeddings (Smola et al., 2007; Muandet et al., 2017), which
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we do not explain here.

The procedure of Kernel ABC is the same as Rejection ABC until the generation of the simulated

datasets Sθ(1) , . . . ,Sθ(N ) . The difference is in the construction of the posterior approximation.

To describe this, define a second-level kernel function kS on datasets as

kS (S,S′) := exp

(
−

�MMD
2
U (S,S′)
γ2

)
, (5.5)

where �MMDU (S,S′) is the MMD estimate Eq. (2.2) between two datasets S and S′, and γ2 > 0

is a bandwidth parameter. We suppose that an appropriate MMD estimator �MMD
2
U (S,S′) is

ready by methods in Section 3.4, and variables are already selected. These selected variables

provide an interaction with humans for the Human-in-loop calibration.

We describe a mechanism for this kernel function. Intuitively, this kernel function measures

the similarity between the two datasets S and S′, as �MMDU (S,S′) is a distance metric between

S and S′. Namely, if MMD(S,S′) is large, kS (S,S′) becomes small and approaches 0, and if�MMDU (S,S′) is small kS (S,S′) becomes large and approaches 1.

The bandwidth parameter γ2 is a hyperparameter of Kernel ABC. For instance, we can

set γ2 by the median heuristic (Garreau et al., 2018), i.e., as the median of the N × (N −
1) pairwise MMD values ( �MMD

2
U (Sθ(i ) ,Sθ( j ) ))i 6= j of simulated datasets Sθ(1) , . . . ,Sθ(N ) : γ2 :=

median(( �MMD
2
U (Sθ(i ) ,Sθ( j ) ))i 6= j ).

Now, using the above kernel function, we compare the real observed dataset Sreal and each

of the simulated datasets Sθ(1) , . . . ,Sθ(N ) . This is done by first computing a similarity vector

k(Sreal) ∈RN defined by

k(Sreal) := (kS (Sθ(1) ,Sreal), . . . ,kS (Sθ(N ) ,Sreal))> ∈RN . (5.6)

That is, the vector k(Sreal) quantifies the similarities of the simulated datasets Sθ(1) , . . . ,Sθ(N ) to

the real observed data Sreal. Then, we transform this similarity vector to a weight vector w ∈RN

for the associated parameter vectors θ(1), . . . ,θ(N ) as

w := (w1, . . . , wN )> := (G +NλI )−1k(Sreal) ∈RN , (5.7)

where G ∈RN×N is the kernel matrix defined by Gi j = kS (Sθ(i ) ,Sθ( j ) ), λ> 0 is a regularisation

constant, and I ∈ RN×N is the identity matrix (i.e., Ii j = 1 if i = j and Ii j = 0 otherwise).

Intuitively, each weight wi represents the “importance” of the corresponding parameter vector

θ(i ) in approximating the posterior distribution Pπ(θ|Sreal).
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Finally, an approximation to the posterior distribution Pπ(θ|Sreal) is given by

Pπ(θ|Sreal) ≈ P̂π(θ|Sreal) :=
N∑

i=1
wiδ(θ−θ(i )), (5.8)

where δ(θ−θ(i )) denotes the Dirac delta distribution at θ(i ) ∈Θ and w1, . . . , wN are the weights

defined above.

One can generate new parameter vectors θ̃(1), . . . , θ̃(N ) ∈Θ from the approximate posterior in

Eq. (5.8) by using a sampling method called kernel herding (Chen et al., 2010); for the concrete

algorithm of kernel herding, see e.g. Kisamori et al. (2020, Section 3.3) and Muandet et al.

(2021, Algorithm 1).

Uncertainty quantification for simulations can then be carried out using the approach de-

scribed in Section 5.2.2.

5.3 Empirical Assessment

This section presents numerical illustrations of the proposed approaches described so far. The

parameter calibration assessment is for estimating road status parameters of a road network.

We admit that the road network, normally in the context of traffic engineering, is considered

as the given condition (or the given system), and road status is not for the target of calibration.

The assessment setting is requested by our research collaborators who are interested in the

calibration of the road status parameters, therefore, the assessment motivation is from the

industrial motivation.

5.3.1 Simulation Settings

We define a grid-like road network consisting of 8 intersections described in Figure 5.2, which

we call Grid network.2 We consider a scenario where there are 16 origin-destination (OD)

groups of vehicles, in which 15 groups travel from one corner of the network to another corner

in the diagonal direction, and one group travels from the left-upper corner to the right-upper

corner.

Each detector (Induction Loops Detector) records the flow – the number of vehicles that

pass in front of the detector during one time step, which is approximately 1 second in the

simulation world. We used the flow metric since it well represents differences in traffic. Also,

it is a commonly used metric in calibrations of traffic simulations3. Our scenario consists

of 3,600 time steps (= 1 hour in the simulation world). We aggregate the flow metrics of

2We generated the network using a SUMO script: https://sumo.dlr.de/docs/netgenerate.html
3According to Sha et al. (2020), eleven researchers used "flow" in an objective function of the calibration.
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Figure 5.1: Illustration of the grid network scenario. Arrows indicate possible original-
destination (OD) pairs. There are 16 distinct OD groups of vehicles. Most groups travel
in diagonal directions as indicated by green arrows. One group (orange arrow) travels from
the left-upper corner to the right-upper corner.

Figure 5.2: The grid network. The green box highlights the edge where the two binary parame-
ters θ1,θ2 specify the conditions of two lanes. Yellow dots at intersections indicate detectors.

consecutive 300-time steps (= 5 minutes) as their average, resulting in T = 12 time intervals

and the corresponding 12 values of average flows. There are D = 64 detectors in the network.

We generate a random seed of the simulator as R +ε, where R is a discrete random variable

uniformly sampled from {0,1, . . . ,9,10} and ε is a Gaussian random variable with mean 1 and

variance 5.

5.3.2 Experiment settings

Binary parameters θ1 ∈ {0,1} and θ2 ∈ {0,1} control the conditions of two lanes in one network

edge shown in Figure 11. As described in Figure 12, θ1 parametrises the state of the upper lane

in the edge, and θ2 is the state of the lower lane. Specifically, θ1 = 0 indicates that the upper

lane is closed; θ1 = 1 is that the upper lane is open. Similarly, θ2 = 0 indicates that the lower
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Figure 5.3: The parameterised edge in the grid network of Figure 5.2. The two parameters
θ1 ∈ {0,1} and θ2 ∈ {0,1} specify the states of the upper lane (red) and the lower lane (blue),
respectively. If θ1 = 0, the upper lane is closed; if θ1 = 1 it is open. If θ2 = 0, the lower lane is
closed; if θ2 = 1, it is open.

Figure 5.4: The network condition when the network parameter is (1,0)>. The red highlight
represents the lane is closed.

lane is closed; θ2 = 1 is that the lower lane is open. We treat θ1 and θ2 as unknown parameters

to be calibrated from observed data. Since the pair (θ1,θ2) can take possible 4 states,

(θ1,θ2) ∈Θ := {(0,0), (0,1), (1,0), (1,1)},

the calibration problem is to infer one of these four states from observed data.

Let P (Y|θ) denote the conditional probability distribution of flow matrix Y ∈RD×T conditional

on the parameter vector θ := (θ1,θ2) ∈Θ. The traffic simulator determines this conditional

distribution. We generate a “real” observed dataset Sreal from the simulator using ground-truth

parameters θreal := (θreal,1,θreal,2) ∈Θ:

Sreal = {Yreal1, . . . ,YrealL∗} i .i .d .∼ P (Y | θreal),
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Figure 5.5: Estimation procedure with Kernel ABC.

where we set L∗ = 50. We treat θreal as unknown. The calibration problem is to estimate θreal

from the observed dataset Sreal and the simulator P (Y|θ).

Figure 5.5 describes the estimation procedure using Kernel ABC. We define a prior distri-

bution π(θ) on the parameter space Θ = {(0,0), (0,1), (1,0), (1,1)} as the uniform distribu-

tion. In practice, we implement this as preparing 20 samples for each of 4 possible states

(0,0), (0,1), (1,0), (1,1); thus we have in total 80 parameter samples, which we denote by

θ1, . . . ,θ80. Using each parameter sample θi (i = 1, . . . ,80), we run 50 simulations using random

seeds, obtaining a simulated dataset

Sθi = {Yθi ,1, . . . ,Yθi ,50} i .i .d .∼ P (Y|θi ).

We have 80 such simulated data Sθ1 , . . . ,Sθ80 .

MMD Configuration

For optimising the ARD weights in MMD, we define a new objective function as the sum of

80 objective functions, each of which is given by Eq. (3.2), computed for Sreal and Sθi where

i = 1, . . . ,80. We use the L2 regularisation with λ2 = 0.1 (and thus λ1 = 0) 4. We set the length

4We did not use the automatic selection of the regularisation constant λ in this experiment, since we have
conducted this assessment before we developed the method for automatic selection of λ. The choice of λ2 = 0.1 is
based on our manual analysis in which we observe optimised ARD parameters.

86



5.3 Empirical Assessment

scales (γd ,t ) using the dimension-wise median heuristic described in Section E. We use the

Adam optimiser with a learning rate of 0.001 and run 7,000 epochs, with all the ARD weights

initialised as 1.0.

Kernel ABC Configuration

We determine the regularisation constant λ of Kernel ABC Eq. (5.7) as follows. First, the

weights w = (w1, . . . , wN )> in Eq. (5.7) given by Kernel ABC may be interpreted as representing

posterior probabilities (here N = 80 in the current setting). Thus, good weights should be such

that 1) their sum is close to 1 and 2) each weight is non-negative. Therefore, we define the

following objective function for choosing λ:

c(λ) :=
∣∣∣∣∣ N∑
i=1

wi −1

∣∣∣∣∣+ N∑
i=1

|wi | (5.9)

where the first term quantifies a deviation of the sum of the weights from 1 and the second

term a deviation from non-negativity5 Note that the weights w = (w1, . . . , wN )> depend on

λ; see Eq. (5.7). We propose to choose λ that minimises the above criterion. Specifically,

we compute the weights for each of λ ∈ {10−3,10−3+0.25, . . . ,10−0.25 +100}, and choose λ that

minimises the above criterion.

We choose the length scale γ in the second-level kernel in Eq. (5.5) using the median heuristic,

as described in Section 5.2.3.

Uncertainty Quantification for Simulation Outputs

After obtaining a posterior distribution of the unknown parameters, we sample 50 times from

this posterior distribution and run the simulator using each of these 50 parameter vectors.

For simplicity, we consider uncertainty quantification of one specific KPI: the travel time,

defined as the median value of all vehicles’ travel times.6 This KPI can capture the effects of

the lane blockage. However, note that it is also possible to perform uncertainty quantification

for any other KPIs.

Baselines

For comparison, we consider the following four baseline methods.

1. Rejection ABC using summary statistics. This approach uses the Rejection ABC algo-

5Another possibility is c(λ) :=
∣∣∣∑N

i=1 wi −1
∣∣∣+∑N

i=1 max(0,−wi ).
6We compute this using the duration XML attribute in tripinfo_output.xml
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rithm in Section 5.2.3. We summarise each dataset (Sreal or Sθ1 , . . . ,SθN ) by its mean. We

use the Euclidean distance between the means as a distance metric.

2. Rejection ABC using MMD with optimised ARD weights. As a distance metric between

datasets, this approach uses MMD with optimised ARD weights.

3. Kernel ABC using MMD with the dimension-wise median heuristic. In this baseline, we

set all the ARD weights to 1.0, i.e., we do not optimise the ARD weights.

4. Kernel ABC using MMD with the standard median heuristic. All the dimensions have

the same bandwidth parameter, which we set using the median heuristic. All the ARD

weights are set to 1.0.

As explained in Section 5.2.3, Rejection ABC requires the specification of a threshold ε for

deciding the acceptance of sampled parameters. Specifically, we select the threshold ε that

matches a specific percentile of the distances between the observed dataset and simulated

datasets (where the distance is either that between summary statistics or the MMD). The

percentiles we use are 5%, 10%, 20%, 40% and 80%.

For the two baselines using Kernel ABC, we select the bandwidth γ of the second-level kernel

and the regularisation constant λ in the same way as the proposed approach.

Evaluation Metrics for Estimated Parameters

To evaluate the estimated parameters, we define an error metric defined as 1−p(θreal), where

p(θ) is the posterior probability of the parameter θ obtained with that method. Note that this

“error” does not necessarily capture the quality of uncertainty quantification, but we use it

here for ease of comparison.

5.3.3 Assessment Result: Estimated Parameters

We performed the experiment for each of the four cases of the true unknown parameter

θreal ∈ {(0,0), (0,1), (1,0), (1,1)}. Table 5.1 summarises the defined error metric for the es-

timated parameter, and Figure 5.6 shows the posterior distributions. Rejection ABC with

optimised MMD performs the best in terms of the error metric, however, this method is

not implementable in practice since it chooses the threshold based on the knowledge of

the ground-truth parameter. Among the three approaches using Kernel ABC, the proposed

approach with optimised MMD performs the best for the three cases θreal = (0,1), (1,0), (1,1).

For the case θreal = (0,0), the lowest error is achieved by Kernel ABC with non-optimised MMD

using the dimensional-wise median heuristic. The proposed approach with optimised MMD

under-performs for estimating the posterior probability of the parameter (0,0) since we might
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Table 5.1: Estimated posterior probabilities of the four parameters obtained with Kernel ABC
and the baselines. The columns from (0,0) to (1,1) represents the posterior probabilities of
the four parameters. The column error represents the defined error metric for the estimated
parameter. The symbol * for Rejection ABC-based approaches indicates using the knowledge
of the ground-truth θreal to select the threshold, which are not implementable in practice.
We mark error values with bold font where the error is the smallest among the methods except
for not implementable methods.

method θreal (0,0) (0,1) (1,0) (1,1) error
Kernel ABC with opt. MMD (proposed) (0,0) 0.439 0.182 0.202 0.176 0.56
Kernel ABC with opt. MMD (proposed) (0,1) 0.0 0.97 0.01 0.18 0.029
Kernel ABC with opt. MMD (proposed) (1,0) 0.001 0 0.987 0.011 0.012
Kernel ABC with opt. MMD (proposed) (1,1) 0.004 0.031 0 0.963 0.036

Kernel ABC with non-opt. MMD (dim. med) (0,0) 0.584 0.135 0.14 0.139 0.415
Kernel ABC with non-opt. MMD (dim. med) (0,1) 0 0.93 0 0.0692 0.069
Kernel ABC with non-opt. MMD (dim. med) (1,0) 0.015 0.015 0.941 0.0283 0.0586
Kernel ABC with non-opt. MMD (dim. med) (1,1) 0 0.108 0.057 0.833 0.166

Kernel ABC with non-opt. MMD (single med) (0,0) 0.25 0.25 0.248 0.25 0.749
Kernel ABC with non-opt. MMD (single med) (0,1) 0.25 0.249 0.25 0.249 0.775
Kernel ABC with non-opt. MMD (single med) (1,0) 0.234 0.243 0.283 0.238 0.716
Kernel ABC with non-opt. MMD (single med) (1,1) 0.0.248 0.25 0.252 0.249 0.75

*Rejection ABC with summary statistics (0,0) 1.000 0.000 0.000 0.000 0.000
*Rejection ABC with summary statistics (0,1) 0.063 0.313 0.313 0.313 0.688
*Rejection ABC with summary statistics (1,0) 0.500 0.031 0.438 0.031 0.563
*Rejection ABC with summary statistics (1,1) 0.125 0.438 0.031 0.406 0.594

*Rejection ABC with optimised MMD (0,0) 1.000 0.000 0.000 0.000 0.000
*Rejection ABC with optimised MMD (0,1) 0.000 1.000 0.000 0.000 0.000
*Rejection ABC with optimised MMD (1,0) 0.000 0.000 1.000 0.000 0.000
*Rejection ABC with optimised MMD (1,1) 0.000 0.000 0.000 1.000 0.000

select improper regularisation parameter of the ARD weights optimisation. We manually

tuned the regularisation parameter by checking visualisation of ARD weights7. Therefore, the

proposed approach with optimised MMD can be further improved by using the automatic

selection of the regularisation parameter.

Regularisation Parameter Selection of Kernel ABC Algorithm To compute the the posterior

probability with Kernel ABC, we need to select the regularisation parameter λ in Eq. (5.7). As

we show in Eq. (5.9), we propose an automatic selection of λ by minimising the criterion.

Table 5.4 shows the values of the objective function (5.9) for different values of λ, computed for

each case of the ground-truth parameters. According to the criterion, we can see that λ should

not be too small or large. By observing the estimated posterior probabilities in Figure 5.6, the

7At the time of this assessment, we have not developed the automatic regularisation parameter selection method
described in Chapter 3.
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Figure 5.6: Calculated posterior probabilities of the four possible network parameters, for
each of the four cases of the ground-truth parameter. The left-upper figure shows the results
for Kernel ABC with optimised MMD (proposed), the centre-upper figure Kernel ABC with
non-optimised MMD and the dimension-wise median heuristic, the right-upper figure Kernel
ABC with non-optimised MMD and the single-bandwidth median heuristic, the left bottom
figure Rejection ABC the mean summary statistic, and the centre-bottom figure Rejection ABC
with optimised MMD. In each figure, the horizontal axis indicates the four possible parameters
θ and the vertical axis indicates posterior probabilities.

estimated posterior probabilities look reasonable. Thus, the automatic λ selection sounds

work well, and therefore, Kernel ABC works well for estimating the unknown ground-truth

parameters in this setting.

Posterior Estimation Quality by Kernel Length Scale Selection of MMD Estimator Fig-

ure 5.6 shows the estimated posterior distributions. The center-upper (“baseline-1”) and

right-upper (“baseline-2”) plots represent the posterior distributions obtained from the two
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baseline methods using Kernel ABC with non-optimised MMD. The differences in these two

lie in the specification of the length scale (bandwidth) parameter of a Gaussian kernel. The

center-upper (“baseline-1”) is the result where the length scale is calculated by the dimension-

wise median heuristic, and the right-upper (“baseline-2”) is the result where the length scale

is calculated by the single median heuristic. The plots of the two baselines represent that the

specification of the length scale strongly influences the posterior distribution of the kernel

ABC. In particular, the estimation quality is not excellent with the MMD using the single

median heuristic, suggesting that the single median heuristic fails to capture key characteris-

tics in the datasets. On the other hand, the Kernel ABC estimation with the dimension-wise

median heuristic (center-upper) is similar with the estimated posterior distribution by the

proposed approach (left-upper). However, the baseline-1 (center-upper) allows for certain

probabilities of θ = (0,1) and θ = (1,0) when the real value of θreal is (1,1), while the proposed

approach successfully suppresses these unpreferred probabilities for θ = (0,1) and θ = (1,0).

These observations suggest that the MMD using the dimension-wise median heuristic can

produce a reasonably good posterior distribution even without ARD-weights optimisation.

However, MMD with ARD-weights optimisation can further improve the estimation accuracy.

Parameter Estimation Result by Rejection ABC (Baselines) We represent the difficulty of

choosing the threshold in Rejection ABC.

Figure 5.7 shows a histogram of the distances between observed dataset Sreal and simulated

datasets Sθ1 , . . . ,SθN , where the distance metric is either given by the summary statistic (left)

or by the MMD (right). Each of these baseline methods sets a threshold for such distances to

select parameters from θ1, . . . ,θN to accept. Table 5.2 summarises parameter estimation results

depending on different thresholds (determined by percentile values). The results suggest

the performance of Rejection ABC is sensitive to the threshold used. Based on Table 5.2,

we selected the “best” threshold that achieves the highest F1 score for each setting, and

show the histogram of the resulting accepted parameters in Figure 5.6 (bottom). Note that,

in practice, one cannot choose the threshold in this way, because one does not know the

ground-truth parameter and thus cannot calculate the F1 score. In each setting, the posterior

distribution obtained with the optimised MMD concentrates on the ground-truth parameter,

which suggests the effectiveness of the MMD as a distance metric. In contrast, the mean

summary statistic does not provide sharp posterior distributions, suggesting that the mean

statistic misses key characteristics in the datasets needed for parameter calibration.

5.3.4 Assessment Result: Uncertainty Quantification

Figure 5.8 shows the uncertainty distributions of the travel time KPI, computed from all the

vehicles (left) and only from the AD group (right). The travel group “AD” is expected to be
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Figure 5.7: Distributions of the distance between 80 Sθ samples and Sr eal for Rejection ABC.
The left side shows the distance of the summary statistics. The right side shows the distance of
MMD.

influenced by the lane blockage in case of θ = (0,0), as the travel route goes through the edge

where the two lanes may be closed. Our quantified uncertainties about travel time confirm

that lane blockage events lead to longer travel times. The quantified travel time KPI do not

significantly change in case of θ = (0,1), (1,0), (1,1). That may be because the vehicle driver’s

configuration of the traffic simulator (“SUMO”). The vehicle drivers attempt to drive through

the original route if the one of lanes are available (either θ = (0,1) or θ = (1,0)), and the travel

time is not significantly affected by the lane blockage. Still, the travel time at θ = (0,1) and

θ = (1,0) become with wider variances than the case of θ = (1,1). That would suggest traffic
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Table 5.2: Performance of Rejection ABC per threshold.

true_parameter metric percentile threshold precision recall f
(0, 0) summary-stats 5 0.020 1.000 0.2 0.333
(0, 0) summary-stats 10 0.029 1.000 0.4 0.571
(0, 0) summary-stats 20 0.057 1.000 0.8 0.889
(0, 0) summary-stats 40 2.953 0.625 1 0.769
(0, 0) summary-stats 80 2.994 0.313 1 0.476

(0, 1) summary-stats 5 0.003 0.500 0.1 0.167
(0, 1) summary-stats 10 0.009 0.375 0.15 0.214
(0, 1) summary-stats 20 0.021 0.313 0.25 0.278
(0, 1) summary-stats 40 0.033 0.333 0.55 0.415
(0, 1) summary-stats 80 3.006 0.313 1 0.476

(1, 0) summary-stats 5 0.009 0.500 0.1 0.167
(1, 0) summary-stats 10 0.014 0.750 0.3 0.429
(1, 0) summary-stats 20 0.024 0.563 0.45 0.500
(1, 0) summary-stats 40 0.048 0.438 0.7 0.538
(1, 0) summary-stats 80 0.107 0.313 1 0.476

(1, 1) summary-stats 5 0.004 0.500 0.1 0.167
(1, 1) summary-stats 10 0.008 0.375 0.15 0.214
(1, 1) summary-stats 20 0.012 0.375 0.3 0.333
(1, 1) summary-stats 40 0.029 0.406 0.65 0.500
(1, 1) summary-stats 80 0.080 0.313 1 0.476

(0, 0) MMD 5 0.037 1.000 0.2 0.333
(0, 0) MMD 10 0.039 1.000 0.4 0.571
(0, 0) MMD 20 0.045 1.000 0.8 0.889
(0, 0) MMD 40 1.112 0.625 1 0.769
(0, 0) MMD 80 1.348 0.313 1 0.476

(0, 1) MMD 5 0.033 1.000 0.2 0.333
(0, 1) MMD 10 0.036 1.000 0.4 0.571
(0, 1) MMD 20 0.046 1.000 0.8 0.889
(0, 1) MMD 40 0.348 0.625 1 0.769
(0, 1) MMD 80 1.022 0.313 1 0.476

(1, 0) MMD 5 0.026 1.000 0.2 0.333
(1, 0) MMD 10 0.029 1.000 0.4 0.571
(1, 0) MMD 20 0.035 1.000 0.8 0.889
(1, 0) MMD 40 0.801 0.625 1 0.769
(1, 0) MMD 80 1.299 0.313 1 0.476

(1, 1) MMD 5 0.063 1.000 0.2 0.333
(1, 1) MMD 10 0.066 1.000 0.4 0.571
(1, 1) MMD 20 0.079 1.000 0.8 0.889
(1, 1) MMD 40 0.509 0.625 1 0.769
(1, 1) MMD 80 1.265 0.313 1 0.476

congestion occurs by the lane blockage, and the travel time becomes longer.
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Figure 5.8: Empirical posterior predictive distributions of the travel time KPI computed from
all the vehicles (left) and only from the AD group (right), for each of the four cases of the
unknown ground-truth parameters. The horizontal axis indicates travel time (in seconds),
and the vertical axis shows frequencies (histogram) in the 50 simulations from the posterior
distribution.

Table 5.3: Means and variances of the uncertainty distributions for the travel time KPI.

group θreal mean variance

all (0,0) 181.960 4.797
all (0,1) 176.190 1.115
all (1,0) 175.960 1.388
all (1,1) 175.970 1.042
AD (0,0) 203.98 52.355
AD (0,1) 142.41 2.639
AD (1,0) 142.67 2.529
AD (1,1) 143.41 3.200
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Table 5.4: Values of the criterion (5.9) for different regularisation constants λ, for each of the
four cases of the ground-truth parameters θreal.

λ \ θreal (0,0) (0,1) (1,0) (1,1)

1.78E-03 0.970 0.763 0.065 0.842
3.16E-03 0.834 0.563 0.041 0.651
5.62E-03 0.738 0.437 0.024 0.549
1.00E-02 0.651 0.367 0.046 0.459
1.78E-02 0.571 0.307 0.087 0.355
3.16E-02 0.472 0.238 0.150 0.226
5.62E-02 0.316 0.393 0.252 0.401
1.00E-01 0.087 0.559 0.402 0.551
1.78E-01 0.219 0.775 0.604 0.724
3.16E-01 0.582 1.032 0.855 0.947
5.62E-01 0.955 1.284 1.129 1.189
1.00E+00 1.286 1.502 1.387 1.426
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Chapter 6

Conclusion and Future Work

This thesis addresses a ubiquitous problem in comparing a pair of high-dimensional data and

offers two-sample testing variable selection as a solution for humans.

In Chapter 3, we focus on the ARD weights a ∈RD of the ARD kernel (2.3)

k(x, y) = exp

(
− 1

D

D∑
d=1

a2
d (xd − yd )2

γ2
d

)
,

and selects variables using the optimised ARD weights in the MMD estimator optimisation

problem (Sutherland et al., 2017). To correctly capture the shape of differences between P,Q,

we add a regularisation term to this optimisation problem Eq. (3.2). Since the regularised

optimisation problem demands a parameter λ, we introduce automatic data-driven meth-

ods of choosing an appropriate λ (Section 3.4.1) and aggregating several optimised ARD

weights (Section 3.4.2).

In Chapter 4, we address the practical demands of comparing a pair of high-dimensional

time-series data (spatial-temporal data). The proposed framework divides a set of time steps

into several buckets and executes the variable selection in each bucket. Since the framework

is generic, one can employ any variable selection method, however, we empirically show that

the MMD-optimisation-based variable selection methods are effective.

Chapter 5 focused on parameter calibration problems, especially when a model execution

takes an expensive computational cost, and proposed the Human-In-Loop parameter calibra-

tion. The MMD-based variable selection gives humans information for judging if continuing

or stopping the calibration iteration. By integrating the MMD estimator as a distance metric

of KernelABC Eq. (5.5), parameter estimation is possible.

The proposed methods in this thesis can be applied to many practical problems and will pro-
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vide humans with helpful insights. Yet, there is still space for improvement and we summarise

some remaining challenges in the following.

Faster MMD Estimator Optimisation One potential future direction is to make the pro-

posed methods scalable to large datasets. Since evaluating the objective function Eq. (3.2)

requires quadratic complexity to the sample size, it can be slow when the sample size is large.

A straightforward extension is to adapt the linear MMD estimator (Gretton et al., 2012b);

We have empirically observed that the linear MMD estimator leads to poorer variable selec-

tion (See Appendix I.2). Yet, there are already many strategies for realising faster computation

of MMD estimates, such as B-Tests (Zaremba et al., 2013), Fourier-feature type approxima-

tions (Jitkrittum et al., 2016). Some of them would be well-applicable to our variable selection

approach.

Relationships between Variables (Interdependency) Our proposed method successfully

picks a set of representative variables between two probability distributions. Still, in practical

analysis work, there are demands for variable relationships; the question is “which variables

are strongly dependent on the representative variables? How are their strength?”. An example

of such analysis demand is comparing image data as in Section 3.5.4. Although this example

selects a set of pixels (variables) representing differences between cat and dog faces, these pix-

els are insufficient to confirm. Ideally, we can represent the relationships of the selected pixels

and other surrounding pixels. It is possible to obtain this information in a post-processing

approach (such as independently computing correlations to pixel-to-pixel); however, it is

better to represent such variable-dependent information in an optimisation problem.

Asymptotic Analysis of Variable Selection by Regularised Optimisation Another key di-

rection is developing a statistical theory to understand better the proposed methods, such

as the consistency of the proposed methods for estimating the ground-truth variables S in

Definition 1. To this end, one needs to analyse the asymptotic behaviour of the solution of the

regularised objective Eq. (3.2), but this may be challenging because of the nonconcavity of the

ratio objective Eq. (2.4) concerning the ARD weights.

Tracking Model Parameter from Selected Variables A part of model validation is between a

surrogate model and the target system to be approximated (See an example in Section 4.5).

When a surrogate model outcome does not reach the acceptable range of accuracy, a model

validator naturally wonders what causes the error. Possibly, an error lies in the training

step of a surrogate model, in the case where the surrogate model is tractable. In this case,

ideally, variable selection can tell not only selected variables in the surrogate model outcomes
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but also the relationships between selected variables and trainable model parameters. This

relationship would help the model validator understand where the outcome errors originate

from. Such research direction is possible when we set an MMD estimator as the objective

function of the surrogate model and optimise the MMD estimator (ARD weights) and the

surrogate model parameter together. Indeed, MMD is often used as an objective function in

many machine-learning tasks (Sutherland et al., 2017).

Social Implementation for Generative Model Validation Recently1, especially by emerging

practical generative models, models are progressively more intimate to society than before.

Dall-E (Ramesh et al., 2021) and Stable Diffusion Model (Rombach et al., 2022) are public

available tools on the internet with easy-to-use WEB interfaces and let people recognise its

practical application. Social attention is more important than ever to models, and model

validation is crucially important for models to be trusted by society. For sure, our variable

selection is an effective approach for validating these models; however, it is challenging to

confirm these models for all use cases of end model users in society. Since models are widely

accessible to society, model use cases would be more diverse such that the model developers

are not able to cover all application cases. In a perfect world, all model users are conscious

of the importance of model validation and conduct it for their applications; however, in

practice, it is impossible. First of all, in most end-user-level application cases of generative

models, there are no datasets to be compared. A possible workaround may be referring to

model validation results that someone else conducted already and judging if further model

validation is necessary or not. If there were such automated checking systems or software,

model validation at the end-user level would ensure model outcome quality at a certain level.

This future work is out of the variable selection framework; however, we believe that necessary

for the social implementation of generative models in a desirable direction.

— · —

The research of variable selection in comparing datasets is not paid attention compared to

other machine learning fields. We believe that this thesis lays the foundations for promoting

the variable selection study.

1It would be controversial to say the exact year when models are more intimate to society. In this thesis work,
we regard that 2021 and 2022, that Stable Diffusion Model and Dall-E are publicly available on the internet, are the
years where models started to be intimate to society.
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Appendix

A History of Two Sample Testing

This section intends to provide a historical overview of two sample testing (TST). For the

efforts of scientific researches toward TST with high dimensional data, readers are encouraged

to refer to Section 2.1.

TST is a common problem in the modern statistics where one compares two sets of data points

sampled from two probability distributions. Under TST, one sets the null hypothesis H0 and

the alternative hypothesis H1. When two probability distributions are different, TST rejects

the null hypothesis H0. Before exploring the historical works of TST, we first would like to

introduce early days of the modern statistics.

A.1 Historical Roots of Statistics

The statistics referred to data collection and description methods for a state in the long history

of human beings, as the etymology of the term statistics represents that “It is derived from

stato (state), and a statista is a man who deals with affairs of the state” (Hald, 1990b). The term

statistics has gradually altered its meaning and definition in the context of modern science and

started to seek hypotheses such that the definition represents “statistics is a mathematical and

conceptual discipline that focuses on the relation between data and hypotheses.” (Romeijn,

2022). Modern statistics came with the rapid growth of sciences in the early 20th century.

Modern science started as scientists started to seek “how things work” instead of “absolute

truth” (Pagels, 2009) and exploit statistics to answer this question.
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A.2 Emergence of Modern Statistical Methods

Modern statistical tools have appeared in days of the early 20th century with the trend of the

modern science. Francis Galton is said to be one of pioneers in the early age by connecting the

statistics with the biology and the psychology, and introducing the concept of the correlation

coefficient or regression (Fancher, 1997). Karl Pearson’s works (Barnard, 1992) are regarded

as one of the breakthrough works in this early days in establishing the field of mathematical

statistics, developing the chi-squared test (Kotz and Johnson, 1992). In a few years later in 1908,

another breakthrough work Student’s t-distribution and Student’s t-test were by William Gos-

set (Student, 1992)1. Although Pearson’s and Gosset’s works are the fundamental works of the

modern statistics, Ronald Fisher is often said to be the “founder of the modern statistics” (Rao,

1992). His work (Fisher, 1992) introduced not only F -distribution but also an essential concept

of hypothesis testing: the null hypothesis, alternative hypothesis. In 1933, Egon Pearson and

Jerzy Neyman introduced and added essential concepts for the hypothesis testing: Type-I and

Type-II errors (Neyman and Pearson, 1992). These two errors has provided a clear framework

for evaluating and comparing the performance of different hypothesis tests to statisticians.

In the development of modern statistics, TST has been regarded as an extension case or a

subdomain of hypothesis testing. The primary distinction is found in the comparison’s coun-

terpart. Hypothesis testing involves comparing a given sample to a hypothesised distribution

and determining how well the sample matches the distribution. In contrast, TST focuses on

two sets of samples to determine if they likely originate from the same population.

A.3 Classic Nonparametric Two Sample Testing

Nonparametric statistics is the statistical approaches without knowing the underlying proba-

bility distribution, and the nonparametric TST is one part of it. The term “nonparametric” test

became commonly in 1940s (Dodge, 2008), however, there was an attempt of the nonparamet-

ric testing even before.

It is said to be John Arbuthnot is the first person who used not only nonparametric hypothesis

testing, but also hypothesis testing in the history of statistics, even though he did not use any

terms of the modern statistics vocabularies such as p-value (Hald, 1990a). In 1710, Arbuthnot

calculated a probability under the assumption of “the probability of male and female birth

were equal” based on the birth records in London during 82 years. The calculated probability

is 1
2282 , and he commented that this probability as “Art, Not Chance, that governs” that we

interpret rejecting the null hypothesis in the modern statistics. He thought this extreme

1Gosset used the penname Student since Guinness, for which he had worked, disallowded scientific publications
of employees (enc, 2008a). At Guinness, Gosset has purshed to improve planting conditions of barley by the
statistics. Since barley harvesting is once per year, the number of observations is limited. His Student-t test has
been motivated by the practical problem.
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low probability is a proof that human’s sex ratio is the event given by God, since his central

motivation has lied in proving the existing of God.

Despite Arbuthnot’s work, the nonparametric testing domain has had less developments until

20th century (enc, 2008b). The well-known nonparametric testing work came in 1933 by Andrey

Kolmogorov. He constructed the goodness-of-fit test between the Empirical Distribution

Function (EDF) made with the collected samples and a true probability distribution. After that,

Vladimir Smirnov extended Kolmogorov’s work to TST in 1939. TST method by Kolmogorov

and Smirnov is known as the Kolmogorov-Smirnov test (KS test) (Kolmogorov, 1992).

A notable work in the nonparametric TST is the Mann-Whitney U test by Henry Mann and

Donald Whitney (Mann and Whitney, 1947). The Mann-Whitney U test measures the differ-

ence of the two sample distributions by the rank of the samples. This approach using the

ranking is called Ranking Based Two Sample Testing nowadays.

Compared with the parametric testing, nonparametric testing has a strong advantage that

it does not require the underlying assumptions about the probability distribution. On the

other hand, nonparametric testing tends to mark more Type-II errors than the parametric

testing when the data meet the parametric assumptions (Dodge, 2008). Therefore, nonpara-

metric testing has required more samples for realising the compatible performance with the

parametric testing.

B Model Validation and Two Sample Testing

While this thesis define model validation as “a procedure to confirm that model outcomes

fall within the acceptable range of accuracy expected by the applicationt’t’, the term “model

validation” may contain a wide range of procedures and approaches and refer to them. This

section first breaks down the term “model validation” and clarify the connection between the

model validation and two sample testing. Most of descriptions are from the work in Sargent

(2010) that focuses on the development of a simulation model.

Before delving into the model validation, we want to clarify the term model validator and the

stakeholders of the model development process. Sargent’s work defines a term team consisting

of two parts: a model development team and model sponsors/model users. The development

team is responsible for the whole procedure of the developments, starting from designing and

implementing the model, including verification and validations. On the other hand, the model

sponsors/users are responsible for checking the model behaviours and making the decision

about the verifications and validations. The model validation is done when the development

team and model users make agreement about the model’s behaviours. In this thesis work, we

suppose that model validator can be the model development team or model sponsors/users.
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B.1 Model Validation Procedures

A model is an approximation of the real world system. A model development procedure

consists of four steps in the order: model verification, model validation, model credibility, and

model accreditation.

Among these four steps, the model credibility and model accreditation, final two steps involve

model users’ confidence about the model and political intention by a government or society.

The model credibility is “developing in (potential) users the confidence they require in order

to use a model”, and the model accreditation is ”official certification that a model, simulation,

or federation of models and simulations and its associated data are acceptable for use for a

specific application”, which is defined by the U.S.A Department of Defense. These two steps

are rather subjective decisions by society or organisations, and are not the main focus of this

thesis.

The model verification is a procedure to confirm that the model is correctly implemented

and behaves as expected. Logical testing, code review, and unit testing are typical procedures

for the model verification. In the model validation, the model validator confirms models’

outcomes lie within the acceptable and expected range of accuracy. We note that the model

verification and model validation are not always in the perfect waterfall order. The model

validator may discover errors concerning the model verification (e.g. a logic error) in the model

validation. In such cases, the model developer is required to execute the model verification

and fix errors. This thesis mainly targets the model validation.

B.2 Model Validation Procedure

Sargent’s work categorises the model validation into two procedures: conceptual model vali-

dation and operational validity. The conceptual model validation involves validation (and

partial verification) of the model’s underlying assumptions and logic. On the other hand, the

operational validity intends to confirm that the model’s outcomes lie within the acceptable

range of accuracy.

Table 1 describes the classification of operational validity, based on whether the real system is

observable and whether the validation approach is subjective or objective. The observable real

system is one in which we have access to a counterpart model (or reference model) that allows

us to obtain its outcomes on demands. In contrast, the non-observable system is one where

we lack access to a counterpart model and have limited available data. An example of this

would be developing a model that simulates natural events. Our model validation proposal in

this thesis offers a solution for objective approaches in both observable and non-observable

systems across the four categories in Table 1.
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Table 1: Classification of approaches for the operation validity from (Sargent, 2010).

Observable System Non-observable System
Subjective Approach Comparing a developed model

with a counterpart using graphi-
cal displays.

Exploring a developed model
behaviour.

Objective Approach Comparing a developed model
with a counterpart using statis-
tical tests.

Comparing a developed model
with given samples using statis-
tical tests.

Parameter Calibration A model typically has a set of parameters that significantly influence

its behaviour. Even when the models underlying logic is correct, improper parameters can lead

to outcomes that do not align with those produced by a counterpart model or real-world data.

Thus, parameter calibration is a vital step in validating the model. Normally, the parameter

calibration is done during the operational validity. Then, the model validator checks the

compatibility of the model outcomes and the counterpart. Parameter calibration has a long

history as a field of research, which we discuss further in Chapter 5.

Model Validation Methods As we show in Table 1, the comparison is a fundamental proce-

dure for the objective operational model validity. Sargent’s work introduces three approaches

for the operational model validity: graphical comparison of data, confidence interval, and two

sample testing, and it recommends using the confidence interval or hypothesis tests to make

the decision more objective.

The confidence interval is an approach that compares summary statistics (e.g. the mean or

variance value) of the model’s outcomes with the counterpart. In this sense, we could regard

the confidence interval approach as a part of the hypothesis testing approach.

The model validation proposed in this thesis is categorised into two sample testing. As Sargent

explains, two sample tests offer an objective approach to model validation, thus preferred

approach. However, challenges emerge when both the developed model and its counterpart

involve high-dimensional data. As Chapter 1 describes, this thesis presents interpretable

model validation by demonstrating the supporting information provided by two sample tests.

C Preliminary Theoretical Analysis

We first present a theoretical analysis of MMD defined with a generalised version of the ARD

kernel (2.3), defined below. For each variable d = 1, . . . ,D , let φd :R 7→R be a one-dimensional

positive definite function. Then, for ARD weights a1, . . . , ad ≥ 0, we define a generalized ARD
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kernel as

k(x, x ′) :=
D∏

d=1
φd

(√
a2

d (xd −x ′
d )2/D

)
(1)

for x = (x1, . . . , xD )> ∈RD and x ′ = (x ′
1, . . . , x ′

D )> ∈RD . For example, if φd (r ) := exp(−r 2/γ2
d ) for

r ≥ 0, the Gaussian ARD kernel in (2.3) is recovered, as we have
∏D

d=1φd

(√
a2

d (xd −x ′
d )2/D

)
=∏D

d=1 exp
(
− 1

D
a2

d (xd−yd )2

γ2
d

)
= exp

(
− 1

D

∑D
d=1

a2
d (xd−yd )2

γ2
d

)
. Likewise, if φd (r ) := exp(−|r |/γd ), then a

Laplace-type ARD kernel is obtained.

For S ⊂ {1, . . . ,D}, we define kS :R|S|×R|S| 7→R as the restriction of the ARD kernel (1) on S:

kS(xS , x ′
S) := ∏

d∈S
φd

(√
a2

d (xd −x ′
d )2/D

)
, xS , x ′

S ∈R|S|.

For U = {1, . . . ,D}\S, kU :R|U |×R|U | 7→R is defined similarly. Then the kernel (1) can be written

as the product k(x, x ′) = kS(xS , x ′
S)kU (xU , x ′

U ) for x = (xS , xU ) ∈RD and x ′ = (x ′
S , x ′

U ) ∈RD .

Proposition 2 below shows an expression of MMD when S ⊂ {1, . . . ,D} is the subset in Definition

1.

Proposition 2. Let S ⊂ {1, . . . ,D} be the subset in Definition 1, and let U := {1, . . . ,D}\S. Then,

for MMD (2.1) between P and Q with the generalized ARD kernel k in (1), we have

MMD2
k (P,Q) = E[kU (XU , X ′

U )]MMD2
kS

(PS ,QS). (2)

where XU , X ′
U

i .i .d .∼ PU . Moreover, we have

max
a∈RD

MMD2
k (P,Q) =

( ∏
d∈U

φd (0)

)
max

aS∈R|S|
MMD2

kS
(P,Q), (3)

Proof. Appendix C.2.

To understand Proposition 2, consider an example where D = 5, S = {1,3} and U = {2,4,5}.

Then Eq. (2) shows that the MMD between the 5-dimensional distributions P and Q can

be written as the MMD between the 2-dimensional marginals P{1,3} and Q{1,3} multiplied by

the constant E[k{2,4,5}(X{2,4,5}, X ′
{2,4,5})]. Consequently, as shown in Eq. (3), the maximum of

MMD2
k (P,Q) over the 5 ARD weights a1, a2, a3, a4, a5 is equal to the product of the maximum of

MMD2
k{1,3}

(P{1,3},Q{1,3}) over the 2 ARD weights a1, a3 and the constant
∏

d∈{2,4,5}φd (0), which

is obtained by setting the 3 ARD weights a2, a4, a5 to be 0.

The above example suggests that, by maximizing the MMD over the ARD weights, it may be

possible to identify the true variables S and the redundant ones U . However, this requires
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that the marginal distribution PU = QU of the redundant variables U be non-singular, as

Proposition 3 below suggests.

Proposition 3. Consider the same setting as Proposition 2. Suppose that each φd :R 7→R in (1)

satisfies φ(0) >φ(r ) for all r > 0. Moreover, let

a∗ ∈ arg max
a∈RD

MMD2
k (P,Q)

be a maximiser of MMD between P and Q (which may not be unique). Let V ⊂U be such that

for each d ∈V , the variance of the marginal distribution Pd (=Qd ) is not zero. Then, a∗
V ∈R|V |

is the zero vector: a∗
V = 0|V |.

Proof. See Appendix C.2.

For example, consider the above example where D = 5, S = {1,3} and U = {2,4,5}. Let a∗ =
(a∗

1 , a∗
2 , a∗

3 , a∗
4 , a∗

5 ) be a maximiser of the MMD. If the variances of P2 = Q2 and P5 = Q5 are

positive, and that of P4 =Q4 is zero, then V = {2,5}. In this case, Proposition 3 suggests that

a∗
2 = 0 and a∗

5 = 0. However, the optimised weight a∗
4 for the 4th variable may not be zero,

as its marginal distribution P4 = Q4 has zero variance: this is the case where P4 = Q4 are a

Dirac distribution δξ for some fixed ξ ∈R, i.e., X4 ∼ P4 =Q4 satisfies X4 = ξ almost surely. The

following example shows that, in such a case, the optimised ARD weight associated with a

redundant variable d ∈U \V can be non-zero.

Example 1. Suppose that the d-th variable Xd of X ∼ P and the d-th variable Yd of Y ∼ Q

always take the same fixed value ξ ∈ R. Then we have d ∈ U \V , as Pd = Qd = δξ have zero

variance. Let X ′
d and Y ′

d be i.i.d. copies of Xd and Yd , respectively. For any ARD weight ad ∈R,

we then have

φd (
√

a2
d (Xd −Yd )2) =φd (

√
a2

d (Xd −X ′
d )2)

=φd (
√

a2
d (Yd −Y ′

d )2) =φd (
√

a2
d (ξd −ξd )2) =φd (0).

Therefore, the ARD weight ad does not influence the value of the d-th kernel φd and thus that of

the resulting kernel (1). Consequently, any value of the ARD weight ad attains the maximum of

the MMD in (3). The same issue occurs with the objective function in (2.4), since it depends on

the ARD weights only through the kernel (1).

Example 1 suggests that one may fail to identify redundant variables if one optimises the

ARD weights based only on the MMD or the objective function (2.4), as both depend on the

datasets only through the kernel. In our example where D = 5, S = {1,3}, U = {2,4,5} and

V = {2,5}, if the 4th variable always takes the same value, say ξ= 1.74, for P and Q, this variable
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is clearly redundant. However, the optimised ARD weight a∗
4 can be any value to attain the

maximum of MMD or the objective function (2.4). This issue provides one motivation for

using regularisation, as explained next.

C.1 Proof of Proposition 1

Proof. We first prove that the uniqueness of S satisfying the conditions in Definition 1. To

this end, suppose that there exist two subsets S1 ⊂ [D] and S2 ⊂ [D] satisfying the conditions

in Definition 1. Then we shall prove that S0 = S1 ∪S2 satisfies the conditions in Definition 1,

which implies S1 = S2 (otherwise S1 S0 and S2 S0, which contradicts Definition 1).

To prove that S0 satisfies Definition 1, suppose that S0 does not satisfy it, i.e., there exists a

non-empty subset U0 ⊂ S0 such that PS0 = PU0 ⊗PS0\U0 , QS0 =QU0 ⊗QS0\U0 and PU0 =QU0 . Let

U1 :=U0 ∩S1 and U2 :=U0 ∩S2. We either have U1 6=φ or U2 6=φ, because

φ 6=U0 ∩S0 =U0 ∩ (S1 ∪S2)

= (U0 ∩S1)∪ (U0 ∩S2) =U1 ∪U2.

Without loss of generality, suppose U1 6=φ. For A ⊂ [D], let Ac := [D]\A. Note that

U0\(U0 ∩ (S0\S1)) =U0 ∩ (U0 ∩ (S0\S1))c

=U0 ∩ (U c
0 ∪ (S0\S1)c ) =U0 ∩ (S0\S1)c

=U0 ∩ (S0 ∩Sc
1)c =U0 ∩ (Sc

0 ∪S1) =U0 ∩S1 =U1 6=φ.

Similarly, we have

(S0\U0)\[(S0\U0)∩ (S0\S1)]

= (S0\U0)∩ [(S0\U0)∩ (S0\S1)]c

= (S0\U0)∩ [(S0\U0)c ∪ (S0\S1)c ] = (S0\U0)∩ (S0\S1)c

= (S0 ∩U c
0 )∩ (S0 ∩Sc

1)c = (S0 ∩U c
0 )∩ (Sc

0 ∪S1)

=U c
0 ∩ [(S0 ∩Sc

0)∪ (S0 ∩S1)]

=U c
0 ∩S1 = S1\U0 = S1\U1.
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Therefore,

PS1 (xS1 ) =
∫

PS0 (x)d xS0\S1

=
∫

PU0 (xU0 )d xU0∩(S0\S1)

×
∫

PS0\U0 (xS0\U0 )d x(S0\U0)∩(S0\S1)

= PU1 (xU1 )PS1\U1 (xS1\U1 ),

i.e., PS1 = PU1⊗PS1\U1 . Similarly, we have QS1 =QU1⊗QS1\U1 . Since PU0 =QU0 , PU1 =
∫

PU0 (xU0 )d xU0∩(S0\S1)

and QU1 =
∫

QU0 (xU0 )d xU0∩(S0\S1), we have PU1 =QU1 . This contradicts the assumption that S1

satisfies the conditions in Definition 1. Therefore S0 satisfies Definition 1.

We now prove the second assertion. Let U ⊂ [D] be the largest subset such that P = PU ⊗PU c ,

Q =QU ⊗QU c and PU =QU , where U c := [D]\U . We show U c satisfies conditions 1) and 2) in

Definition 1.

To show condition 1), suppose there is U ′ ⊂U c such that PU c = PU ′⊗PU c \U ′ , QS =QU ′⊗QU c \U ′

and PU ′ = QU ′ . Then P = PU ⊗ PU ′ ⊗ PU c \U ′ = PU∪U ′ ⊗ P(U∪U ′)c , Q = QU ⊗QU ′ ⊗QU c \U ′ =
QU∪U ′ ⊗Q(U∪U ′)c , and PU∪U ′ =QU∪U ′ . However, U is the largest among such subsets, so we

must have U ′ =φ; thus condition 1) is satisfied.

To show condition 2), suppose there exists S′ ⊂ [D] such that U c ⊂ S′ and condition 1) is

satisfied. Define U ′ := S′\U c = S′∩U . Because U ′ ⊂U , P = PU ⊗PU c , Q =QU ⊗QU c and PU =
QU , we have PS′ = PU ′ ⊗PU c , QS′ =QU ′ ⊗QU c and PU ′ =QU ′ . Because S′ satisfies condition 1),

we must have U ′ =φ. Therefore U c = S′. This proves that S =U c satisfies condition 2).

C.2 Proof of Proposition 2

Proof. Let X , X ′ ∼ P be independent vectors from P , and write X = (XS , XU ) and X ′ = (X ′
S , X ′

U ).

Note that, XS and XU are independent, and so are X ′
S and X ′

U , because P = PS ⊗PU by as-

sumption. Likewise, let Y ,Y ′ ∼Q be independent vectors from Q, and write Y = (YS ,YU ) and

Y ′ = (Y ′
S ,Y ′

U ). Then XS and XU are independent, and so are X ′
S and X ′

U , because Q =QS ⊗QU

by assumption. As PU = QU , we have XU , X ′
U , YU and Y ′

U are i.i.d., which implies that
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E[kU (XU , X ′
U )] = E[kU (YU ,Y ′

U )] = E[kU (XU ,YU )]. Using these properties, we have

MMD2
k (P,Q)

= E[k(X , X ′)]+E[k(Y ,Y ′)]−2E[k(X ,Y )]

= E[kS(XS , X ′
S)kU (XU , X ′

U )]+E[kS(YS ,Y ′
S)kU (YU ,Y ′

U )]

−2E[kS(XS ,YS)kU (XU ,YU )]

= E[kS(XS , X ′
S)]E[kU (XU , X ′

U )]

+E[kS(YS ,Y ′
S)]E[[kU (YU ,Y ′

U )]

−2E[kS(XS ,YS)]E[kU (XU ,YU )]

= E[kU (XU , X ′
U )]

(
E[kS(XS , X ′

S)]+E[kS(YS ,Y ′
S)]

−2E[kS(XS ,YS)])

= E[kU (XU , X ′
U )]MMD2

kS
(PS ,QS),

which proves the first assertion. For the second assertion, we have

max
aU∈R|U |

E[kU (XU , X ′
U )]

= max
aU∈R|U |

E

[ ∏
d∈U

φd

(√
a2

d (Xd −X ′
d )2/D

)]
≤ ∏

d∈U
φd (0) ,

where the last inequality follows from each φd being a monotonically decreasing function.

Therefore

max
a∈RD

MMD2
k (P,Q)

= max
aU∈R|U |

E[kU (XU , X ′
U )] max

aS∈R|S|
MMD2

kS
(P,Q)

≤ ∏
d∈U

φd (0) max
aS∈R|S|

MMD2
kS

(P,Q),

which proves the assertion.

Proof of Proposition 3

Proof. Let

a∗ := (a∗
S , a∗

T ) ∈ arg max
a∈RD

MMD2
k (P,Q). (4)
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By Proposition 2, we have

a∗
S ∈ arg max

aS∈R|S|
MMD2

kS
(PS ,QS),

a∗
T ∈ arg max

aT ∈R|T |
E[kU (XU , X ′

U )].

For a random variable Z ∈ R, denote by Var[Z ] the variance of Z . Then, by assumption, we

have Var[Xi ] = Var[X ′
i ] > 0 for i ∈V ⊂ T . This implies that

E[(Xi −X ′
i )2] = 2Var[Xi ] > 0,

where X ′
i is an independent copy of Xi . Therefore, there exists a constant εi > 0 such that

Pr((Xi −X ′
i )2 > ε2

i ) > 0. (5)

We will show that a∗
i = 0 for i ∈V ⊂ T with proof by contradiction. To this end, suppose a∗

i 6= 0.

Then,

max
aT ∈R|T |

E[kU (XU , X ′
U )]

= E
[ ∏

d∈U
φd

(√
(a∗

d )2(Xd −X ′
d )2/D

)]
= Pr((Xi −X ′

i )2 > ε2
i )

×E
[ ∏

d∈U
φd

(√
(a∗

d )2(Xd −X ′
d )2/D

)∣∣(Xi −X ′
i )2 > ε

]
+Pr((Xi −X ′

i )2 ≤ ε2
i )

×E
[ ∏

d∈U
φd

(√
(a∗

d )2(Xd −X ′
d )2/D

)∣∣(Xi −X ′
i )2 ≤ ε2

i

]
(A)≤ Pr((Xi −X ′

i )2 > ε2
i )φi

(
a∗

i εi /
p

D
) ∏

d∈U \{i }
φd (0)

+Pr((Xi −X ′
i )2 ≤ ε2

i )
∏

d∈U
φd (0)

(B)< ∏
d∈U

φd (0) = max
a∈R|U |

E[kU (XU , X ′
U )]

where (A) follows from φi being a monotonically decreasing function (as it is a positive

definite function) and a∗
i > 0, and (B) from (5) and φkT

(
a∗

i ε
/p

D) <φi (0). This contradicts

that a∗
1 , . . . , a∗

D are a maximiser in (4), implying that the assumption a∗
i 6= 0 is false. Therefore

a∗
i = 0 for i ∈V ⊂ T .
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D Parameter Range Selection for Regularisation Parameter

D.1 Heuristic Regularisation Parameter Range Selection

Algorithm 4 Generating Candidate regularisation Parameters

Input: λlower: the lower bound (default value: 0.01). Nλ: the number of candidate parameters
(default value: 6). (X,Y): a pair of data. Nhistory: the number required for the stopping condition
(default value: 3).

Output: Λ: a set of candidate regularisation parameters.

1: λ=λlower

2: Shistory ← [] . Initialize an empty list
3: While STOPCRITERIA(Ŝλ,Shistory, Nhistory) == False; do
4: Obtain aλ ∈RD by solving (3.2) using λ and (X,Y).
5: Obtain Ŝλ using aλ as in Section 3.3.1.
6: APPENDTOLIST(Shistory, Ŝλ)
7: Update(λ).
8: End While
9: λupper =λ.

10: stepλ = (λupper −λlower)/(Nλ−1).
11: Λ= {λlower,λlower + stepλ,λlower +2stepλ . . . ,

λlower + (Nλ−1)stepλ,λupper}.

1: Function StopCriteria(Ŝλ,Shistory, Nhistory){
2: if |Ŝλ| == 1 then
3: Return True
4: else if Shistory[−1] ==, . . . ,== Shistory[−Nhistory] then
5: Return True
6: else
7: Return False
8: end if
9: }

1: Function Update(λprevious) {
2: if 0 <λprevious < 1.0 then
3: Return 2λprevious

4: else
5: Return λprevious +0.5
6: end if
7: }

Algorithm Table 4 describes the procedure of the heuristic-lambda-range. In the algo-

rithm, Shistory is initialised as an empty list. The while-iteration from lines 3 to 7 continues as
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long as the function STOPCRITERIA returns False. STOPCRITERIA checks two conditions: 1) if

the number of selected variables Ŝλ is one, i.e., |Ŝλ| = 1; and 2) if the selected variables do no

change for the previous Nhistory iterations. In the latter (Line 4 of STOPCRITERIA), Shistory[−1]

refers to the set of variables in the last iteration, and Shistory[−Nhistory] is that in the Nhistory-th

previous iteration.

In the main algorithm, line 4 optimises the ARD weights aλ by numerically solving Eq. (3.2)

using the current value of the regularisation parameter λ and data (X,Y). Based on these

ARD weights, line 5 selects variables Ŝλ as explained in Section 3.3.1. In line 6, the function

APPENDTOLIST appends Ŝλ to the list Shistory, which is used in STOPCRITERIA. In line 7, the

function UPDATE increases the regularisation parameter λ for the next iteration. If 0 <λ< 1,

the function UPDATE increases λ by multiplying 2; if 1 <λ, it adds 0.5 to λ. We have designed

this procedure to speed up the search, as we observed that the upper bound is often above 1

in our preliminary analysis.

Once the upper bound λupper is determined by STOPCRITERIA, the algorithm outputs a set of

Nλ candidate parameters in Lines 10 and 11.

Drawbacks Two drawbacks in the heuristic-lambda-range are as follows: 1. a search

value step forλ is heuristically defined (such as 2λprevious,λprevious+0.5 in Function Update).;

2. λlower is fixed as a hyperparameter value. These drawbacks motivate us to propose the next

method, MMD Model Selection Optuna.

The first drawback causes a failure that heuristic-lambda-range may jump over the opti-

mal λupper. The search step of 2λprevious is too rough, although the optimal λupper, empirically

often, exists at a the range of > 1.0. We exemplify the failure case due to this rough search step;

under more noisy datasets settings, we experience that too large λ lets select too much Ŝλ; For

example, let D = 10, |Ŝλ=0.5| = 5 and |Ŝλ=1.0| = 10. In this case, the optimal λupper would exist

in the range of [0.5,1.0); however, due to 2λprevious, the heuristic-lambda-range jumps

over the optimal λ.

The second drawback is that the lower bound λlower is fixed as a hyperparameter value. We

expect that λlower lets us obtain the maximum number of selected variables, i.e. a λ where |Ŝλ|
becomes the maximum. The λlower given as a hyperparameter is evidently not the optimal

λlower.

D.2 Data-Driven Parameter Range Selection

As we mention earlier in Algorithm 4, this algorithm has two drawbacks. To overcome these

drawbacks, we propose the MMD CV Aggregation Optuna algorithm using Optuna instead of
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the heuristic approach.

We solve this trade-off by applying Optuna hyperparameter tuner (Akiba et al., 2019). Op-

tuna is an open-source hyperparameter optimisation framework designed to automate the

search for optimal hyperparameters using techniques like Bayesian optimisation and effi-

cient sampling methods. We set the number of selected variables |Ŝ| as an objective func-

tion of the Optuna tuner. The Optuna-based-algorithm seeks λlower with maximising |Ŝ|
and λupper with minimising |Ŝ|. The Optuna-based-algorithm conducts the search for λlower

where the default parameter search space is [10−6,0.01] and the search for λupper where

the default parameter search space is [0.01,2.0]. When λlower,λupper are found, then we set

the Λ by Λ = {λlower,λlower + stepλ,λlower + 2stepλ . . . ,λlower + (Nλ − 1),stepλ,λupper}, where

stepλ = (λupper −λlower)/(Nλ − 1) and Nλ is a hyperparameter (a fixed value by default is

Nλ = 10).

E Kernel Length Scale Selection

Variable-wise Median Heuristic

We describe the variable-wise median heuristic, a method for selecting the length scales

γ1, . . . ,γD in the ARD kernel (2.3). This method extends the standard median heuristic used in

the kernel literature (e.g., Garreau et al., 2018).

For each d = 1, . . . ,D, we set γd as the median of pairwise distances of the d-th variable

values in the datasets. To describe the heuristic more precisely, let X = {X1, . . . , Xn} ⊂RD and

Y = {Y1, . . . ,Ym} ⊂RD . For each i = 1, . . . ,n, write Xi = (xi
1, . . . , xi

D )> ∈RD , i.e., xi
d ∈R is the d-th

entry of the vector Xi . Similarly, for j = 1, . . . ,m, let Y j = (y j
1 , . . . , y j

D )> ∈RD with y j
d denoting

the d-th entry of Y j . Then, for each d = 1, . . . ,D, define Ld ⊂R as the set of the d-th variable

values from X and Y, i.e.,

Ld := {xi
d | i = 1, . . . ,n}∪ {y j

d | j = 1, . . . ,m},

We then set γd as the median of pairwise distances between elements in Ld :

γ2
d := median

{
(z − z ′)2 | z, z ′ ∈ Ld , z 6= z ′} . (6)

By setting the length scale γd in this way, the hope is that the scaled differences

{(xi
d − y j

d )2/γ2
d | i = 1, . . . ,n, j = 1, . . . ,m} (7)

would have approximately a similar level of variability across different dimensions d = 1, . . . ,D .
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Minimum Value Replacement If the majority of the elements in Ld take the same value (e.g.,

xi
d = y j

d = 0 for many of i = 1, . . . ,n and j = 1, . . . ,m), many of the pairwise differences in (6)

become zero, so their median γd may be zero. This causes a problem because the length scale

should be positive by definition. We propose the following procedure to address this issue.

First, compute the D length scales γ1, . . . ,γD using the variable-wise median heuristic, and let

γmin > 0 be the minimum among the positive computed length scales. Then, if the median (6)

becomes zero for the d-th variable, we set γd = γmin.

Variable-wise Mean Heuristic In some the applications such as traffic simulation data in

Section 3.5.3, we found that the variable-wise median heuristic makes many length scales

γ1, . . . ,γD zero. This is caused by the data vectors X = {X1, . . . , Xn} and Y = {Y1, . . . ,Ym} being

sparse in this application, i.e., each data vector has many zero entries. Accordingly, as ex-

plained above, the zero length scales are replaced by the minimum of the positive length

scales. However, we found that optimisation of the ARD weights using the resulting length

scales becomes unstable. The reason is that the replaced length scale, say γd , may be much

smaller than some of the pairwise distances (xi
d − y j

d ) in the data.

For example, suppose for simplicity that n = m = 3, x1
d = x2

d = 0, x3
d = 2.0, and y1

d = y2
d = y3

d = 0.

Then the set of pairwise squared distances in (6) is {0,0,0,0,0,0,0,0,0,0,4,4,4,4,4}. Then

the median (6) is zero, and thus γd is set as the minimum γmin of the positive length scales.

If this minimum is, for example, γmin = 0.1, then the ratio (7) for i = 3 and j = 1 becomes

(x3
d − y1

d )2/γ2
min = 4/0.12 = 400. Since this value appears in the exponent of the ARD kernel

(2.3), the kernel value becomes close to 0 for the initial ARD values a1 = ·· · = aD = 1, and thus

the optimisation of the ARD weighs becomes unstable.

Therefore, for such sparse data, we suggest using the variable-wise mean heuristic, i.e., setting

γd by replacing the median (6) by the mean of the pairwise distances. In the above example,

by taking the mean of {0,0,0,0,0,0,0,0,0,0,4,4,4,4,4}, we have γ2
d = 1.33, so (x3

d − y1
d )2/γ2

d =
4/1.33 = 3.00; hence the resulting ARD kernel would not collapse to zero and the optimisation

of the ARD weights becomes stable. Therefore, we use this variable-wise mean heuristic in the

traffic simulation experiment in Section 3.5.3.

F MMD Model Selection Optuna: A Variant of MMD Model Selection

with Optuna

MMD Model Selection seeks the bestλ among the givenΛ. However, there is no guarantee that

the suitable λ is in the givenΛ. Instead of relying on the givenΛ, we let Optuna seek the best λ,

which is a hyperparameter tuner (Akiba et al., 2019). Optuna is an open-source hyperparame-

ter optimisation framework designed to automate the search for optimal hyperparameters
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using techniques like Bayesian optimisation and efficient sampling methods.

Algorithm 5 describes the automatic regularisation parameter selection for MMD Selection
Optuna. In this algorithm, Optuna seeks the best λ by maximising both of a test power on

the validation dataset and a p-value obtained with the selected variables; the test power

is an approximated value that the optimised MMD estimator can correctly distinguish two

probability distributions, and a higher value is better; the p-value, 0 ≤ p ≤ 1.0, is a metric for

qualifying the selected variables, and a lower value is better.

We briefly describe the algorithm procedure. The algorithm requires splitting the given

datasets into the training and validation datasets. The iteration number of parameter searching

by Optuna Nsearch is necessary, which we set Nsearch = 20 by default. The output of this

algorithm is a pair of the selected variables Ŝλ∗ and the best regularisation parameter λ∗. The

algorithm first initialises values for λ∗ and the associated Optuna objective value `∗Optuna at

line 1. Line 4 of this algorithm computes the ARD weights aλ by solving the MMD optimisation

problem with the training dataset and the given λ. Line 5 computes the test power using

the optimised ARD weights on the given validation dataset. Line 7 computes the p-value

by performing a permutation two-sample test on the validation dataset using the selected

variables Ŝλ that the procedure of line 5 obtains. Line 8 defines the Optuna objective function

as `val(aλ)(1−pλ), and, at line 9, Optuna updates the parameter search space. At lines 10-12,

the best objective value and λ are updated when the computed objective value is larger than

the current best value.

Algorithm 5 Automatic Data-driven Regularisation Parameter Selection
. Input: Nsearch: the iteration number of parameter searching by Optuna. (Xtrain,Ytrain):
training data. (Xval,Yval): validation data.
. Output: Ŝλ∗ ⊂ {1, . . . ,D}: selected variables with the best regularisation parameter λ∗ ∈Λ.

1: Initialise λ∗ and the associated Optuna objective function `∗Optuna = 0.0.
2: while Nsearch times do
3: Optuna suggests λ.
4: Obtain ARD weights aλ ∈RD by numerically solving (3.2) using (Xtrain,Ytrain) and λ.
5: Compute `val(aλ) > 0 by evaluating (2.4) on (Xval,Yval).
6: Select variables Ŝλ ⊂ {1, . . . ,D} using aλ as in Section 3.3.1.
7: Compute a p-value 0 ≤ pλ ≤ 1 by performing a permutation two-sample test on (Xval[:

, Ŝλ],Yval[:, Ŝλ]).
8: Compute the Optuna objective function `Optuna = `val(aλ)(1−pλ).
9: Optuna reports the objective function value to the Optuna tuner.

10: if `Optuna > `∗Optuna then
11: Update `∗Optuna = `Optuna and λ∗ =λ.
12: end if
13: end while
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G Component of Variable Selection Algorithms

G.1 Early Stopping of MMD optimisation

MMD-based variable selection methods are based on the optimisation of the MMD estimator.

The optimal epoch size of the optimisation is not known in advance, therefore, we set an

abundant number of epochs and apply early stopping when a defined criterion activates.

There are two early stoppers in our implementation: convergence based stopper and

variable selection based stopper. The optimisation stops when either of the criteria

activates.

The convergence based stopper monitors the loss value of Eq. 3.2 and halts the optimi-

sation when the loss value keeps converging during a certain epoch, by default 100 epochs.

The variable selection based stopper monitors the selected variables Ŝ and halts the

optimisation when the selected variables are the same during a certain epoch, by default 100

epochs. The latter early stopper is necessary, from our experience, since the loss value often

keeps decreasing, while some ARD weights clearly indicate high weight values and others

keep almost zero. In this case, certain ARD weights keep increasing and therefore the loss

values does not converge. To prevent this unnecessary optimisation, we apply the variable
selection based stopper.

The configurations of these early stoppers are as follows: The convergence based stopper
starts monitoring the loss value after 200 epochs. The stopping criteria activates

mi n(v)/max(v) < 0.001 among 100 epochs window-span, where v the loss value, Eq. 3.2.

The variable selection based stopper starts monitoring the selected variables after 400

epochs. After the 400 epochs, the stopper regularly executes the variable selection of Ŝ per 10

epochs.

G.2 MMD Optimisation when the Null Hypothesis H0 is True

The truth of the two-sample testing problem is unknown when we apply the MMD-based

variable selection methods. When the null hypothesis H0 is true, there are two cases in the

MMD optimisation; 1. the optimisation converges to a certain solution and we obtain Ŝ

from the optimised ARD weights, 2. the objective value is impossible to compute because

`(a1, ..., aD ) becomes a minus value.

The second case occurs because an MMD estimate value becomes a minus value. In this case,

the optimisation is impossible to advance. Nevertheless, there may be a possibility that the

truth is a rejection of H0 even though given two samples are quite similar. The MMD estimate

becomes a minus value because the initial ARD weights may be inappropriate. Therefore, we

continue the optimisation problem without log operation in Eq. 3.2 when `(a1, ..., aD ) < 0.0.
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Once `(a1, ..., aD ) > 0.0, we apply the log operation to the loss value. We let the optimisation

continue even if `(a1, ..., aD ) < 0.0 during 3000 epochs. If `(a1, ..., aD ) < 0.0 always during 3000

epochs, we stop the optimisation and accept H0. Since the optimisation is not done, there is

no selected variables Ŝ in this case. We set the p-value as 1.0 in this case.

H Variable Selection with a Given Hyperparameter Threshold

In the context of variable selection, it is possible to introduce a hyperparameter τ for the

optimised weights a ∈RD , that controls the number of selected variables according to specific

objectives,

Ŝ := {d ∈ {1, . . . ,D} | a∗
d > τ}.

This hyperparameter functions as a threshold for the weights, derived from either the opti-

mized Automatic Relevance Determination (ARD) weights or their aggregated weights. By

applying this threshold to the computed weights, one can effectively select variables for which

the ARD weights exceed the predetermined threshold value.

(a) (Sutherland et al., 2017). (b) MMD Model Selection (Al-
gorithm 1).

(c) MMD CV Aggregation (Algo-
rithm 2).

Figure 1: The optimised ARD weights (Sutherland et al., 2017) (Left), optimised ARD weights
by MMD Model Selection (Algorithm 1) (Middle), and aggregated weights by MMD CV Aggre-
gation (Algorithm 2) (Right). The dataset is “Narrower Variance” described in Section 3.5.2.
The red dashed lines are the given threshold τ.

Figure 1 illustrates examples of variable selection based on a thresholding approach for the

dataset generated with the configuration of “Narrower Variance” in Section 3.5.2. The red line

signifies a predetermined threshold. The three plots present, from the left, the ARD weights

optimised by the baseline established in the work of (Sutherland et al., 2017), the ARD weights

associated with the selected λ by the MMD Model Selection method (Algorithm 1), and the

aggregated variable weights by MMD CV Aggregation (Algorithm 2). It is noteworthy that the

ground-truth variables are located at the 7th and 17th indices.
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H.1 Assessments of Variable Selection with a Given Hyperparameter Threshold

We conduct empirical and qualitative evaluations for variable selection utilising a threshold

approach. For the weight distributions illustrated in Figure 1, we establish 100 threshold

values and compute the corresponding F1 scores described in Section 3.5.2. Figure 2 presents

the relationships between the threshold values and F1 scores for three distinct weight distribu-

tions.

(a) (Sutherland et al., 2017) (b) MMD Model Selection (Al-
gorithm 1).

(c) MMD CV Aggregation (Algo-
rithm 2).

Figure 2: The relationship between the given threshold τ and F1 score. We conduct assess-
ments with 100 of τ parameters for the optimised and aggregated weights in Figure 1.

The variable selection process exhibits stability with respect to the hyperparameter, as indi-

cated by the alignment of points along a specific F1 value on the vertical axis. The scatter plot

generated by the MMD CV Aggregation method (Right) reveals two distinct lines at F1 = 1.0

and F1 = 0.667. In contrast, the baseline plot (Left) demonstrates a more unstable relationship

between the threshold and F1 scores when compared to the MMD CV Aggregation plot.

The assessment examples provided above illustrate the advantages of the MMD CV Aggrega-

tion approach when employing user-defined threshold selections.

H.2 Assessments of Variable Selection by Precision-Recall Curve

The Precision-Recall curve is commonly utilized for the assessment of machine learning mod-

els that incorporate a hyperparameter. However, it may not be entirely appropriate for our

variable selection scenarios. Figure 3 illustrates the Precision-Recall curves corresponding

to three distinct variable selection methodologies, as depicted in Figure 1. Despite evalua-

tions conducted across 100 threshold values, the scatter plots exhibit a significant degree of

duplication among the data points, resulting in a sparse representation.
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(a) Baseline without regularisa-
tion (Sutherland et al., 2017).

(b) MMD Model Selection (Al-
gorithm 1).

(c) MMD CV Aggregation (Algo-
rithm 2).

Figure 3: Figure 1. The relationship between the precision and recall scores. We conduct
assessments with 100 of τ parameters for the optimised and aggregated weights in Figure 1.

H.3 Discussion: Interpretable Information by Optimised or Aggregated Weights

While our research primarily focuses on variable selection, it may also be possible to derive

weight distributions and facilitate visual interpretation. This allows for the analysis of the

magnitudes and degrees of differences between two probability distributions.

In the current thesis, we have not assessed the quality of the visual representation of the

extracted weights, as establishing the relationships between weight values and the magnitudes

of contribution for differences between two probability distributions remains challenging.

For instance, in Figure 1, we observe that two variables exhibit high weight values, with the

seventh variable surpassing the weight of the seventeenth variable. However, at this juncture,

we have not sufficiently elucidated the relationships between the weight values of these two

variables. Although we designated two ground-truth variables as equivalent, it is important to

note that these variables may possess differing contribution magnitudes within the specified

datasets.

I Appendix: Synthetic Data Assessment (Appendix to Section 5.3)

I.1 Experiments with with Higher Noise Ratio ρ = 0.8

We perform the same experiments as in Section 3.5.2, with the rate ρ of ground-truth variables

S being modified to 0.8, so that |S| = 20×0.8 = 16. Figure 4 shows the results. Compared with

the results for ρ = 0.1 in Section 3.5.2, all the approaches yield reasonably high scores across

different settings of distributions P and Q. The relative easiness of the setting ρ = 0.8 can be

attributed to the high number of ground-truth variables 16. For example, if one selects all

the variables, i.e., Ŝ = {1, . . . ,D}, then the Recall is 1 and the Precision is 0.8, so the F score is

0.89. However, in practice, one cannot take such a strategy because the value of ρ is typically
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unknown. Given that we do not use the information of true ρ for variable selection, the

obtained scores can be regarded as reasonably high. Among the approaches considered, the

proposed methods, model-selection and CV-aggregation, yield stably high scores across

the different distribution settings.

Figure 4: The results of the same experiments as Section 3.5.2 with ρ = 0.8, discussed in
Section I.1.

I.2 Variable Detection with Linear MMD Estimator

A linear unbiased MMD estimator, proposed by Gretton et al. (Gretton et al., 2012a), is a

computationally efficient alternative to the quadratic unbiased MMD estimator Eq. (2.2).

The quadratic estimator’s computational complexity is O(n2) for sample size n = m, which

can be costly for large n. The linear MMD estimator’s complexity is O(n), thus offering a

reduced computational cost, while its variance is larger than the quadratic estimator. Here, we

compare the linear and quadratic estimators when used in the proposed methods for variable

selection.

Given X = {X1, . . . , Xn} ⊂RD and Y = {Y1, . . . ,Yn} ⊂RD with sample size n being odd, the linear
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MMD estimator is defined as

MMD2
l (X,Y) := 2

n

n/2∑
i=1

h((X2i−1,Y2i−1), (X2i ,Y2i ))

where h((X ,Y ), (X ′,Y ′)) := k(X , X ′)+k(Y ,Y ′)−k(X ,Y ′)−k(X ′,Y ). Assuming that n is divisible

by 4, an unbiased estimator of its variance, which corresponds to Eq. (2.5) for the quadratic

estimator, is given by (Gretton et al., 2012b, Eq. (7)):

σ̌2 := 4

n

n/4∑
`=1

[h((X4`−3,Y4`−2), (X4`−3,Y4`−2))

−h((X4`−1,Y4`), (X4`−1,Y4`))]2

Then, the ratio objective corresponding to Eq. (2.4) is defined as

MMD2
l (X,Y)

p
σ̌2 +C

Using this ratio objective in the regularised objective in Eq. (3.2), one can use the linear

estimator in the proposed methods.

We perform the same experiments as Section 3.5.2 and make a comparison with the proposed

methods using the linear estimator. Figure 5 shows the results of the F score, Precision and

Recall. For all the settings of distributions P and Q, the evaluation scores for the linear estima-

tor are significantly lower than the quadratic estimator. Specifically, in the “Wider variances”

setting, the scores for the linear estimator are consistently low, approaching 0.0. For mmd-
tuning-best-f1, the linear estimator consistently performs worse than the quadratic estima-

tor. Since mmd-tuning-best-f1 provides the highest possible F score for model-selection,

the results indicate that the linear estimator is not suitable for accurate variable selection,

when the sample size n is not too large so that the quadratic estimator is applicable.

Variable Detection with Linear MMD Estimator This section describes the results of the

experiments with the linear MMD estimator. The corresponding results of ρ = 0.1 is found in

Section Section I.2.

Figure 6 plots the comparisons of the linear MMD estimator with the quadratic MMD estimator

for the variable detection task. Similarly as we describe in Section I.2, the significant drop in

the evaluation scores occurs. Considering that the setting of ρ = 0.8 is easier problem than the

one of ρ = 0.1, we could conclude that the quadratic MMD estimator is more suitable for the

variable detection task.
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Figure 5: Comparison of the linear and quadratic MMD estimators when used in the proposed
approaches (CV-aggregation and model-selection) and other baselines (mmd-baseline
and mmd-tuning-best-f1). The left and right figures are the results for ρ = 0.1. The top,
middle and bottom rows show the F score, Precision and Recall for each method and each
setting of distributions P and Q, with the means and standard deviations obtained from
10 independently repeated experiments. Note that the linear estimator often leads to the
complete failure of variable detection, in which case no bar is shown.

I.3 Assessing the Effects of Dimensionality

We assess the effects of the dimensionality D , i.e., the total number of variables, on the variable

selection performance. We consider the same setting as Section 3.5.2, with P and Q being

D-dimensional distributions in the following way.

Let P =N (0D ,Σ), where the covariance matrix Σ ∈RD×D is diagonal with D diagonal elements
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being

(1,1, . . . ,1︸ ︷︷ ︸
10

,2,2, . . . ,2︸ ︷︷ ︸
10

, . . . ,D/10,D/10, . . . ,D/10︸ ︷︷ ︸
10

)

We define the other distribution Q by defining how its random vector Y ∼ Q is generated.

Let S ⊂ {1,2, . . . ,D} be ground-truth variables with ρ = 0.1, so that |S| = D × 0.1. Let X̃S ∼
N (0|S|,ΣS), where ΣS ∈ R|S|×|S| is the submatrix of Σ restricted to the variables S. Let ZS ∼
N (0|S|, I|S|). Then we define YS = X̃S ¯ ZS , where ¯ denotes the element-wise product. Let

Y{1,...,D}\S ∼ N (0D−|S|,Σ{1,...,D}\S). Finally, define Y = (YS ,Y{1,...,D}\S) ∈ RD , and Q is defined as

the distribution of Y .

We consider various values for the dimensionality: D = 20,50,100,200,300,400,500. We fix the

sample size N = 200. For each value of D and each method, we experiment as in Section 3.5.2

and repeat it 10 times to derive evaluation scores’ means and standard deviations.

Figure 7 shows the results. As a general trend, all the approaches, except the regression

baseline, experience a drop in their F scores as the dimensionality D increases. This drop can

be attributed to the variable selection task becoming harder for higher D. The decrease of

the F score appears to be milder for CV-aggregation than the other methods, and the CV-
aggregation attains similar F scores for the largest D as mmd-tuning-best-f1, which is not

implementable in practice and provides the best possible performance of model-selection.

When comparing mmd-baseline with the proposed methods (CV-aggregation and model-
selection, we observe that mmd-baseline experiences a drastic drop in the F score as the

dimensionality D increases, eventually resulting in the zero F score for D = 500. In contrast,

the proposed methods yield reasonable F scores even for D = 500. This difference can be

attributed to the regularisation approach used in the proposed methods, which proves to be

more effective for higher dimensionality D .

I.4 Alternative MMD-based Objective

We compare the proposed objective function Eq. (3.2) for optimising the ARD weights with an

alternative objective function where the ratio objective Eq. (2.4) is replaced by an unbiased

MMD estimate �MMD
2
U (X,Y) in Eq. (2.2), i.e.,

min
a∈RD

− log �MMD
2
U (X,Y)+λ

D∑
d=1

|ad | (8)

Historically, before Gretton et al. (Gretton et al., 2012b) proposed the ratio objective as an

objective function for hyper-parameter tuning in the MMD, Sriperumbudur et al. (2009)

discussed that one could use the MMD itself as an objective function for hyper-parameter

tuning of MMD. The latter approach optimises kernel parameters to maximise the MMD. It
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corresponds to removing the denominator in the ratio objective Eq. (2.4), thus resulting in

Eq. (8). Gretton et al. (Gretton et al., 2012b) showed that maximising the ratio objective yields

higher test power than the MMD maximisation. We will investigate whether this property

translates to the variable selection task, i.e., whether the ratio-based objective Eq. (3.2) leads

to better variable selection performance than the MMD-based objective Eq. (8).

We perform the same experiments as in Section 3.5.2 for both ρ = 0.1 and ρ = 0.8 (recall

this constant ρ represents the ratio of the number of ground-truth variables over the total

number of variables). Here, we compare the performance of Algorithm 1 (model-selection),

mmd-baseline and mmd-tuning-best-f1, which use the ratio-based objective Eq. (3.2), and

their MMD-based objective versions using Eq. (8).

Figure 8 describes the Precision, Recall and F scores for each setting and each method, ob-

tained from 10 independently repeated experiments. The MMD-objective versions tend to

yield lower values of the evaluation criteria than the ratio-objective versions. In particular,

the former yields significantly lower Recall than the latter for ρ = 0.8. While the MMD-based

objective yields better Precision for some settings, this improvement in Precision is enabled

by sacrificing the Recall. Figure 10 shows the number of selected variables for each method

and each setting. It is evident that the MMD objective results in much fewer variables than the

ground-truth variables for ρ = 0.8. Based on these observations, we conclude that the ratio

objective is more appropriate than the MMD objective for variable selection in two-sample

testing.

I.5 Comparing Different CV Aggregation Strategies

In the process of developing Algorithm 2 (CV-aggregation), there were several candidate

ways of computing the aggregation score vector Π̂λ = (Π̂λ,1, . . . ,Π̂λ,D )> ∈RD for each candidate

regularisation parameter λ. Here, we compare these different choices and how we have

arrived at our choice for Algorithm 2. We use the notation for Algorithm 2 in Section 3.4.2 in

the following.

First, there are the following five ways of defining Π̂λ based on the selected variables Si
λ
⊂

{1, . . . ,D}, where i = 1, . . . ,K :

1. “plane-variable”: Π̂λ,d = 1
K

∑K
i=1 I {d ∈ Ŝi

λ
} for d = 1, . . . ,D .

2. “p-value-variable”: Π̂λ,d = 1
K

∑K
i=1(1−p i

λ
) I {d ∈ Ŝi

λ
} for d = 1, . . . ,D .

3. “test-power-variable”: Π̂λ,d = 1
K

∑K
i=1`val(ai

λ
) I {d ∈ Ŝi

λ
} for d = 1, . . . ,D .

4. “p-value-filter-variable”: Π̂λ,d = 1
K

∑K
i=1 I (p i

λ
< 0.05)I {d ∈ Ŝλi } for d = 1, . . . ,D .
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5. “p-value-filter-test-power-variable”: Π̂λ,d = 1
K

∑K
i=1 I (p i

λ
< 0.05)`val(ai

λ
)I {d ∈ Ŝλi }

for d = 1, . . . ,D .

We also have the following five ways based on the normalised ARD weights ãi
λ

, where i =
1, . . . ,K :

1. “plane-ard”: Π̂λ = 1
K

∑K
i=1 ãi

λ
.

2. “p-value-ard”: Π̂λ = 1
K

∑K
i=1(1−p i

λ
)ãi

λ
.

3. “test-power-ard”: Π̂λ = 1
K

∑K
i=1`val(ai

λ
)ãi

λ
.

4. “p-value-filter-ard”: Π̂λ := 1
K

∑K
i=1 I (p i

λ
< 0.05)ãi

λ
.

5. “p-value-filter-test-power-ard”: Π̂λ = 1
K

∑K
i=1 I (p i

λ
< 0.05)`val(ai

λ
)ãi

λ
.

Note that the last approach is the one used in Algorithm 2.

Figure 11 describes the results of these candidate ways for computing the score vector Π̂λ in

Algorithm 2 and the other baseline methods. It shows F scores obtained in the same way as in

Section 3.5.2, for two settings of the rate of the ground-truth variables S, ρ = 0.1 and ρ = 0.8.

One can observe that “p-value-filter-test-power-ard” exhibits the highest stability

among the ten candidate methods for Algorithm 2. Consequently, we have decided to adopt

this way for Algorithm 2.

J Data Generation Process for Section 3.5.3

We define a grid-like road network consisting of eight intersections, as described in Figure 12;

we call it grid network. We define two scenarios for traffic simulation on the grid network:

scenario P and scenario Q, the latter being a perturbed version of the former. In scenario

P , there are two groups of vehicles, one moving from the top-left corner to the bottom-right

corner, and the other moving in the opposite direction. Scenario Q is defined via a perturbation

to scenario P by blocking two specific lanes visualised in Figure 12.

Each intersection in the grid network has 8 sensors, as shown in Figure 12c, resulting in

64 sensors in total in the network. Each sensor emulates an induction loops detector and

measures the flow at the sensor, i.e., the number of vehicles passing in front of the sensor

during one time step, representing one second in the simulation world. Each scenario consists

of 3,600 time steps, corresponding to one hour, during which 200 vehicles are simulated.
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We implement the grid network and the two scenarios using SUMO, a widely used traffic

simulator.2 For each simulation, SUMO generates an XML file containing the sensors’ mea-

surements, from which we construct a Dsensor×Dtime matrix. Here, Dsensor = 64 is the number

of sensors, and Dtime = 12 is the number of time periods, each being 5 minutes. Specifically,

for each s = 1, . . . ,Dsensor and t = 1, . . . ,Dtime, the (s, t)-th element of the matrix is defined as

the average flow at the s-th sensor during the t-th period, calculated by taking the average of

the flows of the 300 time steps (= 5 minutes) of the t-th period.

Since the majority of the parameters of the SUMO are controlled by the value of a random

seed, an excessive seed value could produce an abnormal simulation result. To avoid such

an abnormal simulation, we control the random seed by generating it as R +ε, where R is

uniformly sampled from {0,1, . . . ,9,10} and ε is a Gaussian random variable with mean 1 and

variance 5.

K Particle Simulation

K.1 Setups

We trained the DMCF model (Prantl et al., 2022) having convolutions layers3. The DNN model’s

training configuration is from the author on Github repository4. The training data is from a

ready-to-use dataset of the Waterramp scenario (Sanchez-Gonzalez et al., 2020) that a particle

simulator SPlish Splash generates. The DNN model recursively predicts the next time step’s

particle blobs, i.e. the DNN model’s input is all particles geo-coordinate at t − 1, and the

prediction output is the particles geo-coordinate at t . Because of this recursive prediction,

prediction errors are accumulated over time and particle geo coordinate would become

more and more dissimilar to the Splish-Splash simulation if the DNN model’s prediction is

not accurate. Figure 2 represents an example of the particle blobs from the Splish-Splash

simulation and the DNN model at different time steps. The Splish-Splash output and the DNN

model prediction apparently look dissimilar at the time step of t = 285.

K.2 Naive Approach: a naive L1 distance v.s. variable selection methods

An L1 distance (Absolute difference) is a naive but intuitive method for observing discrepancies.

We compute the average L1 distance per observation sensor d ∈ {1, ...,D} at each time bucket

b ∈ {1, ...B},

2We use version 1.4.0 of SUMO. https://www.eclipse.org/sumo/
3The codebase for the training the DNN model is at https://github.com/tum-pbs/DMCF/blob/main/models/

cconv.py
4https://github.com/tum-pbs/DMCF/blob/96eb7fcdd5f5e3bdda5d02a7f97dfff86a036cfd/configs/

WaterRamps.yml
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b1, t = 90 b2, t = 145

b3, t = 285 b4, t = 325

b5, t = 440 b6, t = 565

Table 2: Particle blobs from a Splish-Splash simulation and the DNN model. blue particle blobs
are from the Splish-Splash simulation, and green particle blobs are from the DNN model.

Av g L1d
b = 1

|Ib |
tb∑

i=tb−1+1
|xd

i − yd
i |, (9)

where xd
i and yd

i are the counts of particles at a sensor d from the Splish-Splash simulation

and the DNN model, respectively, and |Ib | is the number of observations at the time bucket

b. Figure 14 depicts comparisons of heatmaps by the average L1 distance and the variable

selection methods. The heatmap by the averaged L1 distance, Figure 14a, shows that there

are significant differences at buckets b2 and b3, which matches with our observation with

the snapshots in Figure 2. However, a drawback of the averaged L1 distance is that there

are too many sensors representing discrepancies, and it would be time-consuming analysis

work to confirm such sensors. Another drawback would be that the averaged L1 distance
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naturally focuses on sensors showing huge discrepancies; thus there is a possibility of missing

discrepancies occurring by outliers which will be crucial information for the analysis of the

DNN model’s output.

Figures (14b - 14d) are heatmaps by the variable selection algorithms. Compared with the

heatmap by the averaged L1 distance, the variable selection methods are able to dramatically

reduce the number of variables (sensors). Therefore, analysts can focus on the selected

sensors and investigate the discrepancies. Regarding discovering discrepancies that occurred

by outliers, the MMD-based variable selection method successfully discovers such sensors,

as we discuss Section 4.5.2. Table 3 is a comparison of the selected variables in b2,b4. As we

point out in Section 4.5.2, the DNN model prediction has unnatural water particles that seem

to stick the ceil of the box at buckets b2 until b6. MMD Selection and MMD CV successfully

discover such sensors, and the Wasserstein-based method does not.

b2, t = 145 b6, t = 565

ŜWass

ŜMMD Sel

ŜMMD CV

Table 3: Comparison of three variable selection methods. In each table element, the blue
particles (left) are from the Splish-Splash simulator, and the green particles (right) are from
the DMCF model. The red highlighting boxes are sensors selected using the variable selection
method. We select and represent representative time steps at each bucket b. We do not show
the red highlighting box when p-value > 0.05. More descriptions are in Section 4.5.2.
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(a) ρ = 0.8

Figure 6: The comparison of the linear and quadratic MMD estimators for the variable de-
tection task with ρ = 0.8. The corresponding results of ρ = 0.1 is found in Section I.2 and
Figure 5.
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Figure 7: The results of the experiments on assessing the effects of the dimensionality D in
Appendix I.3. The top, middle and bottom figures show the F score, Precision and Recall
for each method and each D, with the mean and standard deviation computed from 10
independently repeated experiments. The horizontal axis indicates the dimensionality D .
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Figure 8: Results of comparative experiments between the ratio-based objective (ratio_obj)
and the MMD objective-based objective (mmd_obj) in Appendix I.4. Note that the evaluation
scores of model_selection/mmd_obj for “Correlated Gaussian” with ρ = 0.1 are all zero,
hence no bars. The corresponding results of ρ = 0.8 is found in Figure 9.
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Figure 9: The description is found in Section 8.
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Figure 10: The number of selected variables in the comparative experiments between the
ratio-based and MMD-based objective functions in Appendix I.4. The top figure shows the
results with ρ = 0.1, where the number of ground-truth variables is 20×0.1 = 2. The bottom
figure is for ρ = 0.8, where the true number is 20×0.8 = 16.

134



K Particle Simulation

Figure 11: Comparison of the ten candidate aggregation methods for Algorithm 2 and the other
baseline approaches. Note that "p-value-filter-test-power-ard” is the one adopted in
Algorithm 2 in the main body of the paper.
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(a) The grid road network. (b) The two closed lanes in the grid network,
highlighted in red.

(c) An intersection in the gird network, with 8 sensors (induction loop detectors) indicated by rectangles
and vehicles by triangles.

Figure 12: Illustrations of the traffic road network used in the experiments of Section 3.5.3.
Figure 12a describes the grid network. Each edge (= road) and each intersection are named
according to the row index (blue) and the column index (red). In each scenario, there are
two groups of vehicles, one travelling from the left-upper edge (row 1, column 0) to the right-
bottom edge (row 3, column 8) and the other travelling in the opposite direction (from the
right-bottom to the left-upper). Figure 12b highlights the two lanes blocked in scenario Q
in red. Figure 12c describes an intersection, where two sensors are located at the end of two
lanes, resulting in eight sensors for each intersection.
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Figure 13: The number of vehicles passing each road in one simulation of scenario P (left) and
scenario Q (right). Each edge’s line width and colour indicate the corresponding number of
vehicles shown in the legend box.
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(a) Heatmaps by the average L1 distance

(b) Wasserstein-based (c) MMD selection (d) MMD CV

Figure 14: Comparison of heatmaps. The horizontal and vertical axes are the indices of time
buckets b and dimension (sensor-id). 14a: A heatmap of the average L1 distance per sensor
at each time bucket. (14b - 14d) Heatmaps by the variable selection methods. The heatmap
is based on weights w ∈RD per dimension at each time bucket. The weight is normalised in
[0.0,1.0] per bucket b for ease of comparison. The heatmap shows only selected variables Ŝ,
and the rest of the values are 0.0. When a p-value by the permutation test ptestb > 0.05, then all
values at b are 0.0. More descriptions are in Section K.2.
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