
PhD Thesis
In partial fulfillment of the requirements for the

degree of doctor of philosophy from Sorbonne University

Communication-efficient Decentralized Learning

for Intelligent Networked Systems

Eunjeong JEONG

Scheduled for defense on September 27, 2024, before a committee composed of:

Reviewers:
Prof. Carlo FISCHIONE KTH, Sweden
Prof. Jemin LEE Yonsei University, South Korea

Examiners:
Prof. Zheng CHEN Linköping University, Sweden
Prof. Giovanni NEGLIA INRIA, France
Prof. Navid NIKAEIN EURECOM, France (President of the Jury)

Thesis Advisor:
Prof. Marios KOUNTOURIS EURECOM, France

Thèse
Présentée pour obtenir le Grade de Docteur de Sorbonne Université

Apprentissage Décentralisé Efficace en Matière de

Communication pour les Systèmes en Réseaux

Intelligents

Eunjeong JEONG

Soutenance de thèse planifiée au 27 Septembre 2024, devant le jury composé de :

Rapporteurs :
Prof. Carlo FISCHIONE KTH, Suède
Prof. Jemin LEE Yonsei University, Corée du Sud

Examinateurs :
Prof. Zheng CHEN Linköping University, Suède
Prof. Giovanni NEGLIA INRIA, France
Prof. Navid NIKAEIN EURECOM, France (Président du Jury)

Directeur de Thèse :
Prof. Marios KOUNTOURIS EURECOM, France

ACKNOWLEDGMENTS

It is such an amazing thing to get a Ph.D. for doing something that I enjoy. And certainly, I

would not have made it without the help of many people.

First and foremost, I sincerely send my gratitude to my thesis supervisor Marios Kountouris.

I always appreciate his wide and deep insight into the newest and the most fundamental aca-

demic trends. I learned how to set my own problems, how to delve into these problems as an

individual researcher, and how to clearly deliver what I have done or what I have to do in the

scientific language.

I greatly thank Prof. Carlo Fischione and Prof. Jemin Lee for reviewing my thesis. I also

highly appreciate Prof. Zheng Chen, Dr. Giovanni Neglia, and Prof. Navid Nikaein for partic-

ipating in my defense as examiners. Thank you very much for sparing your valuable time for

an important moment of my milestone.

I would like to acknowledge Huawei France for supplying support during my doctoral pro-

gram.

From the bottom of my heart, I thank EURECOM friends and colleagues for being humorous,

warmhearted, silly, and intellectual. I am also grateful to my good old friends in Korea for being

supportive, chaotic, and joyful.

I certainly thank EURECOM staff for helping me with the most annoying and trickiest ad-

ministrative procedures. I appreciate their punctuality and kindness.

Most importantly, I would like to express my deepest gratitude to my parents and my brother

for supporting such a bizarre family member like me who had decided to take a long-term inter-

continental travel and study further to grab another degree. Also, I thank to my grandmother

for sending positive energies and cheering to me since I was very young. She would be proud

of her first grandchild bringing a fancy degree.

Needless to say that I thank my dog, Sonic, who has been my best friend in my journey

as a doctoral student. Sometimes he was a bad boy tearing my paper draft or smacking the

keyboard to type gibberish on my Overleaf projects. Nonetheless, he has been lovely enough

to make the world a lot better place to bear.

Last but not least, I thank my potential readers who, somehow, decided to turn another

page of this thesis.

CONTENTS

List of Figures x

List of Algorithms xi

List of Tables xiii

Nomenclature xv

Abstract xix

Résumé [français] xxi

1 Introduction 1

1.1 Background . 2

1.1.1 Federated Learning . 2

1.1.2 Decentralized (Serverless) Learning . 4

1.1.3 Communication Efficiency in On-device Learning 5

1.2 Justification and Research Questions . 6

1.3 Thesis Outline . 7

2 Asynchronous Learning over Unreliable Networks 9

2.1 Introduction . 9

2.2 System Model . 11

2.2.1 Computation model . 11

2.2.2 Communication model . 12

2.3 Asynchronous Decentralized SGD . 12

2.4 Convergence Analysis . 15

2.4.1 Effect of Communication Failures . 15

2.4.2 Effect of Computation Failures . 16

2.4.3 Convergence Guarantee . 18

CONTENTS v

2.5 Numerical Results . 18

2.6 Conclusion . 19

3 Decentralized Asynchronous Learning over Continuous Row-stochastic Networks 21

3.1 Introduction . 21

3.1.1 Related Works . 25

3.2 System Model . 26

3.2.1 Absence of a global belief . 26

3.2.2 Communication systems . 27

3.2.3 Local gradient computations . 28

3.3 DRACO: Proposed Decentralized Asynchronous Learning 29

3.3.1 Periodic Unification . 30

3.4 Convergence Analysis . 32

3.5 Experimental Results . 34

3.6 Concluding Remarks . 37

4 Personalization in Decentralized Learning Networks 39

4.1 Introduction . 39

4.2 Preliminaries . 41

4.2.1 Personalized decentralized learning . 41

4.2.2 Knowledge Distillation and Co-Distillation 42

4.3 Problem Setting . 43

4.4 Personalized Decentralized Learning with KD . 43

4.5 Experiments . 46

4.6 Concluding remarks . 50

5 Conclusion 51

5.1 Summary of Contributions . 51

5.2 Future Directions . 51

Appendices 55

Appendix of Chapter 2 55

A.1 Proof of Theorem 2.1 . 55

Appendix of Chapter 3 57

B.1 Proofs . 57

B.2 Additional experiment results . 74

B.3 Pseudo algorithm of DRACO . 78

vi

Bibliography 81

vii

viii

LIST OF FIGURES

2.1 Problem settings in Asynchronous DSGD . 10

2.2 An example of the timeline for one training iteration composed of alternate

Broadcast and AirComp slots. 12

2.3 Average spectral gap under different delay constraints for mesh, ring, and two-

dimensional torus topologies with 9 nodes. Each link is associated to a comple-

tion time ∼ Ex p(1) and is dropped if it exceeds the delay tolerance value. 17

2.4 Test accuracy versus time under different channel gain thresholds. Smaller thresh-

olds result in larger average consensus rates and therefore in faster convergence. 19

2.5 Test accuracy for the asynchronous, synchronous with delay barrier, and syn-

chronous schemes under two different values of Γmax. 20

3.1 A schematic view of DRACO’s timelines with comparisons. (a) Synchronous FL;

(b) asynchronous FL with transmission delay deadline; (c) (in DRACO) fully

asynchronous FL with delay deadline, but the iteration count is continuous. . . . 23

3.2 A schematic view of DRACO’s timelines with comparisons. (d) sequential com-

putation and communication over a doubly-stochastic network; (e) timelines of

DRACO with decoupled computation and communication over a row-stochastic

network. If two messages arrive at the same agent with a negligibly small time

gap (in red circle), they are considered simultaneous and are used for the same

model aggregation step. The concept of superposition window is elaborated in

Section 3.2.2. 24

3.3 Our proposed algorithm in a chain graph illustrating the states of possible actions

within each agent i. 30

3.4 Performance comparison with the literature under (a) EMNIST dataset, and (b)

Poker hand dataset. 35

3.5 Results for different upper bounds on the number of received messages per user.

(Γmax = 10) . 36

LIST OF FIGURES ix

4.1 Challenges in personalized FL with peer-to-peer communication include privacy

concerns from sharing data distribution indicators and the difficulty in selecting

appropriate distance metrics that balance information exchange complexity and

accuracy. 40

4.2 A general schematic of personalized decentralized FL. 42

4.3 Above: communication protocol during exchange intervals. Below: model and

collaboration vector update elaborated. The figure illustrates the process exe-

cuted only in the star node. 45

4.4 Learning progress of standalone and collaborative users in different collabora-

tion methods over iterations (N = 40). 47

4.5 Trend on test accuracy improvement with respect to the number of connecting

peers for each communication slot. (Left: N = 10, Right: N = 20, Tex = 5 for

both cases, dataset: EMNIST) . 49

4.6 Heatmap of collaboration weight matrix under different values for µ1 and µ2. . 49

B.1 A metaphoric map that guides the correlation of each proposition and lemma in

order to prove the main theorem. 57

B.2 The latest local update of j is unable to be transmitted within the given range

[t0, t0 + P) because of the independence between computation timestamps and

communication (transmission) timestamps. 67

B.3 Results with respect to different network topology (Γmax = 0.5) 76

B.4 Results with respect to different upper bounds on the number of received mes-

sages per user. (P = 500, Γmax = 10) . 76

B.5 Results with respect to different transmission duration deadline (P = 50, window=
0) . 77

B.6 Results with respect to different superposition windows. (P = 50, Γmax = 1) . . . 77

B.7 Results with respect to different unification periods. (Γmax = 1, window= 0) . . 78

B.8 Flowchart of DRACO after initialization . 80

x

LIST OF ALGORITHMS

1 Federated Averaging (local Stochastic Gradient Descent (SGD)) 4

2 Asynchronous Decentralized SGD . 13

3 User-oriented algorithm of DRACO. A pseudo-algorithm for source code repro-

duction is provided in Appendix B.3. 31

4 KD-PDFL: Distillation-based personalized decentralized Federated Learning (FL) . 46

5 Pseudo algorithm of Algorithm 3. 79

LIST OF ALGORITHMS xi

xii

LIST OF TABLES

4.1 Summary of per-client test accuracy under IoT devices (Tex = 20) and EMNIST

datasets (Tex = 5). 48

LIST OF TABLES xiii

xiv

NOMENCLATURE

Acronyms and Abbreviations

AI Artificial Intelligence

AirComp Over-the-air Computation

AWGN Additive White Gaussian Noises

CD Co-Distillation

CNN Convolutional Neural Network

DSGD Decentralized Stochastic Gradient Descent

FedAvg Federated Averaging

FL Federated Learning

IoT Internet of Things

KD Knowledge Distillation

non-i.i.d. non-independent and identically distributed

PPP Poisson Point Process

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

SINR Signal-to-Interference-plus-Noise Ratio

TCP Transmission Control Protocol

NOMENCLATURE xv

Notations

a Power scaling factor

B Number of training batch per user

b Index of training batch

c Confidence coefficient

d(i, j) Physical distance between device i and j

dw(i, j) Dissimilarity (statistical distance) between model i and model j

Di Local training set

E A set of edges

E[·] Expectation

fi Local loss function

gi(θ) Local gradient oracle (in Chapter 2 and Chapter 3)

gi(w) Regularization term (in Chapter 4)

G2 Bound for expected gradient magnitude

G Connectivity graph (in Chapter 2)

hi, j Channel coefficient (in Chapter 2) · Fading gain (in Chapter 3)

i Index of a random user without losing generality

j Index of a random neighbor without losing generality

J(·) Joint objective function (in Chapter 4)

K Number of all events throughout the whole learning procedure

k Index of an event

L Lipschitz constant

N Number of clients

N0 Noise power density

Ni, N (i) Set of neighbors of user i

nθ Dimension of local models

nX Dimension of input features

Q Set of all transmission indicators, i.e., {qi→ j
t |∀i, j ∈ U ,∀t ∈ [0, T)}

P Unification period

Pi Local transmission power

P[·] Probability distribution

q Transmission incidence indicator (in Chapter 3)

R Number of total global communication rounds

r Index of global round (in Chapter 2 and Chapter 4)

Cell radius (in Chapter 3)

xvi

Sr Number of slots at round r

s Index of transmission slot

T Total learning time

Tex Exchanging interval

t Index of a time point

U Set of network users

W Mixing matrix (in Chapter 2) · Collaboration graph (in Chapter 4)

Bandwidth (in Chapter 3)

w(r)i, j (i, j) entry of the mixing matrix W (r)

wi Connectivity vector of user i (in Chapter 4)

y Transmitted message

ỹ Received message

ŷ Estimated message from the recipient

z Noise vector (in Chapter 2)

zi Logits (in Chapter 4)

α Path loss exponent

β (r) Learning rate for renewing w(r)i j

Γi→ j Transmission delay for a message from i to j

Γmax Transmission delay deadline

γ Power alignment coefficient

∆i Local update

ζ Bound for gradient divergence

η, ηi Local learning rate

Θ Set of local models, i.e., {θ1, · · · ,θN}
θ Global model

θ̄ Average model, i.e., 1
N

∑N
i=1 θi

θi Local model

λ, λi Exponential rate parameter (mean of local computation time)

µ1, µ2 Hyperparameters (different across chapters; refer to each chapter for defini-

tions.)

νi Probability of user i being a straggler

ξ Step size while updating local models with stale gradients

ρ Bound for sum of squared qi→ j
t ’s

σ2 Bound for variance of gradients

τ Transmission delay

Ψ Maximum number of packets that each user allows to receive during P

ψi(ta, tb) Number of packets arrived during time [ta, tb)

xvii

xviii

ABSTRACT

The burgeoning Internet of Things (IoT) and the rise of edge computing demand scalable

and robust decentralized learning systems that prioritize privacy, adapt to dynamic environ-

ments, and accommodate diverse user requirements. This thesis advances the field of dis-

tributed machine learning by unifying key advancements in decentralized collaborative learn-

ing into a comprehensive framework that addresses communication challenges, computation

variability, and personalization in networked systems.

A core objective of this research is to design a versatile decentralized learning framework

that operates efficiently in environments characterized by unreliable communication, heteroge-

neous devices, and evolving user needs. To achieve this, we propose an asynchronous learning

paradigm that decouples communication and computation timelines. This decoupling enables

autonomous operation and reduces reliance on rigid synchronization protocols, thereby miti-

gating the impact of communication delays and straggler problems. Rigorous theoretical anal-

ysis and extensive experimental evaluations demonstrate the convergence and robustness of

this asynchronous approach.

Furthermore, recognizing that uniform global models may not suffice in heterogeneous set-

tings, the framework integrates strategies for personalization. By leveraging knowledge distil-

lation techniques to quantify the statistical dissimilarity between local models, the framework

fosters meaningful collaboration between users with similar data distributions. This enables

the development of tailored models for individual participants, ensuring that the framework

addresses the unique requirements of each user while maintaining the benefits of collective

learning.

By combining robust asynchronous communication, dynamic adaptation to computation

and network variability, and user-centric personalization, this thesis presents a unified approach

to decentralized learning. The proposed framework sets the stage for a new generation of intel-

ligent networked systems that are not only communication-efficient but also scalable, adaptive,

and user-focused. These contributions aim to redefine the potential of decentralized learning,

bridging critical gaps and enabling broader applications in diverse domains such as smart cities,

healthcare, and autonomous systems.

ABSTRACT xix

xx

RÉSUMÉ

L’essor de l’Internet des Objets (IoT) et le développement du calcul en périphérie nécessitent

des systèmes d’apprentissage décentralisés évolutifs et robustes, qui mettent l’accent sur la

confidentialité, s’adaptent à des environnements dynamiques et répondent aux besoins variés

des utilisateurs. Cette thèse fait progresser le domaine de l’apprentissage automatique distribué

en unifiant des avancées clés en apprentissage collaboratif décentralisé dans un cadre complet

traitant des défis de communication, des variations de calcul et de la personnalisation dans les

systèmes en réseau.

L’objectif principal de cette recherche est de concevoir un cadre d’apprentissage décentralisé

polyvalent qui fonctionne efficacement dans des environnements caractérisés par des commu-

nications peu fiables, des dispositifs hétérogènes et des besoins utilisateurs évolutifs. Pour y

parvenir, nous proposons un paradigme d’apprentissage asynchrone qui découple les chronolo-

gies de communication et de calcul. Ce découplage permet une opération autonome et réduit

la dépendance aux protocoles de synchronisation rigides, atténuant ainsi l’impact des retards

de communication et des problèmes de "traînards". Des analyses théoriques rigoureuses et des

évaluations expérimentales approfondies démontrent la convergence et la robustesse de cette

approche.

De plus, reconnaissant que des modèles globaux uniformes ne suffisent pas dans des envi-

ronnements hétérogènes, le cadre intègre des stratégies de personnalisation. En exploitant des

techniques de distillation des connaissances pour quantifier la dissimilarité statistique entre

les modèles locaux, le cadre favorise une collaboration significative entre les utilisateurs ayant

des distributions de données similaires. Cela permet de développer des modèles adaptés aux

besoins individuels tout en préservant les avantages de l’apprentissage collectif.

En combinant une communication asynchrone robuste, une adaptation dynamique aux va-

riations de calcul et de réseau, et une personnalisation centrée sur l’utilisateur, cette thèse pro-

pose une approche unifiée de l’apprentissage décentralisé. Le cadre ouvre la voie à une nouvelle

génération de systèmes intelligents en réseau, efficaces en termes de communication, évolutifs,

adaptatifs et centrés sur l’utilisateur. Ces contributions visent à redéfinir le potentiel de l’ap-

prentissage décentralisé, comblant des lacunes cruciales et permettant des applications plus

larges dans divers domaines tels que les villes intelligentes, la santé et les systèmes autonomes.

RÉSUMÉ xxi

xxii

1 INTRODUCTION

The rapid growth of the Internet of Things (IoT) and edge computing has opened up new

possibilities for decentralized collaborative learning. This evolution allows devices to optimize

local neural networks through direct peer-to-peer communications. Shifting towards fully de-

centralized learning removes the need for centralized servers, offering better privacy, reduced

delays, and increased resilience against network failures. However, achieving efficient and reli-

able decentralized learning in wireless networks faces significant challenges, including chang-

ing network structures, unreliable communication links, and varied computational abilities of

devices. Addressing these challenges is crucial to realizing the full potential of decentralized

learning.

Fully decentralized federated learning is not just a solution, but an essential one for tack-

ling the pressing data privacy and security issues of our time. It ensures that raw data stays

on local devices, a crucial aspect in fields where data sensitivity is critical, such as healthcare,

finance, and personal devices. Its popularity also comes from its ability to use the computing

power of many edge devices, reducing dependence on centralized systems and improving scala-

bility. Nevertheless, current challenges include managing changing network structures, which

can cause intermittent connectivity and unreliable communication. Additionally, the varied

computational power of different devices makes it harder to coordinate efficient learning pro-

cesses across the network. These limitations call for innovative solutions to make decentralized

learning robust and effective, and to underline the urgency of the issue.

In this thesis, we not only address the challenges of decentralized learning but also propose

innovative solutions that could potentially transform the field. We focus on asynchronous de-

centralized learning algorithms, which operate independently and adapt to the inherent vari-

ability of wireless networks. Our main contribution is the development of an asynchronous

Decentralized Stochastic Gradient Descent (DSGD) algorithm that maintains performance de-

spite communication and computation issues. We provide a thorough theoretical analysis and

non-asymptotic convergence guarantees for our method, supported by extensive experimen-

tal evaluations. Additionally, we pioneer the personalization of decentralized networks with

a personalized DSGD algorithm that uses knowledge distillation to measure and quantify sta-

tistical differences between models. These innovative solutions hold the potential for exciting

INTRODUCTION 1

breakthroughs in decentralized learning.

Our research pivots on three key aspects of decentralized collaborative learning: asyn-

chronous communication, efficient algorithm design for continuous learning over row-stochastic

networks, and personalized learning. By addressing these critical areas, we aim to push the

boundaries of decentralized learning, making it a viable and effective solution for future intel-

ligent networks.

1.1 Background

Before discussing the main contributions of the thesis, we hereby introduce the fundamental

concepts such as Federated Learning (FL), decentralized (serverless) learning, and communi-

cation efficiency.

1.1.1 Federated Learning

Federated Learning (FL) [1] is a distributed machine learning paradigm where multiple

devices, or clients, collaboratively train a shared global model while keeping their local data

private. This approach emerged to address data privacy concerns, enabling each client to per-

form computations on its data locally and only share model updates with a central server. The

server then aggregates these updates to refine the global model. This iterative process continues

until the model converges.

Let D = D1∪D2∪ · · ·DN be a joint training dataset and |D|=
∑N

i=1 |Di| the total number of

training data samples. The goal of FL is to solve problems of the form

min
θ∈RnX

f (θ ;D)

where

f (θ ;D) =
|Di|
|D|

N
∑

i=1

fi(θ ;Di) and fi(θ ;Di) =
∑

x∈Di

f (θ , x).

Federated Learning operates through several key stages:

1. Initialization: The central server initializes and distributes the global model to all partic-

ipating clients.

2. Local Training: Each client trains the model on its local dataset, performing a specified

number of iterations or epochs. This stage allows the model to learn from diverse and

2 CHAPTER 1

potentially non-independent and identically distributed (non-i.i.d.) data distributions on

different devices.

3. Model Update: After local training, each client computes updates, typically in the form

of gradients or model weights, and sends these updates back to the central server. Impor-

tantly, the raw data remains on the clients, preserving privacy. received from the clients to

improve the global model. Common aggregation methods include averaging the weights

or gradients. This aggregated model is then redistributed to the clients for further local

training.

4. Iteration: The local training and model aggregation process is repeated iteratively. The

global model is continuously refined as it learns from the data across all clients. This iter-

ative process continues until the model converges to a satisfactory level of performance.

Key concepts of FL include:

• Local Training: Each client independently trains the model on its own data, ensuring that

sensitive information does not leave the device. This decentralized approach leverages

the computational power and data availability of edge devices.

• Model Aggregation: The central server plays a crucial role in combining the updates

from all clients. By aggregating these updates, the server creates a more accurate and

generalized global model that benefits from the diverse data held by the clients.

• Privacy Preservation: A primary advantage of FL is that it significantly reduces the risk of

data breaches. Since the raw data remains on the local devices and only model updates

are communicated, the privacy of the individuals’ data is maintained.

• Scalability: FL is highly scalable and can accommodate a large number of clients, there-

fore suitable for applications involving extensive networks of devices, such as IoT ecosys-

tems, where data is generated at the edge.

• Communication Efficiency: FL aims to minimize communication overhead by reducing

the frequency and size of the model updates exchanged between clients and servers.

Techniques such as model compression, quantization, and selective update sharing are

often employed to enhance communication efficiency.

• Heterogeneous Data: FL is designed to handle heterogeneous data distributions across

clients. Unlike centralized learning, where data is assumed to be i.i.d., FL recognizes that

data on different devices may vary significantly and adapts accordingly.

INTRODUCTION 3

Algorithm 1: Federated Averaging (local SGD)

Input: θ (0)

1 for each round r = 1, · · · , R do
2 N (r)← random set of users
3 for i ∈N (r) do
4 for local step b = 1, · · · , B do
5 Bi ← mini-batch of B steps

6 θi ← θi −
|Di |
B η

∑

x i∈Bi
∇ f (θ ; x i)

7 end for
8 end for

9 θ ←
∑

i∈N (r)
|Di |
|D| θi

10 end for
11 return θ (R)

FL is an evolving field with ongoing research focusing on improving its efficiency, robustness,

and applicability. Current research areas include developing more sophisticated aggregation

algorithms, enhancing security and privacy through advanced cryptographic techniques, and

optimizing communication protocols to reduce overhead further.

Federated Averaging

Federated Averaging (FedAvg) [2] is one of the first approaches to implement FL that en-

ables collaborative training of machine learning models across multiple decentralized devices

while keeping data private. The process begins with each client training a local model using its

own dataset and calculating updated model parameters, θi. These local parameters are then

sent to a central server. The server aggregates these parameters by computing a weighted aver-

age based on the number of data samples, at each client, resulting in the global model update:

θ =
∑N

i=1
|Di |
|D| θi. This global model is then redistributed to the clients for further local training,

and the process repeats. (See Alg. 1) This method has been the most commonly used algorithm

for training models in a federated manner since it ensures that the model benefits from diverse

data across clients while preserving data privacy.

1.1.2 Decentralized (Serverless) Learning

Among federated learning schemes, we particularly delve into decentralized (serverless)

learning, a distributed machine learning approach where devices collaboratively train models

without relying on a central server. Learning without a central server is actively studied due

to the difficulty of getting a complete entity that is always stable, trustworthy, and fair. [3]–
[6] This paradigm leverages peer-to-peer communication and consensus algorithms to achieve

4 CHAPTER 1

model updates, enhancing robustness and scalability. [7]

In decentralized learning, devices communicate directly, eliminating the need for a central

server and reducing single points of failure. This direct communication propagates information

through various network topologies, such as fully connected, ring, or mesh networks.

Consensus algorithms, such as DSGD and the gossip protocol, play a crucial role in helping

nodes converge to a common model. These algorithms iteratively update the model based on

local computations and updates from neighboring nodes, ensuring global consistency. [8], [9]

Decentralized learning is inherently fault-tolerant, as the failure of individual nodes does

not incapacitate the entire system. If a node fails or becomes temporarily unavailable, its neigh-

bors can continue to exchange updates with other nodes, dynamically adapting to the failure

and maintaining overall functionality.

The approach scales naturally with the number of participating nodes, making it suitable for

large-scale deployments like IoT networks. [10] As more nodes join the network, they integrate

into the existing peer-to-peer communication structure, contributing to and benefiting from the

collective learning process without overloading a central server. [11]

Enhanced privacy and security are significant advantages of decentralized learning. Since

there is no central repository of data or model updates, each node retains control over its local

data. Nodes share only the necessary information for model updates, often using encrypted

communications and differential privacy techniques to protect sensitive data further.

Decentralized learning can also accommodate dynamic changes in the network topology,

such as nodes joining or leaving the network or varying communication links. Consensus algo-

rithms and peer-to-peer protocols are designed to handle these changes seamlessly, ensuring

the learning process continues smoothly despite network dynamics.

In summary, decentralized (serverless) learning offers a robust, scalable, and flexible ap-

proach to collaborative model training. By leveraging peer-to-peer communication [12], [13],
consensus algorithms [14]–[16], and asynchronous updates [17]–[20], it overcomes many lim-

itations of centralized systems, making it particularly well-suited for complex, large-scale, and

dynamic environments like IoT networks.

1.1.3 Communication Efficiency in On-device Learning

In the literature, several efforts have been made to enhance communication efficiency in

FL, collectively addressing the solution for communication bottlenecks by reducing the amount

of data transmitted, optimizing the timing and frequency of communications, and leveraging

novel communication techniques.

One crucial factor in achieving communication efficiency is the age of information (AoI) [21].
AoI refers to the time elapsed since a piece of information was generated. In FL, minimizing

INTRODUCTION 5

communication overhead ensures that models across devices are trained using the most recent

information. This reduces the negative impact of outdated information (high AoI) on model

convergence and accuracy. [22], [23]

Numerous studies have focused on minimizing the amount of data exchanged between

devices to reduce latency and bandwidth usage. Techniques such as gradient compression [24],
sparsification [25]–[27], and quantization [28]–[30] are used to reduce communication load.

These methods are crucial in wireless networks where communication resources are limited.

Most approaches aim to reduce the number of communications or decrease the message

size. To minimize communication frequency, one-shot [31]–[33] or few-shot FL [34]–[36]
methods have been proposed. Beyond reduction of the number of communication rounds,

optimizing the iteration cost and communication round duration are also considered. [37],
[38] Alternatively, the data packet size can be downsized by lowering the precision of model

parameters, thus decreasing the amount of exchanged information. Techniques such as quanti-

zation [39], sparsification [40]–[43], and pruning [44]–[46] are integrated with collaborative

learning to achieve this. While compression can result in information loss or distortion, leading

to a tradeoff between encoding ratio and compression error, it can significantly improve overall

communication complexity [47].

On the other hand, FL has attempted conjugating with problems in traditional wireless

systems, such as collision avoidance, bandwidth constraints, and latency. Collision avoidance

matters as multiple devices simultaneously communicating their model updates can lead to

significant collisions and data loss. [48] On the other hand, wireless networks often suffer from

limited bandwidth. In FL, transmitting extensive model updates or gradients can consume

significant bandwidth, leading to congestion and reduced network performance. [49], [50]
Furthermore, wireless networks can have variable latency, which affects the synchronization

of model updates in FL. Ensuring timely updates or delay tolerance is challenging due to the

varying latency in wireless communications. [51]

1.2 Justification and Research Questions

This thesis delves into a series of novel and critical research questions in the realm of de-

centralized collaborative learning over wireless networks:

• How can global consensus be achieved despite communication and computation impair-

ments? This question is essential for ensuring that decentralized learning systems can

function effectively even when individual devices experience delays or failures in com-

munication and computation.

6 CHAPTER 1

• How can decentralized users follow simple, independent instructions, and how can the pro-

cedure be continuous, allowing transmission and reception at any moment on the timeline

to reduce synchronization costs? This question focuses on making decentralized learning

more practical and efficient by reducing the overhead associated with synchronization

and allowing for more flexible communication protocols.

• How can we measure stochastic dissimilarity between local models without exchanging raw

data to customize model training effectively? This question is crucial for personalizing

model training in decentralized systems while preserving data privacy, as it seeks methods

to tailor models to local data distributions without sharing sensitive data.

The overarching goal throughout this thesis is to develop robust solutions that address the

inherent limitations of edge devices, enabling them to train collaboratively in a federated man-

ner. These limitations include heterogeneous time consumption for data transmission and lo-

cal model training (covered in Chapters 2 and 3), high synchronization costs (Chapter 3), and

highly non-i.i.d. local data distributions (Chapter 4).

The common theme across each chapter is FL, where participants actively collaborate and

exchange information to train a global model without directly sharing raw data. Each agent

aims to train a model to a level that would be unattainable for a single user alone.

Additionally, this thesis explores decentralized user networks, where the roles of gathering

information, broadcasting model updates, and renewing the model from collected data are not

fixed to a specific entity. Instead, different participants can perform these tasks independently,

promoting flexibility and resilience in the network.

The practical implications of this research are far-reaching. This work paves the way for

more robust and efficient IoT applications by addressing the challenges of decentralized collab-

orative learning. The proposed solutions can be applied in various real-world scenarios, such

as smart cities, autonomous vehicles, and personalized healthcare, offering significant benefits

to end-users and service providers. This research not only advances decentralized learning but

also contributes to the broader vision of intelligent, interconnected systems capable of adapting

to dynamic environments and user needs.

1.3 Thesis Outline

This thesis addresses various communication challenges in learning systems, with each

chapter delving deeper into specific learning-related issues than the previous one. Chapter 2

explores asynchronous DSGD in the context of unstable user experiences, focusing on the chal-

lenges of communication and computation delays. Chapter 3 proposes a framework for asyn-

chronous decentralized users, which enhances the autonomy of each participant, allowing for

INTRODUCTION 7

more flexible and efficient learning processes. Chapter 4 examines the impact of personaliza-

tion in cooperative learning across heterogeneous edge devices, introducing strategies to tailor

learning processes to individual user needs and data distributions. Finally, Chapter 5 provides

an overall summary of the thesis and discusses insightful future research directions that build

on the findings presented in the preceding chapters.

The research conducted during the course of this thesis has resulted in the following publi-

cations:

• E. Jeong, M. Zecchin, and M. Kountouris, “Asynchronous decentralized learning over

unreliable wireless networks”, in ICC 2022 - IEEE International Conference on Communi-

cations, 2022, pp. 607–612. DOI: 10.1109/ICC45855.2022.9838891 [52].

• E. Jeong and M. Kountouris, “DRACO: a framework for decentralized asynchronous learn-

ing over continuous row-stochastic networks”, under review in IEEE Open Journal of the

Communications Society (OJCOMS), 2024 [53].

• E. Jeong and M. Kountouris, “Personalized decentralized federated learning with knowl-

edge distillation”, in ICC 2023 - IEEE International Conference on Communications, 2023,

pp. 1982–1987. DOI: 10.1109/ICC45041.2023.10279714 [54].

8 CHAPTER 1

2 ASYNCHRONOUS DECENTRALIZED LEARNING

OVER UNRELIABLE WIRELESS NETWORKS

Decentralized learning allows users at the network edge to collaboratively train models by

sharing information through device-to-device communications. However, previous studies have

primarily focused on wireless networks with static topologies and dependable participants. This

research introduces an asynchronous DSGD algorithm designed to withstand the typical com-

putational and communication failures at the wireless network edge. We provide a theoretical

analysis of its performance and offer a non-asymptotic convergence guarantee. Our experimen-

tal findings support this analysis, showing the advantages of using asynchronous methods and

the reuse of outdated gradient information in decentralized learning across unreliable wireless

networks.

2.1 Introduction

Distributed learning algorithms enable devices within wireless networks to collaboratively

refine model parameters by alternating between local optimization and communication phases.

By harnessing the combined computational resources at the edge of wireless networks in a man-

ner that is both communication-efficient [2] and privacy-preserving [55], distributed learning

emerges as a critical technological driver for the intelligent networks of the future. A notable

approach within this field is decentralized learning [56], which facilitates collaborative training

among edge devices without needing a central server, employing a peer-to-peer communication

style. Unlike federated learning, decentralized learning does not rely on a central parameter

server or a star network topology, offering greater flexibility in terms of connectivity [5]. This

characteristic makes decentralized learning especially suitable for future wireless networks that

utilize device-to-device communications. Various decentralized learning approaches for wire-

less networks have been proposed and scrutinized [57]–[59], with particular emphasis on the

use of Over-the-air Computation (AirComp) [60] to facilitate low-latency training at the net-

work edge. Previous studies typically focus on wireless networks composed of reliable workers

ASYNC-DSGD 9

How asynchrony can be beneficial in unreliable networks?

Alleviation of
delays

occurred by
slow workers

Which scheduling policy is efficient for decentralized topology?

Over-the-air
computation

to achieve
low-latency
in the edge

What are the wireless communication constraints that
we shall not overlook in decentralized SGD?

Local computation
impairments

Communication
impairments

Figure 2.1. Problem settings in Asynchronous DSGD

with static topologies throughout training. However, such conditions are rarely met in real-

world scenarios where communication links may be unstable or obstructed, and devices might

become intermittently inactive due to computational constraints or energy conservation needs.

Particularly, asynchronous DSGD faces significant challenges in real-world settings due to com-

munication and computation impairments. These impairments arise from unstable wireless

networks, varying device capabilities, and resource constraints. Communication issues include

network delays, packet loss, and dynamic network topologies, while computation impairments

stem from heterogeneous devices, resource limitations, and system failures. These impairments

disrupt the smooth flow of updates between devices, leading to desynchronization, stale gradi-

ents, unbalanced contributions from devices, and increased iteration costs. This not only slows

down the learning process but also hinders the scalability of DSGD in large-scale networks.

To address these issues, robust algorithms have been developed that can effectively han-

dle stale gradients, adapt to dynamic environments, and manage communication efficiently

despite impairments. Distributed training has shown promise in mitigating the impact of strag-

glers (slower workers) [61]–[63] by leveraging the personalization of each client. However,

fully harnessing the benefits of asynchronism in decentralized learning across wireless net-

works remains a significant and ongoing challenge, especially for networks that aim for global

consensus among unreliable users.

This chapter introduces an asynchronous version of DSGD tailored to tackle the inherent

communication and computation challenges in heterogeneous wireless networks. We explore

decentralized learning across networks with randomly fluctuating, time-varying communica-

tion topologies and unreliable devices that may become stragglers at any stage of the pro-

cess. To manage communication disruptions, we employ a consensus approach utilizing time-

dependent mixing matrices that reflect the current state of the network. Concurrently, we

calibrate the learning rates for devices at the network edge to maintain the stationary point

10 CHAPTER 2

of the overarching network objective, despite varied computational capabilities. We also pro-

vide a non-asymptotic convergence guarantee for our algorithm, affirming that decentralized

learning can be effective even when using outdated information from slower devices to locally

train models. Our experimental findings validate this approach and indicate that reusing stale

gradient information can accelerate the convergence of asynchronous DSGD.

2.2 System Model

Consider a group of N wireless edge devices in which fi : Rnθ → R represents a local loss

function endowed in each node i. The network targets to minimize the averaged loss subject

to a consensus constraint

minimize
θ1,...,θN

f (θ1, . . . ,θm) :=
1
N

N
∑

i=1

fi(θi) , (2.1)

s.t. θ1 = θ2 = · · ·= θN .

where θi ∈ Rnθ indicates local parameter estimation. This represents the distributed empirical

risk minimization problem when fi is a loss function over a local dataset. In this context, f (θ)
denotes the network objective f (θ1, . . . ,θN)

�

�

θ1=···=θN=θ
, and θ̄ = 1

N

∑N
i=1 θi. To solve equation

(2.1), we utilize a DSGD algorithm where devices alternate between local optimization based

on gradient information (i.e., a computation phase) and a communication phase.

2.2.1 Computation model

To locally optimize the model estimation θi, we assume that each device can query a stochas-

tic oracle satisfying the following properties.

Assumption 2.1. At each node i, the gradient oracle gi(θ) satisfies the following properties for

all θ ∈ Rnθ

• E[gi(θ)] =∇θ fi(θ) (unbiasedness)

• E∥gi(θ)−∇θ fi(θ)∥
2 ≤ σ2 (bounded variance)

• E∥gi(θ)∥ ≤ G2 (bounded magnitude).

We recognize that certain nodes, termed stragglers, may become inactive or delay their lo-

cal optimization procedures, potentially due to computational difficulties or energy limitations.

ASYNC-DSGD 11

Consequently, these devices might enter the communication phase with a model that either in-

corporates gradient information from outdated model estimations or remains unchanged from

previous iterations. Specifically, at each optimization round r, the local update mechanism is

governed by the following rule:

θ
(r+ 1

2)
i =







θ
(r)
i , if device i is a straggler at round r

θ
(r)
i −η

t
i gi(θ (r−τi)), otherwise

(2.2)

Here, ηr
i represents the local learning rate, and τi ≥ 0 measures the delay, accounting for the

staleness of the gradient information at device i.

2.2.2 Communication model

The communication link between any two devices, i and j, is modeled using Rayleigh fad-

ing. During each communication iteration r, devices exchange information based on a con-

nectivity graph G(r) = (U ,E (r)), where U = {1, 2, . . . , N} represents the network nodes, and

(i, j) ∈ E (r) signifies that devices i and j can communicate in round r. These communication

links are symmetric, making the graph undirected. While the connectivity graph remains static

within a single optimization iteration, it can vary between iterations due to factors such as deep

fading, physical obstructions, or synchronization issues.

2.3 Asynchronous Decentralized SGD

0
1

3

2 4

Slot 1: Broadcast

0
1

3

2 4

Slot 2: Aggregation

0
1

3

2 4

Slot 3: Broadcast

0
1

3

2 4

Slot 4: AirComp
Figure 2.2. An example of the timeline for one training iteration composed of alternate Broadcast and
AirComp slots.

The proposed asynchronous DSGD procedure, which accounts for both computation and

communication failures, is detailed in Algorithm 2. At the start of each training iteration r, non-

straggling devices update their local estimation θ (r)i according to the updating policy described

in eq. (2.2), potentially using outdated gradient information. Following this, based on the

current connectivity graph G(r) = (U ,E (r)), devices establish a symmetric and doubly stochastic

12 CHAPTER 2

Algorithm 2: Asynchronous Decentralized SGD

Input: θ (0)i = 0 ∈ Rd

Output: θ̄ (R)

1: for r in [0, R] do
2: for each non straggling devices do
3: update local model as (2.2)
4: end for
5: Determine matrix W (r) based on G(r)
6: for s in [1, St] do
7: if s ≡ 0 (mod 2) then
8: # Broadcast phase
9: for each device i scheduled in slot s do

10: Device i transmits (2.6)
11: Each device j ∈N (r)

i receives (2.7)
12: Each device j ∈N (r)

i estimates (2.8)
13: end for
14: else
15: # AirComp Phase
16: for each star center i scheduled in slot s do
17: Each device j ∈N (r)

i transmits (2.6)
18: Device i receives (2.4)
19: Device i estimates (2.5)
20: end for
21: end if
22: end for
23: for each device do
24: model consensus as in (2.9)
25: end for
26: end for

mixing matrix W (r) using the Metropolis-Hastings weighting scheme [64]. These weights are

straightforward to compute and suitable for distributed implementation, as each device only

needs to know the degrees of its neighbors to determine the weights on its adjacent edges.

Subsequently, the communication phase begins, during which devices exchange their up-

dated estimations and utilize a gossip scheme based on W (r). To exploit the capabilities of

AirComp, devices use analog transmission in conjunction with the scheduling scheme proposed

in [57]. Consequently, the communication phase is divided into multiple pairs of communica-

tion slots, each consisting of an AirComp slot and a broadcast slot, as illustrated in Fig. 2.2.

During the AirComp slot s, the star center i receives the superposition of signals transmitted

by its neighboring devices N (r)(i) = { j ∈ U : (i, j) ∈ E (r)}. Specifically, each scheduled node

ASYNC-DSGD 13

j ∈N (r)(i) transmits to the star center i as follows:

y (s,r)j =

q

c(s,r)i

h(s,r)i, j

w(r)i, j θ
(r+ 1

2)
j (2.3)

where h(s,r)i, j ∈ C
nX is the channel coefficient between user i and j during slot s, c(s,r)i ∈ R is a

power alignment coefficient, and w(r)i, j is the (i, j) entry of the mixing matrix W . The star center

i receives the aggregated signal

ỹ (s,r)i =
∑

j∈N (i)

h(s,r)i, j y (s,r)j + z(s,r)i (2.4)

where z(s,r)i ∼N (0,σw1d) is a noise vector, and estimates the aggregated model as

ŷ (s,r)i =
ỹ (s,r)i
q

c(s,r)i

=
∑

j∈N (i)

w(r)i, j θ
(r+ 1

2)
j +

z(s,r)i
q

c(s,r)i

. (2.5)

During a broadcast slot s, the scheduled node i transmits the signal

y (s,r)i =
Ç

a(s,r)i θ
(r+ 1

2)
i (2.6)

using a power scaling factor a(s,r)i , and all neighboring devices j ∈N (r)(i) receive

ỹ (s,r)j = h(s,r)j,i y (s,r)i + z(s,r)j (2.7)

and estimate the updated model as

ŷ (s,r)j = w(r)j,i

ỹ (s,r)j
q

a(s,r)i h(s,r)j,i

= w(r)j,i

θ
(r+ 1

2)
i +

z(s,r)j
p

aih j,i

!

. (2.8)

At the end of the communication phase, each node i obtains the new estimation θ (r+1)
i by

combining all received signals and using a consensus with step size ξ ∈ (0, 1]:

θ
(r+1)
i = (1− ξ)θ (r+

1
2)

i + ξ

¨

N
∑

j=1

w(r)i, j θ
(r+ 1

2)
j + ñi

(r)

«

(2.9)

where ñ(r)i ∼N (0, σ̃(r)w,i1nX
) is a noise vector term accounting for the aggregation of noise com-

ponents during AirComp and broadcast transmissions at device i during communication phase

r.

14 CHAPTER 2

2.4 Convergence Analysis

In this section, we study the effect of communication and computation failures on the asyn-

chronous DSGD procedure and prove its convergence.

2.4.1 Effect of Communication Failures

Communication disruptions lead to a randomly varying connectivity graph, where the set

of edges changes with each optimization iteration. From an algorithmic standpoint, these ran-

dom communication impairments manifest in the DSGD algorithm through stochastic mixing

matrices. A notable category within these stochastic mixing matrices are those that adhere to

the expected consensus property.

Definition 2.1 (Expected Consensus Rate [5]). A random matrix W ∈ RN×N is said to satisfy

the expected consensus with rate p if for any X ∈ Rd×N

EW

�

W X − X̄

2

F

�

≤ (1− p)

X − X̄

2

F

where X̄ = X 11R

N and the expectation is with respect to the random matrix W.

Lemma 2.1. If the event that the connectivity graph G(r) is connected at round r has a probability

q > 0 and the Metropolis-Hastings weighting is used to generated the mixing W (r), the expected

consensus rate is satisfied with rate p = qδ > 0, with δ being the expected consensus rate in case

of a connected topology.

Proof. Define the event E(r) := {G(r) is connected} and its complementary event Ē(r). Whenever

the Metropolis-Hasting weights are obtained from a connected graph, the resulting mixing

matrix W (r) has a consensus rate greater than zero. Therefore, there exists δ > 0 such that

EW (r)|E(r)

W (r)X − X̄

2

F ≤ (1−δ)

W (r)X − X̄

2

F

It follows that, for any X ∈ Rd×m

EW (r)

W (r)X − X̄

2

F = qEW (r)|E(r)

W (r)X − X̄

2

F + (1− q)EW (r)|Ē(r)

X − X̄

2

F

≤ q(1−δ)

W (r)X − X̄

2

F + (1− q)

X − X̄

2

F

where we have lower bounded the consensus rate by zero in case of disconnected topologies.

Grouping terms and having assumed q > 0, we obtain that the expected consensus is satisfied

with rate (1− qδ)> 0.

ASYNC-DSGD 15

If the expected consensus is satisfied, it is then possible to establish a convergent behavior

for the estimations generated by the proposed algorithm.

Lemma 2.2 (Consensus inequality). Under Assumption 2.1, after R iterations, DSGD with a

constant learning rate η and consensus step size ξ satisfies

N
∑

i=1

θ
(R)
i − θ̄

(R)

2
≤η2 12mG2

(pξ)2
+ ξ

2
p

m
∑

i=1

σ2
w,i

where σ2
w,i =maxR

r=0E
�

ñ(r)i

2�
.

Proof. Similarly to [57], [65] we establish the following recursive inequality

m
∑

i=1

E

θ (r) − θ̄ (r)

2 ≤
�

1−
pζ
2

� m
∑

i=1

E

θ (t−1) − θ̄ (t−1)

2
+
η2

pζ

�

6mG2
�

+ ζ2
N
∑

i=1

E

ñ(r)i

2
.

Defining σ2
w,i =maxT

t=0E

ñ(r)i

2
and then solving the recursion we obtain the final expression.

Overall, communication failures amount to a reduced expected consensus rate compared

to the scenario with perfect communication. At the same time, dropping users that are delayed

and are unable to synchronize and perform AirComp, renders the communication protocol more

flexible. For instance, in Fig. 2.3, we consider a network of nine nodes organized according to

different topologies and show the evolution of the average spectral gap of the mixing matrix

with Metropolis-Hastings weights, whenever devices not satisfying a certain delay constraint

are dropped. As expected, stricter delay requirements result in sparser effective communication

graphs and mixing matrices with smaller spectral gaps.

2.4.2 Effect of Computation Failures

Random computation impairments make the group of devices that effectively update the

model parameter vary over time. To account for this in the analysis, we introduce a virtual

learning rate that is zero in case of failed computation. Namely, the learning rate at device i

during computation round r becomes

η̃
(r)
i =







0, if i is straggler at round r

η
(r)
i , otherwise

where η(r)i is a specified learning rate value in case of successful computation. Furthermore, to

ensure that the procedure converges to stationary points of the network objective even when

16 CHAPTER 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Delay tolerance

0.0

0.2

0.4

0.6

0.8

A
v
g
.

sp
ec

tr
al

g
a
p

Ring

2D Torus

Mesh

Figure 2.3. Average spectral gap under different delay constraints for mesh, ring, and two-dimensional
torus topologies with 9 nodes. Each link is associated to a completion time ∼ Ex p(1) and is dropped if
it exceeds the delay tolerance value.

edge devices have different computing capabilities, the expected learning rates have to be

equalized. In particular, if E[η(r)i] = η, ∀i, we have that stationary points are maintained

in expectation, namely
N
∑

i=1

E[η̃(r)i]∇ fi(θ) = 0 =⇒ ∇ f (θ) = 0.

Finally, the existence of straggling devices introduces asynchronicity in the decentralized opti-

mization procedure. In particular, a device i that fails at completing the gradient computation

at a given optimization iteration is allowed to apply the result in a later one, without discarding

the computation results. While we do not specify the delay distribution, we rather introduce

the following assumption regarding the staleness of gradients.

Assumption 2.2. For all iteration r, there exists a constant c ≤ 1 such that

E

∇ f (θ̄ (r))−

∑N
i=1∇ fi(θ

(r−τi)
i)

N

2

≤ cE

∇ f (θ̄ (r))

2
+ L2

∑N
i=1E

θ
(r)
i − θ̄

(r)

2

N
.

The above assumption is similar to the one in [66] with an additional consensus error term.

Note that the value of c is proportional to the staleness of the gradients and in case of perfect

synchronization (c = 0) the bound amounts to a standard consensus error term.

ASYNC-DSGD 17

2.4.3 Convergence Guarantee

In this subsection, we demonstrate the convergence of the decentralized optimization pro-

cedure to a stationary point of the problem (2.1).

Theorem 2.1. Consider a network of unreliable communicating devices in which the expected

consensus rate is satisfied with constant p and each device can be a straggler with probability

νi < 1. If Assumptions 2.1 and 2.2 are satisfied, asynchronous DSGD with constant learning rate

ηi =min j(1−ν j)/(
p

4LR(1−νi)) and consensus rate ξ= 1/R3/8 satisfies the following stationary

condition

1
R

R
∑

r=1

∇ f (θ̄ (r))

2 ≤
8
p

L(f (θ̄ (R))− f ∗)

c′νmin

p
R

+
3G2 L

R1/4p2c′
+

√

√ L
4R

σ2

Nc′min j(1− ν j)

+
N
∑

i=1

σ2
w,i

Nc′

�

2L2c
pR3/8

+
4L
p

L
NR1/4νmin

�

where c′ = 1− c, νmin =min j(1− ν j) and f ∗ =minθ∈RnX f (θ).

Proof. See Appendix A.1.

The above theorem establishes a vanishing bound on the stationarity of the returned solu-

tion, which involves quantities related to both communication and computation impairments.

In particular, the constant of the slowest vanishing terms R−1/4 contains the term p related to

random connectivity, as well as c′ and νmin due to stragglers.

2.5 Numerical Results

The effectiveness of the proposed asynchronous DSGD scheme is assessed using a network

of N = 15 devices that collaboratively optimize the parameters of a Convolutional Neural Net-

work (CNN) for image classification with Fashion-MNIST [67]. Gradients are calculated using

batches of 16 data samples and the performance is evaluated using a test set of 500 images. We

model the channel gain between each device pair as Rayleigh fading and we assume a shifted

exponential computation time at each device, i.e., Tcomp = Tmin+Ex p(λ)with Tmin = 0.25s and

λ = 1. In Fig. 2.4, nodes communicate only when the channel is in favorable conditions, i.e.,

when the channel gain exceeds a certain minimum threshold hmin. This allows to save energy;

however, while higher threshold values result into lower average energy consumption, they also

produce mixing matrices with smaller consensus rate, thus increasing the convergence time.

To study the effect of computation impairments, our proposed asynchronous learning algo-

rithm is compared with: (i) synchronous DSGD, which waits for all devices to finish their compu-

18 CHAPTER 2

0 50 100 150 200 250 300 350

Wall-clock Time [s]

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

A
cc

u
ra

cy

hmin = 1

hmin = 1.5

hmin = 2

Figure 2.4. Test accuracy versus time under different channel gain thresholds. Smaller thresholds result
in larger average consensus rates and therefore in faster convergence.

tations; and (ii) synchronous DSGD with a delay barrier Γmax, which discards computation from

users that violate the maximum computing time. Compared to the latter, our asynchronous pro-

cedure allows for slow devices to reuse stale gradient computations during later iterations. In

Fig. 2.5, we plot the evolution of the test accuracy of the aforementioned algorithms under two

different values of Γmax. For a moderate delay constraint Γmax = E[Tcomp], asynchronous DSGD

and synchronous DSGD with delay barrier perform similarly as the fraction of slow users is

modest. Nonetheless, imposing a delay constraint and discarding slow devices greatly reduces

the training time compared to the synchronous DSGD case. On the other hand, for a stringent

delay requirement, Γmax =
4
5E[Tcomp], reusing stale gradients turns out to be beneficial and

the proposed asynchronous DSGD attains higher accuracy faster compared to the synchronous

DSGD with a delay barrier.

2.6 Conclusion

In this chapter, we have proposed and analyzed an asynchronous implementation of DSGD,

enabling decentralized optimization over realistic wireless networks characterized by unre-

liable communication and heterogeneous computational capabilities. We examined the ef-

fects of communication and computation failures on training performance and provided non-

asymptotic convergence guarantees for the proposed algorithm. A key finding is that reusing

outdated gradient information from slower devices proves beneficial in asynchronous decen-

tralized learning.

However, the asynchronous learning scheme presented in this chapter has limitations due

to analog transmission. Specifically, the star nodes must aggregate received updates at spe-

ASYNC-DSGD 19

0 50 100 150 200 250 300

Wall-clock Time [s]

50

55

60

65

70

75

80

A
cc

u
ra

cy

Tmax = E[Tcomp]

Asynchronous DSGD

Synchronous DSGD with Delay Barrier

Synchronous DSGD

0 50 100 150 200 250 300

Wall-clock Time [s]

50

55

60

65

70

75

80

A
cc

u
ra

cy

Tmax = 4
5
E[Tcomp]

Asynchronous DSGD

Synchronous DSGD with Delay Barrier

Synchronous DSGD

Figure 2.5. Test accuracy for the asynchronous, synchronous with delay barrier, and synchronous
schemes under two different values of Γmax.

cific intervals, multiples of a unit time slot. If the delay τ is not a multiple of s, the received

messages may not align with the current model, necessitating additional techniques to correct

these misalignments. Furthermore, the protocol requires only one node to be active during

each broadcasting step, which can slow the learning process, especially for large networks.

Beyond these limitations, the next chapter introduces an advanced framework for asyn-

chronous and decentralized learning, termed DRACO, which aims to solve broader and deeper

issues related to asynchronous decentralized learning.

20 CHAPTER 2

3 DRACO: DECENTRALIZED ASYNCHRONOUS

FEDERATED LEARNING OVER CONTINUOUS

ROW-STOCHASTIC NETWORK MATRICES

Recent developments and emerging use cases, such as smart IoT and Edge Artificial In-

telligence (AI), have sparked considerable interest in the training of neural networks over

fully decentralized (serverless) networks. One of the major challenges of decentralized learn-

ing is to ensure stable convergence without resorting to strong assumptions applied for each

agent regarding data distributions or updating policies. To address these issues, we propose

DRACO, a novel method for decentralized asynchronous Stochastic Gradient Descent (SGD)

over row-stochastic gossip wireless networks by leveraging continuous communication. Our

approach enables edge devices within decentralized networks to perform local training and

model exchanging along a continuous timeline, thereby eliminating the necessity for synchro-

nized timing. The algorithm also features a specific technique of decoupling communication

and computation schedules, which empowers complete autonomy for all users and manageable

instructions for stragglers. We highlight the advantages of asynchronous and autonomous par-

ticipation in decentralized optimization through a comprehensive convergence analysis. Our

numerical experiments corroborate the efficacy of the proposed technique.

3.1 Introduction

Recent advancements in machine learning, networked intelligent systems, and wireless con-

nectivity has paved the way for various innovative applications and use cases across various

sectors, including the IoT, consumer robotics, autonomous transportation, and edge comput-

ing. These systems increasingly rely on decentralized learning architectures for processing data

where generated, minimizing latency and bandwidth usage while enhancing privacy. However,

these benefits come with significant challenges, particularly in terms of ensuring efficient and

reliable communication and processing within inherently unstable and diverse network en-

DRACO 21

vironments. Addressing these challenges requires novel approaches that adapt to the unique

demands of decentralized architectures, fostering robust and expandable solutions for real-time

data processing and learning.

In this work, we consider the problem of communication efficiency in FL [2] and in par-

ticular in serverless (fully decentralized) learning settings that operate without a central co-

ordinating server [13], [68]–[71]. Asynchronous learning, empowering each participant to

conduct local training and data transmission at their own pace, is a standard and relevant

design choice in decentralized network schemes [72]–[77]. Asynchronous and decentralized

learning have an advantage when used separately from each other, manifesting as adaptabil-

ity to limited resources and downsized communication overhead. Yet, unfortunately, when

these two paradigms are combined, their integration poses a greater challenge in achieving

a unanimous global consensus, as required, for instance, in the development of sophisticated

navigation algorithms [78].

Decentralized optimization studies in the literature often involve high “synchronization

costs” due to the complexity of ensuring consensus. In other words, the majority of asyn-

chronous learning schemes are executable only if all participants have a common sense of the

global communication rounds, which have to be, in a way, synchronously counted. This para-

doxical agreement in synchronized clocks takes an additional cost to bear while carrying out

related techniques over wireless networks with message losses or delays due to unstable chan-

nel conditions. As a result, the focus has shifted towards analyzing decentralized learning using

asynchronous gossip protocols [52], [79]–[82]. The introduction of gossiping, leveraging ran-

dom or probabilistic communication, has rendered the proposed algorithms more compelling

than those relying on predefined schedules, mainly thanks to their resilience to dynamically

changing connectivity [83].

However, existing studies on asynchronous gossip optimization usually adopt several strong

assumptions that make the proposed solutions less applicable in realistic scenarios, particularly

when involving wireless communication protocols. Early works on distributed optimization

have relied on doubly stochastic weights, which are suitable only for undirected or balanced

networks [84]. Despite the prevalence of the assumptions among many related studies, al-

gorithms designed with doubly stochastic weights cannot be constructed over arbitrarily di-

rected graphs [85]. Distributed optimization over directed graphs has been extensively studied

in control theory [86]–[89]. More recently, federated learning (FL) research has started ad-

dressing challenges related to asymmetric connectivity, using row-stochastic matrices [90] and

time-varying directed graphs [91]. Some works have even incorporated personalization [92].
However, a significant research gap remains in exploring how collaborative learning networks

can maintain robustness in the presence of unreliable transmissions.

These stringent assumptions have been introduced intentionally or inevitably since decen-

22 CHAPTER 3

Local training

Tx & Rx

(d)

Local training

Tx

Rx
superposition

(e)

local training → transmission

model aggregationidle

message dropped due to timeout

TimeTimeTime
(a) (b) (c)

Figure 3.1. A schematic view of DRACO’s timelines with comparisons. (a) Synchronous FL; (b) asyn-
chronous FL with transmission delay deadline; (c) (in DRACO) fully asynchronous FL with delay dead-
line, but the iteration count is continuous.

tralized learning over gossip communication presents several technical challenges. One of the

major challenges is uncertainty in convergence; for instance, irregular or non-uniform com-

munication probabilities in the gossip network can lead to variable convergence rates or con-

vergence to suboptimal solutions. Furthermore, the performance of decentralized learning

algorithms, for instance in terms of convergence rate and communication load per iteration, is

more sensitive to the specific network topology or graph [93]. Small changes in communication

probabilities or network configuration could significantly impact learning dynamics. Therefore,

addressing these difficulties requires specialized algorithmic solutions and in-depth analyses to

guarantee the effectiveness, stability, and convergence of asynchronous learning over decen-

tralized networks. This involves developing algorithms that adapt to irregular communication

probabilities while maintaining robustness and efficiency across diverse network structures.

In this work, we introduce DRACO, a novel framework for decentralized asynchronous FL.

In brief, we propose a scheme characterized by two foundational elements: (i) it facilitates

continuous, asynchronous operations without a global iteration count, and (ii) it employs de-

coupling communication and computation strategies, integrated with gradient pushing.

Firstly, our asynchronous learning approach operates continuously, permitting messages to

be sent and received at non-uniform, non-integer time instants. This flexibility translates into

that message arrivals are not confined to specific multiples of a global round duration, allowing

each node to operate independently, based on its own schedule. The variability in each client’s

timeline is illustrated in Fig. 3.1(c). For instance, while User 3 is engaged in its second local

updating round, User 1 is already progressing through its third round. Although this approach

makes it difficult to trace the progress of each client’s model at any given moment due to the

variability in their timelines, it significantly lowers their idle time, enhancing the efficiency

of the learning process. To alleviate the impact of outdated gradients that may impede local

models from being optimized, messages that exceed a certain delay threshold are disregarded.

DRACO 23

Local training

Tx & Rx

(d)

Local training

Tx

Rx
superposition

(e)

local training → transmission

model aggregationidle

message dropped due to timeout

TimeTimeTime
(a) (b) (c)

Figure 3.2. A schematic view of DRACO’s timelines with comparisons. (d) sequential computation and
communication over a doubly-stochastic network; (e) timelines of DRACO with decoupled computation
and communication over a row-stochastic network. If two messages arrive at the same agent with a
negligibly small time gap (in red circle), they are considered simultaneous and are used for the same
model aggregation step. The concept of superposition window is elaborated in Section 3.2.2.

Secondly, DRACO leverages decoupled communication and computation schedules, as il-

lustrated in Fig. 3.2(e). In a fully asynchronous network, the integrated learning process is

less likely to stagnate when local training and transmission occur independently. In an envi-

ronment where all users are busy, as in Fig. 3.1(c), if they always forward their new reference

models after aggregating local updates from its neighbors (one-hop senders) like in Fig. 3.2(d),

that way of exchange jeopardizes the optimization by communication overloads twice as heavy

as push-based collaboration. Furthermore, the content delivered to each other can often be

duplicated or overwritten. Thus, separating the two types of schedules departs from conven-

tional methodologies that mandate a sequential or predetermined order for gradient updates

and gossip communications.

This chapter introduces an asynchronous learning framework within a fully decentralized

network, accommodating asymmetric communication weight graphs. Our approach distin-

guishes itself from existing works in several key aspects. First, it introduces an asynchronous

and decentralized learning model in a continuously defined timeline, removing the need for

quantized transmission schedules. Consequently, our proposed technique exhibits adaptability

to dynamic network conditions.

Second, we introduce a novel and more realistic approach to addressing asynchrony in in-

telligent wireless networks. Rather than limiting the analysis to comparisons between syn-

chronous and asynchronous communication or centralized and decentralized learning, our

study embraces asynchrony and the absence of a central server as inherent challenges. In

this context, we aim to investigate whether our proposed framework can substantially improve

user performance. Additionally, we address the uncertainty and variability inherent in wireless

networks, enhancing the scheme’s resilience to fluctuations in connectivity. By incorporating

these features, our work contributes a unique perspective to decentralized learning, offering a

practical and efficient solution for real-world scenarios.

24 CHAPTER 3

3.1.1 Related Works

Asynchronous decentralized learning In synchronous learning systems, all participants

ought to wait for the slowest learner, known as a straggler, before proceeding to the next

global round. As depicted in Fig. 3.1b, asynchronous learning with a transmission delay dead-

line effectively reduces the overall training time of synchronous systems by excluding users

whose updates arrive after a predetermined deadline [52], [57]. This approach is applied not

only to asynchronous settings but to synchronous learning through partial participation [94].
Both asynchronous learning and partially participating synchronous learning face the chal-

lenge of variance reduction since only a subset of local updates is considered in each training

round [95]–[98]. Despite fewer average participation in model aggregation per user compared

to synchronous methods, asynchronous learning performs as well as its counterpart, especially

in solving large-scale multi-user optimization problems [99]. Nevertheless, this approach re-

quires users to start their computations simultaneously to synchronize the global phase, leading

to idle times when a message arrives before the start of the next iteration. Additionally, suffi-

cient local storage is necessary to manage multiple messages queued in the receive buffer until

the next round.

Randomized communication over serverless and directed networks Recent studies in

decentralized learning have explored algorithms implementable for networks modeled by di-

rected graphs, where the connectivity matrix is not necessarily doubly stochastic. This adapta-

tion is often necessary when neither full-duplex nor half-duplex systems can ensure stable gra-

dient transmissions. Techniques, such as push-sum [100]–[106], push-pull [107], [108], and

random walk [109]–[111], have been proposed to improve decentralized optimization on di-

rected graphs. Meanwhile, row-stochastic communication [112] significantly reduces both the

number of communication rounds and storage requirements on edge devices; hence, this bene-

fits in tackling complex problems, specifically those involving small-scale neural networks [89].
Among random communication protocols, gossip protocol is well-known for its rapid informa-

tion spread but also criticized for its high network resource consumption [113]. Consequently,

asynchronous gossip learning in such contexts needs innovative approaches to manage infor-

mation flow among edge devices [114].

Decoupling communication and computation Unlike traditional methods that align gra-

dient computation and communication either sequentially or in parallel, decoupling these pro-

cesses significantly accelerates peer-to-peer averaging by releasing clients from waiting for oth-

ers [115]–[117]. In AD-OGP [75], the authors replaced global communication slots with an

event-based aggregation system, encompassing activities such as prediction and local updating.

This unified timeline of events is particularly well-suited for environments where users train

locally at different computational speeds. However, the event types of AD-OGP are restricted

DRACO 25

to “prediction” and “local updating”, overlooking the impact of transmission delay. The authors

assume that message delay, defined as the time gap between the latest prediction and the local

updating event within a user, provides no insight into how long it takes for a message to reach

a neighboring node. Despite the growing interest in approaches for effective timeline inte-

gration, only a few studies have explored decoupled model averaging over unreliable wireless

networks, where issues such as packet loss or delays are prevalent.

3.2 System Model

We consider the following optimization task over N clients whose goal is to minimize

f (θ) :=
1
N

N
∑

i=1

fi(θ) (3.1)

where θ ∈ Rnθ is an nθ -dimensional model parameter and U = {1, · · · , N} is the set of network

users. In a serverless network, there is no global model θt; instead, each agent i holds θ (i)t ,

which serves as a reference for the globally acquired model. Therefore, the objective function

can be rewritten as

θ ∗ = inf
θ∈Rnθ

N
∑

i=1

fi(θ
(i)) . (3.2)

To tackle the minimization problem described in (3.1) or (3.2), we adopt a decentralized

stochastic gradient descent (DSGD) approach. In this approach, individual devices iteratively

enhance their local models θ (i) and subsequently share these estimates with their neighboring

nodes, which in turn could vary over time.

3.2.1 Absence of a global belief

The underlying assumption regarding the global consensus is that each user cannot reach

a global “true parameter”, denoted by θ ∗, by local updates only. The global model θ should be a

vector combined with the beliefs (pseudo-global model) at each agent, said θ = {θ (1),θ (2), · · · ,θ (N)}.
However, in practice, none of the agents works as a central server or aggregator, which can ob-

tain a centralized global model. We therefore adopt a virtual global model θ̄ that could have

been acquired by the superposition of all beliefs if the network had an entirely authorized

26 CHAPTER 3

server, i.e.,

θ̄ = Ei∈U[θ
(i)] =

1
N

N
∑

i=1

θ (i).

Therefore, the expectation of model update during P is

θ̄t0+P − θ̄t0
=

1
N

N
∑

i=1

�

θ
(i)
t0+P − θ

(i)
t0

�

.

3.2.2 Communication systems

In our work, the processes of computation and communication are decoupled, hence when

to locally train and when to transmit the updates are determined independently at each user.

Since there can be infinite instants between any two close events on the continuous timeline,

each message is likely to arrive at a different moment. Thus, practically speaking, there is no

aggregation during the entire process even though two updates arrive at the same destination

node by a narrow margin of time. In this regard, we introduce a superposition window, which

is analogous to congestion windows in Transmission Control Protocol (TCP) [118]. Similar to

a TCP window, the superposition window in DRACO controls the flow of received updates by

grouping the messages for one aggregation. This leads to lower computation costs due to the

fact that renewal of the local reference model every time a message arrives is avoided.

This chapter investigates the influence of unreliable wireless communications and con-

trolled transmissions on performance of DRACO. In our scenarios, we assumed time-invariant

connectivity graphs, representing stable network topologies during the learning process. This

simplified assumption enables a focused examination of how the frequency of successful mes-

sage receptions and the inherent structure of the communication network affect learning con-

vergence. Unlike traditional fixed-topology models, we explicitly account for the inherent un-

reliability of wireless channels. In our model, successful message delivery between connected

nodes is not guaranteed, influenced by physical distance, interference, and channel capacity

limitations. User nodes are randomly distributed in the environment, and their geographical

positions directly impact communication probabilities. To provide a more comprehensive un-

derstanding beyond standard fixed-topology analyses, we evaluate the impact of the frequency

of successful message receptions within a defined unification period (detailed in Section 3.3.1).

This approach allows for a nuanced learning process assessment under various wireless channel

conditions.

A weighted graph at a certain instance is mathematically defined as a N × N -sized matrix

where each element indicates whether i transmits its message to one of its neighbors j or not.

DRACO 27

It follows a conditional probability distribution if there is a communication event on client i.

Transmission incidents are defined as

qi
k =







1, if i broadcasts ∆(i) at k

0, otherwise.
(3.3)

qi→ j
k =







1, if j receives i’s message sent at k

0, otherwise.
(3.4)

where k is the index of an event. We define the neighborhood of user i, denoted by Nt(i) =
{ j|qi→ j

t = 1}, as the set of all users j that have an edge going from i to j at time t. It is

also possible to denote the neighbor set with respect to event k, such as Nk(i). Following

the notation in [94], these participation indicators are normalized across all moments, i.e.,
∑

j∈U\{i} q
i→ j
t = 1 for qi→ j

t ≥ 0 and for all i, t. In addition to the definition, we define ρ < 1

that satisfies
∑

j∈U\{i}(q
i→ j
t)

2 ≤ ρ2 for all i, t.

A broadcasting event is a necessary condition for a reception event. Let e indicate the

event of a client node i broadcasting its local update at time t. When this event e occurs,

the other nodes receive the message based on a conditional probability distribution, which

also implies that a set of neighbors (recipients) is decided after the occurrence of e. If by

δi = 1 we indicate the incidence that node i has broadcast a message at a given instant, the

probability that another node j receives this message is conditioned on this event e. In other

words, P
�

δi j = 1|δi = 0
�

= 0 for all i, j.

3.2.3 Local gradient computations

Each user performs stochastic gradient computations by iterating B batches of the local

training datasets. ∆ represents the local update of the model, defined as the difference between

its state prior to the mini-batch training and its state after completing training on B batches of

training samples.

Assumption 3.1. (Exponential local gradient computation time.) The computation time τi of

the stochastic gradient gi(θ) ∈ Rd at user i is exponentially distributed, i.e., τi ∼ Ex p(λi).

In the context of point processes, one can consider a Poisson Point Process (PPP) along the

real line by examining the count of points within a specific interval (t0, t0 + P] [119]. For a

homogeneous PPP with rate parameter λ > 0, the likelihood that the count of points, denoted

by num(t0, t0 + P], equals a certain integer m can be described by the following expression:

Pr{num(t0, t0 + P] = m}=
(λP)m

m!
e−λP .

28 CHAPTER 3

This formula calculates the probability of exactly m occurrences within the interval based on

the Poisson distribution, where λP represents the expected number of points in the interval

and e−λP adjusts for the total rate of occurrences over the span.

3.3 DRACO: Proposed Decentralized Asynchronous Learn-

ing

The main rationale behind the proposed algorithm is to provide an answer to the following

question: How can we issue instructions to each user in the absence of a global time loop in the

network? To resolve this issue, we design the system such that each node focuses solely on its

actions without considering the training progress or the channel conditions of the other nodes.

Defining the algorithm within a unified time loop in asynchronous and fully decentralized net-

works presents several practical limitations in real-world systems. A significant challenge lies

in the absence of a consistent global time reference, such as global iteration rounds, denoted as

t, or timestamps marking the completion of each user’s local computations, marked as k. This

inconsistency arises because the total number of local training iterations varies across users,

even when their updates are observed simultaneously. As a result, if the algorithm mandates

exchanges every tP seconds or every kP global slots, some local models may fall behind in de-

velopment due to completing fewer local training steps compared to others. To address this

issue, we avoid defining the procedure as either sequential or simultaneous. Our algorithm

adopts instead a unified global loop where all users work in parallel. This global loop effec-

tively encapsulates the learning process conducted by each user.

At each instance, every user selects one of the following three statuses based on a proba-

bility distribution: (1) remaining idle, (2) transmitting a message to neighboring nodes, or (3)

conducting local model training. Local computation involves batch training iterated B times

to compute the update, termed ∆. During transmission, the user broadcasts its local update.

If a node recognizes delivery from the other nodes, it switches to a fourth (4) status (receiv-

ing mode), renewing its reference model by aggregating the model updates from neighboring

nodes. Unlike these four statuses, a node turns to the fifth (5) status when a periodic timeout

occurs. As depicted in the yellow box in Figure 3.3, a temporary hub broadcasts its reference

model instead of a local update when the time is a multiple of the period P. The corresponding

explanation as a form of algorithm is provided in Algorithm 3 on page 31.

Note that the ‘idle’ state is included since we assume that the agents alter their states in-

stantaneously, i.e., without delay. The node’s status is considered idle when it does none of the

aforementioned steps. However, in practice, any activity takes time to complete, implying that

each timestamp represents the moment that each action just finished. By this interpretation,

DRACO 29

Transmission
pkt ← Δ(i)

Broadcast(pkt)

Local training
y0

(i) ← x(i)

yb+1
(i) ← yb

(i) – γgi(yb
(i))

Get Δ(i) ← yB
(i) – x(i)

Reception
Add weighted sum
x(i) ← x(i) + qt

j→i Δ(i)

x(i) ← x(hub)

Periodic unification
pkt ← x(i)
Broadcast(pkt)

idle

Wake for event
Event done
External pkt arrival
Time ≡ 0 (mod P) & node i is the hub

Figure 3.3. Our proposed algorithm in a chain graph illustrating the states of possible actions within
each agent i.

the participants do not have an actual break time in practical scenarios, which is also applied

to the experiments in Section 3.5.

Notations. U represents the set of participants within the network with Q := {qi→ j
t } for all

i, j ∈ U and t. Also,
∑

j ̸=i represents the summations of variables attributed to any user other

than user i, i.e., j ∈ U \ {i}. Throughout this manuscript, the term ‘update’ is used only as a

noun that signifies the result derived from the difference between a local reference model and

a newly obtained model through batch training. A user i’s local update at time t is symbolized

as∆(i)t . When a user i sends∆(i) or θ (i), the recipient j receives ∆̃(i) or θ̃ (i), which are identical

to the sender’s original contents if the transmission is free from distortion. To avoid potential

confusion, any instances in this paper that involve the action of updating are called alternatively,

such as ‘renew’ or ‘iterate on’.

3.3.1 Periodic Unification

Local models are likely to diverge when the network does not use a central server, because

no one synchronizes its different learning stages. Like conventional FedAvg, periodic unifica-

tion can effectively resolve the variance-reduction problem among local reference models. A

countable upper bound for the number of messages per unit time is required for analysis be-

cause otherwise, the losses diverge to infinite. It is also reasonable to assume that it is finite

because, in real-life applications, messages are countable even though the number of definable

instances is infinite. Based on this, Assumption 3.2 and Definition 3.1 are introduced as follows.

30 CHAPTER 3

Algorithm 3: User-oriented algorithm of DRACO. A pseudo-algorithm for
source code reproduction is provided in Appendix B.3.

Input: η,θ0, B, T , P
Output: {θt : ∀t}

1 for i = 1, · · · , N do in parallel
2 while t < T do
3 t ← clock()
4 if there is an event at time t then
5 if grad computation step then
6 y(i)0 ← θ

(i)

7 for b = 0, · · · , B − 1 do
8 y(i)b+1← y(i)b −ηgi(y

(i)
b)

9 end for
10 ∆(i)← y(i)B − θ

(i) // local batch training
11 else if transmission step then
12 i sends ∆(i) to its neighbors
13 for j ∈N (i) do
14 j receives ∆̃(i)

15 θ (j)← θ (j) +
∑

j ̸=i qi j
t ∆̃

(i) // aggregation
16 end for
17 end if
18 end if
19 if t ≡ 0 (mod P) and t > 0 and i is the hub at t then
20 i broadcasts θ (i)

21 for j ∈ U \ {i} do
22 j receives θ̃ (i)

23 θ (j)← θ̃ (i) // unification
24 end for
25 end if
26 end while
27 end for
28 return

�

θ
(i)
T

�

1≤i≤N

Assumption 3.2. (Finite number of messages during a unit time period) During every period P,

the number of messages that each user receives is finite.

Definition 3.1. (Maximum number of receiving messages per user) Let ψi(tstart, tend) indicate the

function that counts the number of messages arrived at user i since time tstart until time tend. For

any i ∈ U and m ∈ [0,1, · · · , ⌊ T
P ⌋ − 1] ,

ψi(mP, (m+ 1)P)≤ Ψ ,

where Ψ is the maximum number of messages that a user permits to receive during time duration

[mP, (m+ 1)P).

DRACO 31

The Ψ term not only justifies the number of messages to be countable but also functions as

a communication budget per period. Interestingly, when a decentralized network has a fixed

communication budget per unit time, performing many consensus steps can effectively reduce

the error even though each gossiping step renders low precision. [120]

3.4 Convergence Analysis

In this section, we analyze the convergence performance of DRACO. For that, following

the common practice in the literature, we make the subsequent assumptions along with the

objective function.

Assumption 3.3. (Lipschitz gradient.) For any θ ,y ∈ Rd and for any i ∈ U , there is a nonnegative

L that satisfies

∥∇ fi(θ)−∇ fi(y)∥ ≤ L∥θ − y∥, ∀θ ,y, i. (3.5)

Assumption 3.4. (Unbiased stochastic gradient with bounded variance.) For all θ , i,

E[gi(θ)|θ] =∇ fi(θ) and E
�

∥gi(θ)−∇ fi(θ)∥2|θ
�

≤ σ2 (3.6)

Assumption 3.5. (Bounded gradient divergence.) For all t ∈ [0, T) and i ∈ U , the gradient

divergence is bounded by ζ, i.e.,

∥∇ fi(θ
(i)
t)−∇ f (θt)∥2 ≤ ζ2. (3.7)

From Assumption 3.5, an alternative deviation of local gradients is derived as in Lemma 3.1.

Lemma 3.1. (Deviation of local gradients) When N > 4, for all θ , t,

∑

j∈U

q j→i
t

�

∇ fi(θ
(i)
t)−∇ f j(θ

(j)
t)
�

2
≤

2Nζ2

N − 4
.

Proof. The left side of the inequality above can be rephrased as

∑

j∈U

q j→i
t

�

∇ fi(θ
(i)
t)−∇ f j(θ

(j)
t)
�

2
=

∇ fi(θ
(i)
t)−

∑

j∈U

q j→i
t ∇ f j(θ

(j)
t)

2
.

By adding and subtracting ∇ f (θt), we have

∇ fi(θ
(i)
t)−

∑

j∈U

q j→i
t ∇ f j(θ

(j)
t)

2

32 CHAPTER 3

=

∇ fi(θ
(i)
t)−∇ f (θt) +∇ f (θt)−

N
∑

j=1

q j→i
t ∇ f j(θ

(j)
t)

2

=

∇ fi(θ
(i)
t)−∇ f (θt) +

1
N

N
∑

i′=1

∇ fi′(θ
(i′)
t)−

1
N

N
∑

i′=1

N
∑

j=1

q j→i
t ∇ f j(θ

(j)
t)

2

(a)
≤ 2

∇ fi(θ
(i)
t)−∇ f (θt)

2
+ 2

1
N

N
∑

i′=1

�

∇ fi′(θ
(i′)
t)−

N
∑

j=1

q j→i
t ∇ f j(θ

(j)
t)
�

2

(b)
≤ 2ζ2 +

2
N

N
∑

i′=1

∇ fi′(θ
(i′)
t)−

N
∑

j=1

q j→i
t ∇ f j(θ

(j)
t)

2
,

where (a) uses (∥z1 + z2∥2)/2 ≤ ∥z1∥2 + ∥z2∥2; (b) is from the definition of ζ2 in Assumption

3.5 on the first term and Jensen’s inequality on the second term. By rearranging the second

term of the right side of the inequality, we get

�

1−
2
N

�

∇ fi(θ
(i)
t)−

∑

j∈U

q j→i
t ∇ f j(θ

(j)
t)

2

≤ 2ζ2 +
2
N

∑

i′∈U\{i}

∇ fi′(θ
(i′)
t)−

N
∑

j=1

q j→i
t ∇ f j(θ

(j)
t)

2

≤ 2ζ2 +
2
N

N
∑

i′=1

∇ fi′(θ
(i′)
t)−

N
∑

j=1

q j→i′

t ∇ f j(θ
(j)
t)

2
.

With another rearrangement to the left side, the inequality becomes

�

1−
4
N

�

∇ fi(θ
(i)
t)−

∑

j∈U

q j→i
t ∇ f j(θ

(j)
t)

2
≤ 2ζ2.

Considering all the above assumptions, we obtain an upper bound on the expectation of the

original objective’s gradient when Q is given in advance.

Theorem 3.1. Let F := f (θ0)−minθ f (θ). Under all the aforementioned assumptions, we have

min
t
E
�

∥∇ f (θt)∥2
�

�Q
�

≤O
� F

BηΨ
+

ζ2

N − 4
+σ2 + Nζ2 + BL2η2σ2 +

Lηρ2σ2

NΨ

�

(3.8)

for η≤ 1
8BLNΨ , N > 4, and Ψ ≥ 3.

Remark. We begin, following a similar approach to [94], by deriving an inequality rooted in

the smoothness of fi. This inequality establishes a connection between two local losses from

the same user at different timestamps, namely fi(θ
(i)
t0+P) and fi(θ

(i)
t0
). Within this inequality,

DRACO 33

an inner product term unfolds into several components. Notably, it comprises three distinct

subterms: one involving ∥y(j)t,b − θ
(j)
t ∥2 (refer to Lemma B.2), another featuring ∥θ (j)t − θ

(j)
t0
∥2

(see Lemma B.3) which is mainly derived from Algorithm 3, and a third term with ∥∇ fi(θ
(i)
t)−

∇ f j(θ
(j)
t)∥2, of which the expectation has an upper bound (refer to Lemma 3.1). Our proof is

novel in the sense that it effectively converts and simplifies the terms on the continuous timeline

into discrete values. Detailed proof is available in Appendix B.1.4. □

3.5 Experimental Results

We conducted experiments with federated learning on two datasets: (1) balanced EM-

NIST [121] dataset with 47 class labels for image classification tasks, and (2) the Poker hand

dataset [122] for multi-class classification tasks, which is widely applied in automatic rule gen-

eration. Each user possesses 1000 local training samples arranged into training batches with

64 samples per batch. The default number of participants in each simulation is N = 25, other-

wise it is specified accordingly. The sampling interval is 500 events, i.e., the evaluation of each

local model is done under a test set whenever the 500th event is finished. The rate parameter

of exponential distribution in local gradient computation is λi = 0.1 for all users by default.

In this study, the impact on model compression is not evaluated, implying that the packet size

is as large as the raw model. The convolutional neural network (CNN) architecture used in

the simulations takes up 596776 B (0.57 MB) for feeding samples from EMNIST, and 51640 B

(0.05 MB) from Poker hand, respectively. This value is used to quantify the message size.

We performed simulations using two topologies: cycle and complete, with a time-invariant

Q. The connectivity graph is fixed throughout the whole collaboration process. Each user, in-

dexed i without losing generality, spends some time computing local gradient following ex p(λi)
as mentioned in Assumption 3.1. Whenever a local update is done at t, user i sends ∆(i)t to its

neighbors j ∈ N (i), where N (i) indicates a set of user i’s neighbors. Although a pre-defined

topology outlines the intended communication paths between nodes, the inherent unreliability

of wireless channels can significantly affect data transmission. Factors such as fading, interfer-

ence, and physical obstructions can disrupt connectivity, resulting in packet losses and delays,

thereby undermining the efficiency and reliability of communication within the network. We

used parameters reported in [123] and [124] for the wireless communication settings. The

radius of the field where the nodes can be scattered is R= 500 m. We fix the transmit power of

each user as Pi = 30 dBm (1000 mW). We also set the path loss exponent α= 4, the bandwidth

W = 10 MHz, and the noise power density N0 = −174 dBm/Hz. We assumed that two nodes

interfere with each other during transmission if their distance is closer than 0.1R. Due to those

wireless communication characteristics, the mechanism for realizing DRACO is slightly differ-

34 CHAPTER 3

0 5000 10000 15000 20000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0
F1

 S
co

re
Dataset: emnist

Sync-push
Sync-symm (Choco-SGD)
Async-symm
Digest
Draco (= 1)

0 5000 10000 15000 20000
Time (seconds)

20

40

60

80

Te
st

 a
cc

ur
ac

y
(%

)

Sync-push
Sync-symm (Choco-SGD)
Async-symm
Digest
Draco (= 1)

(a) Impact on topology

0 5000 10000 15000 20000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Dataset: pokerhand

Sync-push
Sync-symm (Choco-SGD)
Async-symm
Digest
Draco

0 5000 10000 15000 20000
Time (seconds)

10

20

30

40

50

60

70

80

Te
st

 a
cc

ur
ac

y
(%

)

Sync-push
Sync-symm (Choco-SGD)
Async-symm
Digest
Draco

(b) Impact on Ψ

Figure 3.4. Performance comparison with the literature under (a) EMNIST dataset, and (b) Poker hand
dataset.

ent. Specifically, when user i has performed local training at time t, it broadcasts its update

∆
(i)
t to all j ∈ U \ {i}. It takes

Γi→ j =
message size

W · log2(1+ SINRi, j)
+

distance(i, j)
lightspeed

seconds for the message to arrive at node j. Here, the signal-to-interference-plus-noise ratio

(SINR) between the two nodes is defined as

SINRi, j =
Pih jidistance(j, i)−α

∑

n∈Φ j
Pih jndistance(j, n)−α + z2

,

where h ji ∼ ex p(1) denotes the small-scale fading gain, Φ j is a set of nodes interfering node

j, and z2 characterizes the variance of AWGN (Additive White Gaussian Noise). As long as the

transmission duration Γi→ j is shorter than the predetermined threshold Γmax, user j succeeds to

receive ∆(i) at time t + Γi→ j. (i.e., qi→ j
t+Γi→ j

= 1.)

DRACO 35

0 5000 10000 15000 20000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0
F1

 S
co

re

Dataset: emnist

=250
=100
=50
=25

0 5000 10000 15000 20000
Time (seconds)

30

40

50

60

70

80

Te
st

 a
cc

ur
ac

y
(%

)

=250
=100
=50
=25

(a)

0 5000 10000 15000 20000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Dataset: pokerhand

=250
=100
=50
=25
=10

0 5000 10000 15000 20000
Time (seconds)

10

20

30

40

50

60

70

80

Te
st

 a
cc

ur
ac

y
(%

)

=250
=100
=50
=25
=10

(b)

Figure 3.5. Results for different upper bounds on the number of received messages per user. (Γmax = 10)

The performance of DRACO is evaluated across different network topologies and datasets.

For EMNIST, a cycle topology is employed, where each user is connected to two neighbors. In

contrast, the Poker hand dataset utilizes a fully connected topology, with each user directly

connected to all others. DRACO’s performance is compared against four benchmark methods:

• sync-symm: Synchronous learning with symmetric connectivity (Choco-SGD [8])

• sync-push: Synchronous learning with directed connectivity.

• async-symm: Asynchronous learning with symmetric connectivity (Decentralized Asyn-

chronous SGD [52]).

• async-push: Asynchronous learning with directed connectivity (Digest [114]).

The term “Push” denotes the use of the push-sum algorithm for directed graphs.

The Poker hand dataset presents a unique challenge due to its imbalanced class distribution.

To comprehensively assess model performance, both test accuracy and F1-score were evaluated,

the latter accounting for both precision and recall.

While the choice of dataset had a minor impact on overall trends, the network topology

significantly influenced performance. In the cycle topology, where each user exchanges infor-

mation with only two neighbors, unreliable channels (e.g., due to fading) can lead to frequent

36 CHAPTER 3

client isolation. As shown in Fig. 3.4a, synchronous methods exhibited comparable perfor-

mance, but async-symm underperformed async-push, despite using a doubly stochastic matrix.

This highlights the sensitivity of async-symm to strict transmission deadlines, emphasizing the

importance of well-designed scheduling in asynchronous learning.

In the fully connected topology in Fig. 3.4b, where every user is connected to all others, the

virtual global model can be trained more robustly, even when some edges are intermittently dis-

rupted. While convergence speeds vary, all algorithms ultimately achieve similar performance.

DRACO consistently outperformed competitors in both test accuracy and F1-score. This ad-

vantage stems from its parallel aggregation and unification mechanisms, which effectively mit-

igate the divergence of local models common in asynchronous decentralized learning. DRACO

periodically unifies local reference models and regulates the number of received messages,

enhancing robustness in continuous operation and fading environments.

During implementation, performance oscillations were observed when users received ex-

cessive redundant updates due to high transmission frequencies (large Ψ values in Fig. 3.5a

and 3.5b). Conversely, excessively small Ψ values slowed learning by limiting crucial updates’

reception. These findings align with prior work [120] and the theoretical analysis presented in

Theorem 3.1.

3.6 Concluding Remarks

We have studied decentralized asynchronous learning optimization through row-stochastic

gossip communication networks and proposed a novel method termed DRACO. By facilitating

the learning process obviating the need for global iteration counts, our technique presents lo-

cal user performance defined on a continuous timeline. We provided practical instructions for

each participant by decoupling training and transmission schedules, resulting in complete au-

tonomy and simplified implementations in real-world applications. We analyzed the algorithm

convergence and provided experimental results that support the efficacy and feasibility of the

proposed framework.

In the remainder, we highlight some promising yet challenging directions that require fur-

ther investigation.

• Bandwidth allocation. In this chapter, bandwidth is equally distributed to all users. If

the users exchange their SINR information, as well as their weight updates, a bandwidth

allocation algorithm can be added within the “for i” loop, as proposed in [124].

• More realistic experiments with aggregation time threshold. We can consider that

each user has a predetermined threshold to aggregate its neighbors’ local updates. The

user can perform superposition to its local reference model only after the timeout occurs.

DRACO 37

For instance, each user j might have an upper bound on the number of ∆(i)’s that it can

accept during its receiving period.

• Improve robustness against collisions. Random access is known to have a higher prob-

ability of collision occurrence. However, it is cumbersome or impractical to predetermine

the communication schedule because while carrying out DRACO, the participants decide

whether to transmit and/or train their local models without communication or agree-

ment with the other users. Collision in a random access protocol, such as in the context

of federated learning where clients transmit messages, can be alleviated by adapting clas-

sical approaches in wireless networks. These approaches include configuring a random

backoff time after a collision for retransmission attempts, adopting collision detection

mechanisms, or allowing clients to dynamically adjust the size of their messages or the

transmission power. On the other hand, considering collisions from the resource alloca-

tion perspective, the system can assign different priority levels to clients based on factors,

such as their data urgency or historical collision rates.

• Reception control We manually selected the rate parameters for transmissions (λ j→i) be-

cause we assumed that the participants are not able to predict the frequency of message-

receiving events, even in fixed Q cases. Nevertheless, there exist techniques that enable

edge devices to roughly estimate in advance the ratio of successful message reception.

With this in mind, it will be possible to study how to manage the reception events in

realizing DRACO.

38 CHAPTER 3

4 PERSONALIZED DECENTRALIZED FEDERATED

LEARNING WITH KNOWLEDGE DISTILLATION

Personalization in FL functions as a coordinator for clients with high variance in data or

behavior. Ensuring the convergence of these clients’ models relies on how closely users collab-

orate with those with similar patterns or preferences. However, it is generally challenging to

quantify similarity under limited knowledge about other users’ models given to users in a de-

centralized network. To cope with this issue, we propose a personalized and fully decentralized

FL algorithm, leveraging knowledge distillation techniques to empower each device to discern

statistical distances between local models. Each client device can enhance its performance

without sharing local data by estimating the similarity between two intermediate outputs from

feeding local samples as in knowledge distillation. Our empirical studies demonstrate that

the proposed algorithm improves the test accuracy of clients in fewer iterations under highly

non-i.i.d. data distributions and is beneficial to agents with small datasets, even without the

need for a central server.

4.1 Introduction

Since the appearance of FL [1] as a promising and efficient solution for distributed learning

with collaborative clients, numerous research studies have investigated this paradigm in dis-

tributed networks of users under various hindrance factors, such as limited local storage [125],
information leakage [126], biases across user experiences [127], and transmission impair-

ments [128]. The main objective of FL and of many of its decentralized variants is generally to

acquire a global model across all devices. Nevertheless, a single common model deduced from

all participants may not satisfy the clients whose tasks or data distributions significantly deviate

from the rest. On this account, personalized FL [61]–[63], [129]–[132] has been considered

as a means to provide a customized solution to users with statistical heterogeneity. A widely

used procedure for personalized FL first constructs a global model using a central aggregator

as a draft and then customizes it under each agent’s control. [61]–[63] On the other hand,

KD-PDFL 39

Strengthen the connection
with highly related nodes

Weaken the connection with
nodes performing disparate tasks

Figure 4.1. Challenges in personalized FL with peer-to-peer communication include privacy concerns
from sharing data distribution indicators and the difficulty in selecting appropriate distance metrics that
balance information exchange complexity and accuracy.

personalized FL is particularly commensurate with serverless networks as each agent executes

the training process autonomously, thereby enabling asynchronous learning [6], [133]–[138].

Despite its practical relevance, there are several issues and technical challenges associated

to personalized federated learning, which we briefly discuss below. First, among users with di-

verse characteristics, each agent has to find sufficiently similar peers since putting more weights

on received model parameters with higher similarity during superposition improves its perfor-

mance [138]. Unfortunately, choosing the right distance measurement, which can capture the

actual similarity, is challenging. Moreover, the system has to encounter a tradeoff between

model complexity and metric complexity. If the exchanged information has a more complex

structure, participants have no choice but to use simpler metrics [139].

Second, FL fundamentally requires ensuring privacy within each agent, which commonly

implies but is not limited to maintaining data samples private. For instance, the information

on possessed class labels for classification tasks should also be kept private [140]. However,

because of their omniscient viewpoint, most existing personalized and decentralized learning

schemes do not thoroughly preserve inter-device privacy. Occasionally, the agents take a con-

stant for local training, which is derived from public knowledge, e.g., the number of others’

training samples [133]. Even though the variables used for training are perfectly separated,

a decentralized collaborative learning scheme introduced in [134] assumes the presence of a

40 CHAPTER 4

proxy dataset accessible to anyone. In [6], [129], the selected agents request to exchange hy-

potheses represented as a weighted sum of base data distributions. These identify the direct

information of which class labels one possesses from its neighbors.

To address the aforementioned challenges, we propose KD-PDFL [54], a personalized de-

centralized FL scheme that provides a completely enclosed service. With KD-PDFL, each client

can individually update all parameters from their first-person perspective, including the con-

nectivity graph, the local model, and the local dataset. In this approach, each user receives

only model copies from its neighbors and determines their optimal combination. This property

differentiates our algorithm from prior works, which either ask users to seek additional external

information or rely on isolated personalization methods like local fine-tuning.

As a powerful tool that enhances the inference capability of clients with simple models, we

introduce knowledge distillation into our proposed scheme, where agents evaluate similarity

with co-distillation based on local validation datasets. Thanks to embracing the characteristic of

distillation, agents are also free from the need for model homogeneity since distillation enables

cooperation across models with different layer structures as long as the models have a common

layer with the same dimension. Our experimental results show that KD-PDFL achieves higher

test accuracy within smaller global iterations compared to other personalized decentralized

FL schemes, given that the amount of exchanged information is the same. We also provide a

guideline for tuning the hyperparameters used in implementing our experiments.

4.2 Preliminaries

In this section, before introducing our work, we provide a brief overview of the two major

ingredients of our proposed solution: (i) personalized decentralized learning, which describes

the overall protocol of how users exchange information; (ii) knowledge distillation, which

elaborates on how they draw relevance from others.

4.2.1 Personalized decentralized learning

In contrast to distributed networks with a central server, a fully decentralized network im-

plies that no node has the authority or accessibility to construct a global consensus model at

any instant of the learning process. Thus, personalized and decentralized FL naturally exclude

building a common model before local customization. We consider a decentralized learning

system that assigns different central entities for each global iteration. In this network, a ran-

domly selected node wakes up to serve as a temporary center node, which is also called a “star

node”. First, this star node collects gradient parameters from its neighbors. Subsequently, it

calculates inferences from all received gradients, which are used to measure the similarities

KD-PDFL 41

𝑑𝑑𝑊𝑊(𝑖𝑖,𝒩𝒩𝑖𝑖)

Inference

3) 𝑖𝑖 updates model

5) 𝑖𝑖 updates model

4) 𝑖𝑖 updates collaboration
vector (weights)

<Node 𝒊𝒊> <Node 𝑗𝑗>

<Node 𝑛𝑛>

1) Neighbors (𝒩𝒩𝑖𝑖)
transmit local
models to 𝑖𝑖

Dataset 𝒊𝒊
Dataset 𝑗𝑗

𝒙𝒙𝑖𝑖 �𝒙𝒙𝑗𝑗 �𝒙𝒙𝑛𝑛

6) 𝑖𝑖 broadcasts new model to 𝒩𝒩𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖
× × ×

𝑤𝑤11 … 𝑤𝑤13
⋮ ⋱ ⋮

𝑤𝑤31 … 𝑤𝑤33
4) Update graph weights

2) 𝑖𝑖 measures
statistical distances

Dataset 𝑛𝑛

Figure 4.2. A general schematic of personalized decentralized FL.

among the learning objectives thereafter. Users manage the traits of these similarities by se-

lecting and focusing on communicating with neighbors that have the highest similarities. In

literature, these semantic traits are modeled using a collaboration graph, which can be a prop-

erty of communication links between nodes or a target variable to optimize mixing weights.

A collaboration graph is a weighted graph whose edge weights represent quantified relevance

between learning tasks. (See also Fig. 4.2)

Once the star node finishes the calculation described above, it updates the weights of the

collaboration graph according to the similarity variables. Meanwhile, it also updates its model

using a weighted sum of all received parameters, where the weights are those obtained from

the collaboration graph.

4.2.2 Knowledge Distillation and Co-Distillation

Knowledge Distillation (KD) [141] is a knowledge transfer method in which multiple clients

can compare the outputs from a common dataset to absorb the inferred knowledge of the oth-

ers. They quantify the similarity between the logits. In Co-Distillation (CD) [142], all clients

are in an equal position to learn from the other as everyone works as a student. KD and CD have

the advantage of allowing the users to transfer knowledge between models with heterogeneous

structures. Yet, the system must have a public/common dataset in order to let the participants

compare each logit one by one with identical batches. This conflicts with the vanilla FL ap-

42 CHAPTER 4

proach that guarantees the data maintenance attribute without transmission of data samples.

4.3 Problem Setting

We consider a joint minimization problem across N users. Each user indicated as i ∈ U =
{1,2, · · · , N} has access to a training set Di and its goal is to minimize its loss function fi :

RnX → R+ where nX is the dimension of the input features. The objective of the whole system

is to minimize the total local loss and the jointly calculated dissimilarity.

We adapt the idea of a collaboration graph W to represent the connectivity between any

two nodes in the network. A collaboration graph W = [w1, w2, . . . , wN] is a matrix of stacked

connectivity vectors of each client. Each column vector of W , denoted as wi = [wi1, . . . , wiN]T ,

is a connectivity vector of client i whose elements are the edge weights. In this chapter, the

term “connectivity” implies relevance across two nodes, thus wi j ≥ 0 is proportional to the

degree of recognition of node i for how relevant node j’s task is to its own task.

Objective function: The main target of our system is to learn the personalized models

Θ = {θ1, ...,θN} and the collaboration graph W ∈ RN×N that minimize the following joint opti-

mization problem

min
Θ,W

J(Θ, W) =
N
∑

i=1

fi (θi;Di) +
µ1

2

∑

i, j∈U

wi jdw(i, j) +µ2 g(w) (4.1)

where fi(·; ·) is a local loss function and dw(i, j) is the measured distance (dissimilarity) between

the model estimations of two clients i and j. The second term allows assessing task relevance

by penalizing the links between any two nodes with large statistical distances. The third term

g(w) is a regularization term that strongly encourages the users to participate in collaboration

by giving a high penalty when a user tries only local training. µ1 and µ2 are hyperparameters

for adjusting the influence of each term above, respectively.

4.4 Personalized Decentralized Learning with KD

We consider a fully decentralized network where agents do not implement strict synchro-

nization and cooperate through peer-to-peer communication. Particularly, our definition of

decentralization imparts autonomy in determining the collaboration graph. In other words,

each user evaluates the collaborative weights independently and privately instead of accessing

a row of a connectivity matrix shared in public. The clients follow a cross-silo setting where

each client performs all steps of the learning process, i.e., has datasets locally distributed for

training, validation, and test purposes. In this section, we focus on the method to extract rel-

KD-PDFL 43

evant information across the nodes in a serverless fashion. In every exchange interval Tex , the

agents follow the step-by-step instructions below (see also Fig. 4.3):

1. A node assigned as a star node, say user i, wakes up to ask for transmission from a group

of its neighbors at time t, N (t)
i . The peers send their local model updates to the star node

i. At the end of the transmission, i has |N (t)
i |-copies of model parameters of its neighbors

if no packet loss has occurred.

2. From i’s local training dataset Di, i packs training samples in a batch Bi. The batch Bi is

fed to model parameters of all j ∈N (t)
i in order to get intermediate outputs (e.g., logits),

denoted as zi j.

3. Node i measures the statistical distance dW (i, j) for all j ∈N (t)
i , then updates wi of which

the gradient function ∇Ji(w) is the partial derivative of Eq. (4.1) with respect to the

computation entity i. Based on this gradient, node i updates a collaboration weight of j

from the viewpoint of i, which is always bounded to a nonnegative value. The following

equation illustrates the policy of updating the connectivity vector of i:

∇Ji(w
(t)
i) = µ1dW,i +µ2∇gi(w

(t)
i)

β (t) = 1./|∇Ji(w
(t)
i)|

w(t+1)
i j =max(0, w(t)i j − β

(t)∇Ji(w
(t)
i))

(4.2)

where dW,i = [dW (i, 1), · · · , dW (i, N)] indicates the statistical distance vector of node i.

4. i updates its connectivity vector using dW (i, j). To quantify the distance between two

logits that are formed as probability distributions, the given user calculates the batched

mean of the Wasserstein distance between the two variables. In particular, under clas-

sification tasks where the probability distribution is discrete and the number of possible

classes is known, a user can compute the arithmetic mean of all Wasserstein distances

from each single data sample of the batch. With ni local batch samples and nL possible

classification labels, the Wasserstein distance of two logits with (ni×nL) size is computed

as follows:

dW (i, j) =
1
ni

ni
∑

x=1

nL
∑

l=1

∥p(x)i,l − p(x)j,l ∥
2
2 (4.3)

where p(x)i,l indicates the logit for class label l that goes through user i’s model from an

input data point with index x . Note that the importance of i from the viewpoint of j may

differ from that of j from the viewpoint of i due to differences in model complexity or

44 CHAPTER 4

2) 𝑖𝑖 extracts logits from
all models it possesses

𝑑𝑑𝑊𝑊(𝑧𝑧𝑖𝑖 , 𝑧𝑧𝑗𝑗),𝑑𝑑𝑊𝑊 𝑧𝑧𝑖𝑖 , 𝑧𝑧𝑛𝑛Inference

3) 𝑖𝑖 measures
statistical distances

5) 𝑖𝑖 updates model

n
i

m

j l

Slot 1: Aggregation

n
i

m

j l

Slot 4: Broadcast

𝑧𝑧𝑖𝑖𝑖𝑖𝑖 𝑧𝑧𝑗𝑗𝑗𝑗𝑗 𝑧𝑧𝑛𝑛𝑛𝑛𝑛

4) 𝑖𝑖 updates collaboration
vector (weights)

<Node 𝒊𝒊>
<Node 𝑛𝑛>

n
i

m

j l

Slot 2: Broadcast

n
i

m

j l

Slot 3: Aggregation

Dataset 𝒊𝒊

Dataset 𝑗𝑗

𝒙𝒙𝑖𝑖 �𝒙𝒙𝑗𝑗 �𝒙𝒙𝑛𝑛

𝑤𝑤𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖
× × ×

Weighted sum

1) 𝑖𝑖 requests models
from neighbors

6) 𝑖𝑖 broadcasts new model to 𝒩𝒩𝑖𝑖

<Node 𝑗𝑗>

Dataset 𝑛𝑛

Figure 4.3. Above: communication protocol during exchange intervals. Below: model and collaboration
vector update elaborated. The figure illustrates the process executed only in the star node.

the number of trainable samples. Thus, W is not symmetric, and agents do not need to

share updated connectivity weights.

5. A new model for i is a weighted sum of all footprints it has at that time, where the weights

are the elements of the connectivity vector.

6. In the broadcast phase at the next time slot, node i broadcasts θ (t)i to the peer group of

the previous time slot, N (t−1)
i .

7. Other than the exchanging iterations, each agent performs only local learning.

One cannot find its own weight wii of the connectivity vector since having statistical distance

with itself does not make sense. For that, we adopt a widely used concept named confidence

to indicate the weight of local model updates. A confidence of node i at time t, denoted as ci,

is defined as a time-varying term dependent on the size of its local training set:

c(t)i =min

�

|Di|
cbase

,
1

|N (t)
i |+ 1

�

(4.4)

where cbase is a constant for a base confidence that is neither induced from shared information

across the devices nor to be shared with others.

KD-PDFL 45

The function Midgetter in Alg. (4) extracts outputs from the intermediate layers of two

neural networks. The intermediate layer can be either the output layer or one of the hidden

layers depending on whether the agents transmit the entire models or only the base layers.

Feeding the identical batch of client i’s training samples, θi and θ j returns the logits zi@i and

z j@i, respectively. The expression a@b refers to an output of client a’s model under control

of client b, i.e., the distillation is conducted at user b’s device while using b’s computation

resources without sharing.

Algorithm 4: KD-PDFL: Distillation-based personalized decentralized FL

Input: θ (0)i = 0 ∈ Rni , wii = 0 ∀i ∈ U = {1, 2, ..., N}, wi j = 1/N ∀ j ∈ U \ i
Output: Θ(R), W (R)

1 for r in (0, R] do
2 if r ≡ 0 (mod Tex) then
3 Random user i wakes up & draw a subset N (r)

i

4 for each neighbor j ∈N (r)
i do in parallel

5 Receive θ̃ (r−1)
j from each j

6 (zi@i,z j@i) = MidGetter(θi, θ̃ j,Di) // find intermediate outputs
7 dW (i, j) = Wasserstein2D(zi@i,z j@i) // find statistic distances
8 end for
9 ConnVectorUpdate(i, j) as in Equation (4.2)

10 Update θ (r+1)
i =

∑

j∈U\{i}w
(r+1)
i j θ̃

(r−1)
j + ciw

(r+1)
ii θ

(r)
i

11 else if r ≡ 1 (mod Tex) then
12 for each neighbor j ∈N (r−1)

i do
13 Receive θ̃ (r−1)

i from i
14 Update θ (r+1)

j = θ̃ (r)i

15 end for
16 else
17 θ

(r+1)
i = θ (r)i −η∇ fi(θ

(r)
i) // Local Update

18 end if
19 end for

4.5 Experiments

In this section, we evaluate the performance of KD-PDFL in terms of per-client test accu-

racy. We compare the proposed scheme with three related baseline scenarios for decentralized

46 CHAPTER 4

0 5000 10000 15000 20000
Epochs

10

20

30

40

50

60

70

80
Te

st
 a

cc
ur

ac
y

(I
oT

 D
ev

ic
es

)

Local training
FedAvg
FedAvg+
KD-PDFL (ours)

0 5000 10000 15000 20000
Epochs

0.0

0.5

1.0

1.5

2.0

Lo
ca

l t
ra

in
in

g
lo

ss
 (

Io
T

D
ev

ic
es

)

Local training
FedAvg
FedAvg+
KD-PDFL (ours)

0 100 200 300 400
Epochs

20

30

40

50

60

70

80

90

Te
st

 a
cc

ur
ac

y
(E

M
N

IS
T)

Local training
FedAvg
FedAvg+
KD-PDFL (ours)

0 100 200 300 400
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ca

l t
ra

in
in

g
lo

ss
 (

EM
N

IS
T) Local training

FedAvg
FedAvg+
KD-PDFL (ours)

Figure 4.4. Learning progress of standalone and collaborative users in different collaboration methods
over iterations (N = 40).

networks: (i) standalone case where all users perform local training only; (ii) conventional fed-

erated averaging (FedAvg [2]), which returns the arithmetic mean of received model parame-

ters; and (iii) FedAvg followed by fine-tuning, which switches the algorithm into Reptile [143].
(FedAvg+ [62]) Note that in our evaluations, FedAvg corresponds to a decentralized learning

scheme but with non-personalized service, i.e., it aims to build a single global model for all

clients.

We carry out the experiments with two types of datasets. The first one we consider is a

set of smart users practicing classification tasks using web traffic information from IoT devices.

The data samples have 296 input features and the output dimension of the dataset is 9.1 Each

user contains 15 to 100 training samples with non-i.i.d. distribution and 100 local test samples,

which follows the same distribution with the local training set. We split the IoT devices training

dataset into data points of which the class labels follow a symmetric Dirichlet distribution with

parameter 0.1. This data split is the same as in a benchmark in [144] but is more biased

due to the smaller parameter, allocating one to four class labels per each user with uneven

number of data samples per label. A neural network model in every user includes one batch

1https://www.kaggle.com/datasets/fanbyprinciple/iot-device-identification

KD-PDFL 47

https://www.kaggle.com/datasets/fanbyprinciple/iot-device-identification

Dataset Methods N=10 N=20 N=40

IoT
devices

Local learning 0.210±0.089
FedAvg 0.759±0.650 0.643±0.107 0.610±0.493
FedAvg+ 0.802±0.028 0.726±0.630 0.697±0.117
KD-PDFL (ours) 0.816±0.032 0.739±0.040 0.716±0.101

EMNIST

Local learning 0.697±0.209
FedAvg 0.764±0.119 0.784±0.108 0.824±0.142
FedAvg+ 0.771±0.104 0.806±0.123 0.841±0.136
KD-PDFL (ours) 0.787±0.108 0.835±0.116 0.870±0.082

Table 4.1. Summary of per-client test accuracy under IoT devices (Tex = 20) and EMNIST datasets
(Tex = 5).

normalization layer, one Rectified Linear Unit (ReLU) layer, and two linear layers. Each model

has 39,769 trainable parameters in total. The other set is for classification tasks using the

EMNIST [121] dataset, which is composed of 28 × 28 pixel images of handwritten Roman

alphabets and letters. In our experiments, a total of 47 class labels are included under balanced

split settings. Each user has a CNN made of two convolutional layers, two max pooling layers,

and two fully connected linear layers, which in total has 970, 847 trainable parameters. For

both datasets, 10 to 40 users participate per experiment. The channel gain between each pair

of participants follows Rayleigh fading, resulting in 5 neighbors reachable on average for each

exchanging interval.

Fig. 4.4 shows that equal averaging over all participants, as provided in FedAvg, achieves the

poorest performance as the environment is significantly non-i.i.d. [145]. Meanwhile, FedAvg+
compensates for the overfitting loss from FedAvg. The fine-tuning process began to adjust the

hyperparameters from the moment the iteration reached r = 2000 in case of experiments with

IoT devices dataset and r = 150 in case of EMNIST, which led to temporal deterioration, higher

per-client test accuracies and lower training losses at the end.

Table 4.1 shows that KD-PDFL enables the clients to extend the upper bound of their esti-

mated test accuracy without collaboration. Notably, users with small local training sets benefit

from increased test accuracy from 21.0% to 81.6% on average. These weak users with small

training sets also undergo a more challenging similarity decision. Since the lack of training set

incurs blurry distance divergence across intermediate outputs that they calculate, estimating

connectivity weights becomes more difficult.

Figuring out the relative importance becomes more manageable when a client can search

over a lot of peers at once. Nonetheless, as N increases, settling down on the most effective

collaborative graph is more challenging. Fig. 4.5 shows the trend in test accuracy with respect

to the number of communicable peers per collaboration. Putting many neighbors into simulta-

neous consideration ends up walking on the same track with FedAvg, resulting in a prolonged

48 CHAPTER 4

0 20 40 60 80 100 120 140 160
Epochs

20

30

40

50

60

70

Te
st

 a
cc

ur
ac

y

k=1
k=5
k=9

0 25 50 75 100 125 150 175
Epochs

20

30

40

50

60

70

80

Te
st

 a
cc

ur
ac

y

k=1
k=5
k=10
k=19

Figure 4.5. Trend on test accuracy improvement with respect to the number of connecting peers for each
communication slot. (Left: N = 10, Right: N = 20, Tex = 5 for both cases, dataset: EMNIST)

1 = 0.5, 2 = 0.1

0
1

2
3

4
5

6
7

8
9

1 = 5, 2 = 0.1

0 1 2 3 4 5 6 7 8 9
1 = 0.5, 2 = 1

0
1

2
3

4
5

6
7

8
9

0 1 2 3 4 5 6 7 8 9
1 = 0, 2 = 0

0.0

0.1

0.2

0.3

0.4

0.5

Figure 4.6. Heatmap of collaboration weight matrix under different values for µ1 and µ2.

“getting to know” session and slower model convergence. On this account, it is recommended

to set an upper limit on the number of neighbors accessing per exchange interval, even though

the channel conditions are good enough to cover many neighbors at once.

Fig. 4.6 visualizes the impact of coefficients of penalty and regularization terms on collab-

oration graphs. µ1 is a multiplier on the personalization term of the joint loss function that

controls the sensitivity to the statistic distances of the system. µ1 ≃ 0 turns off the effect of

statistic distances on the training loss. Meanwhile, µ2 adjusts the regularization to the weight

values; thus, µ2 ≃ 0 may let some participants abandon cooperation and run only local train-

ing. A situation in which µ1 = µ2 = 0 is equivalent to federated learning that aims to construct

a global model.

KD-PDFL 49

4.6 Concluding remarks

We introduced a distillation-based algorithm for personalized federated learning over fully

decentralized networks, leveraging the privacy preservation and the convenience of measuring

the statistical distance across clients using logits generated from local storage. Our experimen-

tal results showed that the proposed KD-PDFL is a promising decentralized approach compared

to other personalized FL methods, with each device having full autonomy in computing, includ-

ing updating a collaboration graph.

In future work, distillation-based personalization can be extended to unsupervised learning

tasks since the distance measurement part does not require class labels as long as the local

loss function does not include target labels in its metric. An interesting problem that arises

by connecting topologies and connectivity graphs regarding physical distances among edge de-

vices [146] is how to choose a subset of neighbors of a personalized and decentralized FL system

in a communication-efficient way. A crossover with multi-task learning [147] also remains a

potential direction of this work.

50 CHAPTER 4

5 FINAL REMARKS AND OUTLOOKS

5.1 Summary of Contributions

This thesis has made significant strides in the field of decentralized collaborative learning

over wireless networks, focusing on enhancing the robustness, efficiency, and personalization

of decentralized learning algorithms. One of the primary contributions of this work is the de-

velopment of an asynchronous Decentralized Stochastic Gradient Descent (DSGD) algorithm

designed to handle the inherent communication and computation failures in wireless networks.

This algorithm maintains performance despite these challenges, ensuring reliable model up-

dates. It has been rigorously analyzed, providing non-asymptotic convergence guarantees, and

extensive experimental evaluations have demonstrated its effectiveness, showcasing the bene-

fits of asynchronicity and the reuse of outdated gradient information.

Additionally, the thesis proposed a framework for asynchronous decentralized learning that

decouples communication and computation timelines. This approach allows for greater auton-

omy among network users and improves the efficiency of the learning process. Our scheme,

which is the first to consider collaborative model updates on a continuous timeline, was val-

idated through convergence analysis and numerical experiments, highlighting its robustness

and performance enhancements.

Addressing the need for personalization, we developed a personalized DSGD algorithm

leveraging knowledge distillation to measure and quantify statistical dissimilarity between

models. This approach ensures that users with similar data distributions are strongly con-

nected, while those with different distributions are weakly connected. This personalization

strategy significantly improves per-client performance by tailoring neural network models to

each user’s unique learning goals.

5.2 Future Directions

While this thesis has addressed several critical challenges in decentralized collaborative

learning, numerous avenues for future research can further enhance the field. Future work

CONCLUSION 51

could improve decentralized learning algorithms’ robustness to more dynamic network topolo-

gies and varying communication conditions. Exploring adaptive algorithms that can quickly

respond to changes in network states could be beneficial.

It is essential to investigate methods to further reduce the communication overhead and

computational complexity in large-scale decentralized networks. Researchers focusing on com-

munication efficiency in distributed learning can explore techniques such as more advanced

model compression, adaptive communication schedules, and hierarchical aggregation. Addi-

tionally, integrating decentralized learning with emerging technologies such as 5G/6G net-

works, edge computing, and blockchain could open up new possibilities for secure, efficient,

and scalable learning. Research could focus on leveraging these technologies to enhance the

performance and applicability of decentralized learning systems.

While privacy preservation has been a focus, further enhancing the security of decentral-

ized learning algorithms against potential attacks, such as adversarial attacks or data poison-

ing, remains a crucial area. Developing robust defense mechanisms to safeguard the learning

process is vital. Tailoring decentralized learning algorithms to specific applications, such as au-

tonomous vehicles, smart cities, and healthcare, could yield significant benefits. Understanding

the unique requirements and constraints of these applications can lead to more effective and

efficient learning solutions, underscoring the relevance of our research.

Future work could also explore how the system handles older or outdated updates, improv-

ing reliability and efficiency. Considering different learning rates or adjustments across various

devices could enhance the algorithm’s performance over a range of device capabilities. Addi-

tionally, adapting continuity in asynchronous DSGD for mobility scenarios, where distances and

communication paths change over time in a three-dimensional space, could make our approach

more practical for real-world applications. Simplifying the instructions would make it easier

to use and more accessible in different settings. Addressing these challenges could further en-

hance the performance and usefulness of our methods, opening up new research avenues in

asynchronous decentralized federated learning.

Expanding the personalization strategies to consider more complex user preferences and

behaviors and incorporating multi-task learning approaches could improve the adaptability

and relevance of the models trained in decentralized networks.

Additionally, the attitude and behavior of users in decentralized systems present another

significant area for exploration. In this thesis, all participating devices have been assumed

to be honest, actively engaged in collaboration, and altruistic. These devices selflessly help

stragglers or slower learners, implying that their local objectives include collaborative goals

beyond mere performance improvement. Future research could explore applying our proposed

methods in systems with selfish or malicious users. Understanding and mitigating the impact

of such behavior would be crucial for the robustness of decentralized learning systems.

52 CHAPTER 5

Handling dynamic changes in the user population, where users may join or leave the net-

work, making the number of participants (N) time-variant, is also a significant area for future

research. Developing algorithms that can adapt to these changes will be essential for maintain-

ing performance and reliability in decentralized learning environments.

In conclusion, this thesis has laid a strong foundation for decentralized collaborative learn-

ing over wireless networks. The proposed solutions have advanced the state-of-the-art, and the

outlined future directions provide a roadmap for further research to push the boundaries of this

exciting field. By addressing these challenges and exploring new avenues, future research can

continue to enhance decentralized learning systems’ efficiency, robustness, and applicability.

CONCLUSION 53

54 CHAPTER 5

APPENDIX OF CHAPTER 2

A.1 Proof of Theorem 2.1

We denote stale gradients by gi(θ̃
(r)
i) = gi(θ

(r−τi)
i). According to the update rule, at each

iteration r + 1, we have

E[f (θ̄ r+1)] = E

�

f

�

θ̄ r −
1
N

N
∑

i=1

�

η̃
(r)
i gi(θ̃

(r)
i) + ζñ(r)i

�

��

where the expectation is w.r.t. the stochastic gradients, the communication noise Ξ(r), and the
computation and communication failures at iteration r+1. For an L-smooth objective function,
we have

E[f (θ̄ (r+1))] ≤ f (θ̄ (r))−
1
N

N
∑

i=1

∇ f (θ̄ (r)),E[η̃(r)i gi(θ̃
(r)
i))]

�

︸ ︷︷ ︸

:=T1

+
L

2N 2
E

N
∑

i=1

η̃
(r)
i gi(θ̃

(r)
i))

2

︸ ︷︷ ︸

:=T2

+
L

2N 2
ζ2

N
∑

i=1

E

ñ(r)i

2

where we used the fact that the communication noise has zero mean and is independent across
users.

Adding and subtracting∇ fi(θ̄ (r)) to each summand of T1, and asE[η̃(r)i gi(θ̃
(r)
i)] = η∇ fi(θ̃

(r)
i),

with η=min j(1− ν j)/(
p

4LR), we obtain

T1 =−η

®

∇ f (θ̄ (r)),
1
N

N
∑

i=1

∇ fi(θ̃
(r)
i)

¸

=
η

2

∇ f (θ̄ (r))−
1
N

N
∑

i=1

∇ fi(θ̃
(r)
i)

2

−
η

2

∇ f (θ̄ (r))

2 −
η

2N 2

N
∑

i=1

∇ fi(θ̃
(r)
i)

2

≤
ηc
2

∇ f (θ̄ (r))

2
+
ηL2

2N

N
∑

i=1

θ
(r)
i − θ̄

(r)

2
−
η

2

∇ f (θ̄ (r))

2 −
η

2N 2

N
∑

i=1

∇ fi(θ̃
(r)
i)

2

APPENDIX A 55

where we have used the staleness assumption. The last term can be bounded using the property
of the stochastic gradient and the fact that η̃(r)i ≤ 1/(

p
4LR)≤ 1/(

p
4L) as

T2 ≤
L

2N 2
E

N
∑

i=1

η̃
(r)
i [gi(θ̃

(r)
i)−∇ fi(θ̃

(r)
i)]

2

+
L

2N 2
E

N
∑

i=1

η̃
(r)
i ∇ fi(θ̃

(r)
i)

2

≤
σ2

8mT
+
η

8N 2
E

N
∑

i=1

∇ fi(θ̃
(r)
i)

2

.

Summing T1 and T2 we obtain

T1 + T2 ≤ −
η

2
(1− c)

∇ f (θ̄ (r))

2
+
σ2

8NR
+
ηL2

2N

N
∑

i=1

θ
(r)
i − θ̄

(r)

2
−
η

4N 2

N
∑

i=1

∇ fi(θ̃
(r)
i)

2

.

Defining c′ = (1− c), telescoping and taking expectations we obtain

1
R

R
∑

r=1

∇ f (θ̄ (r))

2 ≤ 2
f (θ̄ 0)− f (θ̄R)

ηRc′
+

σ2

4ηc′NR
+

1
R

R
∑

t=1

L2

Nc′

N
∑

i=1

E

θ
(r)
i − θ̄

(r)

2

+
1
R

R
∑

r=1

Lζ2

ηN 2c′

N
∑

i=1

E

ñ(r)i

2
.

Defining σ2
w,i =maxR

r=0E

ñ(r)i

2
and bounding the consensus term by Lemma 2.2, we obtain

1
R

R
∑

r=1

∇ f (θ̄ (r))

2 ≤ 2
f (θ̄ 0)− f (θ̄R)

ηRc′
+

L2

Nc′

�

η2 12NG2

(pζ)2
+ ζ

2
p

N
∑

i=1

σ2
w,i

�

+
σ2

4ηc′NR
+

Lζ2

ηN 2c′

N
∑

i=1

σ2
w,i.

The final result is obtained setting η= 1/
p

4LR and ζ= 1/R3/8.

56

APPENDIX OF CHAPTER 3

B.1 Proofs

Guide map
Propositions

Proposition B1

Propositions

Proposition B2

Proposition B3

Lemmas

Lemma B2

Lemma C1

Lemma B3

Main Theorem

Term #1

Term #2-1

Term #2-2

Term #2-3

Term #3

* X→Y: X is required to prove Y.

Figure B.1. A metaphoric map that guides the correlation of each proposition and lemma in order to
prove the main theorem.

B.1.1 Preliminaries

Before the proof of Theorem 3.1, it is essential to verify (i) how many communication events
and (ii) how many local gradient updates occur during P. In PPP, communication events occur
λi P times on average during P, which indicates the expectation of broadcasting frequency of
node i. In order to find the bound for θt0+P−θt0

, we need to specify how many reception events
happen in a random node i during the elapsed time of P. For simplicity, we write

∫

P
to indicate

APPENDIX B 57

∫ t0+P

t0
. The reference model of node i update during P is

θ
(i)
t0+P − θ

(i)
t0
=

∫

P

∑

j

Pr[i ∈Nt(j)]∆
(j)
t dt

=

∫

P

∑

j

q j→i
t ∆(j)t dt

= η

∫

P

∑

j

q j→i
t

B−1
∑

b=0

g j(y
(j)
⌊t⌋,b)dt ,

which is heterogeneous across nodes. A floored notation ⌊t⌋ indicates the latest moment no
later than time t that user j computes ∆(j).

A superscripted or subscripted ⋆ on some variables is analogous to a “don’t-care” (DC) term
in digital logic [148]. For instance, q⋆ is the same as any qi, where i can be any user index in
U without loss of generality.

B.1.2 Propositions
Proposition B.1. If Assumption 3.5 is satisfied, a decentralized learning network with N ≥ 4
clients satisfies

∑

j ̸=i

q j→i
t

∇ f j(θ
(j)
t)−∇ fi(θ

(i)
t)

2 ≤
9Nζ2

4

for all i, j ∈ U and t ∈ [0, T).

Proof.
∑

j ̸=i

q j→i
t

∇ f j(θ
(j)
t)−∇ fi(θ

(i)
t)

2

=
∑

j ̸=i

q j→i
t

∇ f j(θ
(j)
t)−∇ f (θt)−∇ fi(θ

(i)
t) +∇ f (θt)

2

(a)
≤
�

1+
1
p

N

�∑

j ̸=i

q j→i
t

∇ f j(θ
(j)
t)−∇ f (θt)

2
+ (
p

N + 1)
∑

j ̸=i

q j→i
t

∇ fi(θ
(i)
t)−∇ f (θt)

2

(b)
≤
�

1+
1
p

N

�∑

j ̸=i

q j→i
t

∇ f j(θ
(j)
t)−∇ f (θt)

2
+ (
p

N + 1)ζ2

(c)
≤ (N + 2

p
N + 1)ζ2

(d)
≤

9Nζ2

4
,

where (a) is due to Young’s inequality; (b) comes from Assumption 3.5; (c) takes the fact that
q⋆
⋆
≤ 1 for any user nodes; (d) is always true for N ≥ 4 since 5N

4 −2
p

N −1≥ 0 for any
p

N ≥ 2,
which satisfies the given condition about N .

Remark. This proposition appears in the proof of Proposition B.2.

58

Proposition B.2. (Upper bound for superpositioned model deviations.) Let h j(b) = y(j)t,b − θ
(j)
t

denote the difference between a local model calculated by feeding each batch with an index b and
the local reference model. For all i, j ∈ U , when η≤ 1

8BL , we have

∑

j ̸=i

q j→i
t E·|Q

�

∥y(j)t,b − θ
(j)
t ∥

2
�

≤
2
5

∑

j ̸=i

q j→i
t E·|Q

�

θ (i)t − θ
(i)
t0

2�

+
9Nζ2

10L2
+

16Bη2σ2

5
+

128B2η2

5
E·|Q[∥∇ fi(θ

(i)
t0
)∥2] .

Proof. We rephrase the b+ 1th term, h j(b+ 1) = y(j)t,b+1 − θ
(j)
t , as follows.

∑

j ̸=i

q j→i
t E·|Q

�

y(j)t,b+1 − θ
(j)
t

2�

=
∑

j ̸=i

q j→i
t E·|Q

�

y(j)t,b − θ
(j)
t −ηg j(y

(j)
t,b)

2�

(a)
=
∑

j ̸=i

q j→i
t

E·|Q
�

y(j)t,b − θ
(j)
t −ηg j(y

(j)
t,b)
�

2

+
∑

j ̸=i

q j→i
t E·|Q

�

y(j)t,b − θ
(j)
t −ηg j(y

(j)
t,b)−E·|Q

�

y(j)t,b − θ
(j)
t −ηg j(y

(j)
t,b)
�

2
�

=
∑

j ̸=i

q j→i
t E·|Q

�

y(j)t,b − θ
(j)
t −η∇ f j(y

(j)
t,b)

2�

+
∑

j ̸=i

q j→i
t E·|Q

�

η
�

g j(y
(j)
t,b)−∇ f j(y

(j)
t,b)
�

2�

(b)
≤
∑

j ̸=i

q j→i
t E·|Q

�

y(j)t,b − θ
(j)
t −η∇ f j(y

(j)
t,b)

2�

+η2σ2

=
∑

j ̸=i

q j→i
t E·|Q

�

y(j)t,b − θ
(j)
t +η∇ f j(θ

(j)
t)−η∇ f j(y

(j)
t,b)−η∇ f j(θ

(j)
t)−η∇ fi(θ

(i)
t)

+η∇ fi(θ
(i)
t)−η∇ fi(θ

(i)
t0
) +η∇ fi(θ

(i)
t0
)

2�

+η2σ2

(c)
≤
�

1+
1

2B − 1

�∑

j ̸=i

q j→i
t E·|Q

�

y(j)t,b − θ
(j)
t

2�

+ 2Bη2
∑

j ̸=i

q j→i
t E·|Q

�

∇ f j(y
(j)
t,b)−∇ f j(θ

(j)
t) +∇ f j(θ

(j)
t)−∇ fi(θ

(i)
t)

+∇ fi(θ
(i)
t)−∇ fi(θ

(i)
t0
) +∇ fi(θ

(i)
t0
)

2�

+η2σ2

≤
�

1+
1

2B − 1

�∑

j ̸=i

q j→i
t E·|Q

�

y(j)t,b − θ
(j)
t

2�

+ 8Bη2
∑

j ̸=i

q j→i
t E·|Q

�

∇ f j(y
(j)
t,b)−∇ f j(θ

(j)
t)

2�

+ 8Bη2
∑

j ̸=i

q j→i
t E·|Q

�

∇ f j(θ
(j)
t)−∇ fi(θ

(i)
t)

2�

APPENDIX B 59

+ 8Bη2
∑

j ̸=i

q j→i
t E·|Q

�

∇ fi(θ
(i)
t)−∇ fi(θ

(i)
t0
)

2�

+ 8Bη2
∑

j ̸=i

q j→i
t E·|Q

�

∇ fi(θ
(i)
t0
)

2�
+η2σ2

(d)
≤
�

1+
1

2B − 1

�∑

j ̸=i

q j→i
t E·|Q

�

y(j)t,b − θ
(j)
t

2�
+ 8BL2η2

∑

j ̸=i

q j→i
t E·|Q

�

y(j)t,b − θ
(j)
t

2�

+ 18BNη2ζ2 + 8BL2η2
∑

j ̸=i

q j→i
t E·|Q

�

θ (i)t − θ
(i)
t0

2�
+ 8Bη2E·|Q[∥∇ fi(θ

(i)
t0
)∥2] +η2σ2

=
�

1+ 8BL2η2 +
1

2B − 1

�∑

j ̸=i

q j→i
t E·|Q

�

∥y(j)t,b − θ
(j)
t ∥

2
�

+ 18BNη2ζ2 +η2σ2 + 8BL2η2
∑

j ̸=i

q j→i
t E·|Q

�

θ (i)t − θ
(i)
t0

2�
+ 8Bη2E·|Q[∥∇ fi(θ

(i)
t0
)∥2]

(e)
≤
�

1+
5

8
�

B − 1
2

�

�

∑

j ̸=i

q j→i
t E·|Q

�

∥y(j)t,b − θ
(j)
t ∥

2
�

+
9Nζ2

32BL2
+η2σ2

+
1

8B

∑

j ̸=i

q j→i
t E·|Q

�

θ (i)t − θ
(i)
t0

2�
+ 8Bη2E·|Q[∥∇ fi(θ

(i)
t0
)∥2] (B.1)

where (a) is from the definition of variance; (b) is derived from the definition of σ in Assump-
tion 3.4; (c) Young’s inequality; (d) uses L-smoothness on the second and the fourth term, and
applies Proposition B.1 on the third term. Afterwards, the first two terms are integrated; (e) is
derived from the fact that η2 ≤ 1

64B2 L2 and that

8BL2η2 +
1

2B − 1
≤

1
8B
+

1
2B − 1

≤
1

8B − 4
+

1
2B − 1

=
5

8
�

B − 1
2

� .

Let H(b) indicate
∑

j ̸=i q j→i
t E·|Q

�

y(j)t,b−θ
(j)
t

2�
. From the last line of inequality B.1, we have

H(b+ 1)≤
�

1+
5

8
�

B − 1
2

�

�

H(b) +
1

8B

∑

j ̸=i

q j→i
t E·|Q

�

θ (i)t − θ
(i)
t0

2�

+ 18BNη2ζ2 +η2σ2 + 8Bη2E·|Q[∥∇ fi(θ
(i)
t0
)∥2] . (B.2)

Since y(j)t,0 = θ
(j)
t for all t, j based on Algorithm 3,

H(0) =
∑

j ̸=i

q j→i
t E·|Q

�

∥y(j)t,0 − θ
(j)
t ∥

2
�

= 0.

Recurring inequality B.2 from H(0), we can get

H(b)≤
�

1+
5

8
�

B − 1
2

�

�b

H(0) +
b−1
∑

b′=0

�

1+
5

8
�

B − 1
2

�

�b′

60

·
� 1

8B

∑

j ̸=i

q j→i
t E·|Q

�

θ (i)t − θ
(i)
t0

2�
+

9Nζ2

32BL2
+η2σ2 + 8Bη2E·|Q[∥∇ fi(θ

(i)
t0
)∥2]

�

≤
� 1

8B

∑

j ̸=i

q j→i
t E·|Q

�

θ (i)t − θ
(i)
t0

2�
+

9Nζ2

32BL2
+η2σ2 + 8Bη2E·|Q[∥∇ fi(θ

(i)
t0
)∥2]

�

·
B−1
∑

b=0

�

1+
5

8
�

B − 1
2

�

�b

=

��

1+
5

8
�

B − 1
2

�

�B

− 1

�

·
8
�

B − 1
2

�

5

·
� 1

8B

∑

j ̸=i

q j→i
t E·|Q

�

θ (i)t − θ
(i)
t0

2�
+

9Nζ2

32BL2
+η2σ2 + 8Bη2E·|Q[∥∇ fi(θ

(i)
t0
)∥2]

�

=

��

1+
5

8
�

B − 1
2

�

�B− 1
2
�

1+
5

8
�

B − 1
2

�

�

1
2

− 1

�

·
8
�

B − 1
2

�

5

·
� 1

8B

∑

j ̸=i

q j→i
t E·|Q

�

θ (i)t − θ
(i)
t0

2�
+

9Nζ2

32BL2
+η2σ2 + 8Bη2E·|Q[∥∇ fi(θ

(i)
t0
)∥2]

�

(a)
≤
�

e
5
8 ·

3
2
− 1

�

·
8
�

B − 1
2

�

5

·
� 1

8B

∑

j ̸=i

q j→i
t E·|Q

�

θ (i)t − θ
(i)
t0

2�
+

9Nζ2

32BL2
+η2σ2 + 8Bη2E·|Q[∥∇ fi(θ

(i)
t0
)∥2]

�

(b)
≤

16
5

B
� 1

8B

∑

j ̸=i

q j→i
t E·|Q

�

θ (i)t − θ
(i)
t0

2�
+

9Nζ2

32BL2
+η2σ2 + 8Bη2E·|Q[∥∇ fi(θ

(i)
t0
)∥2]

�

=
2
5

∑

j ̸=i

q j→i
t E·|Q

�

θ (i)t − θ
(i)
t0

2�
+

9Nζ2

10L2
+

16Bη2σ2

5
+

128B2η2

5
E·|Q[∥∇ fi(θ

(i)
t0
)∥2]

where (a) comes from (1+x)1/x ≤ e and B ≥ 1, which results in
�

1+ 5
8(B−(1/2))

�1/2
≤
�

1+ 5
4

�1/2
=

3
2 ; (b) is due to 3

2 e
5
8 − 1≤ 2 and B − 1

2 ≤ B.

Remark. This proposition appears in the proof of Lemma B.2, which is used at the first term
of inequality B.10.

Proposition B.3. (Upper bound for the local reference model change) When Assumption 3.2 holds
and η≤min(1

8BL , 1
8BLNΨ), we have

E·|Q
�∑

j ̸=i

q j→i
t

θ (j)t − θ
(j)
t0

2
�

≤ 2E·|Q
�∑

j ̸=i

q j→i
t ∥y

(j)
t,b − θ

(j)
t ∥

2
�

+
8ζ2

L2(N − 4)

+
1

16L2N 2
E·|Q

�

∇ fi(θ
(i)
t0
)

2�
+

3σ2

16L2
,

for all i, j ∈ U and for t ∈ [t0, t0 + P).

APPENDIX B 61

Proof. Here, we use
∫

τ
to replace

∫ t

τ=t0
for simplicity of writing. The left side of the inequality

can be rephrased as below by bringing Appendix B.1.1.

E·|Q
�∑

j ̸=i

q j→i
t

θ (j)t − θ
(j)
t0

2
�

= E·|Q

�

∑

j ̸=i

q j→i
t

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

gn(y
(n)
τ,b)dτ

2�

= E·|Q

�

∑

j ̸=i

q j→i
t

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

∇ fn(y
(n)
τ,b)dτ

+η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

�

gn(y
(n)
τ,b)−∇ fn(y

(n)
τ,b)
�

dτ

2�

(i)
≤ µ1E·|Q

�

∑

j ̸=i

q j→i
t

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

∇ fn(y
(n)
τ,b)dτ

2�

+
�

1+
1

µ1 − 1

�

E·|Q

�

∑

j ̸=i

q j→i
t

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

�

gn(y
(n)
τ,b)−∇ fn(y

(n)
τ,b)
�

dτ

2�

(a)
≤ µ1E·|Q

�

∑

j ̸=i

q j→i
t

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

∇ fn(y
(n)
τ,b)dτ

2�

+
�

1+
1

µ1 − 1

�

η2E·|Q

�

∑

j ̸=i

q j→i
t ψ j(t0, t)

∫

/τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

�

gn(y
(n)
τ,b)−∇ fn(y

(n)
τ,b)
�

2
dτ

�

≤ µ1E·|Q

�

∑

j ̸=i

q j→i
t

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

∇ fn(y
(n)
τ,b)dτ

2�

+
�

1+
1

µ1 − 1

�

Nη2E·|Q

�

∑

j ̸=i

q j→i
t ψ j(t0, t)

∫

τ

∑

n ̸= j

qn→ j
τ

B−1
∑

b=0

�

gn(y
(n)
τ,b)−∇ fn(y

(n)
τ,b)
�

2
dτ

�

≤ µ1E·|Q

�

∑

j ̸=i

q j→i
t

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

∇ fn(y
(n)
τ,b)dτ

2�

+
�

1+
1

µ1 − 1

�

BNη2E·|Q

�

∑

j ̸=i

q j→i
t ψ j(t0, t)

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

gn(y
(n)
τ,⋆)−∇ fn(y

(n)
τ,⋆)

2
dτ

�

(b)
≤ µ1E·|Q

�

∑

j ̸=i

q j→i
t

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

∇ fn(y
(n)
τ,b)dτ

2�

+
�

1+
1

µ1 − 1

�

B2N 2η2ψ2
j (t0, t)σ2

≤ µ1E·|Q

�

∑

j ̸=i

q j→i
t

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

�

∇ fn(y
(n)
τ,b)−∇ fn(θ

(n)
τ
) +∇ fn(θ

(n)
τ
)−∇ f j(θ

(j)
τ
)

+∇ f j(θ
(j)
τ
)−∇ f j(θ

(j)
t0
) +∇ f j(θ

(j)
t0
)−∇ fi(θ

(i)
t0
) +∇ fi(θ

(i)
t0
)
�

dτ

2�

62

+
�

1+
1

µ1 − 1

�

B2N 2η2ψ2
j (t0, t)σ2

= µ1E·|Q

�

∑

j ̸=i

q j→i
t

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

�

∇ fn(y
(n)
τ,b)−∇ fn(θ

(n)
τ
)
�

dτ

+η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

�

∇ fn(θ
(n)
τ
)−∇ f j(θ

(j)
τ
)
�

dτ

+η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

�

∇ f j(θ
(j)
τ
)−∇ f j(θ

(j)
t0
)
�

dτ

+η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

�

∇ f j(θ
(j)
t0
)−∇ fi(θ

(i)
t0
)
�

dτ

+η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

∇ fi(θ
(i)
t0
)dτ

2�

+
�

1+
1

µ1 − 1

�

B2N 2η2ψ2
j (t0, t)σ2

(ii,c)
≤ 4µ1µ2E·|Q

�

∑

j ̸=i

q j→i
t

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

�

∇ fn(y
(n)
τ,b)−∇ fn(θ

(n)
τ
)
�

dτ

2�

+ 4µ1µ2E·|Q

�

∑

j ̸=i

q j→i
t

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

�

∇ fn(θ
(n)
τ
)−∇ f j(θ

(j)
τ
)
�

dτ

2�

+ 4µ1µ2E·|Q

�

∑

j ̸=i

q j→i
t

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

�

∇ f j(θ
(j)
τ
)−∇ f j(θ

(j)
t0
)
�

dτ

2�

+ 4µ1µ2E·|Q

�

∑

j ̸=i

q j→i
t

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

�

∇ f j(θ
(j)
t0
)−∇ fi(θ

(i)
t0
)
�

dτ

2�

+µ1

�

1+
1

µ2 − 1

�

E·|Q

�

∑

j ̸=i

q j→i
t

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

∇ fi(θ
(i)
t0
)dτ

2�

+
�

1+
1

µ1 − 1

�

B2N 2η2ψ2
j (t0, t)σ2

≤ 4µ1µ2BNη2ψ j(t0, t)E·|Q

�

∑

j ̸=i

q j→i
t

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

∇ fn(y
(n)
τ,b)−∇ fn(θ

(n)
τ
)

2
dτ

�

+ 4µ1µ2B2η2E·|Q
�∑

j ̸=i

q j→i
t

ψ j(t0, t)
∑

n̸= j

qn→ j
⋆

�

∇ fn(θ
(n)
⋆
)−∇ f j(θ

(j)
⋆
)
�

2�

+ 4µ1µ2B2η2E·|Q

�

∑

j ̸=i

q j→i
t

∫

τ

∑

n̸= j

qn→ j
τ

�

∇ f j(θ
(j)
τ
)−∇ f j(θ

(j)
t0
)
�

dτ

2�

+ 4µ1µ2E·|Q

�

∑

j ̸=i

q j→i
t

∇ f j(θ
(j)
t0
)−∇ fi(θ

(i)
t0
)

2
·

η

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

1 dτ

2�

+µ1

�

1+
1

µ2 − 1

�

B2η2ψ2
j (t0, t)E·|Q

�

∇ fi(θ
(i)
t0
)

2�
+
�

1+
1

µ1 − 1

�

B2N 2η2ψ2
j (t0, t)σ2

APPENDIX B 63

(d)
≤ 4µ1µ2BL2Nη2ψ j(t0, t)E·|Q

�

∑

j ̸=i

q j→i
t

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

y(n)
τ,b − θ

(n)
τ

2
dτ

�

+ 4µ1µ2B2η2ψ2
j (t0, t) ·

2Nζ2

N − 4

+ 4µ1µ2B2 L2η2E·|Q

�

∑

j ̸=i

q j→i
t

∫

τ

∑

n ̸= j

qn→ j
τ

�

θ (j)
τ
− θ (j)t0

�

dτ

2�

+
8µ1µ2B2Nη2ψ2

j (t0, t)ζ2

N − 4
+µ1

�

1+
1

µ2 − 1

�

B2η2ψ2
j (t0, t)E·|Q

�

∇ fi(θ
(i)
t0
)

2�

+
�

1+
1

µ1 − 1

�

B2N 2η2ψ2
j (t0, t)σ2

(e)
≤ 4µ1µ2BL2Nη2ψ j(t0, t)E·|Q

�

∑

j ̸=i

q j→i
t

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

y(n)
τ,b − θ

(n)
τ

2
dτ

�

+ 4µ1µ2B2 L2η2ψ2
j (t0, t)E·|Q

�∑

j ̸=i

q j→i
t

θ (j)
τmax
− θ (j)t0

2
�

+
16µ1µ2B2Nη2ψ2

j (t0, t)ζ2

N − 4
+µ1

�

1+
1

µ2 − 1

�

B2η2ψ2
j (t0, t)E·|Q

�

∇ fi(θ
(i)
t0
)

2�

+
�

1+
1

µ1 − 1

�

B2N 2η2ψ2
j (t0, t)σ2 , (B.3)

where two coefficients larger than one, denoted by µ1 and µ2, are introduced in (i) and (ii),
respectively. In inequality B.3, (a) uses

∫ t

τ=t0

∑

n̸= j

qn j
τ

zτ dτ

2 ≤ψ j(t0, t)

∫ t

τ=t0

∥
∑

n̸= j

qn j
τ

zτ∥2 dτ

and

M
∑

m=1

zm

2 ≤ M
M
∑

m=1

∥zm∥2

for any vector z⋆ ∈ Rd .1 (b) comes from the definition of σ2 in Assumption 3.4. In (c), Jensen’s
inequality is applied once again. (d) takes L-smoothness on the first and the second term,
while Lemma 3.1 is applied on the third term. In (e) the third term of inequality B.3 already
contains the current lemma. Here, we introduce an index of the instant τmax ∈ [t0, t) that
satisfies τmax = argmaxτ ∥θ (j)τ − θ

(j)
t0
∥2.

The first term of inequality B.3, which includes Lemma B.2, can be rephrased as follows:

E·|Q

�

∑

j ̸=i

q j→i
t

∫

τ

∑

n̸= j

qn→ j
τ

B−1
∑

b=0

y(n)
τ,b − θ

(n)
τ

2
dτ

�

1This results in

∑

j∈U q j→i
⋆ z j

2 ≤ N
∑

j∈U q j→i
⋆ ∥z j∥2 and ∥

∑B−1
b=0 zb∥2 ≤ B

∑B−1
b=0 ∥zb∥2.

64

≤ BE·|Q

�

∑

j ̸=i

q j→i
t

∫

τ

∑

n̸= j

qn→ j
τ

y(n)
τ,⋆ − θ

(n)
τ

2
dτ

�

≤ BE·|Q
�∑

j ̸=i

q j→i
t ψ j(t0, t)

∑

n̸= j

qn→ j
⋆

y(n)
⋆,⋆ − θ

(n)
⋆

2
�

≤ Bψ j(t0, t)E·|Q
�∑

n̸= j

qn→ j
τ
∥y(n)
τ,b − θ

(n)
τ
∥2
�

(B.4)

We continue rephrasing the primary inequality B.3:

E·|Q
�∑

j ̸=i

q j→i
t

θ (j)t − θ
(j)
t0

2
�

≤ 4µ1µ2B2 L2Nη2ψ2
j (t0, t)E·|Q

�∑

n̸= j

qn→ j
τ
∥y(n)
τ,b − θ

(n)
τ
∥2
�

+ 4µ1µ2B2 L2η2ψ2
j (t0, t)E·|Q

�∑

j ̸=i

q j→i
t

θ (j)
τmax
− θ (j)t0

2
�

+
16µ1µ2B2Nη2ψ2

j (t0, t)ζ2

N − 4
+µ1

�

1+
1

µ2 − 1

�

B2η2ψ2
j (t0, t)E·|Q

�

∇ fi(θ
(i)
t0
)

2�

+
�

1+
1

µ1 − 1

�

B2N 2η2ψ2
j (t0, t)σ2

After rearranging the inequality in order to integrate those terms includingE·|Q
�

∑

j ̸=i q j→i
⋆

θ (j)
⋆
−

θ
(j)
t0

2
�

, we have

E·|Q
�∑

j ̸=i

q j→i
t

θ (j)t − θ
(j)
t0

2
�

− 4µ1µ2B2 L2η2ψ2
j (t0, t)E·|Q

�∑

j ̸=i

q j→i
t

θ (j)
τmax
− θ (j)t0

2
�

≤ (1− 4µ1µ2B2 L2η2Ψ2)E·|Q
�∑

j ̸=i

q j→i
t

θ (j)t − θ
(j)
t0

2
�

≤ (1− 4µ1µ2B2 L2Nη2Ψ2)E·|Q
�∑

j ̸=i

q j→i
t

θ (j)t − θ
(j)
t0

2
�

.

Hence, we can rephrase the inequality as

E·|Q
�∑

j ̸=i

q j→i
t

θ (j)t − θ
(j)
t0

2
�

≤
1

1− 4µ1µ2B2 L2Nη2Ψ2
·
�

4µ1µ2B2 L2Nη2Ψ2E·|Q
�∑

n̸= j

qn→ j
τ
∥y(n)
τ,b − θ

(n)
τ
∥2
�

+
16µ1µ2B2Nη2ζ2Ψ2

N − 4
+µ1

�

1+
1

µ2 − 1

�

B2η2Ψ2E·|Q
�

∇ fi(θ
(i)
t0
)

2�

+
�

1+
1

µ1 − 1

�

B2N 2η2σ2Ψ2

�

APPENDIX B 65

(i)
≤ 3 ·

�

2
3
E·|Q

�∑

n̸= j

qn→ j
τ
∥y(n)
τ,b − θ

(n)
τ
∥2
�

+
8ζ2

3L2(N − 4)
+

BηΨ
6LN(1− BLηΨ)

E·|Q
�

∇ fi(θ
(i)
t0
)

2�

+
B2N 2η2σ2Ψ2

1− 6BLNηΨ

�

= 2E·|Q
�∑

n̸= j

qn→ j
τ
∥y(n)
τ,b − θ

(n)
τ
∥2
�

+
8ζ2

L2(N − 4)
+

BηΨ
2LN(1− BLηΨ)

E·|Q
�

∇ fi(θ
(i)
t0
)

2�

+
3B2N 2η2σ2Ψ2

1− 6BLNηΨ
, (B.5)

where (i) µ1 =
1

6BLNγΨ and c = 1
BLγΨ are applied. Additionally, if Ψ > 0, γ ≤ 1

8BLNΨ is the
tighter upper bound than γ≤ 1

8BL . With this remark, the upper bound in inequality B.5 can be
simplified even more as

E·|Q
�∑

j ̸=i

q j→i
t

θ (j)t − θ
(j)
t0

2
�

≤ 2E·|Q
�∑

n̸= j

qn→ j
τ
∥y(n)
τ,b − θ

(n)
τ
∥2
�

+
8ζ2

L2(N − 4)

+
1

8LN

2LN(1− 1
8N)
E·|Q

�

∇ fi(θ
(i)
t0
)

2�
+

3B2N 2σ2Ψ2 · 1
64B2 L2N2Ψ2

1− 6BLNΨ
8BLNΨ

≤ 2E·|Q
�∑

n̸= j

qn→ j
τ
∥y(n)
τ,b − θ

(n)
τ
∥2
�

+
8ζ2

L2(N − 4)

+
1

2L2N(8N − 1)
E·|Q

�

∇ fi(θ
(i)
t0
)

2�
+

3σ2

16L2

≤ 2E·|Q
�∑

n̸= j

qn→ j
τ
∥y(n)
τ,b − θ

(n)
τ
∥2
�

+
8ζ2

L2(N − 4)

+
1

16L2N 2
E·|Q

�

∇ fi(θ
(i)
t0
)

2�
+

3σ2

16L2

(a)
≤ 2E·|Q

�∑

j ̸=i

q j→i
t ∥y

(j)
τ,b − θ

(j)
τ
∥2
�

+
8ζ2

L2(N − 4)

+
1

16L2N 2
E·|Q

�

∇ fi(θ
(i)
t0
)

2�
+

3σ2

16L2
, (B.6)

where (a) is satisfied without loss of generality.

Remark. This proposition appears in Lemma B.3, which is then used at the second term of
inequality B.10.

B.1.3 Lemmas
In collaborative learning, local computations often occur more frequently than communi-

cation. This is to avoid duplicating transmissions, which can occur in the reverse scenario.

66

time. 𝑖𝑖

comp. 𝑗𝑗

comm. 𝑗𝑗

𝑡𝑡0 𝑡𝑡0 + 𝑃𝑃

𝑡𝑡1 𝑡𝑡3 𝑡𝑡4 𝑡𝑡6

𝑡𝑡2 𝑡𝑡5

sends Δ𝑡𝑡1
𝑗𝑗 sends Δ𝑡𝑡4

𝑗𝑗

Δ𝑡𝑡6
(𝑗𝑗) calculated on time (i.e.,

within [𝑡𝑡0, 𝑡𝑡0 + 𝑃𝑃)) but not
transmitted before 𝑡𝑡0 + 𝑃𝑃.

Figure B.2. The latest local update of j is unable to be transmitted within the given range [t0, t0 +
P) because of the independence between computation timestamps and communication (transmission)
timestamps.

Lemma B.1. For all n ∈ U , there are no fewer y(n)t,b than y(n)⌊t⌋,b within any given range of time
{t|t ∈ [t0, t0 + P)}. In other words, it also satisfies that

∫

P

B−1
∑

b=0

gn(y
(n)
⌊t⌋,b)dt

2
≤

∫

P

B−1
∑

b=0

gn(y
(n)
t,b)dt

2
. (B.7)

Proof. In Fig. (B.2), the value of∆(j)t4
can differ from∆(j)t3

if another node transmits a message to
node j, thereby affecting the value of θ (j). To facilitate our analysis, we assume that each user
creates a backup of the non transmitted local updates for the upcoming transmission event.
Returning to the scenario depicted in Fig. (B.2), based on this assumption, user j sends both
∆
(j)
t3

and ∆(j)t4
to user i at the earliest transmission event time, which is t5.

Lemma B.2. (Upper bound for superpositioned model deviations.) For all i, j ∈ U , when η ≤
min(1

8BL , 1
8BLNΨ), we have

∑

j ̸=i

q j→i
t E·|Q

�

∥y(j)t,b − θ
(j)
t ∥

2
�

≤
16ζ2

L2(N − 4)
+

3σ2

8L2
+

9Nζ2

2L2
+ 16Bη2σ2 +

� 1
8L2N

+ 128B2η2
�

E·|Q
�

∇ fi(θ
(i)
t0
)

2�
.

Proof. Proposition B.2 and Proposition B.3 can be interpreted as a system of linear inequalities.
Applying (a) Proposition B.2 and (b) Proposition B.3 respectively, we get

∑

j ̸=i

q j→i
t E·|Q

�

∥y(j)t,b − θ
(j)
t ∥

2
�

(a)
≤

2
5

∑

j ̸=i

q j→i
t E·|Q

�

θ (i)t − θ
(i)
t0

2�
+

9Nζ2

10L2
+

16Bη2σ2

5
+

128B2η2

5
E·|Q[∥∇ fi(θ

(i)
t0
)∥2]

APPENDIX B 67

(b)
≤

2
5

�

2E·|Q
�∑

j ̸=i

q j→i
t ∥y

(j)
t,b − θ

(j)
t ∥

2
�

+
8ζ2

L2(N − 4)
+

1
16L2N 2

E·|Q
�

∇ fi(θ
(i)
t0
)

2�
+

3σ2

16L2

�

+
9Nζ2

10L2
+

16Bη2σ2

5
+

128B2η2

5
E·|Q[∥∇ fi(θ

(i)
t0
)∥2]

=
4
5
E·|Q

�∑

j ̸=i

q j→i
t

y(j)t,b − θ
(j)
t

2
�

+
16ζ2

5L2(N − 4)
+

1
40L2N

E·|Q
�

∇ fi(θ
(i)
t0
)

2�
+

3σ2

40L2

+
9Nζ2

10L2
+

16Bη2σ2

5
+

128B2η2

5
E·|Q

�

∇ fi(θ
(i)
t0
)

2�
,

and therefore,

1
5

∑

j ̸=i

q j→i
t E·|Q

�

∥y(j)t,b − θ
(j)
t ∥

2
�

≤
16ζ2

5L2(N − 4)
+

3σ2

40L2
+

9Nζ2

10L2
+

16Bη2σ2

5
+
� 1

40L2N
+

128B2η2

5

�

E·|Q
�

∇ fi(θ
(i)
t0
)

2�
.

Lemma B.3. (Upper bound for the local reference model change) When Assumption 3.2 holds true
during [t0, t) for all users (i.e., when the number of events during the given period [t0, t) is finite)
and η≤min(1

8BL , 1
8BLNΨ), we have

E·|Q
�∑

j ̸=i

q j→i
t

θ (j)t − θ
(j)
t0

2
�

≤
9Nζ2

L2
+ 32Bη2σ2 +

40ζ2

L2(N − 4)
+

15σ2

16L2
+
�

256B2η2 +
5

16L2N 2

�

E·|Q
�

∇ fi(θ
(i)
t0
)

2�
.

Proof. Approaching in the same fashion of proving as in Lemma B.2, we have

E·|Q
�∑

j ̸=i

q j→i
t

θ (j)t − θ
(j)
t0

2
�

(a)
≤ 2E·|Q

�∑

j ̸=i

q j→i
t ∥y

(j)
t,b − θ

(j)
t ∥

2
�

+
8ζ2

L2(N − 4)
+

1
16L2N 2

E·|Q
�

∇ fi(θ
(i)
t0
)

2�
+

3σ2

16L2

(b)
≤ 2

�2
5

∑

j ̸=i

q j→i
t E·|Q

�

θ (i)t − θ
(i)
t0

2�
+

9Nζ2

10L2
+

16Bη2σ2

5
+

128B2η2

5
E·|Q[∥∇ fi(θ

(i)
t0
)∥2]

�

+
8ζ2

L2(N − 4)
+

1
16L2N 2

E·|Q
�

∇ fi(θ
(i)
t0
)

2�
+

3σ2

16L2

=
4
5

∑

j ̸=i

q j→i
t E·|Q

�

θ (i)t − θ
(i)
t0

2�
+

9Nζ2

5L2
+

32Bη2σ2

5
+

8ζ2

L2(N − 4)
+

3σ2

16L2

+
�256B2η2

5
+

1
16L2N 2

�

E·|Q
�

∇ fi(θ
(i)
t0
)

2�
,

where (a) uses Proposition B.3, and (b) comes from Lemma B.2.

68

B.1.4 Proof of Theorem 3.1

The proof of Theorem 3.1 is based on the proof provided in [94].

Beginning with rephrasing the L-smoothness between fi(θ
(i)
t0+P) and fi(θ

(i)
t0
), we have

E·|Q,t0
[fi(θ

(i)
t0+P)]

≤ fi(θ
(i)
t0
) +E·|Q,t0

[

∇ fi(θ
(i)
t0
), θ (i)t0+P − θ

(i)
t0

�

] +
L
2
E·|Q,t0

�

θ
(i)
t0+P − θ

(i)
t0

2
�

≤ fi(θ
(i)
t0
)−η

¬

∇ fi(θ
(i)
t0
),E·|Q,t0

�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

g j(y
(j)
⌊t⌋,b)dt

�¶

+
η2 L

2
E·|Q,t0

�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

g j(y
(j)
⌊t⌋,b)dt

2�

= fi(θ
(i)
t0
)−η

¬

∇ fi(θ
(i)
t0
),E·|Q,t0

�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

E
�

g j(y
(j)
⌊t⌋,b)|Q,y(j)⌊t⌋,b,θ (i)t0

�

dt
�¶

+
η2 L

2
E·|Q,t0

�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

g j(y
(j)
⌊t⌋,b)dt

2�

= fi(θ
(i)
t0
)−η

¬

∇ fi(θ
(i)
t0
),E·|Q,t0

�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

�¶

+
η2 L

2
E·|Q,t0

�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

g j(y
(j)
⌊t⌋,b)dt

2�

Taking expectation on both sides over θ (i)t0
, we obtain

E·|Q[fi(θ
(i)
t0+P)]≤ E·|Q[fi(θ

(i)
t0
)]−ηE·|Q,t0

�¬

∇ fi(θ
(i)
t0
),

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

¶�

+
η2 L

2
E·|Q

�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

g j(y
(j)
⌊t⌋,b)dt

2�

(B.8)

Here, we reintroduce a finite variable from Definition 3.1, Ψ ∈ R+, to indicate the maximum
total number of all message exchanging events during the time period [t0, t0 + P). We set an
assumption that Ψ ≥ 3 for any time elapse [t0, t0 + P) in which t0 is multiple to P.

Considering the second term in the inequality B.8,

−
¬

∇ fi(θ
(i)
t0
),

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

¶

= −
1

BΨ

¬

BΨ∇ fi(θ
(i)
t0
),

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)

¶

APPENDIX B 69

=
1

2BΨ

BΨ∇ fi(θ
(i)
t0
)−

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2

−
BΨ
2
∥∇ fi(θ

(i)
t0
)∥2 −

1
2BΨ

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2

=
1

2BΨ

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

�

∇ fi(θ
(i)
t0
)−∇ f j(y

(j)
⌊t⌋,b)

�

dt

2

−
BΨ
2
∥∇ fi(θ

(i)
t0
)∥2 −

1
2BΨ

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2

=
1

2BΨ

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

[∇ fi(θ
(i)
t0
)−∇ f j(y

(j)
⌊t⌋,b)]dt

2

−
BΨ
2
∥∇ fi(θ

(i)
t0
)∥2 −

1
2BΨ

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2

In order to deal with two variables controlled by different agents, two terms are added and
subtracted for further proof: local model gradient calculated by j and its local reference model,
respectively.

=
1

2BΨ

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

�

∇ fi(θ
(i)
t0
)−∇ f j(θ

(j)
t0
) +∇ f j(θ

(j)
t0
)−∇ f j

�

θ (j)t

�

+∇ f j

�

θ (j)t

�

−∇ f j(y
(j)
⌊t⌋,b)

�

dt

2

−
BΨ
2
∥∇ fi(θ

(i)
t0
)∥2 −

1
2BΨ

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2

≤
3

2BΨ

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

�

∇ f j

�

θ (j)t

�

−∇ f j(y
(j)
⌊t⌋,b)

�

dt

2

+
3

2BΨ

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

�

∇ f j(θ
(j)
t0
)−∇ f j

�

θ (j)t

��

dt

2

+
3

2BΨ

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

[∇ fi(θ
(i)
t0
)−∇ f j(θ

(j)
t0
)]dt

2

−
BΨ
2
∥∇ fi(θ

(i)
t0
)∥2 −

1
2BΨ

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2

(a)
≤

3
2BΨ

BΨ
∑

j ̸=i

q j→i
t

�

∇ f j

�

θ (j)t

�

−∇ f j(y
(j)
⌊t⌋,b)

�

2

+
3

2BΨ

BΨ
∑

j ̸=i

q j→i
t

�

∇ f j(θ
(j)
t0
)−∇ f j

�

θ (j)t

��

2

+
3

2BΨ

BΨ
∑

j ̸=i

q j→i
t [∇ fi(θ

(i)
t0
)−∇ f j(θ

(j)
t0
)]

2

70

−
BΨ
2
∥∇ fi(θ

(i)
t0
)∥2 −

1
2BΨ

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2

(b)
≤

3BNΨ
2

∑

j ̸=i

q j→i
t

∇ f j

�

θ (j)t

�

−∇ f j(y
(j)
⌊t⌋,b)

2

+
3BNΨ

2

∑

j ̸=i

q j→i
t

∇ f j(θ
(j)
t0
)−∇ f j

�

θ (j)t

�

2

+
3BΨ

2

∑

j ̸=i

q j→i
t

�

∇ fi(θ
(i)
t0
)−∇ f j(θ

(j)
t0
)
�

2

−
BΨ
2
∥∇ fi(θ

(i)
t0
)∥2 −

1
2BΨ

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2

(c)
≤

3BL2NΨ
2

∑

j ̸=i

q j→i
t

θ (j)t − y(j)⌊t⌋,b

2
+

3BL2NΨ
2

∑

j ̸=i

q j→i
t

θ (j)t0
− θ (j)t

2
+

3BNΨζ2

N − 4

−
BΨ
2
∥∇ fi(θ

(i)
t0
)∥2 −

1
2BΨ

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2
(B.9)

where (a) reflects Jensen’s inequality on the first three terms, pulling the terms out of the
L2 norms; (b) is valid because ∥

∑N
j=1 q(j)z(j)∥2 ≤ N

∑N
j=1 q(j)∥z(j)∥2 for all q⋆ ∈ [0, 1]; (c)

L-smoothness on the first two terms and Lemma 3.1 on the third term.

Hence, the expectation can be bounded as follows:

E·|Q
�

−
¬

∇ fi(θ
(i)
t0
),

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

¶�

≤
3BL2NΨ

2
E·|Q

�∑

j ̸=i

q j→i
t

θ (j)t − y(j)⌊t⌋,b

2
�

+
3BL2NΨ

2
E·|Q

�∑

j ̸=i

q j→i
t

θ (j)t0
− θ (j)t

2
�

+
3BNΨζ2

N − 4

−
BΨ
2
E·|Q[∥∇ fi(θ

(i)
t0
)∥2]−

1
2BΨ
E·|Q

�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2�

(a)
≤

3BL2NΨ
2

�

16ζ2

L2(N − 4)
+

3σ2

8L2
+

9Nζ2

2L2
+ 16Bη2σ2 +

� 1
8L2N

+ 128B2η2
�

E·|Q
�

∇ fi(θ
(i)
t0
)

2�
�

+
3BL2NΨ

2

�

9Nζ2

L2
+ 32Bη2σ2 +

40ζ2

L2(N − 4)
+

15σ2

16L2
+
�

256B2η2 +
5

16L2N 2

�

E·|Q
�

∇ fi(θ
(i)
t0
)

2�
�

+
3BNΨζ2

N − 4
−

BΨ
2
E·|Q[∥∇ fi(θ

(i)
t0
)∥2]−

1
2BΨ
E·|Q

�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2�

=
3BL2NΨ

2

�

56ζ2

L2(N − 4)
+

21σ2

16L2
+

27Nζ2

2L2
+ 48Bη2σ2 +

� 7
16L2N

+ 384B2η2
�

E·|Q
�

∇ fi(θ
(i)
t0
)

2�
�

APPENDIX B 71

+
3BNΨζ2

N − 4
−

BΨ
2
E·|Q[∥∇ fi(θ

(i)
t0
)∥2]−

1
2BΨ
E·|Q

�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2�

=
87BNζ2Ψ

N − 4
+

63BNσ2Ψ

32
+

81BN 2ζ2Ψ

4
+ 72B2 L2Nη2σ2Ψ

+ BΨ
� 21

32N
+ 576B2 L2Nη2 −

1
2

�

E·|Q
�

∇ fi(θ
(i)
t0
)

2�

−
1

2BΨ
E·|Q

�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2�

(B.10)

where (a) uses Lemma B.2, Lemma B.3, and Lemma 3.1 on the first three terms, respectively.

Considering the third term in the inequality B.8,

E·|Q
�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

g j(y
(j)
⌊t⌋,b)dt

2�

= E·|Q
�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2�

+E·|Q
�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

[g j(y
(j)
⌊t⌋,b)−∇ f j(y

(j)
⌊t⌋,b)]dt

2�

= E·|Q
�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2�

+

∫

P

∑

j ̸=i

(q j→i
t)

2
B−1
∑

b=0

E·|Q
�

∥g j(y
(j)
⌊t⌋,b)−∇ f j(y

(j)
⌊t⌋,b)∥

2
�

dt

(a)
≤ E·|Q

�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2�

+ Bρ2σ2 (B.11)

where (a) is derived from the definition of σ in Assumption 3.4 and ρ.

Plugging B.10 and B.11, the inequality B.8 is rephrased as:

E·|Q[fi(θ
(i)
t0+P)]

≤ E·|Q[fi(θ
(i)
t0
)] +η

�

87BNζ2Ψ

N − 4
+

63BNσ2Ψ

32
+

81BN 2ζ2Ψ

4
+ 72B2 L2Nη2σ2Ψ

+ BΨ
� 21

32N
+ 576B2 L2Nη2 −

1
2

�

E·|Q
�

∇ fi(θ
(i)
t0
)

2�

−
1

2BΨ
E·|Q

�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2�
�

+
η2 L

2
E·|Q

�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2�

+
BLη2ρ2σ2

2

72

≤ E·|Q[fi(θ
(i)
t0
)] +

87BNηζ2Ψ

N − 4
+

63BNησ2Ψ

32
+

81BN 2ηζ2Ψ

4
+ 72B2 L2Nη3σ2Ψ

+ BηΨ
� 21

32N
+ 576B2 L2Nη2 −

1
2

�

E·|Q
�

∇ fi(θ
(i)
t0
)

2�

+
�η2 L

2
−

η

2BΨ

�

E·|Q
�

∫

P

∑

j ̸=i

q j→i
t

B−1
∑

b=0

∇ f j(y
(j)
⌊t⌋,b)dt

2�

+
BLη2ρ2σ2

2

(a)
≤ E·|Q[fi(θ

(i)
t0
)] +

87BNηζ2Ψ

N − 4
+

63BNησ2Ψ

32
+

81BN 2ηζ2Ψ

4
+ 72B2 L2Nη3σ2Ψ

+ BηΨ
� 21

32N
+ 576B2 L2Nη2 −

1
2

�

E·|Q
�

∇ fi(θ
(i)
t0
)

2�
+

BLη2ρ2σ2

2
(b)
≤ E·|Q[fi(θ

(i)
t0
)] +

87BNηζ2Ψ

N − 4
+

63BNησ2Ψ

32
+

81BN 2ηζ2Ψ

4
+ 72B2 L2Nη3σ2Ψ

+ BηΨ
� 21

32N
+

9
NΨ2

−
1
2

�

E·|Q
�

∇ fi(θ
(i)
t0
)

2�
+

BLη2ρ2σ2

2
, (B.12)

where (a) negates the term including ∇ f j(y
(j)
t,b) because η2 L

2 −
η

2BΨ < 0 based on the upper

bound of η; (b) bounds the coefficient of the term including E·|Q[∥∇ fi(θ
(i)
t0
)∥2] to simplify the

further analysis.

After rearrangement, we have

E·|Q[∥∇ fi(θ
(i)
t0
)∥2]

≤
E·|Q[fi(θ

(i)
t0
)]−E·|Q[fi(θ

(i)
t0+P)]

BηΨ
�

1
2 −

21
32N −

9
NΨ2

� +
1

1
2 −

21
32N −

9
NΨ2

�

87Nζ2

N − 4
+

63Nσ2

32
+

81N 2ζ2

4

+ 72BL2Nη2σ2 +
Lηρ2σ2

2Ψ

�

(a)
≤

128
�

E·|Q[fi(θ
(i)
t0
)]−E·|Q[fi(θ

(i)
t0+P)]

�

11BηΨ
+

128
11

�

87Nζ2

N − 4
+

63Nσ2

32
+

81N 2ζ2

4

+ 72BL2Nη2σ2 +
Lηρ2σ2

2Ψ

�

=
128

�

E·|Q[fi(θ
(i)
t0
)]−E·|Q[fi(θ

(i)
t0+P)]

�

11BηΨ
+

11136Nζ2

11(N − 4)
+

252Nσ2

11
+

2592N 2ζ2

11

+ 9216BL2Nη2σ2 +
64Lηρ2σ2

11Ψ
, (B.13)

where (a) makes the denominator smaller than the derived upper bound of inequality B.12 by
using N > 4 and Ψ ≥ 3, resulting in

1
1
2 −

21
32N −

9
NΨ2

≤
1

1
2 −

21
32·4 −

9
4·32

=
128
11

.

APPENDIX B 73

Finally, the minimum value of E·|Q[∥∇ f (θt)∥2] over time t can be found as:

min
t
E·|Q[∥∇ f (θt)∥2]

=min
t
E·|Q

�

1
N

N
∑

i=1

∇ fi(θ
(i)
t)

2�

≤ min
t0∈{0,P,··· ,(⌊ T

P ⌋−1)P}
E·|Q

�

1
N

N
∑

i=1

∇ fi(θ
(i)
t0
)

2�

(a)
≤ min

t0∈{0,P,··· ,(⌊ T
P ⌋−1)P}

1
N
·E·|Q

�

N
∑

i=1

∇ fi(θ
(i)
t0
)

2
�

≤
1

N⌊ T
P ⌋
·

∑

t0=0,P,2P,··· ,(⌊ T
P ⌋−1)P

E·|Q
�

N
∑

i=1

∇ fi(θ
(i)
t0
)

2
�

(b)
≤

1

N⌊ T
P ⌋

N
∑

i=1

�

128
�

fi(θ
(i)
0)− f ∗i

�

11BηΨ

�

+
11136ζ2

11(N − 4)
+

252σ2

11
+

2592Nζ2

11

+ 9216BL2η2σ2 +
64Lηρ2σ2

11NΨ
(c)
≤

128
11BηΨ

(f (θ0)− f ∗) +
11136ζ2

11(N − 4)
+

252σ2

11
+

2592Nζ2

11

+ 9216BL2η2σ2 +
64Lηρ2σ2

11NΨ

=O
� F

BηΨ
+

ζ2

N − 4
+σ2 + Nζ2 + BL2η2σ2 +

Lηρ2σ2

NΨ

�

where (a) is due to Jensen’s inequality; the first term of (b) is an implantation of inequality
B.13 whereas the other terms are independent on t0; (c) takes that P ≤ T and the definition
of f (θ⋆)

B.2 Additional experiment results

In this section, we investigate the effect of (i) topology and (ii) wireless channels on DRACO,
which is not considered separately in the main contents of this thesis. The first case, which
involves a time-invariant connectivity graph, covers scenarios in which the topology is fixed
throughout the learning process. For any two user nodes connected to an edge, a message
sent from one node is always successfully received at the other. The physical distance (i.e.,
geographical coordinates) is not considered. Under this setting, we study the impact of the fre-
quency of successfully received messages and the characteristics of the connectivity graphs. On
the other hand, in the second case, the connectivity graph changes over time. Here, user nodes
are positioned randomly with coordinates following uniform distribution. Their information
exchange is influenced by factors such as interference and channel capacity limitations. Differ-
entiating from the fixed topology scenarios, we mainly verify the influence of the transmission
duration deadline, superposition window, and unification period accounting in general for all

74

wireless channel conditions.
Experiments were conducted on image classification tasks over serverless networks using

the MNIST dataset [149]. Each user possesses 50 local training samples arranged into training
batches with 15 samples per batch. The default number of participants in each simulation is
N = 25, unless otherwise specified. The sampling interval was set at 500 events, meaning
the evaluation of each local model occurs after the completion of the 500th event. The rate
parameter of the exponential distribution in local gradient computation is λi = 1 for all users
by default. This study does not evaluate the impact of model compression, assuming that
the packet size is equivalent to the raw model size. The CNN architecture employed in the
simulations occupies 596776 B (0.57 MB). This value serves as the basis for quantifying the
message size in time-variant Q cases.

We conducted simulations under two different scenarios according to the time-variability
of Q. In time-invariant cases (see Section B.2.1), the connectivity graph is fixed throughout
the whole collaboration process. Each user, indexed i without losing generality, spends some
time computing local gradient following Ex p(λi) as mentioned in Assumption 3.1. Whenever
a local update is done at t, user i sends ∆(i)t to its neighbors j ∈ N (i), where N (i) indicates a
set of user i’s neighbors. Slightly after that moment (i.e., at time t + tε), qi→ j

t+tε = 1 for all j.
Meanwhile, in time-variant cases (see Section B.2.2), we also consider communication over

wireless channels in which nodes are randomly connected over time without following any pre-
determined scheduling policies. The readers may refer to Section 3.5 of the thesis for detailed
hyperparameter settings.

B.2.1 Comparison within fixed topology

Since delivery is always successful in fixed Q scenarios, the participants do not experience
performance degradation owing to wireless communication impairments. We use by default
λi = 0.1 for all i ∈ U as the rate parameter that determines local computation time.

To evaluate the effect of topology on the performance of DRACO, we compare five graph
types: complete, cycle, bipartite, star, and k-nearest neighbor graph (k-NNG), as depicted in
Fig. B.3. We manually fix k = 3 for k-NNG.2 Among these graph types, a fully connected net-
work reaches the highest test accuracy and the fastest convergence, thanks to doubly stochastic
connection graphs with accessibility to all devices. This difference in performance is attributed
to each topology having a different number of neighbors, which affects the reception frequency
ψi per unification period.

We regulate the number of reception events per user by randomly removing exchange events
in each unit time [mP, (m+ 1)P) for m = 0,1, · · · , ⌊T/P⌋ − 1, ensuring that each user receives
no more than Ψ messages during that period. As shown in Fig. B.4, a larger Ψ reaches smaller
training losses, which is consistent with the results in [120] and our Theorem 3.1. We find
that the average test accuracy saturates on a higher point also in cases with larger Ψ. Hence, it
is meaningful to determine Ψ based on which one between final test accuracy and saturating
speed weighs more in the experiments.

2The parameter k in k-NNG is the number of edges of each node connected in the nearest order. It shall not
be confused with k for indexing an event as used in Section 3.2.2 and Alg. 5 of this chapter.

APPENDIX B 75

0 20000 40000 60000 80000 100000
Time (seconds)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
Lo

ss
(Interpolated) Average Training Loss

fixed topology: k-NNG
fixed topology: star
fixed topology: bipartite
fixed topology: cycle
fixed topology: complete

0 20000 40000 60000 80000 100000
Time (seconds)

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Te
st

 a
cc

ur
ac

y
(p

er
ce

nt
ag

e)

Average Test Accuracy

fixed topology: k-NNG
fixed topology: star
fixed topology: bipartite
fixed topology: cycle
fixed topology: complete

Figure B.3. Results with respect to different network topology (Γmax = 0.5)

0 20000 40000 60000 80000 100000
Time (seconds)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Lo
ss

(Interpolated) Average Training Loss
=5
=10
=25
=50

0 20000 40000 60000 80000 100000
Time (seconds)

66

68

70

72

74

76

78

80

82
Te

st
 a

cc
ur

ac
y

(p
er

ce
nt

ag
e)

Average Test Accuracy
=5
=10
=25
=50

Figure B.4. Results with respect to different upper bounds on the number of received messages per user.
(P = 500, Γmax = 10)

B.2.2 Dynamic connectivity and fading channels
In time-invariant Q cases, wireless channels can vary depending on the physical locations

(coordinates) randomly generated. To avoid any bias by specific channel conditions and con-
nectivity, we use the same coordinates for all simulation trials while changing only the value of
the particular variable that impacts the performance. To minimize the influence of specific con-
nectivity graphs in wireless networks, we repeat the experiments multiple times with different
coordinates and draw the averaged results for each figure. Each experiment in this subsection
is performed with N = 15 participants.

We vary the transmission duration deadline from 0.1 to 30 seconds in Fig. B.5. As Γmax gets
higher, the number of communication events increases since the number of stale updates that a
user permits to receive also increases. This relaxation of acceptance for successful transmissions
enhances the convergence rate by providing increased opportunities for message exchanges.
Yet, the improvement saturates at the point around Γmax = 10, implying that stale updates
that are included in model aggregation degrade the performance and lead to extended overall
learning time.

76

0 10000 20000 30000 40000 50000
Time (seconds)

0.00

0.01

0.02

0.03

0.04

0.05
Lo

ss
(Interpolated) Average Training Loss

 = 0.1
 = 0.3
 = 1
 = 3
 = 10
 = 30

0 10000 20000 30000 40000 50000
Time (seconds)

74

75

76

77

78

79

80

81

82

Te
st

 a
cc

ur
ac

y
(p

er
ce

nt
ag

e)

Average Test Accuracy

 = 0.1
 = 0.3
 = 1
 = 3
 = 10
 = 30

Figure B.5. Results with respect to different transmission duration deadline (P = 50, window= 0)

0 10000 20000 30000 40000 50000
Time (seconds)

0.00

0.01

0.02

0.03

0.04

0.05

Lo
ss

(Interpolated) Average Training Loss
window = 0
window = 1e-05
window = 1e-04
window = 0.001
window = 0.01
window = 0.1
window = 1

0 10000 20000 30000 40000 50000
Time (seconds)

74

75

76

77

78

79

80

81

82
Te

st
 a

cc
ur

ac
y

(p
er

ce
nt

ag
e)

Average Test Accuracy

window = 0
window = 1e-05
window = 1e-04
window = 0.001
window = 0.01
window = 0.1
window = 1

Figure B.6. Results with respect to different superposition windows. (P = 50, Γmax = 1)

We assess the performance of the proposed algorithm with different strictness in the su-
perposition decision (superposition window), i.e., for how long each user lets the receiving
session open. With a wider window, the participants renew their local reference models less
frequently because they stack their neighbors’ updates until the aggregation time comes. How-
ever, a wider window can also include stale gradients to the superposition phase, which can
disturb the optimization direction of the reference models.

In Fig. B.7, we compare different lengths of unification periods. Even without controlling
any other hyperparameter, ψi(mP, (m+1)P) tends to increase as the network has longer P be-
cause a shorter unification period leads in general to more frequent reference model unification.
Consequently, to remove the influence of bounding the number of incoming packets, we set a
sufficiently large value for Ψ while looking at the impact of P on operating our algorithm. The
results show that larger P is advantageous to get both high final accuracy and fast convergence.
However, if the network topology (graph) is not vertex-transitive, the result can vary depend-
ing on which user becomes the hub. Meanwhile, smaller P implies more frequent broadcasting
events, which come with increased communication overloads. In the case of asymmetric or

APPENDIX B 77

0 10000 20000 30000 40000 50000
Time (seconds)

0.00

0.01

0.02

0.03

0.04

0.05

Lo
ss

2024-06-09

(Interpolated) Average Training Loss
P=500
P=1000
P=2000
P=5000

0 10000 20000 30000 40000 50000
Time (seconds)

74

75

76

77

78

79

80

81

82

Te
st

 a
cc

ur
ac

y
(p

er
ce

nt
ag

e)

Average Test Accuracy

P=500
P=1000
P=2000
P=5000

Figure B.7. Results with respect to different unification periods. (Γmax = 1, window= 0)

time-invariant topologies, the duration of the unification period should be chosen based on the
communication resource budget. If a node with the most edges or the strongest channel is
known or observable in a system, this node should take the role of a temporary hub, which will
then broadcast its reference model.

B.3 Pseudo algorithm of DRACO

In this section, we provide a pseudo-algorithm and a flowchart for intuitive reproduction of
source codes. The flowchart in Fig. B.8 includes only the transmission/reception procedure of
DRACO, corresponding to line 21-39 (excluding periodic unification parts) of Algorithm 5.

78

Algorithm 5: Pseudo algorithm of Algorithm 3.

Input: η,λ,θ0, B, T, P
Output: {θt : ∀t}

1 Initialize
2 for i = 1, · · · , N do
3 /* Generate ListEvents(i) */
4 Generate t ∼ Ex p(λi)
5 Append [t, i] to ListEventsGrad(i)
6 for event in ListEventsGrad(i) do
7 for j ∈N (i) do
8 Generate t ∼ ex p(λi j) or t ←transmission delay
9 Append [t, j] to ListEventsComm(i)

10 end for
11 end for
12 ListEvents(i)← ListEventsGrad(i) + ListEventsComm(i)
13 end for
14 /* Generate ListEvents over all clients */
15 for i = 1, · · · , N do
16 Stack ListEvents(i) on ListEvents
17 end for
18 Sort ListEvents by t in ascending order.
19 Add the event indices k in front of each element.
20 K ← |ListEvents|
21 for k = 1, · · · , K do
22 (i, j)← ListEvents(k, 0), ListEvents(k, 1)
23 if i == j then
24 for b = 0, · · · , B − 1 do
25 y(i)b+1← y(i)b −ηgi(y

(i)
b) // local batch training

26 end for
27 ∆

(i)
k ← y(i)k,B − θ

(i)
k

28 end if
29 else
30 for j ∈ U \ {i} do
31 if event_code==“unification” then
32 θ (j)← θ̃ (hub)

33 end if
34 else
35 θ (j)← θ (j) + qi→ j

k ∆̃(i) // aggregation
36 end if
37 end for
38 end if
39 end for
40 if t ≡ 0 (mod P) and t > 0 and i is the hub then
41 θ (hub)← θ (i)
42 end if
43 return θ (i) for i ∈ U

APPENDIX B 79

Start

Check the kth event
t : the event's moment
i, j: sender and receiver

Yes

No

kth event ==
local training?

Do local
training
generate
i.Delta

No

k = 0

Yes

No

k-1th event == transmission
AND

k-1th event's recipient == j
AND

t - t_standard <= window ?

Update reference model using
aggregated weights from neighbors

w ← j.model.weights
w_new ← w + j.sumDelta*(1/sum(j.q))

put w_new on j.model

Update reference model
without superposition

w ← j.model.weights
w_new ← w + i.Delta
put w_new on j.model

Initialize
delete sumDelta from user j

j.q ← all zero vector
j.timestamp ← -1

k ← k+1

Yes

No

k == K ? Return reference model
of all users. End

Yes No

j.timestamp > 0 ?

t_standard ←
shallow copy of

j.timestamp
t_standard ← t

Yes

k+1th event also transmission
AND

k+1th event's recipient == j
AND

t - t_standard <=window ?

j has an attribute
"sumDelta"?

Yes No

j.sumDelta ←
j.sumDelta +

i.Delta

j.sumDelta ←
shallow copy of

i.Delta

Archive the
received packet

j.q[i] ← 1

Yes

No

j.timestamp == -1 ? j.timestamp ← t

Yes

k+1th event == transmission
AND

k+1th event's recipient == j ?

No

Initialize
j.timestamp ← -1

Figure B.8. Flowchart of DRACO after initialization

80

BIBLIOGRAPHY

[1] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, Federated
learning: strategies for improving communication efficiency, 2017. arXiv: 1610.05492
[cs.LG].

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas, “Communication-
efficient learning of deep networks from decentralized data”, in Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, A. Singh and J. Zhu,
Eds., ser. Proceedings of Machine Learning Research, vol. 54, PMLR, 2017, pp. 1273–
1282.

[3] G. Neglia, C. Xu, D. Towsley, and G. Calbi, “Decentralized gradient methods: does topol-
ogy matter?”, in Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics, S. Chiappa and R. Calandra, Eds., ser. Proceedings of Machine
Learning Research, vol. 108, PMLR, 2020, pp. 2348–2358.

[4] Z. Chen, M. Dahl, and E. G. Larsson, “Decentralized learning over wireless networks:
the effect of broadcast with random access”, in 2023 IEEE 24th International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC), 2023, pp. 316–
320. DOI: 10.1109/SPAWC53906.2023.10304514.

[5] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich, “A unified theory of decen-
tralized SGD with changing topology and local updates”, in International Conference on
Machine Learning, PMLR, 2020, pp. 5381–5393.

[6] V. Zantedeschi, A. Bellet, and M. Tommasi, “Fully decentralized joint learning of per-
sonalized models and collaboration graphs”, in International Conference on Artificial
Intelligence and Statistics, PMLR, 2020, pp. 864–874.

[7] L. Yuan, Z. Wang, L. Sun, P. S. Yu, and C. G. Brinton, “Decentralized federated learning:
a survey and perspective”, IEEE Internet of Things Journal, pp. 1–1, 2024. DOI: 10.
1109/JIOT.2024.3407584.

[8] A. Koloskova, S. Stich, and M. Jaggi, “Decentralized stochastic optimization and gossip
algorithms with compressed communication”, in International Conference on Machine
Learning, PMLR, 2019, pp. 3478–3487.

[9] C. Hu, J. Jiang, and Z. Wang, Decentralized federated learning: a segmented gossip ap-
proach, 2019. arXiv: 1908.07782 [cs.LG].

[10] H. Cho, S. Mukherjee, D. Kim, T. Noh, and J. Lee, “Facing to wireless network densi-
fication in 6g: challenges and opportunities”, ICT Express, vol. 9, no. 3, pp. 517–524,
2023, ISSN: 2405-9595. DOI: https://doi.org/10.1016/j.icte.2022.10.001.

BIBLIOGRAPHY 81

https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://doi.org/10.1109/SPAWC53906.2023.10304514
https://doi.org/10.1109/JIOT.2024.3407584
https://doi.org/10.1109/JIOT.2024.3407584
https://arxiv.org/abs/1908.07782
https://doi.org/https://doi.org/10.1016/j.icte.2022.10.001

[11] M. Al-Quraan, L. Mohjazi, L. Bariah, A. Centeno, A. Zoha, K. Arshad, K. Assaleh, S.
Muhaidat, M. Debbah, and M. A. Imran, “Edge-native intelligence for 6g communica-
tions driven by federated learning: a survey of trends and challenges”, IEEE Transactions
on Emerging Topics in Computational Intelligence, vol. 7, no. 3, pp. 957–979, 2023. DOI:
10.1109/TETCI.2023.3251404.

[12] A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar, Peer-to-peer federated learning on
graphs, 2019. arXiv: 1901.11173 [cs.LG].

[13] A. Karras, C. Karras, K. C. Giotopoulos, D. Tsolis, K. Oikonomou, and S. Sioutas, “Peer to
peer federated learning: towards decentralized machine learning on edge devices”, in
2022 7th South-East Europe Design Automation, Computer Engineering, Computer Net-
works and Social Media Conference (SEEDA-CECNSM), 2022, pp. 1–9. DOI: 10.1109/
SEEDA-CECNSM57760.2022.9932980.

[14] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooperating devices: a
consensus approach for massive iot networks”, IEEE Internet of Things Journal, vol. 7,
no. 5, pp. 4641–4654, 2020. DOI: 10.1109/JIOT.2020.2964162.

[15] R. Pathak and M. J. Wainwright, “Fedsplit: an algorithmic framework for fast federated
optimization”, in Advances in Neural Information Processing Systems, H. Larochelle, M.
Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020,
pp. 7057–7066. [Online]. Available: https://proceedings.neurips.cc/paper_
files/paper/2020/file/4ebd440d99504722d80de606ea8507da-Paper.pdf.

[16] A. Taya, T. Nishio, M. Morikura, and K. Yamamoto, “Decentralized and model-free fed-
erated learning: consensus-based distillation in function space”, IEEE Transactions on
Signal and Information Processing over Networks, vol. 8, pp. 799–814, 2022. DOI: 10.
1109/TSIPN.2022.3205549.

[17] L. Fang, P. Antsaklis, and A. Tzimas, “Asynchronous consensus protocols: preliminary
results, simulations and open questions”, in Proceedings of the 44th IEEE Conference on
Decision and Control, 2005, pp. 2194–2199. DOI: 10.1109/CDC.2005.1582487.

[18] C. Xie, S. Koyejo, and I. Gupta, Asynchronous federated optimization, 2020. arXiv: 1903.
03934 [cs.DC].

[19] F. Wilhelmi, E. Guerra, and P. Dini, “On the decentralization of blockchain-enabled asyn-
chronous federated learning”, in 2023 IEEE 9th International Conference on Network
Softwarization (NetSoft), 2023, pp. 408–413. DOI: 10.1109/NetSoft57336.2023.
10175411.

[20] C.-H. Hu, Z. Chen, and E. G. Larsson, “Scheduling and aggregation design for asyn-
chronous federated learning over wireless networks”, IEEE Journal on Selected Areas
in Communications, vol. 41, no. 4, pp. 874–886, 2023. DOI: 10.1109/JSAC.2023.
3242719.

[21] M. Song, H. H. Yang, H. Shan, J. Lee, and T. Q. S. Quek, “Age of information in wireless
networks: spatiotemporal analysis and locally adaptive power control”, IEEE Transac-
tions on Mobile Computing, vol. 22, no. 6, pp. 3123–3136, 2023. DOI: 10.1109/TMC.
2021.3139666.

82

https://doi.org/10.1109/TETCI.2023.3251404
https://arxiv.org/abs/1901.11173
https://doi.org/10.1109/SEEDA-CECNSM57760.2022.9932980
https://doi.org/10.1109/SEEDA-CECNSM57760.2022.9932980
https://doi.org/10.1109/JIOT.2020.2964162
https://proceedings.neurips.cc/paper_files/paper/2020/file/4ebd440d99504722d80de606ea8507da-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4ebd440d99504722d80de606ea8507da-Paper.pdf
https://doi.org/10.1109/TSIPN.2022.3205549
https://doi.org/10.1109/TSIPN.2022.3205549
https://doi.org/10.1109/CDC.2005.1582487
https://arxiv.org/abs/1903.03934
https://arxiv.org/abs/1903.03934
https://doi.org/10.1109/NetSoft57336.2023.10175411
https://doi.org/10.1109/NetSoft57336.2023.10175411
https://doi.org/10.1109/JSAC.2023.3242719
https://doi.org/10.1109/JSAC.2023.3242719
https://doi.org/10.1109/TMC.2021.3139666
https://doi.org/10.1109/TMC.2021.3139666

[22] B. Buyukates and S. Ulukus, “Timely communication in federated learning”, in IEEE
INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2021, pp. 1–6. DOI: 10.1109/INFOCOMWKSHPS51825.2021.9484497.

[23] H. H. Yang, A. Arafa, T. Q. S. Quek, and H. Vincent Poor, “Age-based scheduling policy
for federated learning in mobile edge networks”, in ICASSP 2020 - 2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 8743–
8747. DOI: 10.1109/ICASSP40776.2020.9053740.

[24] S. Agarwal, H. Wang, S. Venkataraman, and D. Papailiopoulos, “On the utility of gra-
dient compression in distributed training systems”, in Proceedings of Machine Learn-
ing and Systems, D. Marculescu, Y. Chi, and C. Wu, Eds., vol. 4, 2022, pp. 652–672.
[Online]. Available: https://proceedings.mlsys.org/paper_files/paper/
2022/file/773862fcc2e29f650d68960ba5bd1101-Paper.pdf.

[25] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for communication-
efficient distributed optimization”, in Advances in Neural Information Processing Sys-
tems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, Eds., vol. 31, Curran Associates, Inc., 2018. [Online]. Available: https://proceedings.
neurips.cc/paper_files/paper/2018/file/3328bdf9a4b9504b9398284244fe97c2-
Paper.pdf.

[26] D. Grishchenko, F. Iutzeler, J. Malick, and M.-R. Amini, “Distributed learning with
sparse communications by identification”, SIAM Journal on Mathematics of Data Sci-
ence, vol. 3, no. 2, pp. 715–735, 2021. DOI: 10.1137/20M1347772. [Online]. Avail-
able: https://doi.org/10.1137/20M1347772.

[27] W. Xie, H. Li, J. Ma, Y. Li, J. Lei, D. Liu, and L. Fang, “JointSQ: joint sparsification-
quantization for distributed learning”, in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2024, pp. 5778–5787.

[28] J. Sun, T. Chen, G. Giannakis, and Z. Yang, “Communication-efficient distributed learn-
ing via lazily aggregated quantized gradients”, in Advances in Neural Information Pro-
cessing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds., vol. 32, Curran Associates, Inc., 2019. [Online]. Available: https://
proceedings.neurips.cc/paper_files/paper/2019/file/4e87337f366f72daa424dae11df0538c-
Paper.pdf.

[29] A. Danaee, R. C. de Lamare, and V. H. Nascimento, “Energy-efficient distributed learn-
ing with coarsely quantized signals”, IEEE Signal Processing Letters, vol. 28, pp. 329–
333, 2021. DOI: 10.1109/LSP.2021.3051522.

[30] O. A. Hanna, Y. H. Ezzeldin, C. Fragouli, and S. Diggavi, Quantizing data for distributed
learning, 2021. arXiv: 2012.07913 [cs.LG].

[31] N. Guha, A. Talwalkar, and V. Smith, One-shot federated learning, 2019. arXiv: 1902.
11175 [cs.LG].

[32] S. Salehkaleybar, A. Sharifnassab, and S. J. Golestani, “One-shot federated learning:
theoretical limits and algorithms to achieve them”, Journal of Machine Learning Re-
search, vol. 22, no. 189, pp. 1–47, 2021.

BIBLIOGRAPHY 83

https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484497
https://doi.org/10.1109/ICASSP40776.2020.9053740
https://proceedings.mlsys.org/paper_files/paper/2022/file/773862fcc2e29f650d68960ba5bd1101-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/773862fcc2e29f650d68960ba5bd1101-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/3328bdf9a4b9504b9398284244fe97c2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/3328bdf9a4b9504b9398284244fe97c2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/3328bdf9a4b9504b9398284244fe97c2-Paper.pdf
https://doi.org/10.1137/20M1347772
https://doi.org/10.1137/20M1347772
https://proceedings.neurips.cc/paper_files/paper/2019/file/4e87337f366f72daa424dae11df0538c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4e87337f366f72daa424dae11df0538c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4e87337f366f72daa424dae11df0538c-Paper.pdf
https://doi.org/10.1109/LSP.2021.3051522
https://arxiv.org/abs/2012.07913
https://arxiv.org/abs/1902.11175
https://arxiv.org/abs/1902.11175

[33] C. E. Heinbaugh, E. Luz-Ricca, and H. Shao, “Data-free one-shot federated learning
under very high statistical heterogeneity”, in The Eleventh International Conference on
Learning Representations, 2023.

[34] Y. Zhou, G. Pu, X. Ma, X. Li, and D. Wu, Distilled one-shot federated learning, 2021.
arXiv: 2009.07999 [cs.LG].

[35] Y. Park, D.-J. Han, D.-Y. Kim, J. Seo, and J. Moon, “Few-round learning for federated
learning”, in Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34, Curran Associates, Inc.,
2021, pp. 28 612–28 622.

[36] A. Rosato, M. Panella, E. Osipov, and D. Kleyko, “Few-shot federated learning in ran-
domized neural networks via hyperdimensional computing”, in 2022 International Joint
Conference on Neural Networks (IJCNN), 2022, pp. 1–8. DOI: 10.1109/IJCNN55064.
2022.9892007.

[37] J. M. B. da Silva, K. Ntougias, I. Krikidis, G. Fodor, and C. Fischione, “Simultane-
ous wireless information and power transfer for federated learning”, in 2021 IEEE
22nd International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), 2021, pp. 296–300. DOI: 10.1109/SPAWC51858.2021.9593160.

[38] A. Mahmoudi, H. S. Ghadikolaei, J. M. Barros Da Silva Júnior, and C. Fischione, “Fed-
Cau: a proactive stop policy for communication and computation efficient federated
learning”, IEEE Transactions on Wireless Communications, pp. 1–1, 2024. DOI: 10.
1109/TWC.2024.3378351.

[39] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad: ternary gradients
to reduce communication in distributed deep learning”, in Advances in Neural Informa-
tion Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett, Eds., vol. 30, Curran Associates, Inc., 2017.

[40] A. Panda, S. Mahloujifar, A. Nitin Bhagoji, S. Chakraborty, and P. Mittal, “SparseFed:
mitigating model poisoning attacks in federated learning with sparsification”, in Pro-
ceedings of The 25th International Conference on Artificial Intelligence and Statistics, G.
Camps-Valls, F. J. R. Ruiz, and I. Valera, Eds., ser. Proceedings of Machine Learning
Research, vol. 151, PMLR, 2022, pp. 7587–7624.

[41] M. Beitollahi, M. Liu, and N. Lu, “Dsfl: dynamic sparsification for federated learning”, in
2022 5th International Conference on Communications, Signal Processing, and their Ap-
plications (ICCSPA), 2022, pp. 1–6. DOI: 10.1109/ICCSPA55860.2022.10019204.

[42] Y. Sun, S. Zhou, Z. Niu, and D. Gündüz, “Time-correlated sparsification for efficient
over-the-air model aggregation in wireless federated learning”, in ICC 2022 - IEEE
International Conference on Communications, 2022, pp. 3388–3393. DOI: 10.1109/
ICC45855.2022.9839279.

[43] K. Sun, H. Xu, K. Hua, X. Lin, G. Li, T. Jiang, and J. Li, “Joint top-k sparsification
and shuffle model for communication-privacy-accuracy tradeoffs in federated-learning-
based iov”, IEEE Internet of Things Journal, vol. 11, no. 11, pp. 19 721–19 735, 2024.
DOI: 10.1109/JIOT.2024.3370991.

84

https://arxiv.org/abs/2009.07999
https://doi.org/10.1109/IJCNN55064.2022.9892007
https://doi.org/10.1109/IJCNN55064.2022.9892007
https://doi.org/10.1109/SPAWC51858.2021.9593160
https://doi.org/10.1109/TWC.2024.3378351
https://doi.org/10.1109/TWC.2024.3378351
https://doi.org/10.1109/ICCSPA55860.2022.10019204
https://doi.org/10.1109/ICC45855.2022.9839279
https://doi.org/10.1109/ICC45855.2022.9839279
https://doi.org/10.1109/JIOT.2024.3370991

[44] W. Xu, W. Fang, Y. Ding, M. Zou, and N. Xiong, “Accelerating federated learning for iot
in big data analytics with pruning, quantization and selective updating”, IEEE Access,
vol. 9, pp. 38 457–38 466, 2021. DOI: 10.1109/ACCESS.2021.3063291.

[45] P. Prakash, J. Ding, R. Chen, X. Qin, M. Shu, Q. Cui, Y. Guo, and M. Pan, “Iot device
friendly and communication-efficient federated learning via joint model pruning and
quantization”, IEEE Internet of Things Journal, vol. 9, no. 15, pp. 13 638–13 650, 2022.
DOI: 10.1109/JIOT.2022.3145865.

[46] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and L. Tassiulas, “Model
pruning enables efficient federated learning on edge devices”, IEEE Transactions on
Neural Networks and Learning Systems, vol. 34, no. 12, pp. 10 374–10 386, 2023. DOI:
10.1109/TNNLS.2022.3166101.

[47] A. Albasyoni, M. Safaryan, L. Condat, and P. Richtárik, Optimal gradient compression for
distributed and federated learning, 2020. arXiv: 2010.03246 [cs.LG].

[48] D. Leith and P. Clifford, “Convergence of distributed learning algorithms for optimal
wireless channel allocation”, in Proceedings of the 45th IEEE Conference on Decision and
Control, 2006, pp. 2980–2985. DOI: 10.1109/CDC.2006.376821.

[49] T. Li, M. Sanjabi, A. Beirami, and V. Smith, Fair resource allocation in federated learning,
2020. arXiv: 1905.10497 [cs.LG].

[50] J. Xu, H. Wang, and L. Chen, “Bandwidth allocation for multiple federated learning ser-
vices in wireless edge networks”, IEEE Transactions on Wireless Communications, vol. 21,
no. 4, pp. 2534–2546, 2022. DOI: 10.1109/TWC.2021.3113346.

[51] E. Altman, G. Neglia, F. De Pellegrini, and D. Miorandi, “Decentralized stochastic control
of delay tolerant networks”, in IEEE INFOCOM 2009, 2009, pp. 1134–1142. DOI: 10.
1109/INFCOM.2009.5062026.

[52] E. Jeong, M. Zecchin, and M. Kountouris, “Asynchronous decentralized learning over
unreliable wireless networks”, in ICC 2022 - IEEE International Conference on Commu-
nications, 2022, pp. 607–612. DOI: 10.1109/ICC45855.2022.9838891.

[53] E. Jeong and M. Kountouris, DRACO: a framework for decentralized asynchronous learn-
ing over continuous row-stochastic networks, 2024.

[54] E. Jeong and M. Kountouris, “Personalized decentralized federated learning with knowl-
edge distillation”, in ICC 2023 - IEEE International Conference on Communications, 2023,
pp. 1982–1987. DOI: 10.1109/ICC45041.2023.10279714.

[55] F. Yan, S. Sundaram, S. Vishwanathan, and Y. Qi, “Distributed autonomous online learn-
ing: regrets and intrinsic privacy-preserving properties”, IEEE Trans. on Knowledge and
Data Engineering, vol. 25, no. 11, pp. 2483–2493, 2012.

[56] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic and
stochastic gradient optimization algorithms”, IEEE Trans. on Autom. Control, vol. 31,
no. 9, pp. 803–812, 1986.

[57] H. Xing, O. Simeone, and S. Bi, “Federated learning over wireless device-to-device net-
works: algorithms and convergence analysis”, IEEE Journal on Selected Areas in Commu-
nications, vol. 39, no. 12, pp. 3723–3741, 2021. DOI: 10.1109/JSAC.2021.3118400.

BIBLIOGRAPHY 85

https://doi.org/10.1109/ACCESS.2021.3063291
https://doi.org/10.1109/JIOT.2022.3145865
https://doi.org/10.1109/TNNLS.2022.3166101
https://arxiv.org/abs/2010.03246
https://doi.org/10.1109/CDC.2006.376821
https://arxiv.org/abs/1905.10497
https://doi.org/10.1109/TWC.2021.3113346
https://doi.org/10.1109/INFCOM.2009.5062026
https://doi.org/10.1109/INFCOM.2009.5062026
https://doi.org/10.1109/ICC45855.2022.9838891
https://doi.org/10.1109/ICC45041.2023.10279714
https://doi.org/10.1109/JSAC.2021.3118400

[58] E. Ozfatura, S. Rini, and D. Gündüz, “Decentralized SGD with over-the-air computa-
tion”, in IEEE Global Communications Conference, 2020.

[59] Y. Shi, Y. Zhou, and Y. Shi, “Over-the-air decentralized federated learning”, arXiv preprint
arXiv:2106.08011, 2021.

[60] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge: distributed stochas-
tic gradient descent over-the-air”, IEEE Trans. on Signal Processing, vol. 68, pp. 2155–
2169, 2020.

[61] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, Three approaches for personalization with
applications to federated learning, 2020. arXiv: 2002.10619 [cs.LG].

[62] Y. Jiang, J. Konečný, K. Rush, and S. Kannan, Improving federated learning personaliza-
tion via model agnostic meta learning, 2019. arXiv: 1909.12488 [cs.LG].

[63] S. Divi, H. Farrukh, and B. Celik, Unifying distillation with personalization in federated
learning, 2021. arXiv: 2105.15191 [cs.LG].

[64] L. Xiao, S. Boyd, and S. Lall, “Distributed average consensus with time-varying Metropo-
lis weights”, Automatica, vol. 1, 2006.

[65] A. Koloskova*, T. Lin*, S. U. Stich, and M. Jaggi, “Decentralized deep learning with arbi-
trary communication compression”, in ICLR 2020 - International Conference on Learning
Representations, 2020.

[66] S. Dutta, J. Wang, and G. Joshi, “Slow and stale gradients can win the race”, IEEE
Journal on Selected Areas in Information Theory, vol. 2, no. 3, pp. 1012–1024, 2021.

[67] H. Xiao, K. Rasul, and R. Vollgraf. “Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms”. arXiv: cs.LG/1708.07747 [cs.LG]. (2017).

[68] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimiza-
tion”, IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61, 2009. DOI:
10.1109/TAC.2008.2009515.

[69] A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar, “Fully decentralized federated learn-
ing”, in Third Workshop on bayesian deep learning (in Conjunction with NeurIPS 2018),
vol. 2, 2018.

[70] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger, Braintorrent: a peer-to-
peer environment for decentralized federated learning, 2019. arXiv: 1905.06731 [cs.LG].

[71] T. Qin, S. R. Etesami, and C. A. Uribe, “Decentralized federated learning for over-
parameterized models”, in 2022 IEEE 61st Conference on Decision and Control (CDC),
2022, pp. 5200–5205. DOI: 10.1109/CDC51059.2022.9992924.

[72] G. Nadiradze, A. Sabour, P. Davies, S. Li, and D. Alistarh, “Asynchronous decentralized
sgd with quantized and local updates”, in Advances in Neural Information Processing
Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds.,
vol. 34, Curran Associates, Inc., 2021, pp. 6829–6842.

86

https://arxiv.org/abs/2002.10619
https://arxiv.org/abs/1909.12488
https://arxiv.org/abs/2105.15191
https://arxiv.org/abs/cs.LG/1708.07747
https://doi.org/10.1109/TAC.2008.2009515
https://arxiv.org/abs/1905.06731
https://doi.org/10.1109/CDC51059.2022.9992924

[73] R. Dai, L. Shen, F. He, X. Tian, and D. Tao, “DisPFL: towards communication-efficient
personalized federated learning via decentralized sparse training”, in Proceedings of
the 39th International Conference on Machine Learning, K. Chaudhuri, S. Jegelka, L.
Song, C. Szepesvari, G. Niu, and S. Sabato, Eds., ser. Proceedings of Machine Learning
Research, vol. 162, PMLR, 2022, pp. 4587–4604.

[74] Y. Esfandiari, S. Y. Tan, Z. Jiang, A. Balu, E. Herron, C. Hegde, and S. Sarkar, “Cross-
gradient aggregation for decentralized learning from non-iid data”, in Proceedings of
the 38th International Conference on Machine Learning, M. Meila and T. Zhang, Eds.,
ser. Proceedings of Machine Learning Research, vol. 139, PMLR, 2021, pp. 3036–3046.

[75] J. Jiang, W. Zhang, J. GU, and W. Zhu, “Asynchronous decentralized online learning”,
in Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y.
Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34, Curran Associates, Inc., 2021,
pp. 20 185–20 196.

[76] X. Liang, A. M. Javid, M. Skoglund, and S. Chatterjee, “Asynchrounous decentralized
learning of a neural network”, in ICASSP 2020 - 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 3947–3951. DOI: 10.
1109/ICASSP40776.2020.9053996.

[77] Y. Kanamori, Y. Yamasaki, S. Hosoai, H. Nakamura, and H. Takase, “An asynchronous
federated learning focusing on updated models for decentralized systems with a practi-
cal framework”, in 2023 IEEE 47th Annual Computers, Software, and Applications Con-
ference (COMPSAC), 2023, pp. 1147–1154. DOI: 10.1109/COMPSAC57700.2023.
00173.

[78] E. T. Martínez Beltrán, M. Q. Pérez, P. M. S. Sánchez, S. L. Bernal, G. Bovet, M. G.
Pérez, G. M. Pérez, and A. H. Celdrán, “Decentralized federated learning: fundamentals,
state of the art, frameworks, trends, and challenges”, IEEE Communications Surveys &
Tutorials, vol. 25, no. 4, pp. 2983–3013, 2023. DOI: 10.1109/COMST.2023.3315746.

[79] X. Zhang, X. Zhu, W. Bao, L. T. Yang, J. Wang, H. Yan, and H. Chen, “Distributed learning
on mobile devices: a new approach to data mining in the internet of things”, IEEE
Internet of Things Journal, vol. 8, no. 13, pp. 10 264–10 279, 2021. DOI: 10.1109/
JIOT.2020.3030783.

[80] I. Hegedűs, G. Danner, and M. Jelasity, “Decentralized learning works: an empirical
comparison of gossip learning and federated learning”, Journal of Parallel and Dis-
tributed Computing, vol. 148, pp. 109–124, 2021, ISSN: 0743-7315. DOI: 10.1016/
j.jpdc.2020.10.006.

[81] L. Wulfert, N. Asadi, W.-Y. Chung, C. Wiede, and A. Grabmaier, “Adaptive decentralized
federated gossip learning for resource-constrained iot devices”, in Proceedings of the 4th
International Workshop on Distributed Machine Learning, ser. DistributedML ’23, Paris,
France: Association for Computing Machinery, 2023, 27–33, ISBN: 9798400704475.
DOI: 10.1145/3630048.3630181.

BIBLIOGRAPHY 87

https://doi.org/10.1109/ICASSP40776.2020.9053996
https://doi.org/10.1109/ICASSP40776.2020.9053996
https://doi.org/10.1109/COMPSAC57700.2023.00173
https://doi.org/10.1109/COMPSAC57700.2023.00173
https://doi.org/10.1109/COMST.2023.3315746
https://doi.org/10.1109/JIOT.2020.3030783
https://doi.org/10.1109/JIOT.2020.3030783
https://doi.org/10.1016/j.jpdc.2020.10.006
https://doi.org/10.1016/j.jpdc.2020.10.006
https://doi.org/10.1145/3630048.3630181

[82] M. Even, A. Koloskova, and L. Massoulié, “Asynchronous SGD on graphs: a unified
framework for asynchronous decentralized and federated optimization”, in Proceedings
of The 27th International Conference on Artificial Intelligence and Statistics, S. Dasgupta,
S. Mandt, and Y. Li, Eds., ser. Proceedings of Machine Learning Research, vol. 238,
PMLR, 2024, pp. 64–72.

[83] M. Blot, D. Picard, M. Cord, and N. Thome, Gossip training for deep learning, 2016.
arXiv: 1611.09726 [cs.CV].

[84] D. T. A. Nguyen, D. T. Nguyen, and A. Nedić, “Accelerated AB/push-pull methods for
distributed optimization over time-varying directed networks”, IEEE Transactions on
Control of Network Systems, pp. 1–12, 2023. DOI: 10.1109/TCNS.2023.3338236.

[85] R. Xin, C. Xi, and U. A. Khan, “FROST—fast row-stochastic optimization with uncoordi-
nated step-sizes”, EURASIP Journal on Advances in Signal Processing, vol. 2019, pp. 1–
14, 2019.

[86] A. Nedić and A. Olshevsky, “Distributed optimization over time-varying directed graphs”,
IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 601–615, 2015. DOI: 10.
1109/TAC.2014.2364096.

[87] M. Akbari, B. Gharesifard, and T. Linder, “Distributed online convex optimization on
time-varying directed graphs”, IEEE Transactions on Control of Network Systems, vol. 4,
no. 3, pp. 417–428, 2017. DOI: 10.1109/TCNS.2015.2505149.

[88] Z. Li, Z. Ding, J. Sun, and Z. Li, “Distributed adaptive convex optimization on di-
rected graphs via continuous-time algorithms”, IEEE Transactions on Automatic Control,
vol. 63, no. 5, pp. 1434–1441, 2018. DOI: 10.1109/TAC.2017.2750103.

[89] D. Ghaderyan, N. S. Aybat, A. P. Aguiar, and F. L. Pereira, “A fast row-stochastic decen-
tralized method for distributed optimization over directed graphs”, IEEE Transactions
on Automatic Control, vol. 69, no. 1, pp. 275–289, 2024. DOI: 10.1109/TAC.2023.
3275927.

[90] V. S. Mai and E. H. Abed, “Distributed optimization over weighted directed graphs using
row stochastic matrix”, in 2016 American Control Conference (ACC), 2016, pp. 7165–
7170. DOI: 10.1109/ACC.2016.7526803.

[91] D. T. A. Nguyen, S. Wang, D. T. Nguyen, A. Nedich, and H. V. Poor, Decentralized fed-
erated learning with gradient tracking over time-varying directed networks, 2024. arXiv:
2409.17189 [math.OC]. [Online]. Available: https://arxiv.org/abs/2409.
17189.

[92] Y. Liu, Y. Shi, Q. Li, B. Wu, X. Wang, and L. Shen, “Decentralized directed collabora-
tion for personalized federated learning”, in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2024, pp. 23 168–23 178.

[93] Z. Song, W. Li, K. Jin, L. Shi, M. Yan, W. Yin, and K. Yuan, “Communication-efficient
topologies for decentralized learning with O(1) consensus rate”, in Advances in Neural
Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K.
Cho, and A. Oh, Eds., vol. 35, Curran Associates, Inc., 2022, pp. 1073–1085.

88

https://arxiv.org/abs/1611.09726
https://doi.org/10.1109/TCNS.2023.3338236
https://doi.org/10.1109/TAC.2014.2364096
https://doi.org/10.1109/TAC.2014.2364096
https://doi.org/10.1109/TCNS.2015.2505149
https://doi.org/10.1109/TAC.2017.2750103
https://doi.org/10.1109/TAC.2023.3275927
https://doi.org/10.1109/TAC.2023.3275927
https://doi.org/10.1109/ACC.2016.7526803
https://arxiv.org/abs/2409.17189
https://arxiv.org/abs/2409.17189
https://arxiv.org/abs/2409.17189

[94] S. Wang and M. Ji, “A unified analysis of federated learning with arbitrary client partic-
ipation”, in Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35, Curran Associates, Inc., 2022,
pp. 19 124–19 137.

[95] D. Jhunjhunwala, P. Sharma, A. Nagarkatti, and G. Joshi, “Fedvarp: tackling the vari-
ance due to partial client participation in federated learning”, in Proceedings of the
Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, J. Cussens and K. Zhang,
Eds., ser. Proceedings of Machine Learning Research, vol. 180, PMLR, 2022, pp. 906–
916.

[96] B. Li, M. N. Schmidt, T. S. Alstrøm, and S. U. Stich, “On the effectiveness of partial
variance reduction in federated learning with heterogeneous data”, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023,
pp. 3964–3973.

[97] T. Qin, J. Yevale, and S. R. Etesami, “Communication-efficient local sgd for over-parametrized
models with partial participation”, in 2023 62nd IEEE Conference on Decision and Con-
trol (CDC), 2023, pp. 2098–2103. DOI: 10.1109/CDC49753.2023.10383908.

[98] Y. J. Cho, P. Sharma, G. Joshi, Z. Xu, S. Kale, and T. Zhang, “On the convergence of
federated averaging with cyclic client participation”, in Proceedings of the 40th Interna-
tional Conference on Machine Learning, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S.
Sabato, and J. Scarlett, Eds., ser. Proceedings of Machine Learning Research, vol. 202,
PMLR, 2023, pp. 5677–5721.

[99] M. Even, H. Hendrikx, and L. Massoulié, “Asynchronous speedup in decentralized opti-
mization”, in Workshop on Federated Learning: Recent Advances and New Challenges (in
Conjunction with NeurIPS 2022), 2022.

[100] M. G. Rabbat and K. I. Tsianos, “Asynchronous decentralized optimization in heteroge-
neous systems”, in 53rd IEEE Conference on Decision and Control, 2014, pp. 1125–1130.
DOI: 10.1109/CDC.2014.7039532.

[101] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed dual averaging for
convex optimization”, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC),
2012, pp. 5453–5458. DOI: 10.1109/CDC.2012.6426375.

[102] H. Taheri, A. Mokhtari, H. Hassani, and R. Pedarsani, “Quantized decentralized stochas-
tic learning over directed graphs”, in Proceedings of the 37th International Conference
on Machine Learning, H. D. III and A. Singh, Eds., ser. Proceedings of Machine Learning
Research, vol. 119, PMLR, 2020, pp. 9324–9333.

[103] M. I. Qureshi, R. Xin, S. Kar, and U. A. Khan, “Push-saga: a decentralized stochastic
algorithm with variance reduction over directed graphs”, IEEE Control Systems Letters,
vol. 6, pp. 1202–1207, 2022. DOI: 10.1109/LCSYS.2021.3090652.

[104] M. T. Toghani, S. Lee, and C. A. Uribe, “Pars-push: personalized, asynchronous and
robust decentralized optimization”, IEEE Control Systems Letters, vol. 7, pp. 361–366,
2023. DOI: 10.1109/LCSYS.2022.3189317.

BIBLIOGRAPHY 89

https://doi.org/10.1109/CDC49753.2023.10383908
https://doi.org/10.1109/CDC.2014.7039532
https://doi.org/10.1109/CDC.2012.6426375
https://doi.org/10.1109/LCSYS.2021.3090652
https://doi.org/10.1109/LCSYS.2022.3189317

[105] M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic gradient push for dis-
tributed deep learning”, in Proceedings of the 36th International Conference on Machine
Learning, K. Chaudhuri and R. Salakhutdinov, Eds., ser. Proceedings of Machine Learn-
ing Research, vol. 97, PMLR, 2019, pp. 344–353.

[106] M. S. Assran and M. G. Rabbat, “Asynchronous gradient push”, IEEE Transactions on
Automatic Control, vol. 66, no. 1, pp. 168–183, 2021. DOI: 10.1109/TAC.2020.
2981035.

[107] A. Nedić and A. Olshevsky, “Stochastic gradient-push for strongly convex functions on
time-varying directed graphs”, IEEE Transactions on Automatic Control, vol. 61, no. 12,
pp. 3936–3947, 2016. DOI: 10.1109/TAC.2016.2529285.

[108] Y.-G. Hsieh, Y. Laguel, F. Iutzeler, and J. Malick, “Push–pull with device sampling”,
IEEE Transactions on Automatic Control, vol. 68, no. 12, pp. 7179–7194, 2023. DOI:
10.1109/TAC.2023.3250339.

[109] X. Mao, K. Yuan, Y. Hu, Y. Gu, A. H. Sayed, and W. Yin, “Walkman: a communication-
efficient random-walk algorithm for decentralized optimization”, IEEE Transactions on
Signal Processing, vol. 68, pp. 2513–2528, 2020. DOI: 10.1109/TSP.2020.2983167.

[110] G. Ayache and S. El Rouayheb, “Random walk gradient descent for decentralized learn-
ing on graphs”, in 2019 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), 2019, pp. 926–931. DOI: 10.1109/IPDPSW.2019.00157.

[111] H. Hendrikx, “A principled framework for the design and analysis of token algorithms”,
in Proceedings of The 26th International Conference on Artificial Intelligence and Statistics,
F. Ruiz, J. Dy, and J.-W. van de Meent, Eds., ser. Proceedings of Machine Learning
Research, vol. 206, PMLR, 2023, pp. 470–489.

[112] A. Nedić, “Distributed gradient methods for convex machine learning problems in net-
works: distributed optimization”, IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 92–
101, 2020. DOI: 10.1109/MSP.2020.2975210.

[113] L. Giaretta and v. Girdzijauskas, “Gossip learning: off the beaten path”, in 2019 IEEE
International Conference on Big Data (Big Data), 2019, pp. 1117–1124. DOI: 10.1109/
BigData47090.2019.9006216.

[114] P. Gholami and H. Seferoglu, “Digest: fast and communication efficient decentralized
learning with local updates”, IEEE Transactions on Machine Learning in Communications
and Networking, pp. 1–1, 2024. DOI: 10.1109/TMLCN.2024.3354236.

[115] A. Nabli and E. Oyallon, “DADAO: decoupled accelerated decentralized asynchronous
optimization”, in International Conference on Machine Learning, PMLR, 2023, pp. 25 604–
25 626.

[116] A. Nabli, E. Belilovsky, and E. Oyallon, “A2CiD2: accelerating asynchronous commu-
nication in decentralized deep learning”, in Advances in Neural Information Processing
Systems, A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds.,
vol. 36, Curran Associates, Inc., 2023, pp. 47 451–47 474.

90

https://doi.org/10.1109/TAC.2020.2981035
https://doi.org/10.1109/TAC.2020.2981035
https://doi.org/10.1109/TAC.2016.2529285
https://doi.org/10.1109/TAC.2023.3250339
https://doi.org/10.1109/TSP.2020.2983167
https://doi.org/10.1109/IPDPSW.2019.00157
https://doi.org/10.1109/MSP.2020.2975210
https://doi.org/10.1109/BigData47090.2019.9006216
https://doi.org/10.1109/BigData47090.2019.9006216
https://doi.org/10.1109/TMLCN.2024.3354236

[117] E. Belilovsky, M. Eickenberg, and E. Oyallon, “Decoupled greedy learning of CNNs”,
in Proceedings of the 37th International Conference on Machine Learning, H. D. III and
A. Singh, Eds., ser. Proceedings of Machine Learning Research, vol. 119, PMLR, 2020,
pp. 736–745.

[118] J. Postel, Rfc0793: transmission control protocol, 1981.

[119] J. F. C. Kingman, Poisson processes. Clarendon Press, 1992, vol. 3.

[120] A. Hashemi, A. Acharya, R. Das, H. Vikalo, S. Sanghavi, and I. Dhillon, On the benefits
of multiple gossip steps in communication-constrained decentralized optimization, 2020.
arXiv: 2011.10643 [cs.LG].

[121] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: extending mnist to hand-
written letters”, in 2017 International Joint Conference on Neural Networks (IJCNN),
2017, pp. 2921–2926. DOI: 10.1109/IJCNN.2017.7966217.

[122] R. Cattral and F. Oppacher, Poker Hand, UCI Machine Learning Repository, DOI: https://doi.org/10.24432/C5KW38,
2002.

[123] M. Salehi and E. Hossain, “Federated learning in unreliable and resource-constrained
cellular wireless networks”, IEEE Transactions on Communications, vol. 69, no. 8, pp. 5136–
5151, 2021. DOI: 10.1109/TCOMM.2021.3081746.

[124] H. Xie, M. Xia, P. Wu, S. Wang, and K. Huang, “Decentralized federated learning with
asynchronous parameter sharing for large-scale iot networks”, IEEE Internet of Things
Journal, pp. 1–1, 2024. DOI: 10.1109/JIOT.2024.3354869.

[125] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A survey on federated learning
for resource-constrained iot devices”, IEEE Internet of Things Journal, vol. 9, no. 1,
pp. 1–24, 2021.

[126] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting gradients - how easy
is it to break privacy in federated learning?”, Advances in Neural Information Processing
Systems, vol. 33, pp. 16 937–16 947, 2020.

[127] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and communication-
efficient federated learning from non-iid data”, IEEE transactions on neural networks
and learning systems, vol. 31, no. 9, pp. 3400–3413, 2019.

[128] S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for wireless communi-
cations: motivation, opportunities, and challenges”, IEEE Communications Magazine,
vol. 58, no. 6, pp. 46–51, 2020.

[129] O. Marfoq, G. Neglia, R. Vidal, and L. Kameni, “Personalized federated learning through
local memorization”, in Proceedings of the 39th International Conference on Machine
Learning, K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, Eds.,
ser. Proceedings of Machine Learning Research, vol. 162, PMLR, 2022, pp. 15 070–
15 092.

[130] Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei, and Y. Zhang, “Personalized cross-silo
federated learning on non-iid data”, in Proceedings of the AAAI conference on artificial
intelligence, vol. 35, 2021, pp. 7865–7873.

BIBLIOGRAPHY 91

https://arxiv.org/abs/2011.10643
https://doi.org/10.1109/IJCNN.2017.7966217
https://doi.org/10.1109/TCOMM.2021.3081746
https://doi.org/10.1109/JIOT.2024.3354869

[131] A. Fallah, A. Mokhtari, and A. Ozdaglar, Personalized federated learning: a meta-learning
approach, 2020. arXiv: 2002.07948 [cs.LG].

[132] S. Wu, T. Li, Z. Charles, Y. Xiao, K. Liu, Z. Xu, and V. Smith, “Motley: benchmarking het-
erogeneity and personalization in federated learning”, in Workshop on Federated Learn-
ing: Recent Advances and New Challenges (in Conjunction with NeurIPS 2022), 2022.

[133] P. Vanhaesebrouck, A. Bellet, and M. Tommasi, “Decentralized collaborative learning
of personalized models over networks”, in Artificial Intelligence and Statistics, PMLR,
2017, pp. 509–517.

[134] G. Ye, T. Chen, Y. Li, L. Cui, Q. V. H. Nguyen, and H. Yin, “Heterogeneous collaborative
learning for personalized healthcare analytics via messenger distillation”, IEEE Journal
of Biomedical and Health Informatics, vol. 27, no. 11, pp. 5249–5259, 2023. DOI: 10.
1109/JBHI.2023.3247463.

[135] S. Li, T. Zhou, X. Tian, and D. Tao, “Learning to collaborate in decentralized learning
of personalized models”, in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2022, pp. 9766–9775.

[136] E. Borodich, A. Beznosikov, A. Sadiev, V. Sushko, N. Savelyev, M. Takáč, and A. Gas-
nikov, Decentralized personalized federated learning for min-max problems, 2021. arXiv:
2106.07289 [cs.LG].

[137] A. Sadiev, E. Borodich, A. Beznosikov, D. Dvinskikh, S. Chezhegov, R. Tappenden, M.
Takáč, and A. Gasnikov, “Decentralized personalized federated learning: lower bounds
and optimal algorithm for all personalization modes”, EURO Journal on Computational
Optimization, vol. 10, p. 100 041, 2022.

[138] A. Bellet, R. Guerraoui, M. Taziki, and M. Tommasi, “Personalized and private peer-to-
peer machine learning”, in International Conference on Artificial Intelligence and Statis-
tics, PMLR, 2018, pp. 473–481.

[139] O. Marfoq, G. Neglia, A. Bellet, L. Kameni, and R. Vidal, “Federated multi-task learning
under a mixture of distributions”, in Advances in Neural Information Processing Systems,
M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34,
Curran Associates, Inc., 2021, pp. 15 434–15 447.

[140] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Communication-efficient on-
device machine learning: federated distillation and augmentation under non-iid private
data”, in Workshop on Machine Learning on the Phone and other Consumer Devices (in
Conjunction with NeurIPS 2018), 2018.

[141] G. Hinton, O. Vinyals, and J. Dean, Distilling the knowledge in a neural network, 2015.
arXiv: 1503.02531 [stat.ML].

[142] R. Anil, G. Pereyra, A. Passos, R. Ormandi, G. E. Dahl, and G. E. Hinton, Large scale dis-
tributed neural network training through online distillation, 2020. arXiv: 1804.03235
[cs.LG].

[143] A. Nichol, J. Achiam, and J. Schulman, On first-order meta-learning algorithms, 2018.
arXiv: 1803.02999 [cs.LG].

[144] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni, Federated learning
with matched averaging, 2020. arXiv: 2002.06440 [cs.LG].

92

https://arxiv.org/abs/2002.07948
https://doi.org/10.1109/JBHI.2023.3247463
https://doi.org/10.1109/JBHI.2023.3247463
https://arxiv.org/abs/2106.07289
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1804.03235
https://arxiv.org/abs/1804.03235
https://arxiv.org/abs/1803.02999
https://arxiv.org/abs/2002.06440

[145] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg on
non-iid data”, in International Conference on Learning Representations, 2020.

[146] B. Le Bars, A. Bellet, M. Tommasi, E. Lavoie, and A. Kermarrec, “Refined convergence
and topology learning for decentralized optimization with heterogeneous data”, in
Workshop on Federated Learning: Recent Advances and New Challenges (in Conjunction
with NeurIPS 2022), 2022.

[147] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-task learn-
ing”, in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S.
Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30, Curran
Associates, Inc., 2017.

[148] M. Karnaugh, “The map method for synthesis of combinational logic circuits”, Trans-
actions of the American Institute of Electrical Engineers, Part I: Communication and Elec-
tronics, vol. 72, no. 5, pp. 593–599, 1953. DOI: 10.1109/TCE.1953.6371932.

[149] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database”, ATT Labs, vol. 2,
2010. [Online]. Available: http://yann.lecun.com/exdb/mnist.

BIBLIOGRAPHY 93

https://doi.org/10.1109/TCE.1953.6371932
http://yann.lecun.com/exdb/mnist

	List of Figures
	List of Algorithms
	List of Tables
	Nomenclature
	Abstract
	Résumé [français]
	Introduction
	Background
	Justification and Research Questions
	Thesis Outline

	Asynchronous Learning over Unreliable Networks
	Introduction
	System Model
	Asynchronous Decentralized SGD
	Convergence Analysis
	Numerical Results
	Conclusion

	Decentralized Asynchronous Learning over Continuous Row-stochastic Networks
	Introduction
	System Model
	DRACO: Proposed Decentralized Asynchronous Learning
	Convergence Analysis
	Experimental Results
	Concluding Remarks

	Personalization in Decentralized Learning Networks
	Introduction
	Preliminaries
	Problem Setting
	Personalized Decentralized Learning with KD
	Experiments
	Concluding remarks

	Conclusion
	Summary of Contributions
	Future Directions

	Appendices
	Appendix of Chapter 2
	Proof of Theorem 2.1

	Appendix of Chapter 3
	Proofs
	Additional experiment results
	Pseudo algorithm of DRACO

	Bibliography

