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Département de Communications Mobiles
Institut Eurécom
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ABSTRACT

The optimal causal (prediction based) decorrelating scheme is ap-
plied to the frameworks of transform coding, coding of vectorial
signals (multichannel audio), and vectorial DPCM coding. We
analyze the effects of backward adaptation uppon the prediction
operations and compare the expressions of the coding gains under
infinite and high resolution assumption. We generalize the MIMO
(Multiple Input/Multiple Output) prediction by organizing differ-
ently the samples in the vectorial signals, which corresponds to
different degrees of non-causality of the intersignals predictors.
An extreme case is the triangular MIMO prediction, for which
”causality” becomes processing the channel in a certain order. The
high resolution coding gain suggests an optimal strategy in the
choice of the interband predictors. For two-dimensionnal vecto-
rial sources (such as stereo signals) we show the superiority in
terms of coding gain of the triangular MIMO predictor over the
classical MIMO prediction. A theorem is established which con-
cerns the optimal ordering of the signals for the triangular MIMO
predictor. When finite prediction orders are used to perform the
intersignal decorrelation, we show that the optimal positioning of
a finite number of taps is fairly straightforward.1

1. INTRODUCTION

In a recent work, a new coding technique has been introduced
([1, 4]). A natural and usefull application was found in the coding
of multichannel audio signals. In this scheme, an optimal causal
transform is applied to the data before the quantization stage. This
scheme is optimal in the sense that it totally decorrelates the data.
The performance of this transform is evaluated in terms of coding
gain and described in the following frameworks.
In the transform coding case, the optimal causal transform is a
lower triangular and unit diagonal matrix, which corresponds to a
(Lower-Diagonal-Upper) factorization of the autocorrelation ma-
trix of the signal. The rows of this matrix are optimal prediction
filters for the corresponding component of the vector to be coded.
The transformed coefficients are optimal prediction errors. The
optimal causal transform is shown to have the same coding gain as
the best unitary transform, the Karhunen-Loeve Transform. Such
a causal transform coding scheme was independently described in
[5]. However, as in classical ADPCM, the transformation may be

1Eurécom’s research is partially supported by its industrial partners:
Ascom, Swisscom, France T´elécom, La Fondation CEGETEL, Bouygues
Télécom, Thales, ST Microelectronics, Motorola, Hitachi Europe and
Texas Instruments.

backward adapted, that is computed on the basis of the previously
quantized samples. And as in ADPCM, we show that a quanti-
zation noise feedback occurs. Under high resolution assumption
(white independent quantization noise), close form expressions for
the coding gains are presented. The optimal causal transform cod-
ing under infinite and high resolution assumptions is described in
the second section.
In the third section, we apply the optimal causal transform to the
coding of vectorial signals (for example subband, stereo or mul-
tichannel audio signals). By considering vectors of infinite size,
one can get frequential expressions for the coding gains. In this
case, the optimal causal decorrelating scheme can be described by
means of a prediction matrix whose entries are optimal prediction
filters. The diagonal filters are scalar intrasignal prediction filters.
The off-diagonal predictors are Wiener filters performing the in-
tersignal decorrelation. We show in this paper that this decorre-
lating procedure leads to the notion of generalized MIMO predic-
tion, in which a certain degree of non causality may be allowed
for the off-diagonal prediction filters. In the case of non causal
intersignal filters, the optimal MIMO predictor is still lower trian-
gular, and hence ”causal”, in a wider sense. The notion of causality
is generalized : the causality between channels becomes process-
ing the channels in a certainorder. Some signals may be coded
using the coded/decoded versions of the ”previous” signals. This
scheme represents a generalization to the vectorial case of the clas-
sical (scalar) ADPCM coding technique.
An interesting result in [1] is that if the quantization noise feedback
is taken into account, the efficiency of the interband decorrelation
depends on the order in which the decorrelation between the sig-
nals is processed. We present in the fourth section of this paper
a new theorem concerning the optimal ordering of the signals for
a triangular ”causal” MIMO predictor, namely the ordering which
minimizes the quantization noise feedback.
The last part of this paper deals with optimal triangular MIMO pre-
diction with finite prediction orders. Despite the non causality in
the classical sense of this approach, the optimal triangular MIMO
prediction is well suited for frame based audio coding, which al-
lows a certain degree of non causality in the coding procedure.
When FIR filters are used to perform the intersignal decorrelation,
we show that the optimal positioning of a finite number of taps is
fairly straightforward.
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2. OPTIMAL CAUSAL TRANSFORM CODING

Let us consider the generalization of the classical DPCM coding
scheme applied to a vectorX = [x1:::xN ]T , see Figure1. A

Figure 1: Vectorial DPCM coding scheme.

matricial transformationL is applied to the vectorX : Y = LX =
X�LX, whereLX is the reference vector. The difference vector
Y = [y1:::yN ]T is then quantized using a setQ of quantizersQi.
The outputXq is Y q + LX. Note that the quantization error~X
equals the reconstruction error~Y :

~X = X�Xq = X�(Y q+LX) = X�LX�Y q = Y�Y q = ~Y ;
(1)

as in the unitary case. The constraint imposed on the transforma-
tion is here the causality, which imposes a lower triangular struc-
ture. The unitary aspect of the transform appears in the unicity of
the main diagonal (L = I � L is hence strictly lower triangular
and represents the degrees of freedom of the transformation). The
notion of causality could be generalized by working with the per-
muted components ofX andY , which givesPY = L P X or
Y = (PT LP)X, whereP is a permutation matrix. On one hand,
the coding gain for a transformationL is

GTC(L) =
Ek ~Xk2(I)

Ek ~Xk2(L)
=

Ek ~Xk2(I)

Ek ~Y k2(L)
; (2)

whereI is the identity matrix (which corresponds to the absence
of transformation), and the notationk ~Xk2(T ) denotes the variance
of the quantization error on the vectorial signalX, obtained for
a transformationT . The second equality in (2) follows from the
equality (1), as in the unitary case. On the other hand, the SNR is
defined for a transformationL as

SNR(L) =
EkXk2

Ek ~Xk2(L)
=

EkXk2

Ek ~Y k2(L)
=

EkXk2

EkY k2(L)

EkY k2(L)

Ek ~Y k2(L)
(3)

where the first factor represents the gain of the transformation. We
now should determine the optimal transformationL and bit as-
signment which maximizes the coding gain. For a given bit as-
signment, we should find

L = argmax
L

GCT (L) = argmax
L

SNR(L) = argmin
L

Ek ~Xk2(L)

(4)

2.1. Ideal case

In a first step, we neglect the quantization error on the reference
signal, and we suppose an optimal bit assignment. A quantizer
Qi introduces a white noise~yi on the componentyi, of variance
�2

~yi
= c 2�2Ri�2

yi
, whereRi is the number of bits assigned to

the quantizerQi, andc is a constant depending on the probability
density function of the signal to be quantized (one should assume
a Gaussian distribution, linear transform invariant).
For a givenL, the optimal bit assignment has to minimizeEk ~Y k2(L) =PN

i=1 �
2
yi
c2�2Ri under the constraint

PN
i=1Ri = NR, whereR

is the average number of bits assigned to theN quantizersQi. Us-
ing well-known techniques [6], and abstracting the fact that theRi

are integer and non negative, one shows that

�
2
~yi = c 2�2Ri�2

yi
= c 2�2R

 
NY
i=1

�
2
yi

! 1

N

(5)

Note here that the optimal quantization errors variances�2
~yi

are
equal (independentofi).
Optimization ofL : we should considerminL(�

N
i=1�

2
yi
)
1

N , where
the�2

yi
depend on the rowsLi of L : �2

yi
= �2

yi
(Li:). The prob-

lem is hence separable, and minimizing
�QN

i=1 �
2
yi

� 1

N
with re-

spect toL is the same as minimizing�2
yi

with respect toLi;1:i�1.
The componentsyi appear clearly as the prediction errors ofxi
with respect to the past values ofX, theX1:i�1, and the optimal
coefficients�Li;1:i�1 are the optimal prediction coefficients. In
other words,L is such that

LRXXL
T = RY Y = D = diagf�2

y1
; :::�

2
yN
g; (6)

wherediagf:::g represents a diagonal matrix whose elements are
�2
yi

. Since each prediction erroryi is orthogonal to the subspaces
generated by theX1:i�1, theyi are orthogonal, andD is diagonal.
It follows that

RXX = L
�1
RY Y L

�T
; (7)

which represents the factorisation LDU ofRXX .

L =

2
66664

1

?
. . . 0

...
. . .

. . .
? � � � ? 1

3
77775 = I � L

where the? represent the prediction coefficients. Refering to (2),
the coding gain can be written as

G
(0)
TC(L) =

�
det [diag(RXX)]

det [diag(LRXXLT )]

� 1

N

(8)

wherediag(R) denotes here the diagonal matrix which corresponds
to the diagonal of the matrixR.

2.2. Quantization effects on the coding gain

Let us now inspect the case where the tranformation is not based
on the original signal but on its quantized version. In this case, the
output vector becomes

Y = X � LX
q = X � L(X � ~X) = LX + L ~Y : (9)

Y does now not only represent the prediction errorLX of X, but
also the quantization error~Y filtered by the optimal predictorL.
In this case again, the optimal bit assignment has to minimize the
sum of the�2

~yi
. It follows that the variances of the quantization

noises are�2
~yi

= c2�2R(
QN

i=1 �
2
yi
)
1

N = �2
~y1

, independentofi.
The autocorrelation matrix of the noise is henceR~Y ~Y = �2

~y1
I.

To optimizeL, one should considerminL (det [diag(RY Y )]) ;

with this timeRY Y = LRXXL
T + �2

~y1
LL

T
. One can show

that the resolution of the normal equations leads to the following
expression of the coding gainG(1)

CT (L), taking into account the
first order of the perturbations
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G
(1)
TC(L) t

0
@ det [diag(RXX)]

det
h
diag(LRXXLT + �2

ey1LL
T
)
i
1
A

1

N

(10)

withLRXXL
T = D and�2

ey1 = c 2�2R(detD)
1

N whereD is the
diagonal matrix of the non perturbated prediction error variances,
andL andL are also non perturbated quantities. This expression
is established under the high resolution assumption (�2

ey1I is small
in comparison withRXX ). On can further show that the coding
gain may also be written as

G
(1)
TC(L) t G

(0)
TC(L)

 
1�

�2
ey1
N

�
�N
i=1

1

�i
� �N

i=1
1

�2
yi

�!

(11)
wheref�ig denote the eigenvalues ofRXX .

3. GENERALIZED MIMO PREDICTION

3.1. Ideal case

Let us now consider the case where X is made of a succession
of samples of a vectorial signalxk = [x1;k � � �xM;k]

T . Some
particular cases of scalar signalsxi are subband signals, stereo or
multichannel audio signals.Xk = [xT0 xT1 � � �x

T
k ]
T , and one can

also writeYk = [yT
0
yT
1
� � � yT

k
]T with y

k
= [y1;k � � � yM;k]

T .
For these vectorial signals , it is interesting to consider the limit
case where the dimensionk goes to infinity, and where the signal
xk is stationary. In this case, the optimal transformL will lead
to a signaly

k
, asymptotically stationary too, sinceL will become

block Toeplitz (with blocks of sizeM �M ). We obtain in this
case

G
(0)
TC(L) = lim

k!1

�
det [diag(RXkXk)]

det [diag(LRXkXkL
T )]

� 1

Mk

(12)

=

 
det
�
diag(Rxkxk

)
�

det[diag(Ry
k
y
k
)]

! 1

M

=

 QM
i=1 �

2
xiQM

i=1 �
2
yi

! 1

M

(13)

whereyi;k is the optimal prediction error of infinite order ofxi;k,
based on

�
x�1:k�1; x1:i�1;k

	
. One will continue to denote byLi

(now of infinite dimension) the vector of the corresponding predic-
tion coefficients.
There exists a frequential expression for

QM
i=1 �

2
yi

. Writing the
prediction operation in the frequency domain, and using the fact
that yk is a totally decorrelated signal (its power spectral density
can be written asSyy(f) = Ryy = diagf�2

y1 ; : : : ; �
2
yM

g), one
can show that

MY
i=1

�
2
yi

= e

R 1

2

�
1

2

ln[det(Sxx(f))] df

(14)

The prediction operation can also be described by optimal MIMO
predictorL(z) with filters of infinite length. Let us consider two
extreme cases of differentL(z), for M = 2. In the classical
MIMO Prediction [2] the predictorL(z) is

L(z) =

�
L11(z) L12(z)
L21(z) L22(z)

�
with L0 =

�
1 0
l21 1

�
;

in order to keep the structure (temporally) causal. Another causal
(in a wider sense) transform [3] is

T (z) =

�
1 0
0 T22(z)

��
1 0

W21(z) 1

��
T11(z) 0

0 1

�

=

�
T11(z) 0

T22(z)W21(z)T11(z) T22(z)

�
(15)

whereTii(z) are predictors for scalar signals, andW21(z) is a
Wiener filter (non constrained to be causal) estimatingx2;k from
the whitened versiony1;k of x1;k. The loss in degrees of freedom
occuring with the loss of one interband predictor (L12 in the classi-
cal MIMO transformation) is balanced by the non causality of the
remaining unique interband predictorW21. Under infinite resolu-
tion, the product of the variances of the subband signal is constant,
no matter which causal transform we use. The coding gainG

(0)
TC

is invariant by permutation [4]. Each permutation leads to another
causal decorrelation of the components of one vector. For a sta-
tionary signal, this means that there exists more that one way to
decorrelate the scalar signals which compose this signal.
Hence, a generalized MIMO prediction in the case ofM scalar
signals can be defined as a classical MIMO prediction onx

0

k =
[x1;k x2;k+d1 :::xM;k+d1+:::+dM�1

]T , wheredi are delays repre-
senting the degree of non-causality of the interband predictors. The
two previous examples present (forM = 2) two extreme cases on
an infinity of variantes, which are parametrized by the degrees of
non causality (in the classical sense) of the interband predictors.
The triangular ”causal” MIMO predictor is an extreme case of
di ! 1; i = 1; :::;M � 1. The ”causality” of the triangular
predictor matrix becomes processing the channel in a certainor-
der, that is, the signals get decorrelated in this order. Note that the
notion of causality remains unchanged for the diagonal predictors.

3.2. Quantization effects on the coding gain

If we now consider the effects of the quantization in the closed
loop, the gainG(1)

CT (L) can be expressed as

G
(1)
TC(L) t lim

k!1

 
det[diag(RXkXk)]

det[diag(LRXkXkL
T + �2

ey1LL
T
)]

! 1

Mk

(16)
which leads to

G
(1)
TC(L) t G

(0)
TC(L)

 
1� �

2
ey1

1

M

MX
i=1

kLik
2 � 1

�2
yi

!
: (17)

As in the ideal case, one can derive a frequential expression for
G

(1)
CT (L)

G
(1)
TC t G

(0)
TC

"
1 +

�2
ey1
M

 
�

Z 1

2

� 1

2

tr
�
S
�1
xx (f)

�
df +

MX
i=1

1

�2
yi

!#

(18)

where, comparing with equation (17), the term
R 1

2

� 1

2

tr
�
S�1xx (f)

�
df

corresponds to
PM

i=1
kLik

2

�2yi
. For filters of infinite length, the back-

ward adapted triangular ”causal” MIMO predictor has a direct ap-
plication to ADPCM coding : the intersignal prediction of the
”next” signal can be based on the coded/decoded version of the
”previous” signal.
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4. OPTIMAL ORDERING OF THE SUBSIGNALS FOR
VECTORIAL DPCM WITH TRIANGULAR MIMO

PREDICTION

ComparingG(1)
TC above with the infinite resolution case (where

the coding gain is independent of the delaysdi), the different vari-
ances produced by the different decorrelation approaches induce
now different sums. Hence, the coding gainG(1)

TC depends on a
carefull choice of the decorrelation procedure. In the caseM = 2,
maximizing the coding entails making the variances as different as
possible. Thus, the subsignal of greater variance should be pro-
cessed first, and all the degrees of freedom of the interband decor-
relator should be used to decrease the variance of the subsignal of
lower variance. The triangular MIMO predictor is in this case su-
perior to the classical MIMO predictor, sinceW12 defined above
is the most efficient interband predictor.
ForM > 2, the following theorem holds :

Theorem : Optimal ordering of the subsignals for triangu-
lar MIMO prediction . The optimal ordering of the subsignals
in a stationary vectorial signal for maximizing the high-resolution
coding gainG(1)

TC of vectorial DPCM with triangular MIMO pre-
diction is obtained by processing the signals in order of decreasing
variance.

To show the theorem, consider a recursive argument. First of
all, the theorem is clearly true for the case of two channels. Now
considern� 1 channels that we have ordered in order of decreas-
ing variance. When we add anth channel, the question is in which
position it should be put w.r.t. the other channels. Assume in a
first scenario that we put the channel in a position such that alln
channels are in order of decreasing variance. Assume in a second
scenario that we insert thenth channel at another position. Then
we can evolve from the first to the second scenario by a sequence
of permutations of two consecutive channels. In one such permu-
tation operation, assume that the channels involved in the permu-
tation are in positionsi andi+ 1. Then the channels1; : : : ; i � 1
are unaffected in the triangular MIMO prediction approach. The
channelsi + 2; : : : ; n are also unaffected by the order in which
channelsi and i + 1 are put since in any case they get orthogo-
nalized w.r.t. the signals in those channels. So the only effect of
the permutation between channelsi andi+ 1 is on the prediction
error variances of those channelsi andi + 1. In other words we
are reduced to the two channel case, in which case we know that
we should put the channels in order of decreasing variance. So,
as we move from scenario one to scenario two by a succession of
permutations of two consecutive channels, we decrease the coding
gain in each permutation. Hence, the optimal ordering is in order
of decreasing variance.

5. OPTIMAL TRIANGULAR MIMO PREDICTION WITH
FINITE PREDICTION ORDERS

So far we have assumed that all filters involved are of infinite
length. In the classical MIMO linear prediction, a finite number of
prediction coefficients is typically used in a way that is a straight-
forward extension from the scalar case. Namely, the MIMO pre-
diction order is limited to a finite order, resulting in a desired num-
ber of prediction coefficients (from the point of view of complex-
ity or performance or both). In the triangular predictor case, it is
more straightforward to assign a finite number of coefficients in
an optimal fashion. The diagonal terms in the MIMO prediction

filter correspond to classical scalar predictors, so the number of
coefficients assigned will simply determine the prediction order as
usual. However, for the non-causal off-diagonal terms, the filters
are Wiener filters of unconstrained structure, except that we wish
to use a finite number of taps. The problem then becomes the op-
timal positioning of those taps. We shall assume that the diagonal
scalar predictors are of sufficient order for the whitened versions of
the signals to be considered as effectively white. In that case, the
design of the off-diagonal terms in a row of the MIMO prediction
filter corresponds to an issue of estimating a signalx on the basis
of uncorrelated variablesyi. Due to the uncorrelatedness of theyi,
the estimation in terms of theyi decouples and the contribution of
eachyi can be considered separately. In particular, the variance of
the estimation error becomes

R~x~x = Rxx �
X
i

(Rxyi)
2

Ryiyi

(19)

whereRxy = EX y is the correlation. So, those variablesyi

should be used for which the ratio
(Rxyi)

2

Ryiyi

is the largest. Within

a subset of theyi that are samples of a certain whitened signal,
Ryiyi is independent ofi due to stationarity and hence it suffices
to use those samplesyi for which jRxyi j is largest. So the optimal
positioning of a finite number of taps in the off-diagonal filters is
fairly straightforward.
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CORESA 2000, Poitiers, France, October 2000.

[5] Y.-P. Lin and S. M. Phoong, “Prediction-based Lower Tri-
angular Transform,” IEEE trans. on Sig. Proc., vol. 48, no.
7, July 2000.

[6] N.S. Jayant and P. Noll, Digital Coding of Waveforms, Sig-
nal Processing. Prentice Hall, 1984.

W2001-4 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics 2001


