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Abstract

The maturation of cloud computing and edge computing infrastructure provisioning and man-
agement has given rise to what is termed as Cloud Edge Computing Continuum (CECC). CECC
facilitates a seamless spectrum for applications’ deployment and migration between centralized
cloud infrastructures and decentralized edge infrastructure. This evolution has spurred new use
cases across industries, including Industrial Internet of Things (IIoT), autonomous vehicles, and
augmented reality, all of which benefit from this distributed architecture. These use cases de-
mand a combination of scalability and storage from massive data centers typical of traditional
cloud computing, as well as the low latency and high bandwidth offered by edge computing
infrastructures. The development and deployment of applications to fully leverage CECC are
made possible by several factors: advancements in application deployment technologies, pri-
marily virtualization and containerization; a shift in application architecture and development
methodology from monolithic to microservices architectures; and innovations in networking tech-
nologies such as 5G mobile networks, which provide larger bandwidth and reduced latency.
Efficiently orchestrating applications within the CECC framework, especially those comprised
of multiple microservices spread across the continuum, is essential for meeting performance re-
quirements and optimizing infrastructure resource utilization. This thesis proposes solutions
to enable zero-touch management of CECC. These solutions are categorized into three primary
aspects of automated monitoring: Monitoring and metric collection, which involves continuously
monitoring and collecting metrics related to both the running applications and the underlying
infrastructure, providing a comprehensive view of the managed CECC; utilizing collected met-
rics to gain insights into the functioning of applications and infrastructure, including profiling
both applications and infrastructure components; and making informed decisions regarding ap-
plication placement, migration, and resource scaling. These decisions are driven by algorithms
or machine learning models that generate actionable insights based on monitoring metrics and
profiling data. By addressing these aspects, the proposed solutions aim to automate the man-
agement of CECC applications, facilitating seamless orchestration and optimization of resources.
In the first contribution, we propose a novel monitoring system for multi-domain services. The
framework is technology agnostic as abstract the underlying technologies Specificities using
a unified structure for Key Performance Indicator (KPI). The monitoring system is scalable
and support high number of running services in parallel. To our best knowledge, it is the first
monitoring system to monitor end-to-end network slices including Radio Access Network (RAN),
Core Network (CN) and Cloud/Edge domain.
In the second contribution of this thesis, We present the results of our experimental study
aiming to detect if a tenant’s configuration allows running its service optimally. To this aim, we
run several experiments on a cloud-native platform, using different types of applications under
different resource configurations. The obtained results provide insights on how to detect and
correct performance degradation due to misconfiguration of the service resource.
Then, in our third contribution, we move towards the decision making part of a Cloud Edge
Computing Continuum Manager (CECCM). We propose a novel ZSM framework featuring a
fine-granular computing resource scaler in a cloud-native environment. The proposed scaler
algorithm uses AI/ML models to predict micro service performances. More specifically, we use
eXtreme Gradient Boosting (XGBoost) as ML algorithm to predict any violations related to the
latency performance of running applications; if a service degradation is detected, then a root-
cause analysis is conducted using an eXplainable Artificial Intelligence (XAI) module. Based on
the XAI output, the proposed framework scales only the needed resources (i.e., CPU or memory)
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to overcome the service degradation. The proposed framework and resource scheduler have been
implemented on top of a cloud-native platform. The results shows that the introduction of the
XAI allows the scheduler to achieve the same service quality as the default scheduler but with
lesser resources allocated to applications.
Finally, in the last contribution of the thesis, we propose an architecture of CECC Application
Orchestrator. The architecture leverages applications and infrastructures profiling to efficiently
manage the CECC applications. This profiling is done using the monitoring information, in-
cluding energy metrics and carbon intensity of infrastructures. We define a structural model
for the application profile, the goal of this model is to represent the current and requirements
of the application in terms of compute and network resources. The representation is structured
to be used by the CECCM to decide on the Life-Cycle Management (LCM) of applications in-
cluding placement, migration and resources reconfiguration. The decision of the CECCM aims
to minimize the carbon footprint and cost of the CECC deployment.

II



Résumé

La maturation de la provision et de la gestion des infrastructures de cloud computing et d’edge
computing a donné naissance à ce que l’on appelle le Cloud Edge Computing Continuum
(CECC). Le CECC facilite un spectre fluide pour le déploiement et la migration d’applica-
tions entre les infrastructures cloud centralisées et les infrastructures edge décentralisées. Cette
évolution a engendré de nouveaux cas d’utilisation dans divers secteurs, notamment l’Internet
Industriel des Objets (IIoT), les véhicules autonomes et la réalité augmentée, qui bénéficient
tous de cette architecture distribuée. Ces cas d’utilisation exigent une combinaison de scalabilité
et de stockage provenant des centres de données massifs typiques du cloud computing tradition-
nel, ainsi que de la faible latence et de la bande passante élevée offertes par les infrastructures
edge computing. Le développement et le déploiement d’applications pour exploiter pleinement
le CECC sont rendus possibles par plusieurs facteurs : les avancées dans les technologies de
déploiement d’applications, principalement la virtualisation et la conteneurisation ; un change-
ment dans l’architecture et la méthodologie de développement des applications, passant des
architectures monolithiques aux microservices ; et les innovations dans les technologies de réseau
telles que les réseaux mobiles 5G, qui offrent une bande passante plus grande et une latence
réduite.
Orchestrer efficacement des applications dans le cadre du CECC, en particulier celles composées
de plusieurs microservices répartis sur le continuum, est essentiel pour répondre aux exigences
de performance et optimiser l’utilisation des ressources d’infrastructure. Cette thèse propose des
solutions pour permettre la gestion automatisée du CECC. Ces solutions sont catégorisées en
trois aspects principaux de surveillance automatisée : la collecte de données de surveillance et de
métriques, qui implique la surveillance continue et la collecte de métriques liées aux applications
en cours d’exécution et à l’infrastructure sous-jacente, fournissant une vue complète du CECC
géré ; l’utilisation des métriques collectées pour comprendre le fonctionnement des applications et
de l’infrastructure, y compris le profilage des applications et des composants d’infrastructure ; et
la prise de décisions éclairées concernant le placement, la migration et l’adaptation des ressources
des applications. Ces décisions sont guidées par des algorithmes ou des modèles d’apprentissage
automatique qui génèrent des idées exploitables basés sur les métriques de surveillance et les
données de profilage. En abordant ces aspects, les solutions proposées visent à automatiser la
gestion des applications CECC, facilitant ainsi l’orchestration et l’optimisation transparentes
des ressources.
Dans la première contribution, nous proposons un système de supervision novateur pour les
services multi-domaines. Notre systeme est technologiquement agnostique car il abstrait les
spécificités des technologies sous-jacentes en utilisant une structure unifiée pour les Key Per-
formance Indicator (KPI). Le système de surveillance est évolutif et prend en charge un grand
nombre de services en cours d’exécution en parallèle. À notre connaissance, il s’agit du premier
système de surveillance à contrôler des tranches de réseau de bout en bout, y compris le Radio
Access Network (RAN), le Core Network (CN) et le domaine Cloud/Edge.
Dans la deuxième contribution de cette thèse, nous présentons les résultats de notre étude
expérimentale visant à détecter si la configuration d’un locataire permet d’exécuter son service
de manière optimale. À cette fin, nous avons mené plusieurs expériences sur une plateforme cloud-
native, en utilisant différents types d’applications avec différentes configurations de ressources.
Les résultats obtenus fournissent des informations sur la manière de détecter et de corriger la
dégradation des performances due à une mauvaise configuration des ressources du service.
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Ensuite, dans notre troisième contribution, nous nous tournons vers la prise de décision d’un
Cloud Edge Computing Continuum Manager (CECCM). Nous proposons un nouveau cadre ZSM
doté d’un ajusteur de ressources informatiques à granularité fine dans un environnement cloud-
native. L’algorithme de l’ajusteur proposé utilise des modèles d’IA/ML pour prédire les perfor-
mances des microservices. Plus précisément, nous utilisons le Boosting Extrême par Gradient
(eXtreme Gradient Boosting ou XGBoost) comme algorithme de ML pour prédire toute violation
liée aux performances de latence des applications en cours d’exécution ; si une dégradation du ser-
vice est détectée, une analyse des causes profondes est effectuée à l’aide d’un module eXplainable
Artificial Intelligence (XAI). Sur la base de la sortie XAI, l’approche proposée ajuste unique-
ment les ressources nécessaires (c’est-à-dire CPU ou mémoire) pour surmonter la dégradation du
service. Cette approche et l’ordonnanceur de ressources proposés ont été implémentés sur une
plateforme cloud-native. Les résultats montrent que l’introduction du XAI permet à l’ordonnan-
ceur d’atteindre la même qualité de service que l’ordonnanceur par défaut mais avec moins de
ressources allouées aux applications.
Enfin, dans la dernière contribution de la thèse, nous proposons une architecture de l’Orches-
tration d’Applications CECC. L’architecture exploite le profilage des applications et des infra-
structures pour gérer efficacement les applications CECC. Ce profilage est réalisé à l’aide des
informations de surveillance, y compris les métriques énergétiques et l’intensité carbone des in-
frastructures. Nous définissons un modèle structurel pour le profil de l’application ; l’objectif de
ce modèle est de représenter les capacités actuelles et les exigences de l’application en termes
de ressources de calcul et de réseau. La représentation est structurée pour être utilisée par le
CECCM afin de décider de la gestion du cycle de vie des applications, y compris le placement,
la migration et la reconfiguration des ressources. Les décisions du CECCM visent à minimiser
l’empreinte carbone et le coût du déploiement CECC.
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Chapter 1

General Introduction

1.1 Context

Cloud Edge Computing Continuum (CECC) have seen light thanks to the paradigm shift in
applications development and deployment, integrating the scalability and resource availability
of cloud computing with the real-time processing capabilities of edge computing. This contin-
uum is made possible due to the maturation of the cloud and edge computing provisioning and
management, providing a spectrum wherein workloads can seamlessly migrate between central-
ized cloud infrastructures and decentralized edge and far edge infrastructures or devices based
on factors such as compute resources requirements, latency, and bandwidth constraints. At one
end of this continuum lies traditional cloud computing, characterized by massive data centers
and centralized processing resources, offering resources scalability and storage capabilities. Con-
versely, at the opposite end, edge computing leverages local computing infrastructures composed
of small data centers or far-edge devices. Reducing latency and enhancing responsiveness for
time-sensitive applications. Additionally, edge and far edge devices may be mobile or volatile,
meaning that they are not available permanently due to either battery restrictions or mobility,
such as for drone-based far edge devices or single board computers powered by batteries.
The continuum between these extremes enables new architecture that takes advantage of the
dynamic distribution of computing tasks across cloud and edge nodes based on workload de-
mands and network conditions. This paradigm encourages the development of innovative appli-
cations spanning multiple domains, such as Internet of Things (IoT), autonomous systems, and
augmented reality. In this case, the seamless orchestration of resources across the cloud edge
continuum is crucial for meeting the performance requirements and enabling pervasive connec-
tivity for the deployed applications on the one hand and making efficient use of the underlying
infrastructure resources.

1.2 Motivation

A CECC infrastructure spans over multiple locations and domains, including public cloud, ded-
icated edge cloud and computing capable devices. Here, a Cloud Edge Computing Continuum
Manager (CECCM) is a key element to handle application’s Life-Cycle Management (LCM)
and manage the federated infrastructure resources. The CECCM should be self-managed and
self-configured to enable zero-touch management and configuration by making decisions based
on the collected monitoring data about the application behaviour and infrastructure resources
usage as well as the network status. These decisions should ensure the respect of application’s
requirements based on the available infrastructure capabilities. To achieve this end, the first
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building block of an CECCM is a monitoring system that offers visibility over the deployed
application’s behavior and infrastructure resources. Indeed, the monitoring system should cover
the entirety of the CECC infrastructure.
Then, to efficiently manage the applications, the CECCM should understand the applications’
behavior and requirements. We denote as an application profile the representation of the ap-
plication’s behavior, performance, resource usage, and dependencies within the deployment en-
vironment. By profiling cloud applications, the CECCM can optimize the placement of the
applications to improve their performance and optimize the infrastructure’s resource usage.
Profiling techniques may include monitoring system metrics and analyzing network traffic pat-
terns. While, Artificial Intelligence (AI) techniques can be used in order to predict the future
needs of the application in terms of compute resources and network requirements. Application’s
LCM procedures include mainly the initial placement, the resources scaling, and migration of
the applications. Since the CECC management system makes decisions based on the collected
metrics and data on the application behavior, it uses models based on Machine Learning (ML)
or mathematical optimization problems. It is important that the decisions of the system can be
trusted to ensure the respect of the Service Level Agreement (SLA) required by the applications.
Finally, each compute location of the CECC infrastructure is composed of nodes that consume
electricity and water to function as well as for cooling. Based on the sources of energy used by the
infrastructure nodes, the CECC infrastructure and the workloads running on top of it produce
a carbon footprint. Indeed, recently, more and more governments are taking action towards
reducing carbon emissions; for instance, the European Union aims to be climate-neutral by
2050; this objective is at the heart of The European Green Deal [1]. Communication technology
is no exception, as in 2021, an ACM technology brief [2] estimated that the Information and
Communication Technology (ICT) sector contributed between 1.8% and 3.9% of global carbon
emissions. This motivates the availability of green energy sources to supply the compute nodes,
producing the necessity for making carbon-aware decisions when managing the applications
deployment and the infrastructures that are part of the CECC.

1.3 Thesis Challenges and Contributions

This thesis aims to enable the zero-touch management of multi-domain CECC deployments. We
started by tackling the challenge of end-to-end unified monitoring of multi-domain deployments
where the application’s microservices (or cloud-native applications) can be deployed in different
infrastructures using different technologies. We propose a novel monitoring system utilizing
metrics collectors designed to gather sub-service applications’ metrics in a deployment region
(or infrastructure). These metrics are then aggregated to offer an End-to-End (E2E) overview on
service Key Performance Indicator (KPI), abstracting away the underlying technological details.
Next, we use the monitoring data to understand the behavior of the applications under different
scenarios. This allows us to build datasets about the resource requirements of various types of
applications under different loads. Thus providing a basic profile for the application type, which
includes the requirements of the application workload depending on the traffic load coming
towards the services. The next station of the thesis was to close the control loop by producing
and enforcing LCM decisions based on the monitoring data. For this end, we propose Zero-touch
Service Management (ZSM) framework containing a fine-granular resource autoscale. The scaler
leverages eXplainable Artificial Intelligence (XAI) to make decisions on which resource to scale,
based on the output of an ML model that predicts microservice performance; the model was
trained on the dataset generated by the second contribution. Finally, we model the problem of
the application’s placement and migration using a multi-objective optimization problem with
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two objectives: the first is to reduce the carbon footprint of the deployment, and the second is
to reduce the cost of the deployment. Figure 8.1 represents the PhD journey from collecting
metrics to enforcing data-driven decisions, thus closing the control loop.

Figure 1.1: PhD journey

1. End to end monitoring of multi-domain applications and services:

(a) Challenge description: An efficient and scalable monitoring system is a critical com-
ponent for any cloud computing provision or network to monitor and validate the
functioning of the running services and the underlying infrastructure. This is more
valid in 5G, as it relies on the network slicing concept, which adds many challenges
to the monitoring system. Among these challenges is the fact that network slices
use resources from different technological domains involving different entities based
on different technologies, which require monitoring different types of resources, like
Radio Access Network (RAN), computing, memory, and network data rate. Indeed,
the monitoring of RAN components is completely different from monitoring Cloud
or Network function virtualization (NFV) Infrastructure. Another challenge pertains
to the monitoring system’s scalability, as the network operator is expected to run
several parallel network slices on top of its 5G infrastructure. Finally, multi-tenancy
and isolation among network slices need to be enforced; slice-related data should be
seen only by its owner.

(b) Proposed solutions: We devise a novel monitoring framework multi-domain network
slicing ready mobile networks including CECC deployments. The framework is tech-
nology agnostic as it provides metrics in a uniform manner, leveraging a unified
structure of KPIs, effectively abstracting away any underlying technological intri-
cacies. The monitoring system is scalable and supports a high number of running
services in parallel.

(c) Publications:
A Scalable Monitoring Framework for Network Slicing in 5G and Beyond
Mobile Networks
Mohamed Mekki; Sagar Arora; Adlen Ksentini
IEEE Transactions on Network and Service Management ( Volume: 19, Issue: 1,
March 2022)
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A multi-technological domains KPIs Monitoring System for Network Slic-
ing in 5G
Mohamed Mekki; Sagar Arora; Adlen Ksentini
Cloud Days, 25-26 November 2021, Brest, France

2. Application behavior profiling in cloud native environments:

(a) Challenge description: The emergence of cloud-native and containerization changed
the way applications are developed and deployed. Current applications decompose
the service’s functionalities and features into multiple microservices; each microser-
vice is responsible for a subset of those overall functionalities. When packaged into
containers, to be run on the cloud or edge infrastructure, the tenant needs to spec-
ify computing resources to run their workload. Indeed, the infrastructure owner has
to indicate the amount of CPU and memory limit for a container running a micro-
service. It happens that a container that exceeds these limits is killed or experiences
a drop in performance. Accordingly, determining the limit to assign to a container
and configure a service resource is a challenge. On the one hand, the tenant does
not clearly understand the environment in which the application will be deployed; on
the other hand, the platform provider gets the application as a packaged container
in which the workload is seen as a black box. In many situations, the configuration
ends by using default configurations that are not appropriate for the application’s
requirements. Indeed, tenants naturally request a larger limit than what the appli-
cation needs, which, in turn, for a constrained environment (like the edge), results in
resource wastage.

(b) Proposed solution: We perform an experimental study aiming to detect if a tenant’s
configuration allows running its service optimally. To this aim, we run several experi-
ments on a cloud-native platform, using different types of applications under different
resource configurations. The obtained results provide insights on how to detect and
correct performance degradation due to misconfiguration of the service resource.

(c) Publications:
Microservices Configurations and the Impact on the Performance in Cloud
Native Environments
Mohamed Mekki; Nassima Toumi; Adlen Ksentini
2022 IEEE 47th Conference on Local Computer Networks (LCN), 26-29 September
2022, Edmonton, AB, Canada.

3. Automatic resources scaling of applications in cloud native environments:

(a) Challenge description: Containerizing microservice applications is emerging as a new
paradigm to optimize the portability, flexibility, and management of such applica-
tions. Running cloud applications based on microservice architecture creates new
challenges. Cloud applications require different Quality of Service (QoS) as well as
various resource demands, which require the design of reliable scaling frameworks. In
this context, ML, and in particular Reinforcement Learning (RL), algorithms have
been widely leveraged to design intelligent and autonomous scaling frameworks. They
aimed to determine the right values for the different resource requirements of applica-
tions’ microservices and hence meeting applications’ QoSs. However, ML-based mod-
els are becoming more and more complex, and their decisions are hardly interpreted
by users, especially companies’ executive staff as well as container orchestration tools.

4



Enabling Zero-Touch Cloud Edge Computing Continuum Management

Therefore, the corresponding users (tools) cannot neither trust and understand ML
models’ outputs, nor optimize their decisions based on ML models’ outputs. Fine-
granular management of cloud-native computing resources is one of the key features
sought by cloud and edge operators. It consists of giving the exact amount of com-
puting resources needed by a micro-service to avoid resource over-provisioning, which
is, by default, the adopted solution to prevent service degradation. Fine-granular
resource management guarantees better computing resource usage, which is critical
to reducing energy consumption and resource wastage (vital in edge computing).

(b) Proposed solution: In our solution, we propose a novel ZSM framework featuring
a fine-granular computing resource scaler in a cloud-native environment. The pro-
posed scaler algorithm uses AI/ML models to predict micro service performances.
More specifically, we use eXtreme Gradient Boosting (XGBoost) as ML algorithm
to predict any violations related to the latency performance of running applications;
if a service degradation is detected, then a root-cause analysis is conducted using
XAI. Based on the XAI output, the proposed framework scales only the needed (ex-
act amount) resources (i.e., CPU or memory) to overcome the service degradation.
The proposed framework and resource scheduler have been implemented on top of a
cloud-native platform based on the well-known Kubernetes [3] tool. The proposed
scheduler with lesser resources achieves the same service quality as the default sched-
uler of Kubernetes.

(c) Publications:
XAI-Enabled Fine Granular Vertical Resources Autoscaler
Mohamed Mekki; Bouziane Brik; Adlen Ksentini; Christos Verikoukis
2023 IEEE 9th International Conference on Network Softwarization (NetSoft), 19-23
June 2023, Madrid, Spain.

4. Energy aware application life-cycle management in cloud edge computing con-
tinuum

(a) Challenge description:

Deploying applications on a CECC infrastructure requires detailed information about
each application’s profile to be considered by the CECC application orchestrator or
manager. Application profiling refers to the systematic analysis of the characteristics
of an application. This process aims to gain insights into an application’s behavior,
performance, resource utilization, and dependencies within the cloud infrastructure.
By having access to these profiles, the CECCM can optimize the placement of applica-
tions to enhance performance and maximize the efficient utilization of infrastructure
resources. Profiling techniques include a range of techniques, such as monitoring
system metrics and analyzing network traffic patterns. Additionally, the integration
of AI techniques facilitates predictive modeling to anticipate future demands by the
application workloads in terms of compute resources and network requirements.

Furthermore, CECC infrastructure produces a carbon footprint, which increases with
the scale of the infrastructure. However, amid the global movement towards sustain-
ability, initiatives such as the European Green Deal [1] accelerate the transition to-
wards greener energy sources. This shift is increasing the availability of infrastructure
powered by green energy. Consequently, when determining the optimal placement of
microservices, energy consumption considerations and the utilization of green energy
sources must be carefully balanced while still satisfying the application’s SLA. Also,
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the CECC application orchestrator (i.e., CECCM) can take advantage of the ap-
plication profile to predict the resource usage and decide on migrating application
microservices if a better carbon footprint can be achieved with a new configuration
and execution location of applications.

(b) Proposed solution: We propose an architecture of CECC Application Orchestra-
tor. The architecture leverages applications and infrastructures profiling to efficiently
manage the CECC applications. This profiling is done using the monitoring infor-
mation, including energy metrics collected from energy monitoring systems such as
Kepler [4] and carbon intensity of infrastructures. Then, we define a modeling method
for applications profiles from the point of view of the CECCM, the profile represents
the application’s current and future compute and network requirements. The profile
is constructed based on the historical usage of the application using statistical meth-
ods. Finally, we model the problem of selecting the best locations to deploy or migrate
applications while minimizing the deployment’s cost and the carbon footprint. The
model decides the current and future placements of each application based on the
application profile, the availability constraints of the application and the available in-
frastructures resources. We further propose an heuristic solution to solve the problem
rapidly and we compare the different trade-off between carbon and cost efficiency.

(c) Publications:
Energy-Aware Application Life-Cycle Management in Cloud Edge Com-
puting Continuum Using Applications Profiles
Mohamed Mekki; Adlen Ksentini
Under submission.

1.4 Thesis Structure

This thesis is structured as follows: Chapter 2 is dedicated to the presentation of the background
and concepts that our research work was based on, which are mainly: application management
landscape, ZSM and ML/XAI techniques. Then, in the next four chapters, we present the contri-
butions of the thesis: First, in Chapter 3, we introduce the multi-domain monitoring framework.
Then, in Chapter 4, we present the work on applications benchmarking a cloud-native environ-
ment. Afterwards, in Chapter 5, we present our ZSM system featuring an XAI-enabled fine
granular resource autoscaler. Lastly, in Chapter 6, we introduce our proposed architecture and
model for carbon footprint aware CECC application deployment and migration.o Finally, in
Chapter 7 we conclude the Thesis while in Chapter 8 we introduce the perspectives of our work.
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Chapter 2

Background

2.1 Introduction

Cloud Edge Computing Continuum (CECC) management cannot be achieved using lower level
resources management solutions alone as it also requires service and application level orchestra-
tion frameworks. In addition, Machine Learning (ML) is pivotal in automating the application
lifecycle management process. However, it is imperative that ML models are trusted to make
decisions that do not compromise the application requirements as well as the CECC infrastruc-
ture state. eXplainable Artificial Intelligence (XAI) must be seamlessly integrated with ML
algorithms to furnish additional insights into the model’s decisions. These insights serve multi-
ple purposes: ensuring the model operates as anticipated, extracting new rules and relationships
from available data, and facilitating the verification of model functionality against expectations.
In this Chapter, we provide an overview of the Cloud Edge Computing Management Frame-
works enablers, as well as ML/XAI techniques that part of it were used in this thesis to achieve
zero-touch LCM of CECC applications.

2.2 CECC Management Landscape

2.2.1 Cloud Edge Computing

Cloud Edge Computing is a distributed computing paradigm that extends the capabilities of
traditional cloud computing by decentralizing computation and data storage to the network
edge. Unlike centralized cloud architectures, which rely on remote data centers for processing
and storage, edge computing leverages computing resources located closer to the user or point
of data generation and consumption. This approach reduces latency, improves responsiveness,
and enables real-time processing of data-intensive applications, particularly in scenarios where
low latency, high bandwidth, and localized data processing are critical requirements. Edge com-
puting encompasses a diverse ecosystem of edge devices, edge servers, and edge data centers,
interconnected through low-latency networks, and supports a wide range of use cases across in-
dustries, including Industrial Internet of Things (IIoT), autonomous vehicles, augmented reality,
industrial automation, healthcare, video surveillance, and smart cities.

Enabling technologies

The deployment of use cases leveraging Cloud Edge Computing Continuum is supported by three
key elements: advancements in application deployment technologies, evolutions in applications’
architecture and development methodology, and innovations in networking technologies.
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First, the combination of virtualization and containerization has transformed how applications
are deployed and managed. Virtualization facilitates the partitioning of physical hardware into
multiple virtual machines (VMs), each functioning as an isolated instance of an operating sys-
tem, complete with its own CPU, memory, storage, and network interfaces. This is typically
orchestrated by a hypervisor, which abstracts the underlying physical hardware and orchestrates
resource allocation to each VM. Hypervisors are usually categorized into two types:

1. Type 1, or Bare Metal Hypervisor, involves running a hypervisor directly on the physical
hardware without needing a host operating system. This approach offers high performance,
eliminating overhead from an additional operating system layer and enabling direct access
to hardware resources by VMs.

2. Type 2, or Hosted Hypervisor, where the hypervisor runs on top of a host operating system.
Type 2 hypervisors rely on the underlying operating system to manage hardware resources,
making them suitable for desktop virtualization and development/testing environments.

In addition to virtualization, containerization provides an alternative approach to sharing physi-
cal hardware among multiple applications. Containers encapsulate applications along with their
required libraries and some OS packages. While running, containers share the host operating
system’s kernel and resources, but they are isolated from each other, providing process-level iso-
lation. Containerization offers rapid startup times, efficient resource utilization, and consistent
deployment across different environments.
Second, there is a paradigm shift in application architectures and development methodologies,
moving away from monolithic applications to Service-Oriented Architecture (SOA) and microser-
vices architecture. In a monolithic architecture, the entire application is constructed as a single,
tightly integrated unit deployed together on one machine or VM. This architecture lacks the
flexibility to deploy application parts in different locations. Conversely, microservices architec-
ture decomposes the application into smaller, loosely coupled services, each responsible for a
specific business function or capability. These services communicate with each other through
well-defined APIs or messaging protocols, enabling them to be independently developed, de-
ployed, and scaled. This architectural approach facilitates the separation of different parts of an
application based on their functionality. It enables applications to have microservices requiring
low latency and higher bandwidth to run at the Cloud Edge, while other microservices run in
the Central cloud or other locations. This flexibility in deployment optimizes performance and
resource utilization.
Lastly, the evolution of networking solutions such as 5G mobile networks, which revisited the
mobile network system radically. Besides improving the throughput and data rate, 5G introduces
a new network architecture relying on the concept of network slicing. A network slice is composed
of sub-slices that use resources from different technological domains: Radio Access Network
(RAN), Core Network (CN), Edge/Cloud. 5G provides larger bandwidth (up to 400 MHz) and
reduces latency. Combined with edge cloud capabilities in the vicinity of the radio network, 5G
can achieve a very low latency for services.

Services and application management

Kubernetes is the de facto choice for orchestrating containerized applications reliably and ef-
ficiently in cloud-native environments. It is an open-source container orchestration platform
that streamlines the deployment and management of containerized applications. Kubernetes
automates tasks such as scaling, load balancing, and service discovery. Originally developed
by Google, Kubernetes is now maintained by the CNCF. However, Kubernetes alone cannot
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be sufficient to manage multi-domain services; for this reason, several frameworks, standards,
and management architectures have been introduced. First, the ETSI Multi-access Edge Com-
puting (MEC) framework [5] provides a set of specifications and guidelines for implementing
edge computing capabilities within telecommunication networks. It defines architectural prin-
ciples, interfaces, and protocols that enable the deployment and management of applications
and services at the network edge. Another initiative is ETSI NFV MANO [6]. It provides
an architectural framework that enables the deployment and management of Cloud-native or
Container Network Function (CNF) and VNF. Other initiatives include TM Forum’s Open API
program, which is a global initiative to enable end-to-end seamless connectivity, interoperability,
and portability across complex ecosystem-based services [7]. The program is creating an Open
API suite, which is a set of standard REST-based APIs enabling rapid, repeatable, and flex-
ible integration among operations and management systems, making it easier to create, build
and operate complex, innovative services. Finally, Zero-touch Service Management (ZSM), a
framework designed to automate network and service management processes without human
intervention. In the rest of this chapter, we will describe two main management frameworks:
NFV MANO and ZSM. NFV MANO framework has several open-source implementations, and
its components are well suited for managing cloud applications’ life cycles. Meanwhile, ZSM
allows automated service management.

2.2.2 Network Function Virtualization

Network Function Virtualization (NFV) is a paradigm shift in the networking industry, trans-
forming traditional hardware-based network functions into software-based entities. NFV lever-
ages virtualization technologies to decouple network functions from proprietary hardware, en-
abling them to run on standard servers and data centers.

NFV Management and Orcherstration

ETSI NFV Management and Orchestration (MANO) is a framework to orchestrate and manage
the life cycle of network services comprised of VNFs and PNF. With the rise of Cloud-Native Net-
work Functions (CNFs), designed to leverage containerization and microservices architectures,
NFV MANO architectures are evolving to accommodate these lightweight and agile network
functions. This evolution involves integrating container orchestration platforms, like Kuber-
netes, into the NFV MANO stack to manage the lifecycle of CNFs alongside traditional VNFs,
enabling operators to efficiently deploy and manage a diverse range of network functions in
modern cloud-native environments. Fig. 2.1 shows the architecture of the ETSI NFV MANO
framework with support for CNFs.
The role of the different building blocks of the framework is defined below:

• Network Function Virtualization Orchestrator (NFVO): Responsible for managing
the life cycle of network services.

• Virtual Network Function Manager (VNFM): Responsible for managing the life
cycle of VNFs, their configuration, performance, and fault management.

• Virtualized Infrastructure Manager (VIM): Responsible for controlling and manag-
ing the virtual resources of NFVI to provide them to VNFs. In short, it is responsible for
the life cycle management of VMs.
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Figure 2.1: NFV-MANO framework reference architecture with support for containers [6]

• Element Manager (EM): These are designed to monitor and configure the VNFs. They
can be used in some aspects of VNF’s life cycle management. For example, fault manage-
ment.

• Container Infrastructure Service (CIS): Container Infrastructure Service (CIS) pro-
vides run-time infrastructural dependencies, computational, storage, and networking re-
sources for one or more containerization technologies. It can be considered the cloud-native
equivalent of a virtual-machine hypervisor. Hypervisors provide infrastructure to host vir-
tual machines.

• Container Infrastructure Service Management (CISM): Manages containers exe-
cuted by CIS. It is responsible for container deployment, monitoring, and life cycle man-
agement.

• CIS Cluster Management (CCM): CCM is responsible for managing the life cycle of
CISM.

• Wide Area Network (WAN): Refers to the transport network used to connect multiple
NFVI sites.

• WAN Infrastructure Manager (WIM): It provides management of Multi-Site Con-
nectivity Services.

• Container Image Registry (CIR): Its role is to store all the container images of the
container-based VNFs.

• NFV Infrastructure (NFVI): The hardware infrastructure on which virtual machines
or containers will be hosted.
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Cloud resources orchestration ready systems

The existing service orchestrators were designed to orchestrate VNFs. Later, they adapted
their architecture and service descriptors to orchestrate CNFs. The orchestrators are capable
of placing the applications at the cloud edge. Some of the well-known service orchestrators we
can mention include [8]:

1. Open Source MANO (OSM): A network service orchestrator proposed by ETSI as a ref-
erence design based on ETSI NFV standard. Designed to orchestrate VM-based network
services, it supports container-based network functions. OSM can deploy network func-
tions at the edge cloud as well.

2. Open Network Automation Platform (ONAP): Designed to manage VM-based VNFs, and
with the recent release, it follows cloud-native principles to orchestrate CNFs. ONAP’s
complicated architecture, which has a large number of components, results in high resource
consumption [8]. Furthermore, the complex realization of ONAP demands the involvement
of a big team in taking care of service orchestration. The high resource consumption makes
it unsuitable to deploy in a resource-constrained environment.

Figure 2.2: Cloud-native lightweight slice orchestration framework (Cloud related components) [8]

Building zero-touch CECC application management solutions necessitates a cloud-ready service
orchestrator. The work developed in this thesis was tested on the Cloud-native Lightweight Slice
Orchestration (CLiSO) framework [8]. The framework has a hierarchical architecture starting
from the top: Network Slice Orchestrator (NSO), Network Sub-Slice Orchestrator (NSSO) (ran,
edge, and core domain), CISM, and Container Image Registry (CIR). While the framework
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allows the deployment of end-to-end network slices spanning over the RAN, Core Network,
and Cloud domain, we focus on the cloud edge management components of its architecture
as shown in Fig. 2.2. The Service Orchestration Layer is responsible for translating Service
Level Objective (SLO) to Resource Level Objectives and coordinating with resource controllers.
Whereas, the Resource Orchestration Layer manages the resources by communicating with the
underlying resource pool. The purpose of each component of the framework is as follows:

• Network Slice Orchestrator (NSO): It is responsible for creating Network Sub Slice
Templates (NSST) for different domains and coordinating the life cycle management of
sub-slices. It receives the monitoring data from different sub-slice orchestrators to extract
slice-level monitoring information.

• Network Sub-Slice Orchestrators (NSSO): Or Service Orchestrators, They are re-
sponsible for handling sub-slices of their respective domains and collecting monitoring data
to share with NSO. For Cloud orchestration, the Edge Sub-Slice Orchestrator (ESSO) [9]
handles the life cycle of edge sub-slices composed of MEC Applications. It coordinates
with the MEC Platform to provide the necessary services like traffic redirection, DNS-
based redirection, or RNIS to the MEC Apps. ESSO only handles container-based MEC
Apps.

• CISM: Responsible for orchestrating containers. It creates the necessary communication
links between applications and network functions to deliver the required service behav-
ior. The framework can orchestrate containers on different distributions of Kubernetes,
Openshift, Vanilla Kubernetes (also known as K8s), and K3s. A new distribution can be
supported by creating a plugin.

• Container Image Registry (CIR): Manages and stores Open Container Initiative
(OCI) format container images. It can pull images from public or private repositories
and build images from source code.

2.3 Zero-touch Service Management

In this section, we introduce the concept of Zero-touch Service Management (ZSM), which
enables automated reconfiguration of cloud applications deployments and networks. In such an
environment, the management system continually learns from infrastructure and service metrics,
as well as feedback, in order to dynamically optimize service configurations to meet its evolving
requirements.

2.3.1 ETSI ZSM Reference Architecture

ETSI Zero touch network & Service Management (ZSM) is a framework designed to automate
network and service management processes without human intervention. It enables the seamless
provisioning, monitoring, and optimization of services across various vendor technologies. By
automating routine tasks, ZSM reduces operational costs and accelerates service delivery. It pro-
motes agility and flexibility in managing complex network environments, adapting to dynamic
changes with minimal disruption. ZSM aligns with industry trends towards Software-Defined
Networking (SDN) and Network function virtualization (NFV), offering a scalable and adaptable
approach to service management. Overall, ZSM enhances efficiency, reliability, and scalability in
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modern service management operations. In this section, we introduce the ZSM architecture and
its key components. Figure 2.3 depicts the framework reference architecture where every man-
agement domain, as well as the E2E service management domain, provides a set of ZSM service
capabilities by management functions that expose and/or consume a set of service endpoints.
The inter-domain integration fabric facilitates providing capabilities and accessing endpoints
cross-domain. The main building blocks of the ETSI ZSM framework are:

Figure 2.3: ZSM framework reference architecture [10]

• Management services: A ”management service” is the most fundamental building block
used as part of the ZSM framework reference architecture. Management services offer
capabilities for consumption by service consumers via standardized management service
endpoints. The capabilities of a given management service collectively define its function
with respect to the entities it manages. Service capabilities may be offered for consumption
by multiple service consumers. One or more service capabilities can be mapped to one or
more service endpoints. All management services offer consistent capabilities for invocation
and communication purposes. This enables a high degree of automation and continuity
regarding interactions between management domains. Offered management services can
be combined into new management services. In the composition hierarchy, each higher
layer supports management services with a higher abstraction and a broader scope.
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• Management functions: Management functions are entities that produce and consume
management services. A management function can be a service producer when it offers
specific capabilities of one or more management services. Conversely, it can be a service
consumer when it utilizes certain capabilities of one or more management services.

• Management Domains: Management domains are used to partition administrative re-
sponsibilities and to create separation of concerns within a given ZSM deployment, con-
sidering various implementation, organizational, governance, and functional limitations.
These domains federate management services equipped with the necessary capabilities to
oversee resources or resource-facing services within a specific domain. For instance, cer-
tain management services may require approvals for consumption within the authorized
consumer base of a management domain, while others remain consistently available to
authorized consumers both within and outside the domain. Management domains oversee
one or more entities and deliver service capabilities by utilizing service endpoints.

• The End-to-End (E2E) service management domain: The E2E service manage-
ment domain is a special management domain that provides end-to-end management of
customer-facing services, composed of the customer-facing or resource-facing services pro-
vided by one or more management domains. However, it does not directly manage infras-
tructure resources.

• Integration fabric: The integration fabric enables inter-operation and communication
between management functions within and across management domains, including regis-
tering, discovering, and invocating management services. It also offers management service
integration, inter-operation, and communication capabilities, and consumption capabili-
ties.

• Data services: Data services enable consistent means of shared management data access
and persistence by consumers across management services within or across management
domains. It also allows data persistence to be separated from data processing.

2.3.2 Closed Control Loops

The ZSM Industry Specification Group(ISG) ISG is focused on the definition of generic enablers,
closed-loop enhancements, and operations for the next generation of AI-driven autonomous
networks. In this thesis, we focus on proposing the enablers of a closed control loop to enable
zero-touch CECC management. Our work does not implement ETSI ZSM standard, but it
implements all the components of the closed control loop defined in [11].
Figure 2.4 shows the components of the closed-control loop, which, according to [11], are:

• Monitoring System (MS): The MS role is to collect critical information on the func-
tioning of a system and provide this information, after aggregation or normalization, to
the Analytical Engine (AE), which in turn uses this information to detect and react to ap-
plications’ LCM events, such as performance degradation, performance optimization, and
security threats. The MS interacts with different entities that orchestrate and manage
the per technological domain sub-service (i.e., CISM or cloud/edge Infrastructure local
management system in the context of CECC). Indeed, there is a difference between infor-
mation that monitors the state of the infrastructure shared by the running services and
information that monitors the service applications. The MS has to interact with CISM to
collect information on:
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Figure 2.4: Closed-control loop components: MS, AE, and DE [11]

– Infrastructure, such as computing platforms and hardware.

– Applications’ microservices.

– Or any common entities such as 5G Core Network (CN) functions or Directory Name
Service (DNS).

– The MS can also interact with applications through API exposed by the latter that
allows extraction of information on the application’s state, such as events, alarms,
and logs.

The principal consumer of MS information is AE, which is in charge of triggering the
monitoring of needed information from the MS. The latter starts the monitoring process
by connecting to the appropriate source. Accordingly, the MS exposes two APIs: control
API and data collection API. The AE uses the control API to request the KPI to monitor
the periodicity, duration, and so on. Meanwhile, the data collection API is the interface
from which data is provided to the AE as requested through the control API. The control
API also indicates how data is provided: publish/subscribe, request/response, the data
format, and so on.

• Analytical Engine (AE): As opposed to the MS, the AE does not store but processes
data gathered from the same or lower-level MS or AE and exposes the result to any
requester (i.e., the DE or another AE) in an on-demand or periodic fashion. AE-to-AE
communication makes it possible to build a learning model using federated learning (FL)
techniques. The main functions of AE are:

– Identify performance degradation of a network slice.

– Optimize the performance of a service or the infrastructure resources.

– React to security threats.

To this aim, the AE subscribes to data types in which it is interested using the control
API exposed by the MS. The data type will be determined according to the logic of the
LCM application execution. Then, the AE starts receiving the stream of data or uses a
request/response mechanism, depending on the purpose of the analysis. The AE may adapt
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the monitoring data rate or stop the precedent request and request other related monitoring
information. The AE heavily relies on AI/ ML to complete an inference task locally, extract
features, analyze these features, and send alerts and notifications to the Decision Engine
(DE). AEs can collaborate to build distributed learning (based on Federated learning
(FL)) models to realize the analysis and notify the DE accordingly. Examples of features
extracted and analyzed are prediction of SLA violation, prediction of service migration,
prediction of service faults, attack identification, and anomaly detection.

• Decision Engine (DE): The DE is the decision-making element of the loop. It analyzes
alerts and notifications from AE(s) and considers a decision to make. The decisions are
either derived using a local ML algorithm, based mainly on reinforcement learning (RL),
or a predefined policy enforced by the service owner or Service Orchestrator. The DE uses
exposed APIs by the Service Orchestrator to enforce the considered decisions.

Note that: Inter-Domain Management and Orchestration (IDMO) is a centralized component
with full-scope service management and orchestration decision capabilities it can be mapped to
the NSO from Fig. 2.2. Domain-specific Management and Orchestration (DMO) (e.g., cloud
infrastructure, edge, RAN) is the technological domain management and orchestration entity,
equivalent to the ESSO from Fig. 2.2. While, for each service, the In-Slice Manager (ISM),
a logical entity, handles the autonomous management of the applications or network functions
(i.e., CNF).
Finally, according to [12], since closed-loop automation leverages AI/ML, it is necessary to
ensure the trustworthiness of the AI algorithms. One way to ensure it is to use XAI to explain
the decision of the ML models and ensure that the models are not malfunctioning. In the next
section, we present the ML and XAI techniques that can be used to manage zero-touch CECC
management systems deployments

2.4 Machine Learning (ML) and eXplainable AI (XAI)

Machine learning is a subset of artificial intelligence that focuses on developing algorithms and
statistical models that enable machines to perform tasks without being explicitly programmed
for each step. At its core, machine learning aims to enable systems to learn from data and
improve their performance over time.
Subfields of machine learning include:

• Supervised Learning: In supervised learning, the algorithm is trained on a labeled
dataset, where each input data point is associated with a corresponding target output.
The algorithm learns to map inputs to outputs by generalizing from the labeled examples
provided during training. Common tasks in supervised learning include classification (pre-
dicting categories) and regression (predicting continuous values). Such algorithms include:
Linear Regression; Logistic Regression; Decision Trees; Random Forest; Support Victor
Machine (SVM); Gradient Boosting Machines (GBM) such as Extreme Gradient Boosting
(XGBoost).

• Unsupervised Learning: Unsupervised learning involves training algorithms on unla-
beled data, where the algorithm must identify patterns or structures within the data on its
own. Unlike supervised learning, no target outputs are provided during training. Instead,
the algorithm discovers hidden patterns or groups in the data, such as clustering similar
data points together or dimensionality reduction to represent data in a lower-dimensional
space.
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• Semi-Supervised Learning: Semi-supervised learning techniques combine supervised
and unsupervised learning elements. These methods leverage a small amount of labeled
data along with a larger amount of unlabeled data to improve model performance. Semi-
supervised learning is particularly useful when obtaining labeled data is expensive or time-
consuming.

• Reinforcement Learning: Reinforcement learning involves training agents to make se-
quential decisions in an environment to maximize cumulative rewards. The agent learns
by interacting with the environment and receiving feedback in the form of rewards or
penalties. Reinforcement learning algorithms aim to discover the optimal strategy, policy,
or behavior for the agent to achieve its goals over time.

• Deep Learning: Deep learning is a subset of machine learning focusing on artificial neu-
ral networks with multiple layers (deep architectures). These networks can learn intricate
patterns and representations from data, often achieving state-of-the-art performance in
various tasks such as image recognition, natural language processing, and speech recog-
nition. Relevant DL algorithms include: Recurrent Neural Network (RNN) including
variations like Long Short-Term Memory (LSTM).

Success in Machine Learning has led to a wave of AI applications in several domains. However,
because ML models are seen as black boxes, the usage of these models to make decisions in
critical systems requires trust in the model. Therefore, to increase the trustworthiness of ML
models, XAI techniques have been devised in order to explain why and how an ML model arrives
at a specific decision. This means that XAI is the result of efforts to make AI systems intelligible
to their users, Whether the user is human or another computer program.
There is a clear distinction between models that are interpretable by design and those that
can be explained by means of external XAI techniques. In this section, we present some types
of Transparent machine learning models and post-hoc interpretability techniques classified (as
shown in Fig. 2.5) into model-specific/model-agnostic and global/local explanation techniques.

Figure 2.5: Explainability techniques classification [13]

2.4.1 Transparent machine learning Models

A transparent model is a model that conveys some degree of explainability by itself. According to
[14], those models can have three levels of transparency: Simulayability, which denotes the ability
of a model to be simulated by its user. Decomposability, or the ability to explain parts of the
model (input, parameter, calculations), which requires every input to be readily interpretable.
Finally, algorithmic transparency presents the user’s ability to understand the process followed
by the model to produce any given output from its input data. Examples of machine learning
models that are considered transparent are:
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• Linear/logistic regression: Logistic regression is a classification model that predicts
representing the category, and its output is a binary variable. For the same if the predicted
variable is continuous, Linear regression is used instead. Linear regression models are
capable of being simulated because the predictors are human readable. Its decomposability
can be determined by the variables used to make the prediction and their understandability
by the users.

• Decision trees Decision trees are models that can easily be considered as explainable. In
the simplest structures, decision trees are simulable models. However, for manageability,
the size of the decision tree is a determining factor. The features and their meaning are
easily understandable. Since the model comprises rules that do not alter data, decision
trees are decomposable. Further, their human-readable rules that explain the knowledge
learned from the data make them Algorithmically transparent.

• k-nearest neighbors It deals with classification problems simply: It predicts the class
of a sample by voting the class of its k-nearest neighbors. This neighborhood relation
is induced by the measure of distance between samples. KNN can be simulated as the
model’s complexity matches human simulation capabilities.

• Rule-based learning Rule-based learning encompasses models that generate rules to
characterize the data. Rules can take the form of simple conditional if-then rules or more
complex combinations of simple rules to form their knowledge. Fuzzy rule-based systems
are designed to address a broader scope of actions. Because variables included in rules
are readable, and the size of the rule set is manageable by a human user without external
help, Rule-based learners can be considered simulable.

• General additive models Linear models in which the value of the variable to be pre-
dicted is given by the aggregation of a number of unknown smooth functions defined for the
predictor variables. For a General additive model to be simulated, variables and the inter-
action among them as per the smooth functions involved in the model must be constrained
within human capabilities for understanding.

• Bayesian models Bayesian models usually take the form of a probabilistic directed acyclic
graphical model whose links represent the conditional dependencies between a set of vari-
ables. Its categorization leaves it simulatable, decomposable, and algorithmically trans-
parent. However, it is worth noting that a model may lose these first two properties under
certain circumstances(overly complex or cumbersome variables).

Note that even if a model is considered transparent, the ability to explain it can be reduced as
its complexity increases. In this case, post-hoc explainability techniques can be used.

2.4.2 Post-hoc explainability techniques

When a machine learning model cannot be declared transparent, separate methods must be
devised and applied to the model to explain its decisions. This is the purpose of post-hoc
explainability. These methods vary from model-agnostic techniques to post-hoc methods tailored
to define a certain ML model. Simultaneously, post-hoc techniques may be categorized as either
Local or Global.
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Model agnostic techniques

Model-agnostic techniques for post-hoc explainability are designed to extract information from
a model prediction procedure. This can be done using explanations by simplification, which rep-
resent the broadest techniques under the category of model-agnostic post-hoc methods. Feature
relevance explanation techniques are also used for model agnostic explanations. These tech-
niques aim to describe the function of a model by measuring the influence of each feature on the
prediction output of the model to be explained. Moreover, in some cases, visual explanations
are possible.

Model specific techniques

Post-hoc explainability techniques for explaining the decisions and that are adapted to a type
of ML model are used for models that rely on more sophisticated learning algorithms that
require additional layers of explanation. Such techniques are used to explain Tree ensembles
and random forests, support vector machines, multi-layer neural networks, convolutional neural
networks, and recurrent neural networks.

Global explanation techniques

XAI techniques are classified as global explanation techniques or local ones. Global explanation
techniques are applied to obtain the general behavior of a model. Global models try to explain
the whole logic of a model by inspecting its structure [15]. Techniques in this category include:

• SHAP: a unified framework for interpreting predictions, SHAP [16] (SHapley Additive
exPlanations). SHAP assigns each feature an importance value for a particular prediction.
Its components include the identification of a new class of additive feature importance
measures and theoretical results showing a unique solution in this class with a set of
desirable properties.

• Causal Dataframe[17]: which is a causal inference tool for data explainability. Causal
inference refers to an intellectual discipline that considers the assumptions, study designs,
and estimation strategies that allow researchers to draw causal conclusions based on data
[18]

• PI[19]: introduces a heuristic for normalizing feature importance measures that can cor-
rect the feature importance bias. It can be used as a post-processing step with other
machine learning models that provide measures of feature relevance. The PIMP (Permu-
tation Variable Importance Measure) algorithm’s P-values can be used to compare feature
relevance.

Local explanation techniques

Local explanation techniques tackle explainability by segmenting the solution space and giving
explanations to less complex solution subspaces that are relevant to the whole model. These
explanations can be formed by means of techniques with the differentiating property that these
only explain part of the whole system’s functioning. Techniques falling into this category include:

• LIME[20]: which builds a local linear model around the predictions near a particular
point for an opaque model to explain it.

• ELI5[21]: is a tool for explaining and debugging machine learning classifiers.
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• CFProto[22]: propose a fast, model-agnostic method for finding interpretable counter-
factual explanations of classifier predictions by using class prototypes. It offers actionable
counterfactual explanations describing concrete steps to change a model’s prediction.

Note that SHAP can also be used for local explanations.

2.5 Conclusion

In this Chapter, we defined Cloud Edge Computing and explored essential technologies and
frameworks facilitating application Life-Cycle Management (LCM). Additionally, we outlined
various XAI techniques applicable to explaining ML models aiding LCM can elucidate the assis-
tance provided by ML models in LCM. In the next chapter, we introduce our first contribution,
which proposes a framework to monitor multi-domain applications and services KPIs in order
to achieve a uniform end-to-end view of the services metrics.
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Chapter 3

A scalable monitoring framework for
network slicing in 5G and beyond
mobile networks

3.1 Introduction

Mobile networks have seen a significant shift in the last decade, with the development of a new
generation (5G) and the next generation’s foundation (6G). Several commercial deployments
are available using the Standalone (SA) or NonStandalone (NSA) model, i.e., using 5G New
Radio (NR) with 4G Core Network (CN). 5G introduces a radical evolution of the mobile net-
work system. Besides improving the throughput and data rate, 5G introduces a new network
architecture relying on the concept of network softwarization. On one hand, 5G NR provides
larger bandwidth (up to 100 MHz in < 6 GHz frequency band, and up to 400 MHz in > 6 GHz
frequency band) [23] to accommodate high data-rate demanding applications. Moreover, 5G
NR introduces new physical layer numerologies that drastically reduce Radio Access Network
(RAN) latency. Combined with Multi-access Edge Computing (MEC) capabilities at the vicin-
ity of the radio network [24], 5G NR will allow achieving a very low latency for services. On
the other hand, 5G network architecture builds on the concept of network softwarization, which
advocates for the usage of Software-Defined Networking (SDN) and Network function virtual-
ization (NFV) to build an agile CN and shed light on the concept of Network Slicing. The latter
is a novel concept that aims at the partitioning of mobile network infrastructure into virtual
network instances that are individually tuned to accommodate diverse services characterized by
different requirements in terms of communication Quality of Service (QoS) within a common
physical infrastructure. Network Slicing concept allows mobile operators to efficiently support
the three envisioned classes of services using the same physical infrastructure: 1) enhanced Mo-
bile BroadBand (eMBB) for applications requiring high data rates, 2) massive Machine-Type
Communication (mMTC) intended to cover IoT applications that require support for a massive
number devices, and 3) Ultra-Reliable and Low-Latency Communication (URLLC) for applica-
tions with strict requirements of communication latency and reliability.
A network slice is composed of sub-slices that use resources from different technological domains:
Radio Access Network (RAN), CN, Edge/Cloud. The RAN sub-slice is constituted of Physical
Network Function (PNF) (Radio Remote Unit (RRU)) and Virtual Network Function (VNF)
(Centralized Unit (CU), Distributed Unit (DU)), which are usually shared with other slices.
The RAN sub-slice is also reserving enough Physical Resource Block (PRB) to guarantee its
performances [25]. The CN sub-slice is composed of a set of VNF, which are shared with other
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network slices or dedicated to the network slice. Finally, the Cloud/Edge sub-slice is where
applications the network service functions are run as VNF; all the VNFs are slice specific. The
sub-slices are stitched together to build the end-to-end slice that runs a 5G network service.
Monitoring the performances (or Key Performance Indicator (KPI)) of the running network slices
is vital for both the network operator and the slice owner. For the former, measuring the KPI
allows checking and troubleshooting the performances of the entities running the components
of network slices, such as RRU, CU, CU, CN, Cloud/Edge, routers, etc; while for the latter,
measuring KPI allows for checking the performance of the running services and validating the
SLA signed with the network operator. It is obvious that the KPIs to measure for the network
operator and for the slice owner are different. The slice owner is more interested in service level
KPI [26] that corresponds to the service’s performances such as the end-to-end latency, achieved
throughput, consumed CPU, and memory of the VNF running the service, etc. While, the
network operator is more interested in collecting KPI on the infrastructure components, such as
radio resource usage, the radio latency, computing usage of shared VNF among slices, etc.
However, monitoring network slice KPI introduces several challenges. Among these challenges
is the fact that network slices use resources from different technological domains involving dif-
ferent entities based on different technologies. Indeed, the monitoring of RAN components is
completely different from monitoring a NFV Infrastructure. Another challenge pertains to the
scalability of the monitoring system, as it is expected that the network operator will run sev-
eral parallel network slices on top of its 5G infrastructure. Finally, multi-tenancy and isolation
among network slices need to be enforced; slice-related data should be seen only by its owner.
In this Chapter, we tackle these challenges by proposing a novel monitoring platform for 5G
and beyond. The proposed framework natively supports network slicing and features a scalable
architecture to handle a high number of running slices in parallel. To achieve this objective, we
introduce metrics collectors deployed per network slice and follow the life cycle of the network
slice (they are created when the network slice is deployed and are removed after the network
slice is deleted). Besides, the proposed framework is technology agnostic when it comes to data
collection, where a novel and technologically agnostic monitoring protocol is introduced. Indeed,
we propose a metric structure that unifies the management of the collected metrics and allows
the association of the metric with the part of the network slice from which it was collected,
hence linking between metrics from different domains. This will tackle the problem related to
the heterogeneous monitoring system used by the technological domains where a network slice is
running. Finally, the proposed monitor framework supports multi-tenancy and is cloud-native
compliant. Indeed, besides supporting services that run in a cloud-native environment, all the
framework components run as containers.

3.2 Related works

Several works addressed the challenge related to monitoring, especially in the context of cloud
computing, which has been extensively studied in the literature. Different monitoring solutions
have been designed to monitor traditional IT infrastructures and cloud environments, such as
Prometheus1, Zabbix2, and collectd3. In [14] a survey of cloud monitoring tools is conducted.
It presents common characteristics, differences, strengths, and weaknesses of each reviewed
monitoring tool. However, these solutions alone are not suitable for 5G relying on network
slicing. Firstly, these solutions cover only one technological domain, the Cloud domain, while

1https://prometheus.io/
2https://www.zabbix.com/
3https://collectd.org/
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a network slice spans over different technological domains. Secondly, they cannot easily scale
with the number of network slices, as only one component is in charge of collecting data, hence
it constitutes the system bottleneck.
As stated earlier, our objective is to provide a framework featuring an end-to-end monitoring
solution for 5G supporting network slicing. To the authors’ best knowledge, the proposed
framework in this work is the first end-to-end monitoring solution for a 5G network relying on
network slices, covering all the needed technological domains to deploy end-to-end network slices.
The work in [27] introduces a system that monitors multiple domains of a 5G infrastructure.
The system consists of a metrics extraction function (MEF) that extracts and translates metrics,
one MEF per monitored infrastructure component. The MEF extracts the metrics from the
monitored component and exposes them to the upper layer where a broker system is deployed.
A metrics aggregation component consumes the metrics provided by the MEFs from the broker
and provides them to other tools responsible for metrics analysis and data visualization. Finally,
a metric management entity is responsible for configuring the system entities. The system does
not take into account network slicing and does not differentiate metrics from different slices.
In addition, metrics are transferred without specific format or identifying elements, making it
more suitable for one network slice at a time since deploying multiple services or slices will
result in multiple unidentified data being stored in the system. In [28] the authors introduce
a prototype for RAN monitoring implemented on top of ElasticSearch4 and FlexRAN [29]. It
includes a producer API that writes measured data and statistics from the southbound control
plane (using the FlexRAN controller) to the data store. The SDK has a filtering module that
performs filtering operations such as selecting data or aggregating results. The solution focuses
on RAN KPIs and can be considered a source of metrics for the RAN domain. In [30], the
authors propose an elastic monitoring solution for end-to-end cloud slices. The proposed system
relies on other monitoring systems, called Monitoring Entities (MEs), and deploys adapters per
ME and slice. The adapters collect the KPIs from the monitoring entities and send them to
a distribution mechanism using RabbitMQ5 to be then consumed by a slice aggregator that
stores the KPI in a dedicated database. The slice identification is made at the adapter level,
which creates a coupling between the management and deployment levels. In contrast, in our
solution, the metric is mapped with the network slice part at the SO slice-specific collector using
information coming from the sub-slice orchestrators (technological domain orchestrators), which
allows keeping independence between the different entities involved in the monitoring process
and the technological domain orchestrators. Last but not least, this solution does not collect
RAN metrics.
In [31], the authors introduce a slice monitoring abstraction mechanism for data center slices re-
lying on Lattice [32]. Monitoring a network slice resources is done via slice monitoring adapters
using Lattice data sources, which are in charge of collecting the different KPI using probes. The
latter collects relevant measurements for a segment of the end-to-end slice. Besides disregarding
the slice elasticity, the solution is designed for data center slices ignoring the RAN monitoring.
Work in [33] proposes a flexible monitoring framework that creates monitoring slices integrating
cloud-specific monitoring solutions like Openstack Ceilometer6 and non-cloud monitoring solu-
tions like Nagios7 and MRTG8. Again, the authors did not discuss the scenarios of multi-clouds
and multiple technological domains. DASMO, introduced in [34], proposes the modification of
the NFV architecture to support monitoring by embedding the monitoring elements into the

4https://www.elastic.co/elasticsearch/
5https://www.rabbitmq.com/
6https://docs.openstack.org/ceilometer
7https://www.nagios.com/
8https://www.mrtg.com/
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Element Manager (EM) of a VNF. The work also tackles the monitoring’s scalability, but no
implementation nor performance evaluation of the solution has been conducted; it stays at the
conceptual level.
Table 3.1 presents a comparison of our solution with [27], [30] and [31]. The three solutions
share the same objective, which is monitoring platforms for network slicing.

3.3 A monitoring framework for end-to-end network slices

In this section, we will introduce the proposed monitoring framework of network slices in 5G
and beyond networks. The section is divided into three parts: (1) the considered architecture
for enabling monitoring in 5G; (2) the data collection servers and the monitoring protocol; (3)
the data presentation.

3.3.1 Architecture

Network Slicing Management and Orchestration architecture

Before detailing the proposed monitoring framework architecture, we first introduce the network
slicing architecture we build on. The latter is a generic architecture that allows orchestrating
and managing the life-cycle of a network slice, including the monitoring process. It is based
on the architecture introduced in [35] and shown in Fig. 3.1. The proposed architecture is
composed of a Slice Orchestrator (SO), which is in charge of the Life-Cycle Management (LCM)
of network slices and monitoring its performance. The SO is equivalent to the 3GPP Network
Slice Management Function (NSMF) [36] and exposes Northbound API (NBI) for the OSS/BSS
or Communication Service Management Function (CSMF) as specified by 3rd Generation Part-
nership Project (3GPP). The NBI covers the LCM of a network slice and the management of
the monitoring process. The NS LCM API is already specified in [36] and manages the different
steps of the network slice life-cycle, like commissioning, operation, and decommissioning. How-
ever, no API is specified to manage the monitoring of network slices. Therefore, in this work,
we devised a new NBI to be exposed by SO to manage the monitoring of network slices.

Figure 3.1: Network slicing architecture

24



Enabling Zero-Touch Cloud Edge Computing Continuum Management

T
ab

le
3.

1:
C

om
p

ar
is

o
n

b
et

w
ee

n
[2

7
],

[3
0
],

[3
1
],

a
n

d
o
u

r
m

o
n

it
o
ri

n
g

sy
st

em

A
sp

e
c
t

[3
0
]

[3
1
]

[2
7
]

O
u
r
sy

st
e
m

M
et

ri
cs

so
u

rc
e

F
ro

m
M

on
it

or
in

g
E

n
ti

ti
es

(P
ro

m
et

h
eu

s,
N

et
D

at
a)

.
B

as
ed

on
la

tt
ic

e
d

at
a

so
u

rc
es

.
M

et
ri

cs
ge

n
er

a
te

d
b
y

In
fr

as
tr

u
ct

u
re

C
om

p
on

en
ts

F
ro

m
K

u
b

er
n

et
es

A
P

I,
F

le
x
R

A
N

w
it

h
p

os
si

b
il

it
y

o
f

a
d

d
in

g
p

lu
gi

n
s

fo
r

P
ro

m
et

h
eu

s,
C

ei
lo

m
et

er
.

S
li

ce
d

ep
lo

y
m

en
t

S
u

p
p

or
t

m
u

lt
ip

le
sl

ic
e

p
ar

ts
on

to
p

of
th

e
sa

m
e

V
IM

.
C

on
si

d
er

a
V

IM
p

er
sl

ic
e.

D
o
es

n
o
t

su
p

p
o
rt

n
et

w
or

k
sl

ic
in

g
S

u
p

p
or

t
m

u
lt

ip
le

sl
ic

e
p

a
rt

s
on

to
p

of
th

e
sa

m
e

V
IM

.

M
on

it
or

in
g

m
an

ag
em

en
t

C
on

tr
ol

le
d

b
y

an
E

n
gi

n
e

C
on

tr
ol

le
r

th
at

co
m

m
u

n
ic

at
es

w
it

h
th

e
S

li
ce

O
rc

h
es

tr
at

or
.

U
se

a
m

on
it

or
in

g
co

n
tr

ol
le

r
th

at
co

m
m

u
n

ic
at

es
w

it
h

th
e

S
li

ce
O

rc
h

es
tr

at
or

.

M
et

ri
cs

M
an

ag
em

en
t

E
n
ti

ty
co

n
fi

gu
re

s
th

e
sy

st
em

en
ti

ti
es

U
se

a
m

on
it

or
in

g
en

gi
n

e
in

te
gr

at
ed

w
it

h
th

e
S

O
an

d
co

m
m

u
n

ic
at

e
w

it
h

th
e

N
F

V
O

an
d

R
A

N
O

.
T

h
e

N
F

V
O

a
n

d
th

e
R

A
N

O
p

ar
ti

ci
p

at
e

in
th

e
cr

ea
ti

on
an

d
th

e
co

n
fi

gu
ra

ti
o
n

of
th

e
co

ll
ec

ti
on

a
ge

n
ts

fo
r

th
e

sl
ic

e
p

ar
ts

.

D
y
n

am
ic

d
ep

lo
y
m

en
t

U
se

ad
ap

te
rs

d
ep

lo
ye

d
fo

r
ea

ch
sl

ic
e

p
ar

t.
F

or
ea

ch
sl

ic
e

a
u

n
if

or
m

on
-d

em
an

d
m

on
it

or
in

g
la

y
er

is
b

u
il

t.

F
or

ea
ch

in
fr

a
st

ru
ct

u
re

co
m

p
on

en
t

th
e

sy
st

em
h

av
e

a
M

et
ri

cs
E

x
tr

ac
ti

o
n

F
u

n
ct

io
n

U
se

s
co

ll
ec

ti
on

ag
en

ts
fo

r
ea

ch
sl

ic
e

p
a
rt

th
at

ru
n

a
s

co
n
ta

in
er

s.

S
li

ce
el

as
ti

ci
ty

H
or

iz
on

ta
l

el
as

ti
ci

ty
is

h
an

d
le

d
b
y

d
ep

lo
y
in

g
n

ew
ad

ap
te

rs
an

d
m

on
it

or
in

g
en

ti
ti

es
.

V
er

ti
ca

l
el

as
ti

ci
ty

is
h

an
d

le
d

b
y

d
ef

au
lt

.

D
o
es

n
ot

co
n

si
d

er
sl

ic
e

el
as

ti
ci

ty
te

ch
n

iq
u

es
.

In
tr

o
d

u
ct

io
n

of
a

n
ew

in
fr

a
st

ru
ct

u
re

co
m

p
on

en
et

is
b
y

d
ep

lo
y
in

g
a

n
ew

M
et

ri
cs

E
x
tr

a
ct

io
n

F
u

n
ct

io
n

S
li

ce
h

or
iz

on
ta

l
el

as
ti

ci
ty

an
d

th
e

in
te

gr
at

io
n

of
n

ew
te

ch
n

ol
og

ic
al

d
om

ai
n

s
is

h
an

d
le

d
b
y

th
e

d
ep

lo
y
m

en
t

o
f

n
ew

m
et

ri
cs

co
ll

ec
to

rs
.

V
er

ti
ca

l
el

as
ti

ci
ty

is
h

an
d

le
d

b
y

d
ef

au
lt

.

M
et

ri
cs

ex
p

os
it

io
n

E
x
p

os
e

th
e

m
et

ri
cs

to
th

e
S

li
ce

O
rc

h
es

tr
at

or
fo

r
el

as
ti

ci
ty

op
er

at
io

n
s.

T
h

e
m

et
ri

cs
ca

n
b

e
co

n
su

m
ed

b
y

th
e

S
li

ce
O

rc
h

es
tr

at
or

as
fe

ed
b

ac
k

fo
r

th
e

ex
ec

u
ti

on
of

it
s

se
rv

ic
es

an
d

fu
n

ct
io

n
s.

E
x
p

os
e

th
e

m
et

ri
cs

to
d

at
a

v
is

u
al

is
at

io
n

a
n

d
a
n

a
ly

si
s

to
ol

s

A
le

rt
s

ca
n

b
e

se
n
t

to
th

e
S

O
b

as
ed

on
th

e
co

ll
ec

te
d

K
P

Is
.

T
h

e
K

P
Is

a
re

ex
p

o
se

d
to

th
e

sl
ic

e
te

n
an

t
u

si
n

g
R

ab
b

it
M

Q
fo

r
p

u
b

li
sh

/s
u

b
sc

ri
b

e
an

d
G

ra
fa

n
a

fo
r

v
is

u
al

iz
at

io
n

.

T
ec

h
n

ol
og

ic
al

d
om

ai
n

s
C

lo
u

d
,

w
it

h
su

p
p

or
t

of
m

u
lt

ip
le

cl
ou

d
s.

C
lo

u
d

,
w

it
h

su
p

p
or

t
of

m
u

lt
ip

le
cl

ou
d

s.
C

lo
u

d
a
n

d
R

A
N

C
lo

u
d

w
it

h
su

p
p

or
t

of
m

u
lt

ip
le

cl
ou

d
s,

an
d

R
A

N
w

it
h

su
p

p
o
rt

of
th

e
F

le
x
R

A
N

co
n
tr

ol
le

r.

M
et

ri
cs

ab
st

ra
ct

io
n

p
ro

v
id

e
th

e
el

em
en

t
ID

w
it

h
th

e
m

et
ri

cs
N

o
ab

st
ra

ct
io

n
N

o
ab

st
ra

ct
io

n
In

tr
o
d

u
ce

s
a

d
at

a
co

ll
ec

ti
o
n

p
ro

to
co

l
fo

r
m

u
lt

i-
d

om
ai

n
n

et
w

o
rk

sl
ic

es

25



Enabling Zero-Touch Cloud Edge Computing Continuum Management

In the envisioned network slice architecture, each technological domain is managed and orches-
trated by its own entity, known in 3GPP as Network Sub Slice Management Function (NSSMF).
Depending on the technological domain, a NSSMF may correspond to Network Function Vir-
tualization Orchestrator (NFVO) for Cloud/Edge domain, Radio Access Network Orchestrator
(RANO) for RAN domain, and SDN controller for the case of the transport network domain.
Examples of existing tools covering these functions are ONAP9 and OSM10 for NFVO, FlexRAN
controller[29] for RANO, and OpenDayLight11 and ONOS12 for transport orchestrators.
To deploy and instantiate a network slice, the CSMF or OSS uses the NBI exposed by SO to
describe the needed resources (Compute and network) through a Network Slice Template (NST).
It includes attributes and meta-data on the network slice (ex. the start date and end date, slice
owner, type of slice, etc.), and information on each sub-slice composing the network slice. GSMA
is providing examples of NST available in [37], namely Generic Slice Template (GST). To enable
on-demand monitoring, we propose to extend the NST to indicate if monitoring is needed. If
so, the slice owner should include the KPI list to monitor each technological domain where the
network slice is deployed. The template is created by the slice owner using an existing Blueprint
provided by the operator or defining a new one through Intent. Each sub-slice (technological
domain) composing the network slice is described in NST. For instance, in the case of the
computing resource (i.e., Cloud/Edge domain), the NST may include information such as the
number of CPUs, memory, and the virtualization technology (i.e., Virtual Machines (VM) or
containers) to be used. For the RAN domain, resources may be related to the functional split
type [38], the MAC scheduler algorithm, the number of PRBs, and others. Finally, for the
transport domain, resources may include the type of link (bandwidth, latency), number of
Virtual Local Area network (VLAN), front haul link capacity, Virtual Private Network (VPN)
links, and QoS. Each technological domain needed resources is enclosed in the NST in the form
of a technological domain-specific descriptor. For instance, for the Cloud/Edge domain, the
resources are described using a Network Service Descriptor (NSD) that includes the VNF(s)
list, the link to their VNF Descriptor (VNFD) or Application Descriptor (AppD) [39], how they
should be interconnected, and the number of computing resources needed by each VNF. NST is
passed by CSMF to NSMF when a network slice creation is requested.

The proposed monitoring framework architecture

Building on the network slicing architecture (Fig. 3.1), we introduce in Fig. 3.2 the overall ar-
chitecture of the proposed monitoring framework, where two technological domains (RAN and
Edge/Cloud) are considered and detailed. Besides the management and orchestration entities
mentioned earlier (i.e., SO, NFVO, and RANO), the proposed architecture includes Data Col-
lection Servers, a Data Presentation Server, and network slice-specific components. The data
collection servers are composed of Brokers deployed at two different levels: a high-level Broker
is used to expose collected monitoring data to the end-users in RAW format, and a low-level
Broker to collect data from the different technological domains. The high-level Broker is based
on RabbitMQ, while the low-level Broker is relying on Kafka. In one of the next sections, we will
explain in more detail the motivation behind this choice. On the other hand, the presentation
server is in charge of displaying the collected data per slice to the slice owners via a dashboard
and graphical user interfaces. The presentation server consumes the monitored data per network
slice stored in a Database (DB) at the SO, known as KPI DB.

9https://www.onap.org/
10https://osm.etsi.org/
11https://www.opendaylight.org/
12https://opennetworking.org/onos/
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It should be noted that the proposed framework’s critical components are the slice collection
agents that collect monitoring data of each sub-slice and aggregate them per slice. These agents
are instantiated when the network slice is created and active throughout its life-cycle. In the
considered scenario of two technological domains, three agents are instantiated per network
slice, one by the SO and two by the technological domain orchestrators, i.e., at the RANO and
NFVO. The role of the SO-level agent is to consume the data published by the slice-specific
agents, add meta-data on the network slice, and push it to the high-level Broker. After that, the
data will be consumed by (i) the slice owner as RAW data; (ii) the data presentation server to
be displayed via the dashboard. Whereas the role of the agents instantiated by the technological
domain orchestrators is to collect data from the infrastructure, format the obtained data by
adding meta-data, and push it to the lower-level Broker of the data collection server, i.e., Kafka.
Once the network slice is terminated, these three elements are deleted. Note that we assume that
the slice agents are instantiated as containers and run in the Cloud/Edge domain. Obviously,
using slice specific agents will guarantee that the proposed monitoring framework scales with
the number of slices. Besides, if another technological domain is used, such as the transport
network domain, only another collector agent is added; without impacting the overall system
and the other agents’ functions.

Data Collection procedures

As mentioned in the precedent section, the data collection is done by the slice specific collectors,
which are instantiated by the different entities involved in the network slice LCM, i.e., SO, and
technological domain orchestrators when the network slice is created. In this section, we will
detail the instantiation process of the slice specific collectors and their functions, considering
two technological domains RAN and Cloud/Edge, managed by RANO and NFVO, respectively.

SO SO is the entry point of the system. It interfaces with the slice owner via OSS/BSS or
via CSMF. It receives requests to deploy a network slice in the form of a NST. To recall, the
NST includes details and attributes on the network slice to deploy, including the list of KPI
to measure for each technological domain. The SO relies on the API exposed by the NSSMF
(in our case RANO and NFVO) to first deploy the network slice. Once NFVO and RANO
create the sub-slices, an Id for each sub-slice is returned to the SO, namely RANId and NSDId,
respectively. SO stores that information on a local DB and links the RANId as well as NSDId
to the NSId of the created slice. The second step is the instantiation of the three slice-specific
collectors. To do so, SO sends a request to both RANO and NFVO to create the technological
domain slice-specific collectors by indicating the sub-slice Id and the list of KPI to collect per
domain. Once the RANO and NFVO validate the request, SO instantiates and configures the
slice collector agent. The configuration consists of providing information on the Slice ID, the
IP addresses of the Brokers, DB where to store the data pushed by the technological domain
collectors, and the topics to be used to fetch data at the low-level Broker (i.e., sub-slices ID)
as well as topics to publish to at the high-level Broker (i.e., slice ID). SO also needs to inform
the presentation server about the creation of a new slice by communicating the Slice ID. As a
response, the presentation server communicates a URL and credentials to observe the measured
KPI in real-time via a dashboard. SO acknowledges the creation of the network slice and the
monitoring system to CSMF by providing (1) URL and credentials for the dashboard; (2) URL
and the topic where to fetch raw data of the collected monitoring KPI.

RANO Once receiving the request to create a slice-specific data collector from SO for a sub-
slice identified by its RANId, RANO instantiates a slice-dedicated collector agent. The latter is
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configured with the list of KPI to measure as well as the IP address of the message Broker and
the topic to publish to.
To collect KPI from the RAN infrastructure (i.e., eNB/gNB), we rely on the concept of pro-
grammable RAN under investigation by the O-RAN initiative [40]. Programmable RAN allows
opening RAN through a NBI to be exposed by the eNB/gNB to extract monitoring information
or update the configuration on the run-time of eNB/gNB. O-RAN is currently standardizing the
different interfaces between the eNB/gNB and a remote RAN controller or a RAN orchestrator.
In the proposed framework, we use FlexRAN, a programmable RAN initiative on top of the
OpenAirInterface (OAI) eNB/gNB. FlexRAN is composed of an agent sitting at the eNB/gNB.
Its role is to extract information from the eNB/gNB, send them to the FlexRAN controller, and
enforce at run-time an eNB/gNB configuration policy received from the FlexRAN controller; for
instance, to create a new radio slice and assign resources to the network slice. Fig. 3.3 illustrates
the interaction between the RAN data collector and FlexRAN controller as well as RANO. The
RAN data collector periodically requests data on the performance of the sub-slice using the
RANId. The collected data includes all information regarding the sub-slices. Therefore, some
KPIs can directly be mapped to information provided by FlexRAN, while others need to be
obtained by combining different information. The list of RAN KPI supported by our framework
is summarized in Table 3.2.
The RAN slice-specific data collector first extracts the data regarding KPI from FlexRAN, or
uses a local logic to deduce the KPI if not directly available with FlexRAN. Then, it formats
the data by adding meta-data and creates a message using the monitoring protocol described
later. Finally, it publishes the message to the low-lever Broker using RANId as a topic.

Table 3.2: RAN KPIs list

KPI Level Details

Latency-RAN RAN Latency at the RAN (aggregated per slice)

Uplink-data-rate RAN Uplink data rate (aggregated per slice)

Downlink-data-rate RAN Downlink data rate (aggregated per slice)

Packet-Loss-rate RAN
Packet loss at the RAN after attempts

(RLC layer) (aggregated per slice)

IP-rate RAN Packet rate (at PDCP) (aggregated per slice)

Latency-eNB-CN RAN Measured RTT between the RAN and CN

Bandwidth RAN Bandwidth of cells

NFVO The Cloud/Edge slice-specific data collector shares similar features with the RAN data
collector. It is instantiated by NFVO per the request of SO using the NSDId as an identifier. All
the collected data on KPI are published on the same message Broker (the low-level) using the
NSDId as a topic. It formats data by adding meta-data and generates a message using the same
monitoring protocol. In contrast, the Cloud/Edge slice-specific collector relies on other tools to
collect KPI on the running sub-slices, particularly for the VNF. Indeed, the KPI to measure
for Cloud/Edge domain covers the computing resources and virtual network resources used by
the running VNF. Therefore, to collect this data, we rely, in our proposed framework, on the
API provided by VIM. However, as we consider in the proposed framework that all VNFs run
as Cloud-native Network Function (CNF), i.e., using container-based virtualization, Container
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Figure 3.3: RAN KPIs collection sub-system
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Infrastructure Service (CIS) as defined by ETSI [41] replaces the VIM. The CIS is managed by
CIS Manager (CISM), which, technologically speaking, corresponds to the Kubernetes13. Indeed,
Kubernetes provides an NBI that allows collecting several KPIs on the running containers, hence
on VNFs. The Cloud/Edge data collector collects the KPI list communicated by the NFVO by
consuming the Kubernetes NBI API. It is worth noting that Cloud/Edge sub-slice is composed of
a set of VNFs. Thus, NFVO, when instantiating the Cloud/Edge data collector, it communicates
the list of VNF instances (Id, names) known by NFVO and linked to the NSD Id. At the CISM
level (i.e., Kubernetes), VNFs are identified with their Instance ID. It should be noted that in
this work, we relied on Kubernetes NBI to collect KPI, but the platform can use other monitoring
collection systems on top of Kubernetes, such as Prometheus.
Table 3.3 summarizes the list of some KPIs that we consider important in the context of network
slicing and can be measured by the Cloud/Edge data collector.

Table 3.3: NFVO KPIs list

KPI Level Details

CPU-utilization NFVO Aggregated per CNF

Memory-utilization NFVO Aggregated per CNF

Number-instances NFVO Number of ReplicaSets per CNF

Network-Rx NFVO Aggregated per CNF

Network-Tx NFVO Aggregated per CNF

3.3.2 Data Transfer

Monitoring protocol and message format

One of the big challenges that we need to overcome when monitoring the network slice perfor-
mances (i.e., KPI) is the span of resources over different technological domains. Indeed, each
domain has its own system to collect data from the infrastructure. Besides, to the authors best
knowledge, there is no existing data collection protocol available in the literature that can ad-
dress the mentioned concern.Therefore, we propose a novel data collection protocol that defines
common monitoring messages for all the technological domains, aiming to abstract lower-level
technological domains’ infrastructure specificities. Each domain slice-specific data collector will
use these messages to encapsulate a monitoring measure and publish it. By doing so, we first
simplify the aggregation process to be done by the slice data collector at the SO level. Sec-
ond, adding a new technological data collector does not impact the other components of the
monitoring platform, making it easy to extend the platform in the future. The monitoring com-
munication protocol relies on the Publish/Subscribe concept, where the data collectors produce
monitoring data while the slice data collector consumes that data.
All data collected by the technological domain collectors are encapsulated in a common message
format shown in Fig. 3.4. All the fields are detailed in Table 3.4.
Each message shall include the sub-slice ID, Controller ID, Timestamp, metric (or KPI) name,
and value. The latter corresponds to the measured data. The sub-slice ID indicates the ID of
the sub-slice used as a topic for the Publish/Subscribe protocol. The NSSMF field indicates
the name of the orchestrator of the technological domain where the data is coming from. The
Timestamp field indicates the time when the message is generated. This information is very

13https://kubernetes.io/
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Figure 3.4: KPI message structure

Table 3.4: KPI message fields description

Field Description Type

SubSliceId
(required) The Id of the subslice
(the slicing part) from which the

metric was collected.
String

NSSMF
(required) The type of the subslice

orchestrator (NFVO, RANO)
String

Timestamp
(required) The time of the metric

collection
Long

Metric name (required) The name of the metric String

Source
(required) If the Controller Id == NFVO

then it should include the VNF name
String

Labels
A set of key-value pairs that help

in adding information to the metrics

Key: string
value: string,

integer,
boolean

Value (required) The value of the metrics
Double,
Integer
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important as it allows us to correlate the KPI coming from different technological domains, which
will help to understand the network slice performances’ behavior from an end-to-end perspective.
Therefore, all the technological domains should be synchronized using the same clock based on
GPS and IEEE Precision Time Protocol (PTP). The metric name indicates to which KPI the
measured data belongs. The Source field is mandatory only if NSSMF corresponds to NFVO.
Indeed, the source field indicates the VNF name concerned with the measured data. The last
field, namely the label, is not mandatory. It helps to provide multidimensional metrics; for
example, if we consider measuring the Channel Quality Indicator (CQI) as calculated by UE in
RAN, the label field should include the UE Id ( International Mobile Subscriber Identity (IMSI)
or other identifiers).

Data collection servers

The data collection servers are in charge of collecting data from the domain slice-specific data
collector deployed for each running network slice. The data collection servers are hard compo-
nents of the framework as they need to be run in parallel to SO, NFVO, and RANO. The data
collection servers use the Publish/Subscribe protocol with two levels. The first level (high-level)
allows the slice owner to consume the monitoring data regarding its run slice in RAW format.
The Broker used at this level is based on RabbitMQ, a push-based system. This choice is moti-
vated by the fact that RabbitMQ allows more control over the message routing. It offers more
elaborate routing capabilities by providing various exchanges (direct, fan-out, headers, topic).
Therefore, using this type of Broker allows the monitoring platform to control what metrics
to send to each user and avoid requesting that the consumer manage the messages offset from
which it needs to consume. Moreover, the messages are deleted after consumption, which avoids
storing redundant data on a metric for a long period of time. Finally, in RabbitMQ, an inter-
esting feature is the possibility of creating a virtual host (vHost) containing the exchanges and
their corresponding queues of each user. Those vHosts are used to define the users’ permissions
and constitute the user space in the Broker. Based on vHosts, we can ensure multi-tenancy and
isolation between network slices.
The second level (low-level) is internal to the framework components. It allows collecting the
monitoring data generated by the technological domain slice-specific data collector and pushing
the data to the concerned slice data collector (at SO level). The Broker at this level is based
on Kafka. We argue this choice by the fact that Kafka provides routing by topic, which gives
a simple and robust model for internal metrics transfer. Kafka is a pull-based system where
the consumers use an offset to access the messages in a topic, and the messages in a topic have
a retention period, which allows the consumption of the messages multiple times; this cannot
be done using RabbitMQ in which the messages are deleted after consumption. Such a feature
allows more control over the consumed messages. SO can change the offset of the messages to
consume, hence allowing the collection of messages multiple times if needed (in case of database
writing problems or collector failure, which results in the deployment of a new collector that can
access the metrics that were not handled correctly). Another feature is the notion of partitions
within a topic. It allows a group of competitive consumers to get metrics from the same topic in
a round-robin way, making the system’s scaling easier while keeping a simple model of message
routing. Indeed, if the metrics’ rate gets higher, new slice collectors can be instantiated for the
concerned slice.

33



Enabling Zero-Touch Cloud Edge Computing Continuum Management

3.3.3 Data presentation

How data is presented to the user is a very important criterion of a monitoring system. Indeed,
the presentation of monitoring data should be adapted to the level of technical knowledge of
users. Some users may be satisfied only by visualizing the data through a friendly GUI or
dashboard and reacting to any degradation. Other users may want to have access to the RAW
data to store it, and later on, do further analysis using Machine Learning (ML) tools to build
models predicting performances or detecting when a parameter is causing an issue. Therefore,
the proposed platform covers both ways to present data, i.e., using a GUI and providing RAW
data.
Regarding the RAW data, as previously explained, we used the high-level Broker, which is based
on RabbitMQ, to expose the collected data, aggregated by the slice data collector. The user
can fetch the queue identified by the Slice ID, which stores the monitoring messages. It is then
the slice owner’s responsibility to write a program or use a RabbitMQ client to connect to the
message queue and consume data.
Regarding the graphical presentation, the data presentation server entity is in charge of this task.
The data presentation server relies on Grafana14 to expose via a Dashboard the monitoring
messages. Grafana is an open-source, multi-platform, interactive web application for metrics
analysis and visualization. It offers fast and flexible visualizations with a multitude of options
like tables, graphs, and alerts. A large number of data sources are supported by Grafana, from
which we use the InfluxDB15 data source.
Once the data is available at the lower-level Broker, the slice data collector consumes the message,
identifies the subslice, and adds the Slice Id to the metric. The metric then is stored in the KPIs
database, and a measurement per metric name is provided and sent to the corresponding topic
in the external Broker from which the slice owner can consume it. Grafana is configured when
a Network Slice is created by the SO. The SO’s monitoring engine creates a dedicated space for
the slice owner and its running slices by preparing a folder that contains the dashboards that
represent the performances of the user’s slices.
It is worth noting that the network operator is granted full access to all the platform’s monitoring
information. Through Grafana, the network operator can see all the collected monitoring data,
aggregated per slice, or aggregated per technological domain. The same information is available
as RAW data in the KPI DB that can be used to run ML algorithms for troubleshooting
prediction and mitigation, and resource usage optimization.

3.3.4 Data privacy and isolation

Multi-tenancy and network slice isolation are an important feature that the devised monitoring
framework ensures. It is vital that a slice owner has access to monitored data corresponding to
only its running slices. The network slice isolation needs to be mainly enforced when presenting
the data to the network slice owners. In the proposed framework, the presentation server and
the high-level Broker need to guarantee isolation, as they are interfacing with the network slice
owners.
In order to ensure data isolation at the high-level Broker, the Slice ID and vHost are used to
segregate the monitored data on running network slices. The Slice ID is unique and known only
by SO and shared by the latter with the slice owner. The slice owner uses the Slice ID as a
topic to fetch the monitoring data. The Slice ID is also communicated to the presentation server
along with the User ID (Identifier of the Slice owner). By using a combination of User ID, Slice

14https://grafana.com/
15https://www.influxdata.com/
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ID, and vHost, the presentation server can ensure that a slice owner (User ID) can access only
data with respect to its running slices (identified via the Slice ID). It is worth recalling that
the User ID is communicated by CSMF to SO when creating a network slice. SO stores and
associates the User ID with the Slice ID when a network slice is created.

3.4 Performance evaluation

3.4.1 Testing environment

We have implemented the proposed monitoring framework on top of the 5G facility of EURE-
COM deployed in the context of the 5GEvE16 and 5G!Drones17 projects. EURECOM 5G facility
includes all the element introduced in Fig. 3.1, i.e., SO, RANO and NFVO. Besides, it uses Ope-
nAirInterface (OAI) 18 for the RAN infrastructure and a Openshift/Kubernetes for Cloud/Edge.
We have implemented all the components described in Fig. 3.2. Table 3.5. summarizes the used
technologies, which have been adapted and improved.

Table 3.5: The implemented components and the used technologies

Component Technology

SO (NSMF) Python-based

RANO (NSSMF) Python-based

NFVO (NSSMF) Python-based

CISM Kubernetes

Data collection servers RabbitMQ, Kafka

Data presentation server Grafana

NBI API REST

Our experiments were performed on two hosts (Intel(R) Core(TM) i5-9400F CPU @ 2.90GHz
32GB RAM, 6 CPUs without hyper-threading: 1 Thread per core), which form a Kubernetes
cluster using Kubeadm v1.19.5. The cluster represents the CIS infrastructure on top of which
the cloud sub-slices will be deployed. All the platform components run as containers. It should
be noted that the data collector servers (Kafka and RabbitMQ servers), the Data presentation
server (Grafana), KPI DB, and the KPIs engine run in the same Kubernetes name-space to
measure their resource consumption more precisely.
To get insight into the monitoring platform’s performance, we have focused on evaluating two
critical aspects. Firstly, we concentrate on the scalability issue when the number of running slices
is high, where we measured the resource consumption of the whole system when increasing the
number of deployed slices. Secondly, we shed-light on the performances of the system, where we
measured the latency to present a collected data to the external consumer that a tenant deploys
to consume a slice metrics. For all the experiments we used two values of the polling interval
(i.e., interval of time to collect data), 1s and 5s. This will allow us to see the impact of polling
interval on the measured KPI, knowing that 1sec is very demanding in terms of computing
and networking resources. Finally, we collected eight KPI, four on the RAN and four on the
Cloud/Edge.

16https://www.5g-eve.eu/
17https://5gdrones.eu/
18https://openairinterface.org/
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3.4.2 System Scalability

The first presented results correspond to the performance of the monitoring system in terms of
scalability. To obtain these results, we increase the number of network slices to monitor and
measure the consumed computing resources, i.e., CPU and memory. We measured the consumed
CPU and memory of the whole monitoring system, but also per component: data presentation,
data collection, and the slice-specific collectors.

Memory

Fig. 3.5 represents the RAM consumption of the whole system (including the slice-specific
collectors, the data collector serves, and the presentation server) in respect to the number of
network slices. As it is expected, the RAM consumption increases (linearly) with the number
of network slices to monitor. Besides, when the poling interval is small, the CPU consumption
is high. We also remark that when the number of network slices is equal to 50, the RAM
consumption exceeds 7 Gb and 8 Gb, for 5s and 1s of polling interval, respectively.

Figure 3.5: The RAM consumption of the system as a whole in relation to the number of slices and the
polling interval

Now we investigate the RAM consumption per component. Fig. 3.6 and Fig. 3.7 illustrate the
RAM consumption of the slice-specific data collectors and the data collection servers (Brokers),
respectively. Notice that 1MiB = 220 Bytes and 1GiB = 230 Bytes. It is worth noting that only
one curve is shown for both polling intervals as the RAM consumption is merely the same (only
0.1 MiB of difference). This is explained by the fact the poling interval does not impact the
consumption of the collectors. Indeed, the memory space used by the collector is not affected by
the polling interval, since its role is to request the measurements, structure them, and send them
to the Brokers of the data collection servers, which do not require high computing resources. We
recall that three collectors are instantiated per slice; one at SO, and one for each technological
domain. We remark that the slice-specific collectors are consuming merely 80% of the RAM
of the whole system. Obviously, the RAM consumption increases linearly with the number of
monitored network slices; the RAM consumption reaches 6 GiB for a high number of monitored
network slices. On the other hand, we remark that the brokers consume less RAM; less than 2
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GiB and 2.4 GiB, when the number of slices is equal to 50 and for a polling interval of 5s and
1s, respectively.
For the Data presentation server, the RAM consumption is practically constant and is around
20 MiB.

Figure 3.6: The RAM consumption of the slice-specific data collectors in relation to the number of slices
and the polling interval

Figure 3.7: The RAM consumption of the data collection servers (data brokers) in relation to the number
of slices and the polling interval

37



Enabling Zero-Touch Cloud Edge Computing Continuum Management

CPU

To calculate the CPU consumption of the monitoring system elements, we rely on cAdvisor19,
which is a daemon that collects, aggregates, processes, and exports information such as resource
usage and performance characteristics about running containers. CAdvisor is integrated into
Kubernetes and provides a ”container cpu usage seconds total” metric that shows the cumu-
lative CPU time consumed by a given container. This metric is scrapped periodically using
Prometheus. Then, we apply a rate on the time series, i.e., we use a function that calculates
the per-second average rate of increase of the time series in the given time interval, representing
the CPU consumption of a container. Using this way of computing CPU explains the decimal
values of CPU shown in the figures.
Fig. 3.8 shows the entire monitoring system CPU consumption with respect to the number of
monitored network slices for the two polling intervals. Clearly, we observe a similar behavior
as for the RAM, where the CPU consumption increases with the increase of the number of
monitored slices. Besides, the CPU consumption is higher when the polling interval is small; it
reaches 4.5 CPU and 3 CPU for 1s and 5s polling intervals, respectively, while the number of
monitored slices is 50. This means that in a saturated situation, the whole system uses merely
5 CPU and 9 GiB of RAM, which is an acceptable value in modern hardware.

Figure 3.8: The CPU consumption of the system as a whole in relation to the number of slices and the
polling interval

As for the RAM, we will investigate which components are consuming more CPU. Fig. 3.9
and Fig. 3.10 show CPU consumption of the slice-specific collectors and the data collection
servers, respectively. As for the RAM, we remark that the slice-specific collectors consume
more CPU, reaching 2.5 CPU and 3.7 CPU when the number of monitored network slices is 50
and for a polling interval of 5s and 1s, respectively. We also observe that reducing the polling
interval has a strong impact on CPU consumption. When the number of monitored slices is
high, the difference could reach merely double. Meanwhile, the difference is less obvious for the
Brokers, where CPU consumption is not highly impacted by the polling interval. We remark the
same behaviour when increasing the number of monitored slices; i.e., a small impact on CPU
consumption. For instance, for a polling interval of 1s, the difference of consumed CPU between

19https://github.com/google/cadvisor
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10 monitored slices and 50 is around 0.4 CPU. This indicates that the Brokers scale well with
the number of network slices.

Figure 3.9: The CPU consumption of the slice-specific data collectors in relation to the number of slices
and the polling interval

Figure 3.10: The RAM consumption of the data collection servers (data brokers) in relation to the number
of slices and the polling interval

Regarding the data presentation server the CPU usage is very low and is around 0.004 CPU.

3.4.3 End-to-end messages latency

Now we turn our attention to the performance of the monitoring system in terms of latency
to deliver the monitored data to the slice owner. To this aim, we measured the time taken

39



Enabling Zero-Touch Cloud Edge Computing Continuum Management

by the system to collect data and present them to the slice owner. We measure this latency
for the two data collection polling intervals while increasing the number of monitored network
slices. We clearly observe that the latency increases linearly in the case of a polling interval
of 5s but exponentially for 1s. It reaches 160 ms and around 40 ms for a polling interval of
1s and 5s, respectively. This clearly proves the strong impact of the polling interval on the
latency. However, it remains acceptable, less than 1s in each case, and even when the number
of monitored network slices is very high.

Figure 3.11: The end-to-end messages latency in relation to the number of slices and the polling interval

3.5 Conclusion

In this Chapter, we introduced a novel monitoring framework for network slicing in 5G. The
proposed framework solves many issues that arise when monitoring the performances of net-
work slices. First, it is a scalable framework, as slice data collectors are instantiated within a
network slice and deleted when the network slice ends. Second, it allows monitoring resources
of different technological domains and abstracts each domain’s specificity by devising a novel
data collection protocol. Third, aggregate the measured data at the slice level and provide it
to the slice owner as raw data or via a graphical interface. The proposed framework has been
implemented in a 5G facility and extensively evaluated. Obtained results indicate that even if a
high number of network slices are deployed and monitored, the CPU and memory consumption
remain sustainable by current hardware. In addition, the latency to present the data to the slice
owner remains under 1s when a high number of network slices are deployed.
In the next Chapter, we will use the metrics collected by the monitoring system to study the im-
pact of resource configuration on the microservices performance in cloud-native environments.

40



Chapter 4

Microservices Configurations and
the Impact on the Performance in
Cloud Native Environments

4.1 Introduction

In recent years, software development models have shifted from monolithic architectures to
loosely coupled microservices. In the monolithic architecture model, all the components of the
system are part of the same application, making it harder to deploy, manage, and improve
its functionality due to the high coupling and dependence between the components of the ap-
plication. While, in micro-service architecture, an application is decoupled into many loosely
distributed services that have independent and straightforward functions following the single
responsibility principle. Microservices, combined with containerization and container orchestra-
tion solutions such as Kubernetes [3], allowed the emergence of the cloud-native ecosystem. A
recent model in which applications are developed to take full advantage of the distributed com-
puting offered by the cloud. This evolution led many vertical industries to consider migrating
their applications to cloud and Edge environments [42] to get full advantage of the cloud-native
deployment and the benefits that it offers. Indeed, cloud-native offers reliable and self-healing
deployment as containers are deployed using advanced container orchestration solutions such as
Kubernetes, Openshift, etc. These solutions, in addition to the decomposability of the applica-
tions, reduce the points of failures and speed up the recovery in cases where failures occur in a
set of microservices. The cloud-native has an impact not only on the vertical industry but also
on other industries, such as telecommunication. Indeed, the 5th generation of mobile network
(5G) relies on cloud-native to deploy the 5G core network functions, known as Service Based
Architecture (SBA); all the network functions are cloud-ready and can be deployed in containers
on a cloud or edge infrastructure. But despite this shift in application design, one fundamental
problem is setting the configuration (needed computing resources) of individual microservices
(i.e., container) to allow optimal running of the service on the one hand and to optimize the
usage of the available resources on the other hand. Usually, the users or tenants settle for default
configurations and update them manually, which either results in inferior performance or overuse
of the resources in a cloud node. For this, reliance on users for providing resource configuration
is not optimal as users do not have enough knowledge about the workloads, infrastructure, or
orchestration systems [43].
In this Chapter, we run several experiments using a cloud-native platform to find solutions to
overcome the resource configuration challenge. To this end, we study the behaviour of a set of
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applications using different resource configurations and under different loads. We measure the
performance of different types of applications, and we deduce the relationship between the latter
and the resource allocated to the workload (CPU and memory) in both absolute and relative
forms. This relation allows the detection of faulty configurations and the provision of more
optimal configurations for the deployed applications. For the conducted tests, we considered
four representative applications: three represent vertical applications, namely web servers, data
brokers, and database; one represents a 5G core network service, namely Access and Mobility
Management Function (AMF). Besides deriving in a generic way the threshold of CPU and
memory limit from which an application does not run optimally and hence the probability of
failure is high (as a container is killed if it exceeds its limit of resources), the results open several
perspectives. Indeed, we have also constructed different datasets using the experiment results,
which may be used to run Machine Learning (ML) to predict the performances of the workloads
according to their configuration.

4.2 Related Works

Several works tackled the problem of optimising application performance while reducing the
amount of resources used by the latter. Most of the works propose reactive and proactive auto-
scaling methods in containerized deployments. The work in [44] studied the relevance of a set of
metrics to be used as threshold metrics for scaling up and down a container. They concluded that
CPU utilisation is a suitable metric for scaling all classes of micro-services unless the microservice
experiences a change in its characteristics, such as I/O intensive applications. The paper also
proposed a queue-based auto-scaling. However, this solution requires additional modules in the
container orchestrator to queue the requests destined for each service. Another work on the
relevance of metrics [45] studied the difference between absolute versus relative metrics, i.e.,
metrics providing the percentage of resources used by the application from allocated resources,
in microservices autoscaling. They concluded that absolute metrics, such as CPU utilisation
permit more accurate decisions on horizontal autoscaling than relative metrics. This is in the
case of CPU-intensive applications when the relative CPU usage is between 85% and 90%. Work
in [46] proposes a container load prediction model based on the application’s historical data and
using a bidirectional LSTM neural network. The model is trained on selected metrics offered
by a Metrics Selection Module on Kubernetes. However, the solution requires a large amount
of historical data about the performance of the target application, and it does not provide
the best resource configuration for the application in order to handle the surge in load. In
[47], the authors propose a Reinforcement Learning approach to autoscale microservices in the
cloud. It uses two modules: the first one is a threshold-based auto-scaling algorithm deployed on
Kubernetes (GKE), and the second module uses Reinforcement Learning to tune the autoscaler
threshold values to obtain better threshold values to trigger autoscaling. The authors did not
consider the relevance of the initial configuration. Work in [48] argues that a threshold-based
scaling policy like the default Kubernetes HPA is not well suited to satisfy QoS requirements
of latency-sensitive applications, which requires identifying the relationship between a system
metric such as CPU utilisation and application metrics such as response time as well as to
know the application bottlenecks. Their work focuses on CPU utilisation. Autopilot [49] is
the autoscaler used by Google for horizontal and vertical auto-scaling of its internal workloads
running on top of Borg [50]. The paper focuses on vertical auto-scaling of memory allocated
to the workloads. Autopilot uses two main algorithms for vertical autoscaling: the first relies
on an exponentially-smoothed sliding window over historic usage; the other is a Reinforcement
Learning model that runs many variants of the sliding window algorithm and chooses the one
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that would have historically resulted in the best performance for each job. For telecom use
cases, [51] proposes a prediction model that leverages the time series data models and exploits
the relationship of historical data to predict the future workload. The proposed solution scales
horizontally the network function, such as the SGW (Serving Gateway function of the 4G Core
Network). However, the authors did not study the behaviour of the network functions under
different loads and did not study the effects of the single function configuration since the under-
provisioning of memory or CPU can cause service deterioration even if multiple instances are
deployed. Such deterioration can be caused by the container getting Out-of-memory errors or
CPU throttling for individual functions.

4.3 Motivation

As stated earlier, most of the vertical applications are cloud-native and deployed in cloud and
edge environments. However, the migration of services into a new environment introduces
resource allocation difficulties. First, the tenant or the application owner generally does not
have an expert understanding of both the application behaviour and functioning and the cloud-
native environment in which it will be deployed to offer the desired services. Second, although
resource over-provisioning might seem like an easy fix for this problem, this alternative introduces
additional costs over long periods, which is worse when considering multiple instances of a service
to deploy. Furthermore, overprovisioning can lead to resource wastage which is not acceptable
in an edge environment. An over-provision of an edge application will cause an overload of the
Edge server, thus restricting the number of services that can run in the latter. Overprovision is
not optimal when considering node consolidation to reduce energy consumption, as the number
of services to run on a node is not optimal.
On the other hand, if only horizontal scalability is available, the initial configuration of the service
becomes crucial in determining the performance/resources used ratio, and a faulty configuration
of the memory and CPU resources for an application can cause the container to run into Out
Of Memory (OOM) errors and experience CPU throttling or be stopped (which is harmful on
the service availability). The latter can be fixed by increasing the number of instances of the
application, but this will come with the cost of doubling the memory allocated to the service
even though the application can perform as expected using lower memory.
From the above, we investigate the behaviour of different types of services under variable load
and resource limits. Our goal is to improve the initial resource configuration process and provide
vertical scalability based on the limiting resource (CPU or memory). We perform tests to validate
the assumption that CPU and memory relative values can be a strong indicator of the application
performance and explore the cases where it is not.
The trade-off between resource efficiency and the application’s performance is shown in Fig. 4.1.
An application can have different resource configurations (1) an under-provisioning in which the
application’s performance is insufficient while the allocated resources to the application are
lower than required; (2) An over-provisioning in which the application performs with respect to
the Quality of Service (QoS). However, over-provisioning consumes much more resources than
it needs. The last situation needs to be avoided, resulting in higher costs and higher energy
consumption as more resources are needed to run the service.
In our work, we consider a cloud-native edge environment scenario, where tenants (mostly
verticals) provide edge applications without indicating the needed computing resources to run
them adequately, which often results in default configurations used for different applications
and other virtualization platforms. However, using these configurations sometimes results in a
degradation of the performance of the service. To tackle this issue and guarantee the necessary
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Figure 4.1: Trade-off between resource efficiency and application’s performance

memory and CPU to run applications in near-optimal performance while reducing the allocated
resources, we run experiments using 4 types of applications: 1) a Golang web server and a Python
web server, since web applications are widely used and deployed as the frontend of any complex
service; 2) a RabbitMQ message broker, as many applications use the publish-subscribe model
for communication; 3) OpenAirInterface’s 5G Core Network (CN), more specifically the AMF
(Access and Mobility Management Function); 4) MongoDB database as most microservices are
stateless and use a database to store data, and MongoDB is a widely used NoSQL database.
For each application, we experiment with different configurations by changing the CPU limit,
Memory limit, relative CPU usage (i.e. ratio), memory usage ratio, and the number of service
requests received in parallel. For each configuration, we measured the latency to treat a service
request, which reflects the performance of the service in terms of Quality of Service (QoS) seen
by a service consumer.

4.4 Performance evaluation

In this section, we describe the performed tests and the obtained results. We have performed the
tests on top of the cloud-native edge facility of EURECOM. The facility uses a Kubernetes cluster
for container orchestration. We have implemented a benchmarking program that automatically
deploys the application while allocating different resources for each deployment, mainly changes
in CPU and memory allocated. We focused on these two metrics as they are the key resources
used by the application since we did not consider access to storage or network latency and
restrictions as the tested applications are run in the same cluster as the tester process. For each
test, we measured the latency of the service to treat a number of requests received in parallel.

4.4.1 Testing environment

The test facility includes a Kubernetes cluster, which is deployed on top of an Intel server
PowerEdge T440 with 128GB of RAM and 64 Core (Intel(R) Xeon(R) Silver 4216 CPU @
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2.10GHz) with hyperthreading enabled. The cluster was bootstrapped using Kubeadm v1.20.1,
and the host operating system is Ubuntu 18.04.5. All the tested applications (web servers,
RabbitMQ, InfluxDB, and 5G core functions) run as containers in the cluster.
The testbed, shown in Fig. 4.2, includes a Prometheus 1 deployment for metrics collection, a
Container Infrastructure Service Manager (CISM) [52] to manage workloads (automatic creation
and deletion of the applications pods and its necessary Kubernetes services) and software for
load tests such as ApacheBench 2 and RabbitMQ PerfTest 3.

Figure 4.2: The components of the testbed

4.4.2 Obtained results

We performed the tests using the following procedure. First, the test program is configured by
specifying the different combinations of allocated resources. The application is then deployed
with one initial configuration of resources as a container in a Kubernetes pod. Once the container
is running, the application is tested with a gradually increasing load (i.e., number of service
requests in parallel) until all the requests are performed or the pod fails. While the tests are
running, the tester collects resource usage from the Prometheus instance in the cluster and stores
it in a file. Once all the tests are performed and the desired results are collected, the pod is
deleted, and the next pod is deployed with the next configuration.

1https://prometheus.io/
2https://httpd.apache.org/docs/2.4/programs/ab.html
3https://rabbitmq.github.io/rabbitmq-perf-test/stable/htmlsingle/
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Web servers

We used Golang and Python-based web servers for the test. Each request to the web server
returns a video of size 43 MB, which allowed us to overload the server with a lower number
of parallel requests. We used ApacheBench, a command-line program used for benchmarking
HTTP web servers, to produce high traffic. ApacheBench permits to specify the number of
requests that need to be sent to the web server and the level of concurrency, which allows
parallel requests from multiple clients. We used a number of requests ranging from 100 to 1000
and a concurrency level between 1 and 100.
For allocated resources variation, we used configurations with the CPU value ranging between
0.5 and 4 CPUs with an increment of 0.5 CPU, and memory between 70 MB and 500 MB with
5MB increment between 70-100MB and 50MB increment from 100 to 500 MB. The obtained
results from the two web servers were similar. The Golang-based server results are shown in
Fig. 4.3 and Fig. 4.4. The performance/resources trade-off is shown in Fig. 4.3. We can notice
that under different loads, represented by the number of requests sent to the server, the more
CPU the application has, the lower the response latency is. This is true for CPU allocation
between 0.5 and 2 CPUs; afterward, providing more CPU does not improve the latency of the
web application. Fig. 4.4 shows the distribution of the response time. In this experiment, we
consider the relative CPU and memory, which represent the percentage of resources used from
the provided limit. We notice that the higher the relative CPU (shifting vertically from one
graph to the one below) is, the greater the percentage of high response times is. In contrast, the
memory percentage (moving horizontally from left to right) does not change the distribution of
latency values.

Figure 4.3: Web Server’s 95% latency in relation to the allocated CPU

5G AMF

For the second use case, we study the performance of a 5G core network function: the AMF,
which is a control plane function. Its main functions and responsibilities are registration, connec-
tion, as well as mobility management and access authentication and authorization. To obtain the

46



Enabling Zero-Touch Cloud Edge Computing Continuum Management

Figure 4.4: Web Server’s 95% latency statistical distribution

performance of the AMF, we measure the registration time, which represents the time between
the sending of the attachment requests from the UE (User Equipment) until the UE receives
the authentication request.
To perform the test and generate 5G attach requests, we use my5G-RANTester 4, my5G-
RANTester is a tool for emulating control and data planes of the UE and gNB (5G base station).
my5G-RANTester follows the 3GPP Release 15 standard for NG-RAN (Next Generation-Radio
Access Network). my5G-RANTester allows the generation of different workloads and testing of
several functionalities of a 5G core, including its compliance with the 3GPP standards. Scala-
bility is also a relevant feature of the my5G-RANTester, which is able to mimic the behaviour of
a large number of UEs and gNBs accessing a 5G core simultaneously. We deploy an OpenAir-
Interface [53] core network and specify the configuration of the AMF. The explored resource
allocations vary from 0.5 to 4 CPUs with an increment of 0.5 for each test and memory from
256 MB to 4096 MB with an increment of 256 MB for each test. The number of simultaneous
registration requests that are sent to each instance varies between 10 and 400.
The obtained results are shown in Fig. 4.5, where the mean values for registration time (i.e.,
the time needed to complete the User Equipment registration to the network) in relation to the
allocated CPU are displayed. We can observe that AMF performances have the same behaviour
as the webserver. Indeed, we remark that the higher the CPU allocation to the AMF is, the
lower the registration time is. This is valid between 0.5 and 2 CPU, after which the performance
is constant. Fig. 4.6 shows the distribution of registration time. We see that an increase in the
relative CPU results leads to high registration times.

RabbitMQ broker

The third microservice that we tested is a RabbitMQ messages broker. We used RabbitMQ
PerfTest, which is a throughput testing tool that simulates basic workloads and provides the
throughput and the time that a message takes to be consumed by a consumer. For the test, we

4https://github.com/my5G/my5G-RANTester
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Figure 4.5: AMF’s 95% registration time in relation to the allocated CPU

Figure 4.6: 5G AMF’s 95% UE registration time statistical distribution
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used a number of producers and consumers that ranged from 50 to 500. Each producer sends
messages to the broker at a rate of 100 messages per second for a period of time of 90 seconds.
Similar to the precedent tests, we vary the CPU configuration of the RabbitMQ pod from 0.5
to 4 CPU, while we vary the memory from 1024 MB to 4096 with increments of 256 MB.
The results are shown in Fig. 4.7.a, we observe that the response time follows the same trend
which is that the message’s latency gets lower when more CPU is allocated to the broker. Fig.
4.8 shows that the proportion of high latencies is largest when the relative CPU utilization is
between 0.8 and 1.
Interestingly, while testing the broker, and as it is a memory intensive application, even if the
relative memory does not correlate with the message delay time (Fig. 4.8.b, when the allocated
memory was low (around 1024 MB) it resulted in several container restarts due to an OOM
signal. Fig. 4.9 shows the distribution of relative memory values for a memory allocation of less
than 1536 MB. The values shown are the last collected memory before the failure of the pod,
indeed not all failures were caused by OOM exception, but the graph shows that memory usage
was approaching the set limit before the occurrence of the failure.

Figure 4.7: RabbitMQ broker’s 95% message delay in relation to the allocated CPU

MongoDB database

The last application tested is a MongoDB instance. We execute a batch of requests ranging
from 1000 to 10000 with a read write ratio of 90:10. Similar to the previous tests, the CPU
allocated to the pod of MongoDB ranges from 0.5 to 4 CPU, and memory allocation from 256
MB to 4096 MB. Fig. 4.10 shows the distribution of operations time in relation to the relative
CPU and memory. We can observe the same trend as the previous tests: when the percentage
of CPU consumed gets higher, the proportion of high operation times increases.

4.4.3 Discussion

The obtained results obviously show a strong relationship between the allocated resources and
the performance of the service. The more resources the application has, the better its perfor-
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(a) Distribution according to CPU relative
value

(b) Distribution according to Memory
relative value

Figure 4.8: RabbitMQ broker’s 95% message delay statistical distribution

mance, which is valid until it reaches peak performance. The results confirm the assumption of
Fig. 4.1. We showed the effect of CPU allocation on the performance, where we clearly observed
that for the same load, the response time of the service is lower when more CPU is allocated. It
continues to decrease until it reaches an optimum performance, after which additional resources
do not make the performance better, which means that a proportion of allocated resources is
wasted.
Another important measure is the relative CPU. From the obtained results, we remarked that
when an application’s CPU usage approaches the limit allocated to the latter, the distribution of
response times tends toward higher response time. Consequently, in order to detect performance
degradation of applications that do not provide measures about their performances, like the
latency of treated requests that is available only at the application level and difficult to derive by
monitoring the infrastructure. The relative CPU and relative memory values are good indicators
for (1) the application performance, where the relative CPU values indicate the service load and,
consequently, the probability of occurrence of high response times. Indeed, the higher the relative
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(a) Distribution when allocated Memory ≤
1536 MB

(b) Distribution when allocated Memory =
1024 MB

Figure 4.9: RabbitMQ last recorder relative memory before pod failure

Figure 4.10: Database’s 95% operation duration statistical distribution

CPU is, the higher the response time of a server is, whatever the type of service and the number
of service requests. This finding is very important to cloud/edge providers in order to detect
early misconfiguration of the service in terms of needed resources and anticipate any Service
Level Agreement (SLA) issues with the tenant. Second, the relative memory consumption alerts
on the occurrence of OOM signals that result in the restart of the container deploying the service,
which leads to disturbing the service continuity and hence the service availability.
Finally, using the obtained results, we have implemented monitoring in our edge facility that
alerts on the values of the relative CPU and memory values by aiming to keep the relative
CPU and memory values less than 0.8, which anticipates any misconfiguration of application
resources. The alerts provide feedback about the application’s configuration. This process helps
validate the vertical resources request and assists him in finding the best configuration for the
service according to the relative values of CPU and memory. If the resource usage/limit ratio
approaches one, we update the Edge application with more resources to avoid performance
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degradation and service disturbance.

4.5 Conclusion

In this Chapter, we presented a study on application performance in a cloud-native and con-
tainerized environment. We have run different experiments using representative vertical appli-
cations, including a telecommunication network function. All the applications were tested under
different resource configurations (CPU and memory) and loads. The obtained results provide
useful insights into the behaviour of the workloads and the relation between resource usage
and application performance. From those insights, we concluded that relative CPU usage is
an important indicator of the relevance of the initial application resources configuration. The
higher this value is, the more likely the applications will experience performance deterioration.
In comparison, relative memory usage is an important indicator of the risk of occurrence of out
of memory errors and, hence, service disruption.
In the next Chapter, we use the different datasets we have constructed using these experiments
to build ML and XAI-enabled applications to anticipate and correct resource misconfiguration
by autoscaling applications’ resources in a fine-granular manner.
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Chapter 5

XAI-Enabled Fine Granular Vertical
Resources Autoscaler

5.1 Introduction

The cloud-native concept was born with the advent and the success of cloud resource virtual-
ization (computing, storage, and networking) relying on container technology [54]. In a cloud-
native architecture, cloud applications and services are no longer deployed as monolithic blocks
but rather as loosely coupled microservices. Each microservice is deployed as a container and
managed using container orchestration engines and platforms like Kubernetes. In contrast to
the traditional monolithic model, running applications as containerized microservices permits
more agility and flexibility by facilitating development, upgrades, maintenance, and hence De-
vOps operations. However, running microservices in a cloud-native architecture opens the door
for new challenges when managing both the application life-cycle and cloud resources [55] [56].
One of the critical challenges is scaling the microservices resources under dynamic workload
variations and resource demands. Indeed, before deploying users’ applications or services, cloud
operators identify the number of virtual instances needed during the execution of the workload
as well as the required resources for each application instance, such as the type and number
of virtual machines or the number of pod replicas and resources needed for each pod in the
Kubernetes cluster. It is well-accepted that estimating the needed resources of an application,
i.e., the adequate combination of memory, CPU, and the number of concurrent instances, to
avoid service degradation is a challenging task. The number of replicas and the needed com-
puting resources to optimally handle a given application may vary over time due, for instance,
to the time period or the application’s popularity (i.e., an increase in popularity). Accordingly,
it is important to design an intelligent and efficient management system that, throughout the
life-cycle of a microservice, computes the needed resources of microservices to run optimally and
avoid service degradation.
One of the key functions of the cloud-native management system is the scaler algorithm. The
latter’s role is to compute: (1) the needed application instances or virtual instances, known as
“horizontal scaling”; or (2) the amount of computing resources per instance, known as “verti-
cal scaling”. Several solutions have been proposed to devise intelligent and autonomous scaler
solutions, which largely leverage machine learning (ML) algorithms and, in particular, Rein-
forcement Learning (RL) [57][58]. These solutions mainly learn microservices’ load patterns
as well as traffic changes and generate the learning models able to predict each microservice’s
needs and scale the vertical resources. However, the scaling approach triggered after the ML
algorithm prediction consists of simply doubling or multiplying by a factor the dedicated CPU
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and memory assigned to the microservice [59]. Scaling the CPU and memory is not optimal, as
not all applications are simultaneously sensitive to CPU and memory. Some microservices are
sensitive to CPU or memory, while only a few are sensitive to both [60]. Therefore, scaling both
computing resources may negatively impact resource usage (waste of resources) and, hence, on
other critical metrics, particularly energy consumption.
In this Chapter, we propose a Zero-touch Service Management (ZSM) framework featuring
a fine-granular resource scaler algorithm to run microservices in a cloud-native environment
optimally. The proposed scaler algorithm relies on ML models to predict the performances of
the run microservice. When a service degradation is detected, eXplainable Artificial Intelligence
(XAI) algorithms are used to interpret the ML prediction and deduce which features led to that
bad performance. More specifically, our framework relies first on an ML algorithm based on
eXtreme Gradient Boosting (XGBoost) [61] to predict any violations related to the performance
of running applications. Here, we use the application response time metric to characterize the
application performance. The trained ML model considers many features related to CPU and
memory, namely CPU usage, CPU limit, memory usage, and memory limit. Parallelly, an
XAI algorithm is run, namely SHapley Additive exPlanations (SHAP) [16], to deduce the most
important features that yield such violation using ML outputs. By knowing the root cause of the
performance violation, the autoscaler algorithm scales the CPU, memory, or both. Regarding
the scale-down process, we consider a threshold-based approach for CPU and memory, in which a
scale-down is possible. But, in order to avoid a ping-pong effect (repetitive scale down and scale
up), we also consider a stabilization period after a scale-up where a scale-down process is not
allowed. The proposed vertical autoscaling framework can be combined with existing horizontal
scaling mechanisms in order to achieve both vertical and horizontal resources autoscaling.

5.2 Related Work

In this section, we briefly overview some of the most significant works on ML-based resource
autoscaling in cloud-native systems.
In [62], the authors designed Autopilot as horizontal and vertical autoscaling of resources at
Google. It mainly aims to minimize slack, i.e., the difference between capacity and real-time
resource usage, while ensuring the stable performance of running tasks. Autopilot leveraged ma-
chine learning algorithms on top of historical data related to tasks/jobs executions. In particular,
Autopilot relies on two main algorithms. The first one enables an exponentially-smoothed slid-
ing window, while the second one is based on reinforcement learning (RL) to select the suitable
sliding window algorithm, which gives better performance for each task/job. Practical results
show that Autopilot succeeds in reducing, on one hand, the slack to 23%, against 46% for
manually-scaled tasks; on the other hand, the number of tasks impacted by out-of-memory by
a factor of 10. The authors in [55] proposed a model-based RL scheme to enable both horizon-
tal and vertical auto-scaling mechanisms of container-based applications. The designed model
considers several criteria in its auto-scaling, including application performance, resource cost,
and adaptation cost. Furthermore, the proposed scheme is integrated into Docker Swarm to
realize an Elastic Docker Swarm (EDS). The obtained results show the efficiency and flexibil-
ity of EDS in leveraging RL with respect to other existing elasticity policies. The challenge
of ensuring end-to-end Service Level Agreement (SLA) while improving resource allocation to
microservices is addressed in [56]. The authors proposed a novel SLA-Aware scheme based on
Bayesian Optimization to assign necessary resources to meet applications’ performance. This
scheme is evaluated on top of a real microservice workload, where the results clearly demonstrate
the ability to meet the requirements of each microservice and find Pareto-optimal solutions. In
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the same context, a smart autoscaling system for cloud microservices-based applications consid-
ering applications’ constraints has been introduced in [63]. The proposed autoscaler comprises
two main modules: (i) the first one monitors the microservices requirements regarding resources
through a generic autoscaling scheme integrated into the Google Kubernetes Engine. This mod-
ule auto-scales Kubernetes with respect to the running application needs; (ii) based on the
resource requirements and applications QoS, the second one leverages RL and deploys a set of
agents to learn and determine the autoscaling thresholds concerning resource utilization and the
maximum number of pods.
The above works mainly leverage deep learning (DL) algorithms, in particular reinforcement
learning, to optimize the horizontal/vertical autoscaling of cloud applications. However, the
main drawback of such works is the black-box deployment of DL/RL-based models. Specif-
ically, DL/RL models are becoming more and more complex, i.e., it is hard to understand
their inner workings, especially by non-expert users. Moreover, the DL/RL models give pre-
dictions/decisions about scaling up/down without any interpretations or explanations on how
and why such outputs are made. Hence, the corresponding users (or container orchestration
tools) can neither trust and understand DL/RL models’ outputs nor optimize their decisions
with respect to DL/RL model outputs. To overcome these limits, we leverage the emerging ex-
plainable AI paradigm to design a novel vertical autoscaling framework. XAI enables not only
interpreting and explaining predictions made by ML models but also helps in making suitable
decisions, e.g., scaling up or down CPU, memory, or both, based on the provided explanations.
To the best of our knowledge, this is the first work that combines ML and XAI models to design
a vertical and explainable autoscaling framework.

5.3 Design and specification of the proposed autoscaler frame-
work

Figure 5.1: Zero touch network framework architecture
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5.3.1 The envisioned ZSM architecture

To achieve the concept of a fine-granular vertical auto-scaler in a cloud-native environment,
we propose a novel ZSM framework that combines both ML and XAI. The proposed ZSM
framework encloses a closed-control loop that monitors, analyses, and derives appropriate life-
cycle decisions regarding a microservice, mainly the vertical scaling of computing resources. The
component in charge of the vertical scaling (noted vertical scaler) is part of the decision-making
function of the closed-control loop. The latter runs autonomously without external intervention
and follows the same design of the closed-control loop introduced in [11]; i.e., composed of three
key components: (1) Monitoring System (MS) that collects Key Performance Indicator (KPI)
regarding the performance of running microservices, such as CPU and memory consumption.
(2) Analytical Engine (AE) that uses the collected KPI by MS to analyze the microservice
performance behavior and detect Quality of Service (QoS) degradation. To run the analysis,
AE may rely on an ML algorithm, which is, in our case, based on XGBoost, to predict the
latency performance of a microservice. In contrast to [11], our AE runs, in parallel, the XAI
algorithm to interpret the ML output. (3) Decision Engine (DE) runs the life-cycle decision-
making process to overcome service degradation. It relies on AE analysis and takes the ML
prediction (QoS performance) and its explanation as input. In our solution, DE contains the
vertical autoscaler algorithm that scales up resources when a service degradation is detected.
The closed-control loop system enables the automatic scaling of vertical microservice resources.
Fig. 6.3 illustrates a generic architecture of the proposed ZSM framework. We assume that all
microservices run in a cloud-native environment. The figure separates between the closed-control
loop components described in the preceding paragraph and the virtualized infrastructure and
its manager. The latter is known as the assisted system based on ETSI Experiential Networked
Intelligence (ENI) group’s notation [64]. According to ETSI cloud-native report [65], the cloud-
native equivalent of a hypervisor is Container Infrastructure Service (CIS), which provides all
the runtime infrastructural dependencies for one or more container virtualization technologies.
In contrast, Container Infrastructure Service Management (CISM) is a cloud-native equivalent
of Virtualized Infrastructure Manager (VIM). Technologically speaking, CSIM may correspond
to Kubernetes. Regarding the closed-control loop, MS monitors the KPI from CIS regarding the
container’s resource usage, such as CPU and memory consumption. In our case, we extracted
information regarding computing resource consumption (CPU, memory) that AE will use to
predict the performance of the microservice at the service level. Here, we are interested in
predicting QoS as perceived by the end-users. In the context of a web server, the metric reflecting
the QoS can be the response time, i.e., the time a web server takes to answer a client request.
Usually, high service time means the server is overloaded and cannot handle the requests in a
bounded time, hence degrading the user’s quality of experience. AE runs the trained ML model
along with the XAI algorithm to predict whether the response time corresponds to service
degradation. The XAI module uses both the collected KPI as well as the ML prediction to
provide an explanation. Both the explanation and the prediction are transmitted to DE and,
more precisely, to the Diagnostic Engine module (Fig. 6.3). The latter uses the output of the
AI model responsible for detecting whether the application response time is appropriate or not.
It also receives explanations from the XAI module about inference. The explanation gives the
contribution of the features to the model output, which means that if the model detects a high
response time occurrence (i.e., QoS degradation), the XAI output indicates the contribution
of the application’s resource features in this result. These characteristics are related to either
CPU usage or memory usage. The diagnostic engine then detects the element that caused the
high response time. This information is then passed to the vertical autoscaler algorithm, which
makes a decision on which resource to scale, hence performing a fine-granular scaling rather
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than blindly scaling both CPU and memory. It is worth noting that the autoscaler decision
is enforced using the northbound API exposed by CISM that allows updating the resources
dedicated to the container running the application by modifying the application’s controller
object of Kubernetes. Afterward, the Kubernetes controller will rollout a new instance with the
new resources definition and delete the old instance.
Regarding the scaling down process, we use a stabilization period after a scale-up in which scaling
down will not be performed in order to avoid resource scaling oscillations, i.e., the autoscaler
performs one action and, after a short period, performs the opposite action. If no performance
drop has been detected during the last few seconds of the stabilization period, a scaling down is
possible. To perform this operation, we rely on historical data on resource usage. For memory, if
during the last stabilization period, the maximum memory usage was under a chosen percentage,
then a scaling down of memory resources is possible. For CPU, if the mean CPU usage during
the last stabilization period was less than a certain percentage, then a scale down of CPU
resources can be performed. It is worth noting that the scaling down process has no impact
on the granularity of the resource allocation. Indeed, when scaling down an application, the
resources are released and can be used by another running application instance.

5.3.2 Analytical Engine (AE)

The analytical engine is responsible for analyzing the microservices’ performance and detecting
QoS degradation. It is composed of two main components: (1) the AI model, which is based on
XGBoost, to predict the latency performance of a microservice. (2) The XAI model interprets
the output of the AI model using SHAP. Before describing the functioning of these components,
we describe the data generation process where we perform a benchmarking of different types of
applications.

Data generation

Figure 5.2: Web Server’s latency in relation to the allocated CPU

In the work described in the previous Chapter (4), we built a dataset containing information
about different applications’ resource usage and performance, including web servers, data bro-
kers, and 5G Core Network functions. The performance of the applications is measured using
the response time to the client requests. Each tuple of the dataset contains the following in-
formation: the memory and CPU allocated to the workload, the memory, and CPU used by
the application, the application response time, and the load on the application. The latter is
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Figure 5.3: Web Server’s latency statistical distribution

measured by the number of concurrent requests received by the application during an interval
of time. Fig. 5.2 shows the response time of the webserver in relation to the CPU allocated, we
can notice that under different loads, represented by the number of concurrent clients sending
requests to the server, the more CPU the application has, the lower the response latency is.
Moreover, in Fig. 5.3 we show the distribution of the response time of the webserver. We con-
sider the relative CPU and memory, which represent the percentage of resources used from the
provided limit. We notice that the higher the relative CPU is, by comparing the distribution
while the relative CPU is between 0 and 0.2 and between 0.8 and 1, the greater the percentage
of high response times is. In contrast, the memory percentage does not change the distribution
of latency values. For more information the complete dataset is available in [66].

ML training

Considering the collected dataset, we can observe that the resources allocated to the application
and the relative usage of resources are related to the performance of the application. First,
the allocated resources show the limit of performance; the application with fewer available
resources will perform worse. Second, the relative resource utilization indicates the possibility
of the occurrence of high response times, which means that the degradation of the application
performance is more likely to occur when the resource utilization approaches the limit allocated
to the application. Therefore, we implement an ML model using the XGBoost classifier to
detect performance deteriorations of the application. The model uses resource usage and limits
information which can be collected on the running applications via the MS.
XGBoost is a scalable ML system for tree boosting. It implements the gradient-boosted trees
algorithm, a supervised learning algorithm that can be used for regression or classification tasks.
We train the XGBoost classifier to detect the application’s performance drop based on resource
usage patterns.
To train the XGBoost classifier on the web server’s dataset, we label the dataset’s lines as QoS
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respected or QoS not respected when the response time is lower or higher than a threshold,
respectively. Finally, the model gets the following information as input: memory limit, memory
usage, CPU limit, CPU usage, relative CPU, and relative memory. Those metrics can be col-
lected for all the running workloads via MS during runtime. Based on the label and the resource
usage, the model classifies the performance of the application, using the resource consumption
of the workload, into respecting QoS or not based on the resource usage and limit.
During training, we compared several classification algorithms: K-Nearest Neighbors classifier,
Artificial neural network classifier, logistic regression, Random forests, and XGBoost classifier.
The XGBoost model was selected based on the classification report by comparing the precision
and recall for class 0, which represents the performance degradation of the service. The model’s
accuracy was 0.95, and the precision and recall for both classes (0 for Qos not respected and 1
for QoS respected) were respectively 0.86, 0.74 for class 0, and 0.97, 0.99 for class 1.

XAI

The second element of the analytical engine is the XAI module, which is responsible for inter-
preting the output of the AI model. Several XAI techniques exist and can be classified into global
or local explanation techniques. Global explanation techniques, such as SHAP, are applied to
obtain the general behavior of a model by attempting to explain the whole logic of a model by
inspecting its structure. On the other hand, local explanation techniques, such as SHAP and
LIME [20], tackle explainability by segmenting the solution space and giving explanations to
less complex solution subspaces that are relevant to the whole model. These explanations can
be formed through techniques with the differentiating property that only explain part of the
whole system’s functioning.
The XAI module of the AE relies on the local explanation method based on SHAP to compute
the scores of the features contributing to the model’s output. The module’s output is the
contribution score values of the features to the output. Fig. 5.4 represents a visualization of an
output of the SHAP method for an ML prediction. The negative values indicate that the feature
pushes the model’s output towards the output 0. while the positive values signify that the feature
pushes the output of the model towards the positive output 1. For this inference, the XAI module
reports the following Shapley values or scores of the features, ordered by decreasing contribution
to the model output: CPU percentage -2.56, meaning that the CPU percentage value pushed
the model towards the output 0 (SLA not respected) with a score of 2.56, the second affecting
feature is RAM limit with a score of -1.81, the next contributing feature is RAM usage with a
score of +0.99 meaning that this feature pushed the model towards the output 1 (SLA respected)
with a score of 0.99; for the less impacting features, the XAI module indicates CPU usage +0.71,
RAM percentage -0.38, and CPU limit -0.13.
Afterward, the selection of the resources to scale up is made at the DE level. This is done
by comparing the weighted sum of the contribution of the features related to CPU resources
with the weighted sum of the contribution of resources related to memory resources. We can
deduce from the previous scores that the combined score of CPU-related features is -1.98 and
memory -1.2, meaning that CPU-related features have more influence on the model decision.
Therefore, the DE decides that the cause of the performance drop is insufficient CPU allocation.
This information allows the vertical autoscaler to decide to allocate more CPU resources to the
workload.
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Figure 5.4: Shapley values provided by the SHAP method

5.4 Performance evaluation

In this section, we present the results of validating the ZSM components (i.e., MS, AE, and
DE) and testing the XAI-based vertical auto scaling framework. For the sake of comparison, we
implemented two versions of the vertical scaler. The first one includes the XAI module, whereas
the second implementation does not. Next, we provide metrics on the efficiency of autoscaling,
i.e., the amount of resources allocated to the workload regarding the performance achieved by the
workload. We demonstrate the benefits of introducing XAI into resource management both at
the application level by achieving better performance and at the infrastructure level by reducing
resource usage, achieving the goals of both the service owner and the network provider.

5.4.1 Testing Environment

The test facility includes a Kubernetes cluster, which is deployed on top of an Intel server
PowerEdge T440 with 128GB of RAM and 64 Core (Intel(R) Xeon(R) Silver 4216 CPU @
2.10GHz) with hyper-threading enabled. The cluster was bootstrapped using Kubeadm v1.21.1,
and the host operating system is Ubuntu 18.04.5. All the framework components and the tested
application run as containers in the cluster. The cluster has a Prometheus deployment for pods
and node metrics collection used by MS to collect KPI regarding the infrastructure (i.e., CPU
and memory usage of applications).
During the performance evaluation, we run a web server as the target application to be scaled.
The application instances are deployed on the Kubernetes cluster as pods with an initial resource
configuration of 64MB of memory and 0.25 CPU core.

5.4.2 Performance results

For the tests, we use two versions of the vertical autoscaler, an XAI-based autoscaler to vertically
scale the web server instances resources and one without using the XAI output. The running
application is exposed to requests load produced by a test component that uses ApacheBench1

1https://httpd.apache.org/
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Figure 5.5: Evolution of CPU and allocated RAM using the XAI-assisted autoscaler

to make a number of concurrent HTTP requests. We refer to a test round as a set of N requests
made by C concurrent clients.
It is worth recalling that AE runs the ML model to predict QoS degradation. The latter was
trained on the dataset related to the performance of web servers under changing configurations.
If the model detects degradation, the XAI module is called. The XAI takes as input both the
ML output as well as the data set to return the Shapley (or score) values of the features as a
numerical score. Then the diagnostic engine of DE compares the weighted sum of the memory-
related features scores with the weighted sum of the CPU-related features scores. This output
will allow the autoscaler to decide what type of resources need to be scaled.
In case the XAI module is not involved, the autoscaler obtains information about the service’s
state using only the ML module’s output (XGBoost); it has no information about the contri-
bution of the features to the model output. If degradation is detected, both CPU and memory
resources are scaled.

Application’s performance evolution

In this test, we run a web application with an initial configuration of 0.25 CPU core and 64
MB of memory. We perform 35 rounds of requests to the application with a load that uses a
concurrency level of 50 clients, making 250 total requests, followed by 15 rounds of requests with
a concurrency level of 10 clients, making 200 requests in total. Parallelly, we note the vertical
autoscaling decisions (i.e., scale down or up) and measure the application’s response time and
resource utilization during each round of requests.
Figs. 5.5 and 5.6 show the results of the two key metrics regarding resource usage, CPU and
RAM, obtained when the autoscaler decision is taken with and without the help of XAI, respec-
tively. Both figures represent the evolution of the PoD’s CPU limit, CPU usage, RAM limit,
and RAM usage according to the request round number. The vertical dashed line after round
35 indicates a reduced load on the application. Regarding the case of the autoscaler using XAI
(Fig. 5.5) and based on the response time, we observe both changes in the resources allocated to
the application and their effect on its performance shown in Fig. 5.7. The application initially
receives the first twelve rounds of requests, after which, based on the metrics on pod resource
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Figure 5.6: Evolution of CPU and allocated RAM using the autoscaler without XAI module’s assistance

usage that are collected by the monitoring system, the ML module detects that the application
performances degrade (i.e., an increase in the response time). For this ML prediction (i.e., in-
ference), the XAI module reports the Shapley values or scores of the features shown in Fig. 5.4.
As described in section 5.3.2, the DE concludes that insufficient CPU allocation is the cause
of the performance drop. Consequently, the vertical autoscaler decides to allocate more CPU
resources to the workload. This operation increases the CPU limit for the application; it can be
observed in the metrics of round 13 as we notice in Fig. 5.5.a that the amount of CPU allocated
to the application is 0.5 Core instead of the previous 0.25 Core. Similarly, we notice changes in
the resources allocated to the pod at round 15, as the CPU has increased from 0.5 Core to 0.75
Core, and at round 22 from Fig. 5.6.b, the memory allocated to the application has increased
from 64MB to 128MB. At these same points, we notice the effect of the autoscaler decisions on
the application response time. It drops from 20 seconds to about 4 seconds after round 16.
After round 35, the load on the application is reduced to a concurrency level of 10 clients. We
observe that the vertical autoscaler took decisions to scale down both CPU and memory at (1)
round 34, the CPU allocated to the container is reduced to 0.5 Core, and the memory is reduced
to 64 MB; (2) round 37, the CPU allocated to the container is decreased to 0.25 Core. We can
also remark, from Fig. 5.7, that the application’s response time remains constant after round
35.
When the diagnostic engine has no access to the XAI module output (i.e., no information about
the contribution of the features to the model output) (Fig. 5.6), the cause detection at this level
is less granular, which leads the autoscaler’s decision to be less specific to the type of resource
(CPU or memory); hence both resources are increased.
In this scenario, and by comparing the response time of the application in both cases, shown
in Fig. 5.7, we can conclude that the introduction of the XAI module allowed the vertical
autoscaler to provide lesser resources to the application (less memory) to achieve the same level
of performance (a response time of around 4 seconds).
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Figure 5.7: Evolution of the application performance (response time) using the autoscaler with and
without XAI module’s assistance

Testing multiple instances while varying the load on the auto-scaled applications

This time we perform an extensive test regarding the performances of the two vertical au-
toscalers. Hence, we deploy 30 applications and we vary the load to which each application
is exposed. The application is first deployed with an initial resource configuration of 0.5 Core
of CPU and 128MB of memory. The number of concurrent clients sending requests to each
application varies from 10 to 100, while the number of requests varies from 90 when using 10
concurrent clients to 450 when a concurrency level of 100 is used. Finally, we perform 100
rounds for each concurrency level. For each application, the pod configuration is reinitialized
afterward. Resulting in a total of 300 application instances to be scaled by each autoscaler (30
services exposed to a load varying from 10 to 100).
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Figure 5.8: Highest values of CPU and RAM allocated to an instance of the applications in relation to
the number of concurrent clients

Fig. 5.8 shows the highest amount of CPU allocated to the pod running the application for each
load (Fig.5.8.a) and the highest amount of memory allocated to the pod (Fig.5.8.b) for both
vertical autoscalers. Whereas, Fig. 5.9 illustrates the mean response time of the 30 applications
for the 100 rounds of requests that each scaled application receives.
During the experimentation, the 300 instances that have been scaled using the XAI-based au-
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Figure 5.9: Mean response time in relation to the number of concurrent clients

toscaler employed a total of 184.25 cores of CPU and 29.312 GB of memory, while the 300
instances that have been scaled using the non-XAI-based autoscaler used a total of 188.0 core
of CPU and 48.128 GB of memory. Thus, the percentage of memory gained is 39%, while the
percentage of CPU resources gained is 1%.
By comparing the decisions of the two vertical autoscalers we observe that the XAI-based one
allocates less memory to the application for all amounts of load. In contrast, it allocates the same
or more CPU than the non-XAI-based autoscaler. These results clearly show the fine granularity
of the resource allocation achieved by the XAI-based autoscaler, thanks to the ability of the latter
to determine the factors that led to performance degradation. Moreover, from the response time
plot, we observe that the mean response time of the applications while being managed by both
vertical autoscalers is approximately equal, meaning that the allocation of lower resources by
the XAI-based autoscaler did not affect the applications’ performances.

5.5 Conclusion

In this Chapter, we introduced a ZSM framework featuring ML and XAI to achieve fine-granular
resource management in a cloud-native environment. The proposed framework relies on a novel
closed-control loop to ensure vertical scaling of application resources (i.e., computing). Unlike
the existing solutions, the proposed closed-control loop combines ML and XAI to detect ser-
vice degradation and select the appropriate resource to scale up instead of scaling all types
of computing resources. All the proposed framework components (including the closed-control
loop) have been implemented on top of Kubernetes, where the focus was to evaluate the vertical
scaler that relies on XAI using, as an example, a web server. The obtained results showed the
benefit of introducing XAI in resource auto-scaling, allowing the latter to achieve fine-granular
resource allocation. Indeed, for the same performance (same response time), XAI-based au-
toscaler allows using lesser computing resources (CPU, memory). Therefore, knowing the root
cause of application degradation via XAI enables more efficient use of the resources available in
the infrastructure.
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Chapter 6

Energy Aware Applications
Deployment on Cloud Edge
Continuum Infrastructure Using
Applications Profiles

6.1 Introduction

In the previous chapters, we presented a monitoring system for applications, performed profiling
of a set of applications, and implemented the functionality of fine-granular scaling of applications’
resources. Thus allowing the Cloud Edge Computing Continuum Manager (CECCM) to have
an overview of the behavior of applications and the evolution of their requirements based on
their workloads.
In this chapter, we leverage both application profiles and infrastructure profiles to operate the
Life-Cycle Management (LCM) of applications, from location of execution, resource allocation,
and migration. The LCM procedures are done while taking into consideration the carbon foot-
print of the running application. In order to achieve this objective:

1. We propose an architecture of CECC Application Orchestrator. The architecture leverages
applications and infrastructure profiling to efficiently manage the CECC applications. This
profiling is done using the monitoring information, including energy metrics and carbon
intensity of infrastructures.

2. We propose a modeling for applications profiles from the point of view of the CECC
Manager, the profile represents the application’s current and future compute and network
requirements. The profile is constructed based on the historical compute and network
resources usage of the application using statistical methods.

3. We profile infrastructure energy consumption and carbon footprint using the energy mon-
itoring system Kepler [4] and the energy sources’ carbon intensity.

4. We model the problem of selecting the best locations to deploy or migrate applications
to while minimizing the deployment’s cost and the carbon footprint. The model decides
the current and future placements of each application based on the application profile,
the availability constraints of the application, and the available infrastructure resources.
Further, we propose a heuristic solution to solve the problem rapidly. We compare the
different trade-off between carbon and cost efficiency in different scenarios.
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6.2 Related works

Several works tackled the challenge of application placement and migration. First, taking into
consideration the energy consumption while deploying microservice in a Kubernetes environ-
ment, in [67], the authors present a scheduler for Kubernetes, KEIDS, in edge-cloud environ-
ments for IIoT with the view to minimize the carbon footprint rate while enhancing the per-
formance and energy efficiency. KEIDS is a multi-cluster scheduling controller for Kubernetes,
which aims to enhance performance and energy efficiency. While operating inside Kubernetes
clusters to reduce the energy footprint, KEIDS can be used to schedule pods in CECC infras-
tructures managed by Kubernetes. Another work, [68], focused on minimizing carbon footprints.
It present an approach that exploits the elasticity of batch workloads in the cloud to optimize
their carbon emissions. The authors’ approach is based on the notion of carbon scaling, similar
to cloud autoscaling, where a job dynamically varies its server allocation based on fluctuations in
the carbon cost of the grid’s energy. However, this method overlooks the downtime associated
with job migration. Moreover, in [69], the authors present a microservice placement method
employing workload profiling over multiple clusters. The work proposes a framework that uses
empirical workload profiling, by resource variation monitoring, to acquire micro services re-
sources consumption while responding to workloads repeatedly. Then, the obtained results are
fed to the placement model, which selects the best location to run the microservice. However,
the framework does not manage the application’s life cycle, meaning that it only takes care of
the initial deployment of the application. Thus, it does not consider the possible change of load
on the microservices, which can increase the application resource requirements.
Another work, [70], introduces a system that enables services migration triggered by the users
mobility by facilitating docker container’s migration. Their proposed framework consists of three
main components: a single cloud component used to facilitate communications from behind
NATed networks, one or more edge computing platforms on which the migration server and the
docker containers are run, , and The user’s mobile device. The framework migrates microservices
by transferring their containers in a halted state to the destination location. However, the work
does not take into account the evolution of application requirements as it only considers the
users’ mobility to trigger migration.
The management of containerized cloud-native applications cannot be achieved without orches-
tration tools. Over the past decade, Kubernetes[3] has emerged as the de facto cloud operating
system, facilitating container orchestration. To address resource constraints in environments
with limited resources, lighter versions of Kubernetes have been developed such as MicroK8s1,
K3s 2. Work proposed in [71] presents a system that tackles the scaling of nodes at the far edge.
addressing the challenge of managing all the data plane servers via the few control plane node.
The work propose a push systems where the control plane nodes push the configuration to the
data plane nodes, to avoid the overwhelming of the control plane by configuration pull requests.
In contrast to Kubernetes, which follows a pull model where data planes request information
from the API servers available at the control nodes.

6.3 Application profiling

Application profiling has gained interest in recent years. It aims to provide knowledge about
the application behavior in different environments. This behavior can be affected by several
factors, such as the allocated resources and the load on the application. In our work, we focus

1https://microk8s.io/
2https://k3s.io/
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Figure 6.1: Proposed application profile

on profiling the application resources, which means the amount of computing and network re-
sources required by the application now and in the near future. This profiling can be done in
several ways, and many works tackled the challenge of predicting the load on the application,
the resources needed by the application to handle a certain load using both statistics and AI
methods, and benchmarking systems. The main statistical methods include (1) the Autoregres-
sive Integrated Moving Average (ARIMA), which is a combination of the autoregressive model
and the moving average model with the goal of predicting future values of a time series; (2) Ex-
ponential Smoothing is a time series forecasting method that assigns exponentially decreasing
weights over time to past observations; (3) Long short-term memory (LSTM) is a deep neural
network that memorizes long-term dependencies of time series data.
We start by describing some of these works, mainly those proposing models to predict application
load based on historical trends. Afterwards, we will present the application profile model that we
propose and how it can be used to achieve more efficient utilization of CECC resources. A first
work published in[72] proposes a hybrid model that combines ARIMA with triple exponential
smoothing to accurately predict linear and non-linear relationships in the time series of resource
workload of Docker containers. The authors claim that the proposed hybrid model improves
prediction accuracy over ARIMA or triple exponential smoothing, which is used alone. The
system aims to be used directly by users to improve resource utilization by predicting the
resources required by containerized workload and scaling the resources accordingly. On the other
hand, and focusing on workload prediction, the authors of [73] propose CloudInsight, an online
workload prediction framework that addresses dynamic and highly variable cloud workloads.
CloudInsight relies on a number of local predictors based on ARIMA, Linear Support Vector
Machine (L-SVM), and linear regression, to name a few, and dynamically determines the weights
of each local predictor in order to provide a more accurate prediction. Based on the results, the
authors claim that the framework can be used to predict real-world cloud workloads. Finally, on
empirical profiling methods, work [69] cited earlier proposes a framework to obtain fine-grained
resource requirements depending on workload characteristics. More concretely, the framework
proposes a testing deployment, allowing the capture of the behavior of the application in terms
of used resources under varying loads. The observed resource usage can be used afterward to
profile the application; the profile would have the number of resources needed to handle certain
workloads.
Back to our proposed application profile model, illustrated by Fig. 6.1, an application would
have a future load; this load can be predicted using the methods described in the existing
works that we cited a few of them. The predicted application load could be divided into: 1)
load below a threshold and 2) load over the threshold. Then, for each case, we define the
application requirements that allow the application to handle the maximum load in that period.
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For instance, in the example illustration, between [t0 and t1] and [t2 and t3] and [t4 and t5], the
load on the application is predicted to be below the threshold load. During these periods, the
application requirements that allow the application to handle the threshold load are sufficient
to handle all the coming workloads to the application since the load is always lower than the
threshold. Similarly, between [t1 and t2] and [t3 and t4] and [t5 and tend], the load is higher than
the threshold, meaning that the application requirements that allow the application to handle the
threshold load is not sufficient to handle the present load. Consequently, the resources allocated
to the application should be increased to meet the requirements of handling the maximum load.
From here, we define the application profile as the following: during the time between t0 and
tend, the application will have two sets of requirements that we can call QoS requirements.
The first one is the normal QoS of the application, which allows it to handle all the incoming
workloads that we denote QoSmax. The second QoS in the resources requirements that are
sufficient to handle the threshold load, we denote it QoSth. The application profile should also
contain the timestamps at which the application requirement changes. For instance, it will have
times = [t0, t1, t2, t3, t4, t5, tend] and req = [QoSth, QoSmax]. The times can be either
minutes or hours, granular based on the use cases. For instance, a week contains 168 hours or
10080 minutes; this granularity will affect the complexity of the scheduling model described in
section 6.5.
One of the most important elements of this approach is the choice of the threshold load, based
on which we will change the application requirements. For this end, we propose a method
based on the compute of the area S covered by the rectangles shaped by QoSth or QoSmax,
the timestamps of the change in QoS and the y axis as shown in Fig. 6.2 by the green and
orange rectangles. The area covered by those rectangles represents the resource usage over time
for each chosen threshold. In Fig. 6.2, the change of the selected threshold load produces a
change in the QoSth, so one way to determine if QoSth or QoS′

th is more resources efficient is by
comparing the areas S and S ′ and chose the threshold producing the minimum area. Finally,
given the continuous nature of the load and requested resources, we can choose discrete values
of load collected from profiling frameworks like the one described in [69]. As a matter of course,
the proposed model can be scaled to have N cascading thresholds with N different application
requirements; in our work, we stick with one threshold.

Figure 6.2: choice of the load threshold
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6.4 Design and specification of the proposed application schedul-
ing framework

6.4.1 Architecture

Figure 6.3: The overall architecture of the Cloud Edge Computing Continuum Applications Orchestrator

This work aims to provide a resource-efficient application scheduling on top of the Cloud Edge
Computing Continuum (CECC) Infrastructures. We consider that CECC spans multiple regions
and infrastructures, ranging from cloud infrastructure, including public and private cloud, to
edge cloud infrastructure, including far edge devices. Each of these infrastructures is able to
run containerized microservices, meaning that it contains a cluster, mainly a Kubernetes cluster
or one of its variants, such as the lightweight Kubernetes K3s. These clusters are managed
by a Container Infrastructure Service Manager (CISM); as described in [9], the CISM is the
cloud-native equivalent of a Virtualized Infrastructure Manager (VIM), according to ETSI cloud-
nativ report [65]; it is responsible for maintaining the containerized workloads. Moreover, each
infrastructure exposes monitoring metrics on the infrastructure and the running applications.
Those metrics can be provided by internal monitoring systems such as Prometheus [74], which
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provide metrics on resource usage, applications, and networks via the multiple metrics exporters
that it can collect metrics from. Metrics related to energy used by the running containers and
infrastructure metrics can be collected using Kepler (Kubernetes-based Efficient Power Level
Exporter) [4]. Kepler Exporter exposes a variety of metrics about the energy consumption of
Kubernetes components such as Pods and Nodes. Those metrics includes :

• kepler container core joules total: This metric measures the total energy consumption
on CPU cores that a certain container has used.

• kepler container dram joules total: This metric represents the total energy spent in
DRAM memory by a container.

• kepler node core joules total: This metric measures the total energy consumption on
CPU cores that a certain node has used.

• kepler node dram joules total: This metric represents the total energy spent in DRAM
memory by a node.

• kepler node platform joules total: This metric represents the total energy consumption
of the host.

The above measures are used to provide an energy profiling of the infrastructure. For instance,
kepler container core joules total, which provide the energy consumed while using CPU
resources in Joules, combined with the container’s CPU usage metrics, is used to determine the
energy cost of CPU resources at a given infrastructure. So, from these metrics, we can estimate
the energy that will be used by the required CPU resources of a container over a period of time.
Similarly, we can profile the energy cost of memory resources for a given infrastructure.
The monitoring system collects the metrics from each infrastructure’s monitoring exposure end-
points and presents them to the Application Orchestrator, the Application Profiler, and the
Infrastructure Profiler. The Monitoring system also contains a Carbon Intensity collector, which
collects information about the carbon intensity of the electricity used by the different infrastruc-
tures.
Carbon intensity, measured in gCO2eq/kWh, provides the equivalent amount of CO2, which
would have the same warming effect on the Earth as the combination of emitted gases. Emitting
one gCO2eq is the equivalent of emitting one gram of CO2 in terms of the warming effect that
is caused. We use this metric to indicate the quality of energy used by the different CECC
infrastructures. Hence, it is preferable to use infrastructures that use clean energy to run the
most resources-intensive microservices if those nodes support the required application’s QoS.
Carbon intensity can be provided as metadata by the infrastructure owner when registering the
clusters and nodes to be managed by the framework. If it is not provided, it can be collected
from available APIs based on the geographical location of the nodes. For instance, in Europe,
Electricity Map [75] provides API endpoints to retrieve the last known carbon intensity (in
gCO2eq/kWh) of electricity consumed in an area. Also, National Grid ESO’s Carbon Intensity
API[76] provides an indicative trend of the regional carbon intensity of the electricity system in
Great Britain 96+ hours ahead of real-time. It provides programmatic access to both forecast
and estimated carbon intensity data. This measure allows the tracking of the carbon intensity
of all infrastructures over time. Furthermore, we propose a carbon intensity collector that will
collect the carbon intensity of the electricity used by the managed CECC infrastructures based
on the location of the nodes. For this reason, we require the location as part of the information
about the infrastructures and their nodes. The carbon intensity collector can collect metrics
from different sources based on the regions managed by the application management framework.

70



Enabling Zero-Touch Cloud Edge Computing Continuum Management

The applications profiler is the entity responsible for creating the application based on the model
described in section 6.3. It used the metrics from the monitoring system in order to analyse the
load on the application and its resource utilization. Afterward, the application profiler selects
the 2 levels of requirements QoSth and QoSmax as well as the timestamps in the future at
which the application will require the respective level of QoS. Indeed, for the newly deployed
applications, the profiler needs time to construct the profile; during the profiling period, the
requirement entered by the application owner via the application descriptor will be used at all
times.
In our system, we consider two types of infrastructure: permanent and temporary. Permanent
infrastructures are available for the whole duration of the application execution; we can consider
public cloud clusters, sets of edge cloud clusters running on top of machines running continuously
without battery or mobility limitations. On the other hand, temporary infrastructures are
typically clusters deployed on mobile hosts (e.g., drones), hosts that have battery limitations
(e.g., mobile devices), and edge AI single-board computers. For each infrastructure, the profiler
contains its type, location, the times at which the infrastructure resources are available, and the
duration of availability. The profile also includes information about the available resources at
each infrastructure as well as the network latency to end devices that may communicate with the
deployed applications. The profiler is also responsible for concluding the energy usage rate of the
infrastructure resources and, based on the location, the carbon intensity of the infrastructure.
Moving upwards, the Application Orchestrator Manages the life cycle of the applications. It
is agnostic to the CISM type and communicates with the latter via the CISM plugin. The
Application Orchestrator contains the applications scheduling model, which collects information
about the application requirements from the applications profiler, including trends and predicted
computing and networking resources needed by the application that needs to be scheduled. Then,
it uses information about the infrastructure collected from the infrastructure profiler, including
the available computing and network resources, carbon intensity, availability, cost, and energy
usage by its different types of resources. Then, the applications scheduling helper, which is part
of the application orchestrator, uses this information to provide a plan for the deployment and
migration of the application during the deployment period. That is, it will provide the best
location to run the application and when the application should moved to other infrastructures
using the application requirements, the carbon footprint, as well as the cost of running the
overall managed applications.

6.4.2 Network solutions for seamless migration between the cloud edge and
far edge

Since the framework manages the deployment of application micro-services that are deployed
at the cloud edge, those application can be migrated based on their profiles representing the
requirement of an application. For instance, when Far Edge locations are available near an edge
location, providing lower latencies for some applications, micro-services of the application can be
moved towards these Far Edge locations if low latency is required. While migrating applications,
the connectivity between the different micro-services should be continuous, meaning that this
migration needs to be seamless. We have investigated techniques to produce seamless migrations
between Kubernetes-managed clusters. To ensure this seamless execution of the applications,
we should limit the reconfiguration of the microservices after migrating other services that are
needed by the application. We could achieve this by providing unchanged network names to
application services. This network name is used to reach an application regardless of its lo-
cation. In the Kubernetes context, this can be achieved using third-party technologies such
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as Submariner3, which allows pods in different Kubernetes clusters to communicate seamlessly
using secure tunnels to provide connectivity between clusters. Skupper4 also solves multi-cluster
communication challenges by providing a layer 7 service interconnect through Virtual Applica-
tion Network (VAN). The main advantage of Skupper is that it allows the usage of the same
Kubernetes service name to access the application in different clusters. Finally, vxlan (layer 2)
can be used in environments where there is a few number of nodes such as far edge devices with
single node clusters.
Since, in our proposed framework, the applications can be moved from one infrastructure to
another based on its requirements, we include the downtime incurred by the migration in the
decision-making process of the CECC Application Orchestrator. We performed a test on the
migration downtime between an edge cloud cluster using Kubernetes and a Far edge cluster
using K3s, while the applications are deployed and migrated using the Lightweight edge slice
orchestration framework presented in [9]. To produce seamless migrations, we use vxlan tunnels
to provide the connectivity between the Edge and Far edge clusters. For this purpose, we
reserve a sub-network of IP addresses at the CISM level to provide it to applications that
require connection with other applications that can be moved between the Edge and Far Edge.
Then, we create a vxlan tunnel for this sub-network between the Raspberry Pi running K3s
and the Intel Tower running Kubernetes. In order to assign an IP address from the reserved
pool to the applications pods, we use Container Networking Interfaces such as Multus5 to create
network attachments for pods with the selected static IP address, Calico6 also can be used to
provide static IP to pods.
The results of the migration incurred downtimes are shown in Table. 6.1.
Those values are used later in section 6.5 to approximate the downtime caused by the migration
of an application and the effect on its availability requirements.

Table 6.1: Measured downtime from the application perspective during migration.

N of
apps

Graceful mi-
gration down-
time (s)

Forced migra-
tion downtime
(s)

5 0.15 26.41

10 0.17 40.43

15 3.35 50.0

20 0.23 54.48

25 7.32 66.72

30 148.24 136.26

35 93.47 199.28

40 55.93 137.33

6.5 Application scheduling taking into account the cost and car-
bon footprint of the deployment

In this section, we formulate the application scheduling into the CECC infrastructure problem
via an optimisation problem. The goal of the optimization model is to find the best location

3https://submariner.io/
4https://skupper.io/
5https://github.com/k8snetworkplumbingwg/multus-cni
6https://www.tigera.io/project-calico/
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Table 6.2: Summary of Notations & Variables.

Notation/
Variable

Description

C Set of CECC infrastructures

A Set of applications

T Set of times

Γ Set of resources

∆ The total period of the application deployment planning

Wt
a The set of infrastructures c ∈ C that does not satisfy the latency re-

quirements of application a ∈ A at time t ∈ T meaning λta < Λt
c,a

Dt The duration of the period starting from time t ∈ T until time t+ 1

Btc The bandwidth available for the infrastructure c ∈ C at time t ∈ T .

βta The bandwidth required by application a ∈ A at time t ∈ T .

Λt
c,a The latency from infrastructure c ∈ C to the end users of application

a ∈ A at time t ∈ T .

λta The latency required by application a ∈ A at time t ∈ T .

Rt
c,r The amount of resources of type r ∈ Γ available at CECC infrastructure

c ∈ C at time t ∈ T .

ρta,r The amount of resources of type r ∈ Γ required by application a ∈ A at
time t ∈ T .

µc1,c2 Migration downtime between two infrastructures c1, c2 ∈ C.
δa The availability required by the application a ∈ A.

ϵa The maximum allowable duration during which the Quality of Service
(QoS) for application a ∈ A may be violated.

Ψc The carbon Intensity of infrastructure c ∈ C.
ψc,r The energy consumed by a unit of resource of type r ∈ Γ.

Mc The cost of infrastructure c ∈ C.
Ya,c A Boolean constant that denotes if application a ∈ A was deployed on

top of infrastructure c ∈ C before the time of placement.

α A constant that specifies the priority between the cost and carbon foot-
print.

X t
a,c A Boolean variable that denotes if the application a ∈ A is deployed on

top of infrastructure c ∈ C at time t ∈ T .

to execute applications, knowing that the application can be migrated between the different
CECC infrastructures. Fig. 6.4 presents a visualization of the application deployment; we can
see that in our model, we decide where and when the application will be deployed on top of
an infrastructure. In order to do so, we introduce the time dimension. The considered times-
tamps are discrete values extracted from the applications’ profile change and the infrastructure
availability times. More concretely, the times represent the union of the timestamps from the
applications profiles and the timestamps of availability of infrastructure in the case of far edge
infrastructures.
For instance, in the example of Fig. 6.4, the time values are [0, 3, 6, 11, 12, 14], which is the
union of the timestamps from the application profile of app1, app2, app3, and app4 [0, 6, 14] ∪
[0, 3, 6, 12, 14] ∪ [0, 6, 14] ∪ [0, 6, 11, 14].
To do so, we formalise the optimization problem that models the characteristics of the system
and applications in order to find the optimal placement of the applications. The used notations
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are summarized in Table 6.2.
In the system, we consider a set of CECC infrastructures denoted C over which applications
can be deployed. Each infrastructure c has available resources denoted Rt

c,r at a time t ∈ T
of resources type r ∈ Γ, and network bandwidth Btc. On the other hand, we have a set of
applications A that needs to be deployed on top of the managed CECC infrastructures. Each
application has a requirements in terms of resources ρta,r of type r ∈ Γ at a time t ∈ T , bandwidth
βta at a time t ∈ T and latency to end users λta at a time t ∈ T . For each application a ∈ A,
each infrastructure c ∈ C provides a latency to the end devices connected to the application
represented by Λt

c,a. Additionally, each application has an availability requirement denoted
δa. For example, five nines availability means that the application should be up and running
for 99.999% of the time, while each migration of an application from infrastructure c1 to c2
produces a downtime of µc1,c2 . Further, a QoS breach quota ϵa represents the percentage of
acceptable time in which the QoS of the application can be breached. The last 2 elements
allow the overbooking of the CECC resources without breaching the application requirements.
Finally, infrastructures have a cost Mc, a carbon intensity Ψc and energy usage for each type
of resources ψc,r, which represents the amount of energy consumed by the application when a
specific amount of resources is allocated to it. This metric can be provided by the infrastructure
profiler based on the energy metrics collected from Kepler.
The variable of the system is X t

a,c that represents if the application a is deployed on top of
infrastructure c at time t. We also add Ya,c, which specifies if the application a was running on
top of infrastructure c before computing the solution of the problem. This variable is used to
keep track of the applications that are already running.
Note that the problem definition is intended to be flexible and adapt to the changes on the
application profile on runtime, either due to bursts of load on the application that does not
follow the application profile or adaptation of the application profile based on new monitoring
information. This change accommodation is done using the values of Ya,c, which allows us to
solve the problem at a time tδ using the adapted application requirements by setting its value
based on the current infrastructure on top of which the application is running, ϵa and δa which
can be adapted based on the measured downtimes and QoS breach duration that occurred during
the planned period.

6.5.1 Objective function

Based on the above discussion, the objective of the problem under consideration is twofold: 1)
Minimize the cost of deployment, which is based on the type of infrastructure used. 2) Minimize
the Carbon footprint of the deployment on top of the large CECC infrastructure, which is based
on the type of energy (electricity source) used by the infrastructure. We define the problem
as a multi-objective optimization problem, where the objective function is a function of two
objectives. Its mathematical formulation is as follows:

F(X t
a,c) = min f(F1(X t

a,c), F2(X t
a,c)) (6.1)

The function, s.t, constraints (6.4 - 6.8) presented bellow, represents the multi-objective op-
timization problem definition for efficient and carbon aware application scheduling on top of
different types of CECC infrastructures. with X t

a,c being the binary decision variable. The vari-
able’s value determines whether the application a ∈ A is deployed on top of the infrastructure
c ∈ C at time t ∈ T (value 1) or not (value 0).
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Figure 6.4: Dynamic application deployment on the CECC infrastructure over time

Cost objective function

The first objective is to minimize the cost of the deployment of the applications. Based on
the used resources, each application, when deployed on top of an infrastructure, will produce a
cost. In function 6.2, we calculate the cost incurred by all the applications in the system. This
cost is also affected by the time spent by an application on a specific infrastructure. Z1 is a
normalization constant.

F1(X t
a,c) =

1

Z1 ×∆

∑
a∈A

∑
c∈C

∑
t∈T

∑
r∈Γ
Dt ×Mc × ρta,r ×X t

a,c (6.2)

Carbon footprint objective function

The second objective is to minimize the system’s carbon footprint. To do so, we use the car-
bon intensity of the infrastructure multiplied by the resources and energy usage for the same
infrastructure. Using the application’s required resources, we can estimate the carbon footprint
of the application deployment. Function 6.3 calculates the carbon footprint of the system based
on the time spent by the applications at each infrastructure. Z2 is a normalization constant.

F2(X t
a,c) =

1

Z2 ×∆

∑
a∈A

∑
c∈C

∑
t∈T

∑
r∈Γ
Dt ×Ψc × ψc,r × ρta,r ×X t

a,c (6.3)

6.5.2 Constraints

The constraints of the optimization problem are the following:
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Instances constraints

Constraint 6.4 is used to make sure that at each time t, the application is running on an
infrastructure.

∀a ∈ A, ∀t ∈ T :
∑
c∈C
X t
a,c = 1 (6.4)

Availability constraints

Constraint 6.5 aims to make sure that the application is available δa of the time. In our system,
we consider only the downtime caused by the migration of the application from one infrastructure
to another.

∀a ∈ A :
∑
c1∈C

∑
c2∈C

∑
t>0∈T

µc1,c2
∆ ×X t

a,c1 ×X
t−1
a,c2 +

∑
c1∈C

∑
c1∈C

µc1,c2
∆ × Ya,c1 ×X 0

a,c2 ≤ 1− δa
(6.5)

Latency constraints

Constraint 6.6 aims to assure that the application’s latency requirement is respected for at least
1 − ϵa of the time. To do so, we check that the time spent by the application running on
infrastructures that do not respect its latency requirements (represented by Wt

a) is less than ϵa.

∀a ∈ A :
∑
t∈T

∑
c∈Wt

a

Dt

∆
×X t

a,c ≤ ϵa (6.6)

bandwidth constraints

We introduce constraint 6.7 in order to guarantee that each infrastructure can satisfy the band-
width requirements of the applications running on top of it at every time t.

∀c ∈ C,∀t ∈ T :
∑
a∈A

(1− ϵa)× βta ×X t
a,c ≤ Btc (6.7)

resources constraints

Lastly, constraint 6.8 is introduced to assure that each infrastructure can satisfy the resource
requirements of the applications assigned to it at every time t.

∀c ∈ C, ∀r ∈ Γ,∀t ∈ T :
∑
a∈A

ρta,r ×X t
a,c ≤ Rt

c,r (6.8)

6.5.3 Application scheduling algorithm

Obtaining the optimal solution to the proposed problem can be costly in terms of used resources
and execution time as shown in section 6.6. Especially if the number of applications and infras-
tructure increases, making it unusable in real scenarios, in which the system cannot afford to
wait hours and use high number of CPU cores and memory resources to schedule application.
So, in order to solve the problem, we propose algorithm 1; the aim of the algorithm is to provide
a heuristic solution to the MOOP 6.1 in a short time while consuming a limited amount of
resources.
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Algorithm 1 Application deployment algorithm

1: SC ← Sort(C, asc) {Sort infrastructure according to cost and carbon intensity using
α×Ψc

MaxIntensity + (1−α)×Mc

Maxcost value}
2: for a in A do
3: P.insert(a.QoSth)
4: P.insert(a.QoSmax)
5: end for
6: SP ← Sort(P, asc) {Sort application profiles based on the required latency}
7: for t in T do
8: Initialize infrastructure allocatable resources and bandwidth ALc
9: for p in P do

10: a← p.app
11: if ProfileActive(p, t) then
12: allocated← false
13: γ ← Random(0, 1)

14: if γ ≥ AllowedDowntimea×Random(0,1)
δa×∆ then

15: if KeepAppOnInfra(p) then
16: Keep the application running on the same infrastructure it is running on
17: allocated← true
18: Update Infra Allocatable Resources ALc
19: continue to next application
20: end if
21: end if
22: Application can be migrated
23: for c in SC do
24: if DeployAppOnInfra(p, c, ϵa, t) then
25: The application will deployed on infrastructure c at time t
26: allocated← true
27: Update Infra Allocatable Resources ALc
28: Update AllowedDowntimea
29: continue to next application
30: end if
31: end for
32: end if
33: end for
34: end for

First, in the algorithm, we sort the available infrastructures based on their carbon intensity and
cost, with the variable α representing the importance of each aspect (line 1). Then as described
above, the application profile provides two levels of QoS: QoSth and QoSmax. The variable SP
contains all the QoS levels for all applications sorted based on latency requirement (line 6). For
each timestamp from the set of times, the algorithm maps each application to an infrastructure.
To do so, we define a random variable γ that helps decide if the application will keep running
on the current infrastructure, on top of which it was running for t − 1 (if the infrastructure
has enough resources to accommodate the application requirements). Otherwise, the ordered
list of infrastructures will be explored to find the first fitting infrastructure that satisfies the
application requirements at time t. After each assignment of an application to an infrastructure,
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the available infrastructure resources as well as the application AllowedDowntimea are updated
(lines 18, 27, 28).
The function KeepAppOnInfra(p) checks if the application a with QoS p can be kept running on
top of the infrastructure over which it was running at time t−1. While DeployAppOnInfra(p, c, ϵa, t)
checks if the application a can with QoS p can be deployed on top of infrastructure c at time t,
if so it updates the application’s ϵa value.

6.6 Results

To solve the optimization problem, we implemented a simulator for applications, applications’
profiles and infrastructures. The simulator was used to create scenarios with a varying num-
ber of applications, infrastructure, and duration. Based on the desired configuration, which
includes the number of applications, the required application availability, the number of in-
frastructures (including far edge infrastructures), and the deployment duration, the simulator
generates several outputs. These include the application requirements for each time period, the
latency between the infrastructure and the application’s users, the available resources for each
infrastructure, the infrastructure availability time, and the carbon intensity. Additionally, it
generates the migration time between different infrastructures.
We implemented our simulation environment using Python and used Gurobi version 11.0.0 to
get the optimal solutions for the test use cases. The tests are done on top of an Intel server
PowerEdge T440 with 128GB of RAM and 64 Core (Intel(R) Xeon(R) Silver 4216 CPU @
2.10GHz) with hyperthreading enabled. Using Ubuntu 20.04.6 LTS an operating system.
We solve the model using α scalarization (equation 6.9)

min α×F1(X t
a,c) + (1− α)×F2(X t

a,c) (6.9)

with:

• α = 0.5 to get the optimal solution with a trade-off between minimizing cost and carbon
footprint,

• α = 0 to get the optimal solution for carbon footprint minimization

• And α = 1 to get the optimal solution for cost minimization.

• We also solve the problem using α = 0.1 representing the carbon footprint-focused model.

• Wile using α = 0.9 we solve the cost focused model.

Similarly, we test the heuristic solution using different trade-offs. The trade-offs can be config-
ured using the values of α×Ψc

MaxIntensity + (1−α)×Mc

Maxcost where:

• we use α = 0.5 while ordering infrastructures to get the balanced heuristic solution.

• α = 0.1 to get the cost-focused heuristic solution.

• And α = 0.9 to get the carbon footprint-focused heuristic solution.
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6.6.1 Test results comparison

In order to test the model’s performance, we design several scenarios of deployments and in-
frastructure states. In each scenario, we specify the number of applications to be deployed, the
number of infrastructures available, and the duration of the period over which the model plans
the application LCM procedures. The scenarios range from deploying 10 applications on top of
4 infrastructures to deploying 100 applications on top of 40 infrastructures. For each scenario,
we consider that 10% of infrastructure is composed of mobile far edge infrastructures; meaning
that they are available only for a period of the whole duration of deployment planning. We
also vary the test duration, representing the period for which we plan the deployment of the
application. We start from 10 to 100 and finally, a duration of 1000. The duration represents
the period over which we plan to run the application. Note that the period can be periodic,
meaning that at the end of the duration, we plan the deployment of the application over the next
duration again while taking into account the placement of the applications at the end of the last
duration, which is essential in order to satisfy the availability constraints of the applications.
In each scenario, the Infrastructure profile is represented by: the availability of the infrastruc-
ture (permanent or temporary and the time of availability), the available compute resources,
the available network bandwidth, the latency from the infrastructure to the target user of each
application, the carbon intensity and the energy consumption of its resources. Moreover, each
application has a profile that follows the same model presented in Section 6.3 containing the
required compute and network resources for each period of the duration of the deployment.
In the first results (Figs. 6.5, 6.6), We evaluate the performance gap among various models:
The Carbon Footprint Gurobi Optimization Model demonstrates the optimal carbon footprint
achievable in each scenario. The Cost Gurobi Optimization Model shows the optimal cost
attainable in each scenario. Additionally, the Trade-off Gurobi Optimization Models (comprising
balanced configuration, cost-focused, and carbon footprint-focused configurations) are analyzed.
Finally, the proposed heuristic, which uses the balanced configuration (α = 0.5). We also
compare the execution time of the different models, as shown in Fig. 6.9.
Fig. 6.5 illustrates the gap between the optimal carbon footprint that can be achieved in each
scenario and the carbon footprint of the carbon footprint-focused Gurobi model, the heuristic
carbon footprint, and the balanced Gurobi model. We notice from the obtained results that the
carbon footprint-focused Gurobi model is consistently the closest in terms of carbon efficiency
to the optimal solution with a gap of less than 25%. Meanwhile, the heuristic carbon efficiency
is similar to the balanced Gurobi model, as we can notice the heuristic performed better in the
scenarios: (apps:30, duration: 10), (apps:40, duration: 100), (apps:50, duration: 100), (apps:70,
duration: 100), (apps:10, duration: 1000) and (apps:60, duration: 1000).
Similarly, Fig. 6.6 shows the gap between the optimal cost that can be achieved in each scenario
and the cost of the cost-focused Gurobi model, the heuristic cost, and the balanced Gurobi model.
Again, we notice from the obtained results that the cost-focused Gurobi model is consistently
the closest in terms of cost efficiency to the optimal solution with a gap of less than 50%. While
the heuristic cost efficiency is similar to the balanced Gurobi model in some scenarios, it fell
short in other scenarios with a gap between the 2 models being higher than 90%. However,
we can notice that the heuristic performed better in the scenarios: (apps:50, duration: 10),
(apps:60, duration: 10), (apps:10, duration: 100), (apps:90, duration: 100), (apps:10, duration:
1000) and (apps:70, duration: 1000).
We also examine how altering the heuristic configuration impacts the results. In Figs. 6.7, 6.8
we measure the cost and carbon efficiency of the Carbon footprint-focused heuristic solution,
cost-focused heuristic solution, and the balanced heuristic solution.
From Fig. 6.7, which depicts the gap in terms of carbon efficiency between the models, we notice
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(a) Duration : 10 (b) Duration : 100

(c) Duration : 1000

Figure 6.5: The gap in Carbon Footprint (%) produced by the models for a duration of 10, 100, and 1000

that changing the configuration of the heuristic by giving higher weight to the carbon footprint
results in better carbon efficiency as we notice that the gap between carbon footprint-focused
heuristic and the optimal solution is less than 40% except in 4 scenarios: (apps:20, duration:
10), (apps:20, duration: 100), (apps:40, duration: 100) and (apps:50, duration: 1000).
In Fig. 6.8, we can see that the gap in terms of cost efficiency between the cost-focused heuristic
and the optimal cost solution is consistently less than 50% except in 7 scenarios: (apps:30,
duration: 10), (apps:20, duration: 100), (apps:40, duration: 100), (apps:20, duration: 1000),
(apps:50, duration: 1000), (apps:60, duration: 1000).

6.6.2 Discussion

From the results obtained, we can conclude that using the heuristic method reduces the time and
resources needed to plan the placement and potential migration of the deployed applications.
Furthermore, it provides results that are comparable to the optimal cost or carbon efficiency that
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(a) Duration : 10 (b) Duration : 100

(c) Duration : 1000

Figure 6.6: The gap in the Cost (%) produced by the models for a duration of 10, 100 and 1000

can be achieved. While building the test scenarios, we did not establish a relationship between
the cost of an infrastructure and its carbon intensity. This can be seen in the results, where
there is a dispersion between the performance of the different models. From the obtained results,
we believe that the granularity of the decision model should be configurable depending on the
needs of each deployment. Indeed, for different types of applications, the deployment priority
can change. From a CECCM operator point of view, the cost minimization of the workloads can
have higher priority than minimizing the carbon footprint of the overall CECC deployments.
The decision can also be made by the application owner, who can require that his application’s
carbon footprint be minimized.

6.7 Conclusion

In this Chapter, we introduced a CECC management framework. We provided a method for
defining an application profile in a way that can be used for application deployment and migra-
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(a) Duration : 10 (b) Duration : 100

(c) Duration : 1000

Figure 6.7: The gap in Carbon Footprint (%) produced by the different heuristic configurations for a
duration of 10, 100 and 1000

tion. The CECC application orchestrator also uses the infrastructure profile, which includes the
carbon intensity, energy usage of its resources, and the availability of the infrastructure. We pro-
posed a mathematical problem definition for planning the deployment/migration of applications
while satisfying their availability, compute resources and network requirements. Afterwards, we
solved the problem for different deployment scenarios.
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(a) Duration : 10 (b) Duration : 100

(c) Duration : 1000

Figure 6.8: The gap in the Cost (%) produced by the different heuristic configurations for a duration of
10, 100 and 1000
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(a) Duration : 10 (b) Duration : 100

(c) Duration : 1000

Figure 6.9: The execution time of the models for a duration of 10, 100 and 1000
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Chapter 7

Conclusion & Perspectives

7.1 Conclusion

In conclusion, this thesis has provided solutions for automating the management of Cloud Edge
Computing Continuum (CECC). The journey of this thesis commenced with the creation of an
end-to-end multi-domain service monitoring framework. Such services consist of applications
and network functions that span over multiple technological domains, each presenting its unique
intricacies. The proposed monitoring system employs a unified structure of Key Performance
Indicator (KPI), effectively abstracting away any underlying complexities. Extensive testing
across different scenarios validates the framework’s scalability and its ability to monitor a high
number of services simultaneously. The next station of the thesis involved application profil-
ing, in which we conducted an experimental study to explore the behavior of different types
of applications in cloud-native environments. This study highlights the inability of application
owners to configure the appropriate resources for their applications to operate optimally with-
out resulting in infrastructure resource wastage. Then, we employed Artificial Intelligence (AI)
and eXplainable Artificial Intelligence (XAI) techniques to build models capable of predicting
performance degradation in applications, utilizing datasets generated from our study. When
the model predicts a decline in application performance, the XAI module provides explanations
for the model’s output, facilitating the identification of the root cause of service degradation.
This root cause is then addressed by the application manager. The journey of this thesis con-
cluded with the proposal of an architecture for the Life-Cycle Management (LCM) of CECC
applications. This architecture uses application and infrastructure profiles to deploy and mi-
grate applications while considering the carbon footprint of the CECC deployment. The main
challenge is the concrete representation of the application profile in a way that can be used to
specify current and future application requirements. This challenge was tackled by effectively
representing the application profile to facilitate deriving both current and future application
requirements.
Automating the Life-Cycle Management of CECC is crucial to unlocking the full potential of
emerging use cases. By providing a spectrum wherein applications can seamlessly run and
migrate across various locations, manual operations (placement, scaling, migration ...) become
obsolete as they fail to achieve optimal resource allocation and performance efficiency. This
thesis represents incremental progress towards the paradigm of zero-touch CECC management,
aiming to attain complete automation of management procedures.
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7.2 Future Perspectives

7.2.1 Profile creation and management for applications through collaboration

In the second contribution of this thesis, we studied the behavior of applications across varying
loads and resource configurations. It is evident that applications exhibit diverse responses to
these factors, with some leaning heavily on CPU resources, others on memory, and some on
both. Additionally, they may exhibit unique traffic patterns, reflecting differences in service
popularity over time. This highlights the need for comprehensive data to profile applications
effectively. One approach to profiling is to analyze the behavior of each deployed application
and categorize them into classes based on similarities. When a new application is deployed,
the system compares its behavior against existing profiles to determine the closest match. If
no suitable class exists, a new one is created. Given the proliferation of management systems
and platforms, this process often repeats, resulting in redundant profiling efforts for similar
applications.
To address this inefficiency, there is potential for collaboration among platform providers to
share application profiles. Major players like Amazon Web Services, Google Cloud Platform,
and Azure possess both the resources and a diverse range of applications, making them ideal
candidates for such collaboration. This partnership could encompass various aspects such as
collaboration schemes, ensuring data privacy, and providing incentives to application owners for
sharing profiles (e.g., monetary rewards and free access to profiles for future deployments). Such
collaboration not only allows application owners to export and utilize profiles elsewhere but also
enables smaller providers to access initial application profiles based on similar applications. This
facilitates efficiency in profile creation and enhances interoperability across platforms.

7.2.2 Serverless computing and WebAssembly edge modules management

Serverless computing is an application deployment model where the application owner provides
only the code to be executed; meanwhile, the execution environment, infrastructure, and resource
allocation are managed by the serverless platform provider. A key form of this service model
is Function as a Service (FaaS), where functions execute custom code in response to events,
making it ideal for event-driven architectures.
Implementing such models can utilize containers, where each function runs inside a container
that is terminated after the function completes. However, this approach may lead to cold-
start delays if no container is available during event occurrence. An alternative approach is
using WebAssembly modules. WebAssembly (WASM) is an emerging technology that, unlike
containers, offers a portable binary instruction format for a stack-based virtual machine. WASM
was initially designed as a compilation target for high-performance languages like C, C++, and
Rust to run in web browsers. WebAssembly (WASM) can package any application and deploy
it on various hardware platforms as portable modules via the WebAssembly System Interface
(WASI). Its advantages include a load-time-efficient binary format and its language-agnostic
nature, enabling developers to compile code from any language to WebAssembly (WASM) for
execution in web browsers or server-side runtimes.
Modular cloud edge applications can benefit from the portability and fast load times provided
by WASM. Thus, there is a need for an application development framework that allows the
separation and migration of application modules at runtime. This facilitates compute offloading
to the edge, reducing battery usage of edge devices and enabling the sharing of application
modules across multiple instances to minimize overall resource usage. Such scenarios necessitate
dynamic scheduling of application modules.
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Dynamic scheduling of offloaded modules (as shown in Fig. 7.1), triggered by situational changes
during application runtime, presents new challenges, including application state handling, min-
imizing development overhead, and network integration of the signaling path between applica-
tions’ modules.

Figure 7.1: WASM application deployment on edge devices

7.2.3 Intent Driven Application Management

Considering the complex nature of CECC deployments spanning across various infrastructures
and domains, application owners may lack precise knowledge of the compute and network needs
for their use cases. An alternative approach is to utilize a more convenient method of describing
services, relying on intent or higher-level descriptions of the operational objectives and con-
straints of the service provided by the application owner. Intent-based application deployment
will be instrumental in enabling autonomous services. Using intent, the application owner does
not need prior knowledge of the Quality of Service (QoS) requirements for their service. Instead,
the user can express their service’s intent in a human-readable format, such as JSON or YAML.
The CECCM then translates this intent into service and network-level policies. These policies are
further translated into detailed low-level configurations that can be deployed onto the CECC
infrastructure. Ultimately, the CECCM should ensure the continual fulfillment of the intent
throughout the service’s life cycle. Efforts to facilitate intent-based management of networks
fall within the scope of Intent-Based Networking (IBN). significant efforts have been devoted
to defining and standardizing it, including the 3rd Generation Partnership Project (3GPP), the
European Telecommunications Standards Institute (ETSI), and the TM Forum.
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However, the challenge with such systems lies in constructing a knowledge base that facilitates
the translation of intents into service-level policies. Intent profiling, mapping existing intents to
their corresponding policies, along with large language model (LLM), can be useful for enabling
intent-driven management.
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Chapitre 8

Résumé

8.1 Contexte de la Thèse

Le Cloud Edge Computing Continuum (CECC) a vu le jour grâce au changement de paradigme
dans le développement et le déploiement des applications, intégrant la scalabilité et la dispo-
nibilité des ressources du cloud computing avec les capacités de traitement en temps réel du
edge computing. Ce continuum est rendu possible grâce à la maturation de la provision et de la
gestion du cloud computing et du edge computing, offrant un spectre où les applications peuvent
migrer de manière transparente entre les infrastructures cloud centralisées et cloud de bordure
ou le et far edge décentralisés, en fonction de facteurs tels que les besoins en ressources de calcul,
la latence et les contraintes de bande passante. À une extrémité de ce continuum se trouve le
cloud computing traditionnel, caractérisé par d’énormes centres de données et des ressources
de traitement centralisées, offrant une scalabilité des ressources et des capacités de stockage.
En revanche, à l’extrémité opposée, le edge computing exploite des infrastructures de calcul
locales composées de petits centres de données ou de dispositifs far edge, réduisant la latence
et améliorant la réactivité pour les applications sensibles au temps. De plus, les dispositifs edge
et far edge peuvent être mobiles ou volatils, ce qui signifie qu’ils ne sont pas disponibles en
permanence en raison de restrictions de batterie ou de mobilité, comme pour les dispositifs far
edge basés sur les drones ou les ordinateurs monocartes alimentés par des batteries.
Le continuum entre ces extrêmes permet une nouvelle architecture qui tire parti de la distribution
dynamique des microservices entre les nœuds cloud et edge en fonction des demandes de charge
de calcul et des conditions du réseau. Ce paradigme encourage le développement d’applications
innovantes couvrant plusieurs domaines, tels que l’Internet of Things (IoT), les systèmes auto-
nomes et la réalité augmentée. Dans ce cas, l’orchestration transparente des ressources à travers
le continuum cloud edge est cruciale pour répondre aux exigences de performance et permet une
connectivité omniprésente pour les applications déployées d’une part et utiliser efficacement les
ressources d’infrastructure sous-jacentes d’autre part.

8.2 Motivation

Une infrastructure CECC s’étend sur plusieurs emplacements et domaines, incluant le cloud
public, le cloud edge dédié et les appareils informatiques capables. Dans ce contexte, le Cloud
Edge Computing Continuum Manager (CECCM) est un élément clé pour gérer le cycle de vie
des applications et administrer les ressources d’infrastructure fédérées. Le CECCM doit être
autogéré et auto-configuré pour permettre une gestion et une configuration sans intervention en
prenant des décisions basées sur les données de supervision collectées concernant le comporte-
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ment des applications, l’utilisation des ressources d’infrastructure ainsi que l’état du réseau. Ces
décisions devraient garantir le respect des exigences des applications en fonction des capacités
d’infrastructure disponibles. Pour atteindre cet objectif, le premier composant d’un CECCM est
le système de supervision qui offre une visibilité sur le comportement des applications déployées
et les ressources d’infrastructure. En effet, le système de surveillance devrait couvrir l’intégralité
de l’infrastructure CECC.
Ensuite, pour gérer efficacement les applications, le CECCM doit comprendre le comporte-
ment et les exigences des applications. Nous désignons sous le terme de profil d’application la
représentation du comportement de l’application, de ses performances, de son utilisation des res-
sources et de ses dépendances dans l’environnement de déploiement. En profilant les applications
déployées sur le CECC, le CECCM peut optimiser le placement des applications pour améliorer
leurs performances et optimiser l’utilisation des ressources d’infrastructure. Les techniques de
profilage peuvent inclure des métriques du système de supervision et l’analyse des modèles de
trafic du réseau. Par ailleurs, les techniques d’Artificial Intelligence (AI) peuvent être utilisées
pour prédire les besoins futurs de l’application en termes de ressources de calcul et d’exigences
réseau.
Les procédures de gestion du cycle de vie des applications incluent principalement le placement
initial, la mise à l’échelle des ressources et la migration des applications. Étant donné que le
système de gestion du CECC prend des décisions basées sur les données et les mesures collectées
concernant le comportement des applications, il utilise des modèles basés sur le Machine Lear-
ning (ML) ou en les formalisant par le biais de modèles d’optimisations mathématiques. Il est
important que les décisions du système puissent être fiables pour garantir le respect du Service
Level Agreement (SLA) exigés par les applications.
Enfin, chaque noeud de calcul de l’infrastructure CECC consomment de l’électricité pour fonc-
tionner et de l’eau pour le refroidissement. En fonction des sources d’énergie utilisées par les
nœuds d’infrastructure, l’infrastructure CECC et les applications s’exécutant dessus produisent
une empreinte carbone. En effet, de plus en plus de gouvernements prennent des mesures pour
réduire les émissions de carbone ; par exemple, l’Union européenne vise à être neutre en carbone
d’ici 2050 ; cet objectif est au cœur du Pacte vert européen [1]. La technologie de communication
ne fait pas exception, car en 2021, une note technique d’ACM [2] estimait que le secteur des In-
formation and Communication Technology (ICT) contribuait entre 1,8% et 3,9% des émissions
mondiales de carbone. Cela motive la disponibilité de sources d’énergie verte pour alimenter
les nœuds de calcul, ce qui rend nécessaire la prise de décisions tenant compte de l’empreinte
carbone lors de la gestion du déploiement des applications et des infrastructures faisant partie
du CECC.

8.3 Les contributions de la Thèse

Cette thèse vise à permettre la gestion automatisée des déploiements multi-domaines de CECC.
Nous avons commencé par aborder le défi de la supervision unifiée de bout en bout des déploiements
multi-domaines où les microservices composant l’application (ou les applications cloud-native)
peuvent être déployés dans différentes infrastructures utilisant différentes technologies. Nous
proposons un nouveau système de supervision utilisant des collecteurs de métriques conçus pour
recueillir les métriques des sous-services d’applications dans une région de déploiement (ou infra-
structure). Ces métriques sont ensuite agrégées pour offrir une vue d’ensemble de bout en bout
sur les Key Performance Indicator (KPI) de service, en abstrayant les détails technologiques
sous-jacents. Par la suite, nous utilisons les données collectées par le système de supervision
pour comprendre le comportement des applications dans différents scénarios. Cela nous permet
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de construire des ensembles de données sur les besoins en ressources de différents types d’ap-
plications sous différentes charges. Fournissant ainsi un profil de base pour l’application, qui
inclut les exigences des instances de l’application en fonction de la charge de trafic arrivant vers
les services. La prochaine étape de la thèse était de fermer la boucle de contrôle en produisant
et en appliquant des décisions pour la gestion du cycle de vie des applications basées sur les
données de surveillance. Pour cela, nous proposons un framework pour le Zero-touch Service
Management (ZSM) contenant un module pour la mise à l’échelle automatique des ressources à
granularité fine. Le scaler exploite l’eXplainable Artificial Intelligence (XAI) pour prendre des
décisions sur quelle ressource mettre à l’échelle, basées sur la sortie d’un modèle ML qui prédit
les performances des microservices ; le modèle a été entrâıné sur l’ensemble de données généré par
la deuxième contribution. Enfin, nous modélisons le problème du placement et de la migration
des applications en utilisant un problème d’optimisation multi-objectif avec deux objectives : le
premier est de réduire l’empreinte carbone du déploiement, et le second est de réduire le coût
du déploiement. La figure 8.1 représente le parcours de la thèse, de la collecte des métriques à
l’exécution de décisions basées sur les données, fermant ainsi la boucle de contrôle.

Figure 8.1 : Parcours de la thèse

8.3.1 Supervision de bout en bout des applications et services multi-domaines

Description du challenge

Un système de supervision efficace et adaptatif est un composant critique pour toute provision de
cloud computing ou réseau afin de superviser et valider le fonctionnement des services en cours
d’exécution et de l’infrastructure sous-jacente. Ceci est d’autant plus valide dans le contexte de
la 5G, car elle repose sur le concept de ”network slicing”, ce qui ajoute de nombreux défis au
système de supervision. Parmi ces défis, on trouve le fait que les tranches de réseau utilisent
des ressources de différents domaines technologiques impliquant différentes entités basées sur
différentes technologies, ce qui nécessite de surveiller différents types de ressources, comme le
Radio Access Network (RAN), le calcul, la mémoire et le débit de données réseau. En effet, la
supervision des composants RAN est totalement différente de la supervision de l’infrastructure
Cloud ou de l’infrastructure de Network function virtualization (NFV). Un autre défi concerne
l’évolutivité du système de supervision, car l’opérateur de réseau est censé exécuter plusieurs
slices de réseau parallèles sur son infrastructure 5G. Enfin, la multi-tenancy et l’isolation entre
les slices de réseau doivent être mises en œuvre ; les données liées à un slice ne doivent être
visibles que par son propriétaire.
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Solution proposée

Nous concevons un nouveau framework de supervision prêt pour le slicing multi-domaine du
réseau pour les réseaux mobiles, y compris les déploiements CECC. Le framework est indépendant
de la technologie car il fournit des mesures de manière uniforme, en utilisant une structure unifiée
de KPI, abstrayant efficacement toutes les complexités technologiques sous-jacentes. Le système
de supervision est évolutif et prend en charge un grand nombre de services en parallèle.

Publications

A Scalable Monitoring Framework for Network Slicing in 5G and Beyond Mobile
Networks
Mohamed Mekki ; Sagar Arora ; Adlen Ksentini
IEEE Transactions on Network and Service Management ( Volume : 19, Issue : 1, March 2022)

A multi-technological domains KPIs Monitoring System for Network Slicing in 5G
Mohamed Mekki ; Sagar Arora ; Adlen Ksentini
Cloud Days, 25-26 November 2021, Brest, France

8.3.2 Profilage des applications dans des environnements cloud-native

Description du challenge

L’émergence des architectures cloud-native et de la conteneurisation a changé la façon dont les
applications sont développées et déployées. Les applications actuelles décomposent les fonction-
nalités du service en plusieurs microservices ; chaque microservice est responsable d’un sous-
ensemble de ces fonctionnalités globales. Lorsqu’ils sont encapsulés dans des conteneurs, pour
être exécutés sur l’infrastructure cloud ou edge, le propriétaire de l’application doit spécifier les
ressources de calcul nécessaires pour exécuter ses applications. En effet, le propriétaire del’appli-
cation doit indiquer la quantité de CPU et de mémoire limite pour un conteneur exécutant un
micro-service. Il arrive qu’un conteneur dépassant ces limites soit arrêté ou subisse une baisse
de performances. Par conséquent, déterminer la limite à attribuer à un conteneur et configurer
une ressource de service est un défi important. D’une part, le propriétaire ne comprend pas clai-
rement l’environnement dans lequel l’application sera déployée ; d’autre part, le fournisseur de
la plateforme reçoit l’application sous la forme d’un conteneur empaqueté dans lequel la charge
de travail est vue comme une bôıte noire. Dans de nombreuses situations, la configuration se
termine par l’utilisation de configurations par défaut qui ne sont pas adaptées aux besoins de
l’application. En effet, les locataires demandent naturellement une limite plus élevée que ce dont
l’application a besoin, ce qui, à son tour, dans un environnement contraint (comme le edge),
entrâıne un gaspillage de ressources.

Solution proposée

Nous menons une étude expérimentale visant à détecter si la configuration d’un conteneur permet
d’exécuter son micro-service de manière optimale. À cette fin, nous menons plusieurs expériences
sur une plateforme cloud-native, en utilisant différents types d’applications avec différentes confi-
gurations de ressources. Les résultats obtenus fournissent des informations sur la manière de
détecter et de corriger la dégradation des performances due à une mauvaise configuration des
ressources du service.
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Publications

Microservices Configurations and the Impact on the Performance in Cloud Native
Environments
Mohamed Mekki ; Nassima Toumi ; Adlen Ksentini
2022 IEEE 47th Conference on Local Computer Networks (LCN), 26-29 September 2022, Ed-
monton, AB, Canada.

8.3.3 Mise à l’échelle automatique des ressources des applications dans des
environnements cloud-native

Description du challenge

La conteneurisation des applications composées de microservices émerge comme un nouveau pa-
radigme pour optimiser la portabilité, la flexibilité et la gestion de telles applications. Exécuter
des applications cloud basées sur une architecture de microservices crée de nouveaux défis. Les
applications cloud nécessitent différents Quality of Service (QoS) ainsi que des exigences en res-
sources variées, ce qui nécessite la conception des farameworks de mise à l’échelle (ou scaling) des
resources fiables. Dans ce contexte, les algorithmes de ML, et en particulier l’apprentissage par
renforcement (RL), ont largement été exploités pour concevoir des framework de mise à l’échelle
intelligents et autonomes. Ils visent à déterminer les bonnes valeurs pour les différents besoins
en ressources des microservices des applications et donc à répondre aux QoS des applications.
Cependant, les modèles basés sur le ML deviennent de plus en plus complexes, et leurs décisions
sont difficilement interprétées par les utilisateurs, notamment les administratuers des services
cloud ainsi que les systèmes d’orchestration de conteneurs. Par conséquent, les utilisateurs (ou
systèmes) correspondants ne peuvent ni faire confiance ni comprendre les sorties des modèles de
ML, ni optimiser leurs décisions en fonction des sorties de ces modèles. La gestion fine granulaire
des ressources informatiques cloud-native est l’une des principales fonctionnalités recherchées par
les opérateurs cloud et edge. Elle consiste à fournir la quantité exacte de ressources nécessaire
à un microservice pour éviter la sur-provisionnement des ressources, qui est, par défaut, la so-
lution adoptée pour éviter la dégradation du service. La gestion fine granulaire des ressources
garantit une meilleure utilisation des ressources informatiques, ce qui est essentiel pour réduire
la consommation d’énergie et le gaspillage des ressources (vital dans le edge computing).

Solution proposée

Dans notre solution, nous proposons un nouveau framework ZSM doté d’un scaler de ressources
à granularité fine dans un environnement cloud-native. L’algorithme de scaling proposé uti-
lise des modèles d’AI/ML pour prédire les performances des microservices. Plus précisément,
nous utilisons eXtreme Gradient Boosting (XGBoost) comme algorithme ML pour prédire les
éventuelles violations liées aux performances de latence des applications en cours d’exécution ;
si une dégradation de service est détectée, une analyse de la cause racine est alors menée à l’aide
de XAI. En fonction de la sortie de l’XAI, le cadre proposé ne redimensionne que les ressources
(c’est-à-dire CPU ou mémoire) nécessaires (quantité exacte) pour résoudre la dégradation du
service. Le framework proposé et le gestionnaire de ressources ont été implémentés sur une plate-
forme cloud-native basée sur l’outil bien connu Kubernetes. Le scaler proposé avec des ressources
moindres atteint la même qualité de service que le scaler par défaut de Kubernetes.
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Publications

XAI-Enabled Fine Granular Vertical Resources Autoscaler
Mohamed Mekki ; Bouziane Brik ; Adlen Ksentini ; Christos Verikoukis
2023 IEEE 9th International Conference on Network Softwarization (NetSoft), 19-23 June 2023,
Madrid, Spain.

8.3.4 Gestion du cycle de vie des applications prenant en compte l’énergie
dans le cloud edge computing continuum

Description du challenge

Le déploiement d’applications sur une infrastructure CECC nécessite des informations détaillées
sur le profil de chaque application à gérer par l’orchestrateur ou le gestionnaire d’applications
CECC. Le profilage des applications désigne l’analyse systématique des caractéristiques d’une
application. Ce processus vise à obtenir des informations sur le comportement, les performances,
l’utilisation des ressources et les dépendances d’une application au sein de l’infrastructure cloud.
En ayant accès à ces profils, le CECCM peut optimiser le placement des applications pour
améliorer les performances et maximiser l’utilisation efficace des ressources d’infrastructure.
Les méthodes de profilage englobent une variété de techniques, telles que la supervision des
métriques système et l’analyse des modèles de trafic réseau. De plus, l’intégration de techniques
d’intelligence artificielle facilite la modélisation prédictive pour anticiper les demandes futures
en termes de ressources de calcul et de besoins réseau des charges de travail des applications.
De plus, l’infrastructure CECC produit une empreinte carbone, qui augmente avec l’échelle de
l’infrastructure. Cependant, dans le cadre du mouvement mondial vers la durabilité, des initia-
tives telles que le Pacte vert européen [1] accélèrent la transition vers des sources d’énergie
plus vertes. Ce changement augmente la disponibilité de l’infrastructure alimentée par des
énergies vertes. Par conséquent, lors de la décision du placement optimal des microservices, les
considérations de consommation d’énergie et l’utilisation de sources d’énergie verte doivent être
soigneusement équilibrées tout en satisfaisant toujours le SLA de l’application. De plus, l’orches-
trateur d’applications CECC (c’est-à-dire le CECCM) peut tirer parti du profil de l’application
pour prédire l’utilisation des ressources et décider de migrer les microservices de l’application si
une meilleure empreinte carbone peut être obtenue avec une nouvelle configuration et un nouvel
emplacement d’exécution des applications.

Solution proposée

Nous proposons une architecture de l’Orchestratrice d’Applications CECC. L’architecture tire
parti du profilage des applications et des infrastructures pour gérer efficacement les applica-
tions CECC. Ce profilage est réalisé en utilisant les informations de supervision, y compris
les métriques énergétiques collectées à partir de systèmes de supervision de l’énergie tels que
Kepler [4] et l’intensité carbone des infrastructures. Ensuite, nous définissons une méthode de
modélisation des profils des applications du point de vue du CECCM. Le profil représente les be-
soins actuels et futurs en termes de resources de calcul et de réseau de l’application. Le profil est
construit en fonction de l’utilisation historique de l’application à l’aide de méthodes statistiques.
Enfin, nous modélisons le problème de sélection des meilleurs emplacements pour déployer ou
migrer les applications tout en minimisant le coût du déploiement et l’empreinte carbone. Le
modèle décide des emplacements actuels et futurs de chaque application en fonction du profil
de l’application, des contraintes de disponibilité de l’application et des ressources disponibles
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des infrastructures. Nous proposons en outre une solution heuristique pour résoudre le problème
rapidement et nous comparons les différents compromis entre l’efficacité carbone et le coût.

Publications

Energy-Aware Application Life-Cycle Management in Cloud Edge Computing Conti-
nuum Using Applications Profiles
Mohamed Mekki ; Adlen Ksentini
En cours de soumission.

8.4 Conclusion

En conclusion, cette thèse a fourni des solutions pour automatiser la gestion du Cloud Edge
Computing Continuum (CECC). Le parcours de cette thèse a commencé par la création d’un
framework de supervision de services multi-domaines de bout en bout. De tels services consistent
en des applications et des fonctions réseau qui s’étendent sur plusieurs domaines technologiques,
chacun présentant ses propres intrications uniques. Le système de supervision proposé utilise une
structure unifiée de Key Performance Indicator (KPI), abstrayant efficacement toutes les com-
plexités sous-jacentes. Des tests approfondis dans différents scénarios valident la scalabilité du
framework et sa capacité à superviser un grand nombre de services simultanément. La prochaine
étape de la thèse impliquait le profilage des applications, dans lequel nous avons mené une étude
expérimentale pour explorer le comportement de différents types d’applications dans des environ-
nements cloud-native. Cette étude met en évidence l’incapacité des propriétaires d’applications
à configurer les ressources appropriées pour leurs applications afin de fonctionner de manière
optimale sans entrâıner de gaspillage des ressources d’infrastructure. Ensuite, nous avons utilisé
des techniques d’Artificial Intelligence (AI) et d’eXplainable Artificial Intelligence (XAI) pour
construire des modèles capables de prédire la dégradation des performances des applications, en
utilisant des ensembles de données générés à partir de notre étude. Lorsque le modèle prédit un
déclin des performances de l’application, le module XAI fournit des explications pour la sortie
du modèle, facilitant l’identification de la cause profonde de la dégradation du service. Cette
cause profonde est ensuite traitée par le gestionnaire d’application. Le parcours de cette thèse
s’est conclu par la proposition d’une architecture pour la gestion du cycle de vie des applications
CECC. Cette architecture utilise des profils d’application et d’infrastructure pour déployer et
migrer des applications tout en tenant compte de l’empreinte carbone du déploiement CECC. Le
principal défi réside dans la représentation concrète du profil d’application de manière à pouvoir
spécifier les exigences actuelles et futures de l’application. Ce défi a été relevé en représentant
efficacement le profil d’application pour faciliter la dérivation des exigences actuelles et futures
de l’application.
Automatiser la gestion du cycle de vie du CECC est crucial pour débloquer le potentiel des
cas d’utilisation émergents. En fournissant un spectre où les applications peuvent s’exécuter et
migrer facilement entre différents endroits, les opérations manuelles (placement, mise à l’échelle,
migration ...) deviennent obsolètes, car elles ne parviennent pas à obtenir une allocation optimale
des ressources et une efficacité de performance. Cette thèse représente un progrès incrémental
vers le paradigme de la gestion automatique du CECC sans aide humaineh, visant à automatiser
complètement les procédures de gestion.
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[33] Márcio Barbosa de Carvalho et al. “A cloud monitoring framework for self-configured monitoring
slices based on multiple tools”. In: Proceedings of the 9th International Conference on Network and
Service Management (CNSM 2013). IEEE. 2013, pp. 180–184.
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