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ABSTRACT

In a transform coding framework we compare the optimal causal approach (LDU, Lower-Diagonal-Upper) to the optimal
unitary approach (Karhunen-Loeve Transform, KLT). The criterion of merit used for this comparison is the coding gain,
defined for a transformation

�
as the ratio of the average distortion obtained with identity transformation over the average

distortion obtained with
�

. In absence of perturbation, both transforms have been recenlty shown to yield the same gain
[8, 7]. The purpose of this report is to compare the behavior of these two transformations when the ideal transform coding
scheme gets perturbed, that is, when only an estimate ���������	� of �
��� is known. In this case, not only the transformation
itself will be perturbated, but also the bit allocation mechanism. We compare the two approaches in three cases. Firstly,
�	� is caused by a quantization noise : the coding scheme is based on the statistics of the quantized data. We find that the
coding gain in the unitary case is higher than in the causal case. In a second case, �	� corresponds to an estimation noise : the
coding scheme is based on an estimate of � ��� based on a finite amount of available data. In this case, both causal and unitary
approaches are strictly equivalent, because of the unimodularity and decorrelating properties of the transformations. Finally,
the influence of both perturbations is considered, as this is the case in a real backward adaptive transform coding scheme.
Simulations results confirming the predicted behavior of the coding gains with perturbations are reported. The results of this
work have been submitted in [2] and [3]. This report is available at http://www.eurecom.fr/ � mary/publications.html .
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1. INTRODUCTION

Consider a stationary Gaussian vectorial source
� � �

. This source may be composed of any scalar source
��� � �

. In the
classical transform coding framework, a linear transformation is applied to each N-vector

�
to produce an N-vector � whose

components are independently quantized using scalar quantizers
� �

. A number of bits � � is attributed to each
� �

under the
constraint � � � ����� � , see Figure 1. For an entropy constrained scalar quantizer of a Gaussian source, the high resolution
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Fig. 1. Classical Transform Coding scheme.
����� �

denotes entropy constrained uniform scalar quantization.

distortion is E (�)+*� (�,.-0/1) � (�,.-2-43 �65 3*87 �:9<;=�>�? 32@ 7 5 3A 7 . The constant B �C9<;= will denote in this report the proportionality
coefficient between variance and distortion in the Gaussian case.
An important property of commonly used transformations is that, if a noise (for example quantization noise) is added to the
signal in the transformed domain, then its power will be the same in the transform and in the signal domains. This property
is sometimes referred to as ”unity noise gain” property [8]. The coding gain for such transformations

�
is defined as

DFE �HGJI �� I 3 KMLONGJI �� I 3 K E N �PGJI �
� I 3 KMLONGJI �� I 3 K E N�Q (1)

where R is the identity matrix, and the notation I �� I 3 K E N denotes the variance of the quantization error on the vector
�

, obtained

for a transformation
�

. The optimal bit allocation yields the well known distortion for the vectorial signal
� � � : E STS ��USVS 3E �WX � X�ZY W 5 3* 7 �[�\5 3* �]� B > ? 32@F^`_ X�ZY W 5 3A 7ZaUbc . The optimal variance of the quantization noise for each component is

independent of d , and the number of bits assigned to the i /�egf component is � � W3ih�jlk 3 m+no 7(�p c 7 q b m n o 7 - b
c . In the next section, we

recall the main characteristics of the optimal causal approach (LDU) when optimized on � ��� , and summarize the reasons
why its performance is the same as the best unitary approach (KLT).
However, a backward adaptive coding scheme generally deals with non- or locally- stationary signals. Sending the updates of
the signal-dependent transformation and bit assignment as side information would cause a considerable overhead for the total
bit rate. Thus, the backward adaptive coding scheme should require that neither the transformation nor the parameters of the
bit assignment are transmitted to the decoder. So suppose now that the coding scheme is based on r�
��� � �
��� � �	� instead
of �
��� , where r�
��� is available at both encoder and decoder. Then the computed transformation will be r� � � � � � , and
the distortion will be proportional to the variances of the signals transformed by means of r� instead of

�
, say

5 3gsA 7 . Moreover,
the bits � � should be attributed on the basis of estimates of the variances available at both encoder and decoder also, that
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is, ( r� r� ��� r� - � � , where ( � - � � denotes the i /�egf diagonal element of ( � - . Hence, under the assumption of Gaussianity for the
transformed signals, we get the following measure of distortion for a transformation r� based on r� ��� :

GJI �� I 3 K �E N � G X� �ZY W B > ? 3�� @�� bn ���
	 n �
�� ������ �� ��� 7 7� � c 7 q b �
�� �� ��� �� �
� 7M7 � bc�� 5 3gsA 7 � (2)

where the expectation is w.r.t. �	� in case it is non-deterministic. We compare this distortion and the corresponding gain for
the KLT and the LDU in three cases. In the third part, �	� is caused by a quantization noise : the coding scheme is based
on the statistics of the quantized data, under high resolution assumption. In the fourth part, �	� corresponds to an estimation
noise : the coding scheme is based on an estimate of ����� due to a finite amount of � vectors : r�
��� � W� ����ZY W � � � E� .

2. OPTIMAL CAUSAL AND UNITARY APPROACHES WITHOUT PERTURBATION

In the causal case, � ��� � � � / � � , where
� �

is the reference vector. The output
� * is � * � � �

. Note that the
reconstruction error �� equals the quantization error �� :

�� � � / � * � � /1( � * � � � - � � / � � / � * � �%/ � * � �� Q (3)

so that the causal transform possesses the unity noise gain property. This is also true in the unitary case, even though �� is in
general different from �� . As detailed in [6, 7], the optimal

�
in terms of coding gain is such that�

� ���
� E �

��� � �"! �$# d&% k � 5 3A b Q �'�'�
5 3A c � Q (4)

where
# d(% k � �)�'� � represents a diagonal matrix whose elements are

5 3A 7 . In other words, the components ) � are the prediction
errors of

� �
with respect to the past values of

�
, the

� W�* � ? W , and the optimal coefficients / � �&+ W�* � ? W are the optimal prediction
coefficients. Since each prediction error ) � is orthogonal to the subspaces generated by the

� W�* � ? W , the ) � are orthogonal, and!
is diagonal. It follows that

�
���
�$� ? W � �,� � ? E Q (5)

which represents the LDU factorization of ����� . Referring to (1), the coding gain without perturbation for the optimal causal
transform can be written as

D K)-8N. � G STS ���STS 3LG STS �� STS 3. � G SVS �� STS 3LG STS ���STS 3. �0/ 132
4 5 # d(% k ( �
����-(61327485 # d&% k ( � � ��� � E -(6
9 b
c Q (6)

where
# d(% k ( ��- denotes here the diagonal matrix that corresponds to the diagonal of the matrix � . Now, since the diagonal-

izing transformation matrix
�

is unimodular, 1:2
4 ( # d&% k ( � �,� -4- � 132
4 ( �
����- � 132
4:; , where ; is the eigenvalue matrix of
�
��� . The coding gain is D K'-gN. � ^=<
>
? �A@ �CB 	 K�D ��� N �<
>
? � @ �CB 	 K . D ��� . � N � aUbc� ^ <
>
? � @ �CB 	 K�D ��� N �<
>
?FE aUbc � D K'-gN� Q (7)

where � denotes a KLT of � ��� . Thus, for an optimal bit allocation, the coding gains of the KLT and the LDU are the same
without perturbation for three reasons : both transformations ensure that the power of the quantization error is the same in the
transform and in the signal domains, they are totally decorrelating transforms, and finally they are unimodular. Moreover, this
is the best coding gain achievable among all unimodular transforms (a proof based on Hadamard’s inequality for symmetric
positive semidefinite matrices can be found in [4]).

3. QUANTIZATION EFFECTS ON THE CODING GAINS

Suppose we compute the transformation on the basis of quantized data. The statistics of the quantized data is assumed to
be perfectly known in this section. In other words, we assume that the decoder disposes of an infinite number of quantized
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vectors
� *� , and we know � � � � � . (As stated in introduction, the perturbing effects of partially known statistics are analyzed

in section
�

and � .) Under the assumptions of high resolution (uncorrelated white noise), optimal bit assignment and unity

noise gain property of the transformation, �	�
� G �� �� E � 5 3* R , where

5 3* � B > ? 34@ ^`_ X� Y W 5 3A 7 a bc for Gaussian transform

signals. Thus, one should compute

GJI �� I 3 K �E + * N � X� �ZY W B > ? 3�� @�� bn ���
	 n
�
�� � � � � � �� � � 7M7� � c 7 q b �
�� � � � � � �� � � 7 7 � bc � 5 3 sA 7 Q (8)

where � refers to quantization. Evaluating (8) for r� � R Q r� and r� gives the following results.

3.1. Identity Transformation

In this case, the number of bits attributed to the quantizer
� �

is � � W3ih�jlk 3 K�D � � � � N 7M7K p c 7 q b
K D � � � � N 7M7 N bc , and the variance

5 38sA 7 are indeed( �
����- � � . Since the signals to be quantized are Gaussian, we have

GJI �� I 3 KML + * N � X� �ZY W B > ? 3�� @ � bn ���
	 n � � � � � � � 7M7� � c 7 q b � � � � � �
� 7M7 � bc � ( �
����- � � (9)

� X�
�ZY W B > ? 32@ ( 13274 # d(% k � �
� � � � � - bc ( �
����- � �( � � � � � - � � � (10)

The second equality comes from the fact that optimal bit assignment produces equal distortion on each component : suppose
we compute the optimal bit assignment for the signal with covariance matrix � � � � � . Then we can writeX�

�ZY W B > ? 3�� @ � bn ���
	 n � �� � � � � � �� � � 7M7� � c 7 q b � �� � � � � � �� � � 7M7 � bc � ( � � � � � - � � � B > ? 34@ ( 132
4 # d(% k � � � � � � � - bc (11)

where all B > ? 3�� @ � bn ���
	 n � �� � � � � � �� ��� 7 7� � c 7 q b ���� � � � � � �� �
� 7 7 � bc � ( �
� � � � - � � are equal (each term equals the geometric mean of all the terms).

Factorizing by the geometric mean gives (10).
Now, by writing � � � � � � �
��� � 5 3* R in (10), one shows thatX�

�ZY W ( � ����-
� �( �
� � � � - � � � eg� ��� R � 5 3* ( # d&% k �
����- ? W�� ? W � Q

where eg� denotes the trace operator, and132
4 ( # d(% k �
� � � � - � 132
4 ( # d&% k � ����- 132
4 (�R
� 5 3* ( # d&% k � ����- ? W -
and we find GJI �� I 3 KML + * N � GJI �� I 3 KMLON WX ( 13274 ( R � 5 3* ( # d(% k �
����- ? W -4- bceg� � � R � 5 3* ( # d(% k �
����- ? W � ? W � � (12)

The distortion is slightly increased because the bits allocated on the basis of variances of quantized signals are not the optimal
ones (the variance of the quantization noise is not equal in each branch d ). An approximation of (12) up to the second order
of the perturbation gives

GJI �� I 3 K L + * N� B > K / > �<-l( 132
4 # d(% k � � ��� � - W
	 X (�� X� Y W ( m+n�K D ��� N 7 7 -2- W
	 X � X� Y W (
� � WK�D ��� N 7M7 - ? W� GJI �� I 3 KMLON�� � � m���X n (
X ? W3 � X�ZY W WK�D ��� N n 7M7 / � X�ZY W ����� � WK�D ��� N 7M7 K�D ��� N���� -
� (13)
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3.2. KLT

As observed in [9] also, if
�

denotes a KLT of � ��� , then
� ( �
��� � 5 3* R+- � E � ; � 5 3* R � ; * , and

�
is also a KLT

of �
��� �
5 3* R . Thus, the perturbation term

5 3* R on �
��� does not change the backward adapted transformation, and the

variances of the transformed signals remain unchanged :
5 38sA 7 � ( � � ��� � E - � � � � �

. However, the decoder can only estimate
the variances ( � � � � � � � E - � � � � � � 5 3* , on the basis of which the coder has to assign the bits � � . The transformed signals
are Gaussian ( � � � � ), thus the actual distortion is

G I �� I 3 K�� + * N � X� �ZY W B > ? 3�� @ � bn ��� 	 n ��� � � � � � � ��� 7M7� � c 7 q b ��� � � � � � � � � 7 7 � bc � ( � �
��� �
E - � � � (14)

� X�
�ZY W B > ? 32@ � 132
4 # d&% k � � � � � � � � E � � bc ( � �
��� � E - � �( � � � � � � � E - � � � (15)

Since
� �
��� � E and

� �
� � � � � E are diagonal, one shows thatX�
�ZY W ( � � ��� �

E - � �( � � � � � � � E - � � � eg� � � R � 5 3* ( � ? W��� - � ? W � � eg� � � R
� 5 3* ( ; - ? W � ? W � � (16)

Also, 132
4 ( �
� � � � - � 132
4 ( �
����- 1:2
4 (�R � 5 3* ( � ? W��� -4- � (17)

Finally, the distortion for the KLT with quantization noise is

GJI �� I 3 K�� + * N � GJI �� I 3 K�� N WX ( 132
4 (�R � 5 3* ( ; ? W -2-4- bceg� � � R
� 5 3* ( ; ? W - � ? W � � (18)

Again, the increase in distortion comes from the perturbation occuring on the bit allocation mechanism. An expression
approximating this distortion is

GJI �� I 3 K�� + * N � B > K / > �<-O( 1:2
4 # d&% k � �
��� � - W
	 X ( � X�ZY W ( m+n�� 7 -2- W
	 X � X�ZY W (
��� W� 7 - ? W� GJI �� I 3 K�� N�� � � m���X n ( X ? W3 � X�ZY W WK � 7 N n / � X�ZY W � � � � W� 7 � � - � (19)

Using (12) and (18) the corresponding expression for the coding gain in the unitary case with quantization noise is

D � + * � D - ( 13274 ( R � 5 3* ( # d(% k �
����- ? W -4- bc eg� � � R � 5 3* ( # d&% k �
����- ? W � ? W �( 1:2
4 (�R � 5 3* ( ; ? W -2-4- bc eg� � � R � 5 3* ( ; ? W - � ? W � Q (20)

which, with (13) and (19), can be approximated as

D � + * � D - ��
� �

5
	*� 3 �� � / �>
X�
�ZY W ( �( � ��� - 3� � / �( � � - 3 - / X� �ZY W � ��� � ( �( � ��� - � � ( � ��� - �
� / �� � � � -�
���� � (21)

3.3. LDU

In the causal case, the coder uses a transformation
���

such that
���
�
� � � � � s E � � ��,� . �

�� � is the diagonal matrix of the
estimated variances involved in the bit allocation (

���
and �

��,� are both available to the decoder). In this case, the difference
vector � � � / � � � * , the quantization noise is filtered by the rows of

� �
, see figure 2. Note that in this case GJI �� I 3. s + * still

equals GJI �� I 3. s + * , since �� � � * / � � � * � � � � * / � � � * / ( � / � � � * - � � * / � � �� . It can be shown that the

actual variances of the signals ) � obtained with
���

are ( ��� � � � � � � s E / 5 3* R+- � � [7].
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Fig. 2. Vectorial DPCM coding scheme.

We now show that evaluating (8) with r� �"� �
yields an upper bound for GJI �� I 3 K . s + * N , and thus an lower bound for the coding

gain
D . s + * in the causal case. Consider the signal in the transform domain :

) �(+ � � � �(+ � / � ? W�
� Y W � � � � � � ? � + � /

� ? W�
� Y W � � � � � � ? � + � � (22)

The random variable (r.v.)
� ) � � is the sum of a Gaussian r.v.

��� � �
(
� �(+ � � � �(+ � / � � ? W� Y W � �� � � � ? � + � ) and of d / � uniform r.v.s

��� � � � (
� � � + � � � �� � � � ? � + � ). Hence, for d greater than � , � ) � � is not Gaussian. In order to compare the actual rate-distorsion

function of the
� ) � � with that of a Gaussian r.v., denote by � (�)i*� - the discrete entropy of the quantized variable )i*� , f ( ) � -

the differential entropy of ) � , � � the minimum number of bits per sample necessary to losslessly code )�*� , and �
�

the step
size of the uniform quantizer

� �
. Then we have under high resolution assumption � ( )i*� - � � � � f ( ) � - / h�jlk 3 � � , whereh�jlk 3 � � corresponds to the differential entropy of the uniformly distributed r.v.

� � ��� : h�jlk 3 � � � f ( � � - � W3 h jlk 3 ( � > 5 3*87 - �W3 h�jlk 3 (
� > GJI �) � I 3 - . Thus � � � f ( ) � -i/ W3 h jlk 3 (
� > GJI �) � I 3 - . Since for a given variance the Gaussian probability density function

(p.d.f) maximizes the differential entropy f (�) � - , an upper bound for � � may be found as � � � W3 h�jlk 3 3 9<; m no s7W 3�!#"%$A 7 " n , which givesGJI �) � I 3 � 9<;=�> ? 32@ 7 5 3A s7 � The distortion GJI �� I 3 K . s + * N is then upper bounded by (8), that is,

GJI �� I 3 K . s + * N � � X�ZY W GJI �) � I 3� � X�ZY W B > ? 32@ 7 5 3A s7 � � X�ZY W B > ? 3 � @ � bn ���
	 n
� � s&'& � 7 7� � c 7 q b � � s&(& � 7 7 � bc �5 3 sA 7 �

(23)

Let us compute this upper bound. The distortion (8) may be written as

G I �� I 3*)�+K . s + * N � X� �ZY W B > ? 3�� @�� bn ��� 	 n �-, s � � � � � , s � � 7M7� � c 7 q b �-, s � � � � � , s �
� 7 7 � bc � ( � � � � � � � � s E / 5 3* Ri- � � (24)

� X�
� Y W B > ? 32@ ^ 132
4 # d(% k � � � � � � � � � s E � a bc/. ��/ ( 5 3* Ri- � �( � � � � � � � � s E - � �*0 � (25)

Since the transformation
���

is unimodular, the determinant in the previous expression equals the determinant in (17). The
sum in (25) may be written as eg� � (�R�/ 5 3� � � �
� � � � � s E - � � eg� � (�R�/ 5 3� � ��,� - � . Thus this bound becomes

GJI �� I 3 )�+K . s + * N � G I �� I 3 K . N �� ( 13274 ( R � 5 3* ( ; ? W -2-4- bc eg� � ^ R
� 5 3* ( � s ? W� � - a � � (26)

8



The increase in distortion comes not only from the perturbation occuring on the bit allocation mechanism but also from the
filtering of the quantization noise. Up to the first order of perturbation,we obtain

G I �� I 3 )�+K . s + * N � B > K / > �<-O( 132
4 # d(% k � � ��� � - W
	 X (�� X� Y W ( m n�� 7 -4- W
	 X � X� Y W (
��� WD s& 7 & 7 - ? W� GJI �� I 3 K � N � � � m n�X (�� X�ZY W W� 7 / W
m n o 7 -
� Q

(27)

where the
5 3A 7 correspond to optimal prediction error variance in absence of quantization noise.

Now, the gain in the causal case
D . s + * � !#" $� " n � ��� � �!#" $� " n �-, s � � � becomes lower bounded by ! " $� " n � ��� � �� c 7 q b � 3�� n � 7 m no s7

� D ���	�. s + * . The corresponding

exact expression for the bound on the coding gain is

D ���
�. s + * � D - ( 13274 ( R � 5 3* ( # d(% k �
����- ? W -2- bc eg� � � R � 5 3* ( # d&% k �
����- ? W � ? W �( 1:2
4 (�R � 5 3* ( ; ? W -4-2- bc eg� ��� R � 5 3* ( � s ? W�8� - � � � (28)

Up to the first order of perturbation we get,

D ���	�. s + * � D - � ��/ 5 3*� X�
� Y W �� � / �5 3A 7
� � (29)

Now how close is the actual coding gain in the causal case to this bound ? First recall that the r.v.
� ) W � is strictly Gaussian.

Moreover, the convolution of d�/ � Uniform p.d.f. is known to tend quickly, as d grows, to a Gaussian p.d.f.. Thus,
� ) � � tends

to be Gaussian and for reasonably high N, this bound is a fairly precise measure of the actual coding gain :
D . s + * � D ���	�. s + * .As developped in [5], an interesting consequence of (29) is that we should decorrelate the signals

��� ���
in order of decreasing

variance if we want
D . s + * to be maximized (see the simulations in the last section).

4. ESTIMATION NOISE

We analyze in this section the coding gains of a backward adaptive scheme based on an estimate of the covariance matrixr�
��� � W� � X� Y W � � � E� . We assume independent identically distributed (i.i.d.) real vectors
� �

, which is for example the
case if the sampling period of the scalar signals is high in comparison with their typical correlation time. Thus, the first and
second order statistics of �	� are known : ( �	��- � � is, for sufficiently high � , a zero mean Gaussian random variable with
covariance matrix such that

G���� B<( �	��- ( ��� B<( �	��-4- E � >� �
����� �
��� Q (30)

where � denotes the Kronecker product. For each realization of �	� , the coder computes a transformation r� which diagonal-

izes r� ��� : r� r� ��� r� � r� �,� � The number of bits assigned to each component is � � � � � W3 h�jlk 3 K �E �D ��� �E � N 7 7K p c 7 q b
K �E �D ��� �E � N 7M7 N bc .

Now, the true variances of the signals obtained by applying r� to
�

are ( r� �
��� r� E - � � . Note that in the causal case,� � R / r� � � r� � , so that �
��,� � r� �
��� r� E . In the causal case, there is a qualitative difference with the previous

section, where the quantization noise was filtered by the predictors of
� �

. Here, the estimation noise does not perturb signals,
but only transformations and bit assignments. The transformed signals are Gaussian for the three transformations, and the
resulting distortion by estimating

�
and � ��� by means of � vectors is

G I �� I 3 K �E + � N � G X� � Y W B > ? 3�� @ � bn ���
	 n
�
�� ������ �� ��� 7M7� � c 7 q b ���� �� ��� �� �

� 7 7 � bc � ( r� � ��� r� E - � � � (31)

4.1. Identity Transformation

With r� � R , we obtain

GJI �� I 3 KML + � N � G X� �ZY W B > ? 3�� @ � bn ���
	 n � ������ � 7M7� � c 7 q b �
�� ���
� 7M7 � bc � ( � ��� - � � � (32)
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Using a similar analysis as in section 3, we obtain

GJI �� I 3 KML + � N � G B > ? 32@ ( 132
4 # d(% k � � ��� � - bc ^ _ X�ZY W ( � � K � D N 7M7K�D ��� N 7 7 - aUbc � X� Y W ^ � � K � D N 7 7K�D ��� N 7M7 a ? W� GJI �� I 3 K L N ^ � � G X ? W3 X n �
X�ZY W ( K � D N 7M7K�D ��� N 7 7 - 3 / G WX n �

� � � � � K � D N 7 7K D ��� N 7M7 K � D N ���K�D ��� N ��� a (33)

With (30), the second expectation in (33) may be written as

G � / �> � 3
X�
�ZY W / ( �	��- � �( �
����- � � 9 3 � � / �> � 3

X�
�ZY W > ( �
����- 3� �� ( � ����- 3� � � � / �> � 3 >

�� � � / �� � � (34)

The third expectation is

G WX n �
� � � � � K � D N 7M7K�D ��� N 7M7 K � D N ���K�D ��� N � � � 3� � � � � � � K�D ��� N n 7 �K�D ��� N 7M7 K�D ��� N ���� 3� I � � ( # d&% k � �
��� � - W
	 3 �
��� ( # d&% k � �
��� � - W
	 3 � I 3� (35)

where � ( � - denotes the stritcly lower triangular matrix made with the strictly lower triangular part of
�

, and I � I 3� the
squared Frobenius norm of

�
. If

!
denotes

# d&% k � � ��� � , we obtain

G �� 3 � � �
� � �

( �	��- � �( �
����- � � ( �	��- � �( �
����- �
� � �� ^ I ! ? bn � ��� ! ? bn I 3� / I # d(% k � ! ? bn � ��� ! ? bn I 3� a � �� (Teg� � � ��� ! ? W � ��� ! ? W � - �
(36)

Finally, the expected distortion for Identity with estimation noise is, for sufficiently high � ,

G I �� I 3 KML + � N � GJI �� I 3 KMLON / � � �� 5 � / �� 3 eg� � � ��� ! ? W �
��� ! ? W � 6 9 � (37)

4.2. KLT

In the unitary case, the expected distortion is

GJI �� I 3 K �� + � N � G X� � Y W B > ? 3�� @�� bn ���
	 n ���� �� ��� �� � � 7M7� � c 7 q b � �� ������ �� � � 7M7 � bc � (.r� �
��� r�
E - � � � (38)

Using the fact r� r�
��� r� E is diagonal, we can write (38) as

GJI �� I 3 K �� + � N � G B > ? 32@�^ 132
4 r� r�
��� r� E a bc � X� Y W K ���D ��� �� � N 7 7K �� �D ��� �� � N 7 7 � (39)

Because of the unimodularity of r� , the determinant in (39) may be written as13274 r� r�
��� r� E � 132
4 ( �
��� � �	��-� ( 132
4 � ����- 132
4 ( R � � ? W��� �	��- � (40)

The sum in (39) may be written as

� X�ZY W K �� D ��� �� � N 7M7K �� �D ��� �� � N 7M7 � eg� � (.r� r� ��� r� E - ? W
	 3 r� � ��� r� E (�r� r� ��� r� E - ? W
	 3 �� eg� � r� �
��� r� E ( r� r�
��� r� E - ? W � � eg� � r� �
��� r� ? W��� r� ? W �� eg� � � ��� r� ? W��� - � � eg� � � ��� ( � ��� � �	��- ? W �� eg� � ( R � � ? W��� �	��- ? W � � (41)

Thus, (39) is equivalent to

GJI �� I 3 K �� + � N � GJI �� I 3 K�� N WX G ( 13274 ( R � � ? W��� �	��-4- bc eg� � � R � � ? W��� �	� � ? W � � (42)
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In order to find the expectation of GJI �� I 3 K �� + � N , let us develop (38) as

GJI �� I 3 K �� + � N � G B > ? 32@ ^ 132
4 r� �
��� r� E aUbc . X��ZY W (
� � ( r� �	� r� E - � �( r� � ��� r� E - � � - 0 bc X� � Y W . � � ( r� �	� r� E - � �( r� �
��� r� E - � � 0 ?
W � (43)

The determinant in (43) may also be written as132
4 r� � ��� r� E � _ X�ZY W ( � � ��� � 7 -� (�_ X�ZY W � � -l(�_ X�ZY W � ����� 7� 7 -� ( _ X�ZY W � � -l(
��� � X�ZY W ��� 7� 7 - Q (44)

where
� �

ans � � 7 are the diagonal elements of ; and � ; , which is defined by

r� � ��� r� E � ; � � ; � (45)

Now (43) may then be approximated as

GJI �� I 3 K �� + � N � GJI �� I 3 K � N ^ � � WX � X�ZY W ��� 7� 7 a ^`_ X�ZY W (
� � K �� � D �� � N 7 7K �� D ��� �� � N 7 7 - aUbc � X�ZY W ^ � � K �� � D �� � N 7M7K �� D ��� �� � N 7M7 a ? W� GJI �� I 3 K � N ^ � � G WX � X� Y W ��� 7� 7 � G X ? W3 X n � X� Y W ( K �� � D �� � N 7 7K ��,D ��� �� � N 7M7 - 3 / G WX n �
� � � � � K �� � D �� � N 7 7K ���D ��� �� � N 7 7 K �� � D �� � N ���K ���D ��� �� � N � � a �

(46)

Computation of the second expectation in (46).

Using the unitarity of r� � � � � �
, we have# d(% k � � ; � �"# d(% k � � � E �
��� � � / � � E � � ; � � (47)

The expectation of the diagonal elements of the first term in (47) is

G ( � � E �
��� � � - � � � eg� G � ��� � � � � � E� � � �� �
���Y	�

� 3�( � � / � � - 3 Q (48)

where we have used the following classical result in perturbation theory of matrices [1], for sufficiently high �
G � � � � � E� � � �� �

�	�Y	�
� �( � � / � � - 3 � � � E� � (49)

The expectation of the diagonal elements of the second term in (47) is

G ( � � E � � ; - � � � � � G ( � � E� � � � - � � 3�� �
�	�Y	�

� �( � � / � � - 3 � (50)

Hence, we get from (47,48), and (50)

G � � � � � �� �
�	�Y	�

� 3� / � � � �( � � / � � - 3 � � �� �
�	�Y	�

� �� � / � � Q (51)

from which it is easy to show that

G X�
�ZY W � � �� � � �� X�

�ZY W � ���Y	� � �� � / � � � �� � ( � / �`-> � (52)
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Computation of the second and third expectations in (46).

The perturbing term
K �� � D �� � N 7M7K ���D ��� �� � N 7 7 may also be approximated as

( r� �	� r� E - � �( r� � ��� r� E - � � �
� �	� � E � � �	� � � E � � � �	� � E � � � �	� � � E� � ��� � E � � � ��� � � E � � � � ��� � E � � � � ��� � � E � � �	� � E� � ��� � E (53)

Let r; be r; � � r�
��� � E � � � ��� � E � � �	� � E� W� � X�ZY W �
� � � E� � E� W� � X�ZY W � � � E� � (54)

Thus,
� �	� � E � ; / W� � X�ZY W � � � E� : ( � �	� � E - � � is a real zero mean Gaussian random variable, corresponding to the esti-

mation error of ; obtained with a covariance matrix computed with � vectors. Hence, we have G���� B ( � �	� � E -O( ��� B � �	� � E - E �3 E � E� , whence X�
�ZY W / ( � �	� � E - � �( � � ��� � E - � � 9 3 � > �� Q (55)

and �
�
�
� � �

( � �	� � E - � �( � � ��� � E - � � ( � �	� �
E - � �( � � ��� � E - �
� � �

�
�
��� �

>� ; 3� �� � � � ��� � (56)

Finally, the expected distortion for the KLT when the transformation is based on � vectors is, under high resolution assump-
tion

GJI �� I 3 K �� + � N � GJI �� I 3 K�� N / � � � / �� � �> � ���� 9 � (57)

The associated coding gain isD �� + � � GJI �� I 3 K L + � NGJI �� I 3 K �� + � N � D - / ��/ �� � eg� � � ! ? W � ! ? W �� 3 �
� / �> / �� � 9 Q (58)

where
! �$# d(% k � � ��� � .

4.3. LDU

As stated in the introduction of this section, the expected distortion with r� computed on r�
��� is

GJI �� I 3 K �. + � N � G � X�ZY W B > ? 3�� @�� bn ���
	 n � �, �� ��� �, � � 7 7� � c 7 q b � �, �� ��� �, � � 7M7 � bc � ( r� �
��� r�
E - � �� G B > ? 32@
^ 13274 r� r�
��� r� a bc � X� Y W K �. D ��� �. � N 7 7K �. �D ��� �. � N 7 7 Q (59)

where we used a factorization similar to (10). Now using the unimodularity of r� , we can write the determinant as

^ 132
4 r� r�
��� r� a bc � 132
4 r�
��� � 132
4 ( � ����- 132
4 (�R
� � ? W��� �	��- Q (60)

and using the decorrelating property of r� , we can write the sum asX�
�ZY W ( r

�
� ��� r� E - � �( r� r� ��� r� E - � � � eg� � ( R � � ? W��� �	��- ? W � � (61)

Thus, comparing with (38), we have GJI �� I 3 K �. + � N � GJI �� I 3 K �� + � N : the distortion and coding gain with quantization noise are

the same in the causal and the unitary cases, and are given for high � by (38) and (58) respectively.
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5. QUANTIZATION AND ESTIMATION NOISE

We arrive now to the most general case of this comparison between causal and unitary approaches. As stated in Introduc-
tion, in a real backward adaptive scheme, the coder should attribute the bits on the basis of r�
� � � � � �
� � � � � �	� �W� � ��ZY W � *� � * E� � As in the previous section, we assume independent identically distributed real vectors

� �
. The estimated

transform is r� , such that r� r� � � � � r� E is a diagonal matrix, which corresponds to the estimated variances of the transformed
signals. If we continue denoting by

5 3 sA 7 the actual variances of the transformed signals (obtained by applying r� to
�

), the

expected distortion obtained with r� using � quantized vectors is

GJI �� I 3 K �E + � + * N � G X� �ZY W B > ? 3 � @ � bn ���
	 n
� �� �� � � � � �� � � 7M7� � c 7 q b �
�� �� � � � � �� �

� 7M7 � bc � ( r� � ��� r� E - � � Q (62)

where the subscripts � and � refer to the presence of quantization and estimation noise, and the constant B assumes Gaus-
sianity of the transformed signals. Equation (62) must be evaluated for Identity, KLT and LDU transforms. As in Section 3,
the computation of (62) in the causal case will provide an upper bound for the distortion because of the uniform quantization
noise feedback uppon the

� ) � � .
5.1. Identity Transformation

In this case the transformed signals ) � are indeed still Gaussian. With r� � R we obtain for (62), by writing � ���
�

� � � � � / 5 3* R ,
GJI �� I 3 K L + � + * N � G X� � Y W B > ? 3�� @�� bn ���
	 n

�
�� � � � � � 7 7� � c 7 q b �
�� � � � �
� 7M7 � bc � ( �
� � � � - � � / 5 3* G

X�
�ZY W B > ? 3�� @�� bn ���
	 n �
�� � � � � � 7 7� � c 7 q b �
�� � � � �

� 7 7 � bc � � (63)

The first term may be written as

B > ? 3�� @�� bn ���
	 n � � � � � � � 7 7� � c 7 q b � � � � � �
� 7 7 � bc � ( �
� � � � - � � G ^O_ X�ZY W � � K � D N 7M7K�D � � � � N 7M7 a bc � X�ZY W ^ � � K � D N 7 7K�D � � � � N 7M7 a ? W� G I �� I 3 KMLON B > ? 34@ ( 132
4 ( # d(% k � �
� � � � � -4- bc ^ � � G X ? W3 X n � X�ZY W ( K � D N 7M7K�D � � � � N 7 7 - 3 / G WX n �

� � � � � K � D N 7 7K�D � � � � N 7M7 K � D N ���K D � � � � N ��� a �
(64)

The equality concerning the determinant comes from a factorization similar to (10). The expectations in (64) are computed in
the same manner as in section 4.1. Note however that in this case, the r.v. �	� corresponds to the estimation error of � � � � � ,
which is not the covariance matrix of jointly Gaussian i.i.d. r.v.s because of the uniformly distributed quantization noise � �
perturbing the

� �
. Since this perturbation is small (and the vectors

� *� are still i.i.d.), we assume that �	� can be considered
as a zero mean r.v. with covariance matrix

G���� B<( �	��- ( � � B<( �	��-4- E � >� �
� � � � � � � � � � � (65)

With (65), the second expectation in (64) may be approximated as

G � / �> � 3
X�
�ZY W / ( �	��- � �( � � � � � - � � 9 3 � � / �> � 3

X�
�ZY W > ( �
� � � � - 3� �� ( � � � � � - 3� � � � / �> � 3 >

�� � � / �� � Q (66)

and the third expectation as

G WX n �
� � � � � K � D N 7M7K�D � � � � N 7M7 K � D N ���K�D � � � � N���� � 3� � � � ��� � K D � � � � N n 7 �K�D � � � � N 7 7 K�D � � � � N ���� 3� I � � ( # d(% k � �
� � � � � - W
	 3 �
� � � � ( # d(% k � � � � � � � - W
	 3 � I 3� � (67)

If
! * denotes

# d&% k � �
� � � � � , we obtain

G WX n �
� � � � � K � D N 7 7K�D � � � � N 7M7 K � D N ���K D � � � � N ��� � W� ^ I ( ! * - ? bn �
��� ( ! * - ? bn I 3� / I # d(% k � ( ! * - ? bn �
��� ( ! * - ? bn � I 3� a� W� ( eg� � �
���J( ! * - ? W �
��� ( ! * - ? W � - � (68)
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The second term in (63) is small because of
5 3* , and we neglect the estimation errors in this term (estimation errors being

itself small), so that we make the approximation

5 3* G
X�
�ZY W B > ? 3 � @ � bn ���
	 n �
�� � � � � � 7 7� � c 7 q b �
�� � � � � � 7M7 � bc�� � 5 3* B > ? 32@ ( 1:2
4 ( # d(% k � � � � � � � -2- bc

� / X� �ZY W �( � � � � � - � � � � (69)

Finally, using (64),(68) and (69), the expected distortion for Identity transform with quantization and estimation noise may,
for sufficiently high resolution and � , be written as

GJI �� I 3 KML + � + * N � GJI �� I 3 KMLON � 13274 (�R
� 5 3* ( # d(% k � � ��� � - ? W - � W
	 X �
� � �� � � / eg� � � � � � � ! * ? W �
� � � � ! * ? W �� 3 � / 5 3*� eg� � ( # d&% k � � � � � - ? W � � �

(70)

5.2. KLT

In the unitary case also, expression (62) with r� � r� gives the exact expression of the distortion since each transform
coefficient is Gaussian (linear combination of Gaussian r.v.s.). The expected distortion with quantization and estimation
noise is

GJI �� I 3 K �� + � + * N � G X� � Y W B > ? 3�� @ � bn ���
	 n � �� �� � � � � �� � � 7 7� � c 7 q b ���� �� � � � � �� � � 7 7 � bc � (.r� � ��� r�
E - � � � (71)

By writing r� �
��� r� E � r� �
� � � � r� E / 5 3* r� r� E � r� �
� � � � r� E / 5 3* R , we get

GJI �� I 3 K �� + � + * N � G � X� Y W B > ? 3�� @ � bn ��� 	 n � �� � � � � � �� ��� 7M7� � c 7 q b � �� � � � � � �� � � 7 7 � bc � ^`_ X�ZY W (
� � K �� � D �� � N 7 7K �� D � � � � �� � N 7 7 - a bc
� ^ K �� D � � � � �� � N 7 7K �� D � � � � �� � N 7 7 / m+n�K ���D � � � � �� � N 7M7 a ^�� � K �� � D �� � N 7 7K �� D � � � � �� � N 7 7 a� G B >�? 32@F^ 132
4 r� � � � � � r� E a bc ^O_ X�ZY W (
��� K �� � D �� � N 7 7K �� D � � � � �� � N 7M7 - a bc
�

� � X�ZY W ^ � � K �� � D �� � N 7M7K ���D � � � � �� � N 7 7 a ? W / 5 3* � X� Y W (4(.r� �
� � � � r� E - � � - ? W �
(72)

Now, let
�; * � r� � � � � � r� E � ; * � � ; * � ; � 5 3* R
� � ; * , and let �<*� 7 be the diagonal elements of � ; * . Then, the first

term of (72) may be approximated as

GJI �� I 3 K � N / � � WX � X�ZY W �
�
� 7K E � N 7 7 9 ^`_ X�ZY W (
� � K �� � D �� � N 7 7K �� D � � � � �� � N 7M7 - aUbc � X� Y W ^ � � K �� � D �� � N 7 7K �� D � � � � �� � N 7M7 a ? W� GJI �� I 3 K � N / � � G WX � X�ZY W �

�
� 7K E � N 7M7 � G X ? W3 X n � X�ZY W ( K

�� � D �� � N 7 7K �� D � � � � �� � N 7 7 - 3 / G WX n �
� ����� � K �� � D �� � N 7M7K �� D � � � � �� � N 7M7 K �� � D �� � N ���K ��,D � � � � �� � N ��� 9 �

(73)

Using an analysis similar to (46) and using the same classical result in pertubation theory of matrices as in the previous
section [1], one can show that

G X�
�ZY W � � *�( ; * - � � � �� X�

�ZY W � �	�Y	� � *�� *� / � *� � �� � ( � / � -> � (74)

Also, the expectation of the second term in (73) may be computed as in (46). By using the approximation

( r� �	� r� E - � �( r� �
� � � � r� E - � � � ( � �	� � E - � �( � � � � � � � E - � � Q (75)
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(that is, by keeping only linear terms in �	� ) and writing
� �	� � E as ; * / W� � X� Y W ��*� � * E� , the random variable ( � �	� � E - � �

corresponds now to the estimation error of ; * obtained with a covariance matrix computed with � quantized vectors. As in
(65) however, this is an approximation since the )i*� are not Gaussian. Thus we assume G�� � B<( � �	� � E -O( � � B<( � �	� � E -4- E �3 E � � E �� , whence X�

�ZY W / ( � �	� � E - � �( � � ��� � E - � � 9 3 � > �� Q (76)

and �
�
�
� � �

( � �	� � E - � �( � � � � � � � E - � � ( � �	� � E - � �( � � � � � � � E - � � � �
�
�
��� �

>� ( ; * - 3� �� *� � *� � � � (77)

Thus, using the unimodularity of r� , the first term becomes

B > ? 32@ ( 132
4 � � � � � - W
	 X � � � X K X ? W N3 � � 3 X K X ? W N3 X n � �� B > ? 32@ ( 1:2
4 �
����- W
	 X � 132
4 ( R � 5 3* ( � ����- ? W - � W
	 X � � � W� ( X ? W3 �
X ? WX -�� � (78)

The second term in (72) may approximated under the assumptions of high resolution and high � as5 3* G B ? 34@<( 132
4 � � � � � - bc. � � �� X�
�ZY W �<*� 7� *� 0 . X��ZY W ( � � (.r� �	� r� E - � �( r� �
� � � � r� E - � � - 0 bc X� �ZY W �( r� �
� � � � r� - � � ( ��/ (.r� �	� r� E - � �( r� �
� � � � r� E - � � ��( (.r

� �	� r� E - � �( r� �
� � � � r� E - � � - 3 - . � � (.r� �	� r� E - � �( r� �
� � � � r� E - � � 0 ? W� ��� �� � c 7 q b b� � � � � � � � � � 7 7� 5 3* G B ? 32@ ( 13274 � � � � � - bc eg� � ( ; * - ? W �� 5 3* B > ? 32@ ( 1:2
4 � ��� - W
	 X � 132
4 ( R � 5 3* ( � ��� - ? W - � W
	 X eg� � ( ; * - ? W � �
(79)

Finally, the expected distortion for the KLT when the transformation is based on � quantized vectors is for high � and under
high resolution assumption

GJI �� I 3 K �� + � + * N � GJI �� I 3 K � N � 13274 ( R � 5 3* ( � ����- ? W - � W
	 X �

�
� � � / �� � �> � �� � / 5 3*� eg� � ( ; * - ? W � � � (80)

The corresponding expression for the coding gain isD K �� + � + * N � ! " $L " n � �� � 	 � � �! " $� " n � �� � 	 � � �� D - ( <
>
? K L � m+n� K @ �CB 	�
 D ���
� N � b N - b � c( <
>
? KML � m n� K�D ��� N � b N - b � c
� W � b	 K W ?�� ��� � � � � ��� � � b � � � � ��� � � b �c n N ?�� n�c�� @ 
 K @ �CB 	 D � � � � N � b ���� W � c � b	 K bn � bc N ?�� n�c�� @ 
 K E � N � b ���

(81)

where
! * �"# d(% k � �
��� � and ; * � � �
� � � � � E .

5.3. LDU

In the causal case, and estimate r� � of
�

is computed, and the r.v.s in the transform domain are not Gaussian :

) �(+ � � � �(+ � / � ? W�
� Y W r� � � � � � ? � + � /

� ? W�
� Y W r� � � � � � ? � + � � (82)
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As in (23), the expected distortion for the LDU GJI �� I 3 K �. s + � + * N is upper bounded by the rate-distortion function of a set of

Gaussian r.v.s of same variances
5 3A s 7 , that is

GJI �� I 3 K �. s + � + * N � X� �ZY W B > ? 3�� @�� bn ���
	 n
� �, s �� � � � � �, s ��� 7M7� � c 7 q b � �, s �� � � � � �, s �

� 7 7 � bc �5 3 sA 7 Q (83)

with
5 3 sA 7 � (�r� � � � � � � r� s E / 5 3* Ri- � � . Thus, computing (62) when the transformation is based on � quantized vectors (for

high � and under high resolution assumption) gives an upper bound, which is

GJI �� I 3 �����K �. s + � + * N � G X� �ZY W B > ? 3�� @ � bn ���
	 n
� �, s �� � � � � �, s ��� 7 7� � c 7 q b � �, s �� ��� �, s �

� 7M7 � bc � ( r� � � � � � � r� s E / 5 3* R+- � � Q (84)

This bound (84) can be developped as

GJI �� I 3 �����K �. s + � + * N � G � X�ZY W B > ? 3 � @ � bn ���
	 n
�
�, s � � � � � �, s ��� 7 7� � c 7 q b � �, s � � � � � �, s �

� 7M7 � bc�� / _ X�ZY W ( � � K �. s � D �. s � N 7 7K �. D � � � � �. s � N 7M7 - 9 bc
�
/ K �. s D � � � � �. s � N 7M7K �. s D � � � � �. s � N 7M7 / m n�K �. s D � � � � �. s � N 7M7 9 / � � K �. s � D �. s � N 7 7K �. D � � � � �. s � N 7M7 9� G B > ? 32@F^ 13274 r� � �
� � � � r� s E aUbc / _ X� Y W (
� � K �. s � D �. s � N 7 7K �. D � � � � �. s � N 7 7 - 9 bc

� � X�ZY W / � � K �. s � D �. s � N 7M7K �. D � � � � �. s � N 7 7 9 ? W / 5 3* � X�ZY W (2( r� � �
� � � � r� s E - � � - ? W � �
(85)

Now, let r�
*� � be r� � � � � � � r� �
� �F*� � � �	�
* ��� , where �F*� � � � �
� � � � � � s E , and let � A � be the diagonal elements of

�	�F*�,� . Then, the first term of (85) may be written as

GJI �� I 3 �����K �. s + � + * N � GJI �� I 3 K . N ^ � � WX � X� Y W � o �K�D �&'& N 7 7 a / _ X�ZY W (
� � K �. s � D �. s � N 7M7K �. D � � � � �. s � N 7M7 - 9 bc � X�ZY W / � � K �. s � D �. s � N 7M7K �. D � � � � �. s � N 7 7 9 ? W� GJI �� I 3 K . N / � � G WX � X� Y W � o �K�D �&�& N 7M7 � G X ? W3 X n � X� Y W ( K
�. s � D �. s � N 7 7K �. D � � � � �. s � N 7 7 - 3 / G WX n �

� ����� � K �. s � D �. s � N 7M7K �. D � � � � �. s � N 7M7 K �. s � D �. s � N ���K �. s D � � � � �. s � N � � 9
(86)

Using a similar analysis as in (46), one can show that

G X�
�ZY W � A �( �F*�,� - � � � �� X�

�ZY W � ���Y	� ( �F*�,� - �
�( �
*� � - �
� /1( �F*�,� - � � � �� � ( � / �`-> � (87)

Thus, using the unimodularity of r� � , the first term may be approximated as

B > ? 34@ ( 132
4 � � � � � - W
	 X � � � X K X ? W N3 � � 3 X K X ? W N3 X n � �� B > ? 32@ ( 13274 �
����- W
	 X � 1:2
4 ( R � 5 3* ( �
����- ? W - � W
	 X � � � W� � X ? W3 �
X ? W� � � � (88)

The expectation of the second term in (85) can be computed as in (46) also. By using the approximation

( r� � �	� r� s E - � �( r� � � � � � r� s E - � � � ( � � �	� � s E - � �( � � � � � � � � s E - � � (89)

We can write
���
�	�

� s E � � *� � / W� � X� Y W � *� � * E� : the random variable ( ��� �	� � s E - � � corresponds now to the estimation
error of �F*� � obtained with a covariance matrix computed with � quantized vectors. Again, we make the approximation of
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Gaussianity for ) *� (this approximation is more justified than in the unitary case since now each )�*� is the sum of one Gaussian

r.v. and of d uniform r.v.s). Thus we assume G�� � B<( ��� �	� � s E -l( � � B<( � � �	� � s E -4- E � 3 D �&�& � D �&�&� , whenceX�
� Y W . ( � � �	� � s E - � �( � � � ��� � s E - � � 0 3 � > �� Q (90)

and �
�
�
��� �

( � � �	� � s E - � �( � � � � � � � � s E - � � ( ��� �	� � s E - �
�( � � � � � � � � s E - �
� � �
�
�
� � �

>� ( �F*�,� -43� �( �F*�,� - � � ( �F*�,� - � � � � (91)

The second term in (85) may approximated under the assumptions of high resolution and high � as5 3* G B ? 34@ ( 132
4 � � � � � - bc����� ����� 	�

� ��� ������ ����� 	�	 � � ��	�
�� � ��� ��� "!�# �$� s�% � 	�	� � �'& � & � � s % � 	�	 �� bc �� 	�
��
�� � ! �'& � & � � ! � 	�	 ���)( ��� "!�# �$� s�% � 	�	� � ��& � & � � s % � 	�	

� � ��� *!�# �+� s�% � 	�	� � ��& � & � � s % � 	�	 �-, �
�.��� ��� *!�# �$� s�% � 	�	� � ��& � & � � s % � 	�	 �*/

�
0 132 4� � c 7 q b b� , s � � � � � , s � � 7M7� 5 3* G B ? 32@ ( 13274 �
� � � � - bc eg� � ( �F*�,� - ? W �� 5 3* B > ? 32@ ( 1:2
4 � ��� - W
	 X � 132
4 ( R � 5 3* ( � ��� - ? W - � W
	 X eg� � ( � ��,� - ? W � (92)

Finally, using (83), the expected distortion for the LDU when the transformation is based on � quantized vectors is for high� and under high resolution assumption can be upper bounded as

GJI �� I 3 K �. s + � + * N � G I �� I 3 �����K �. s + � + * N � G I �� I 3 K . N � 132
4 ( R � 5 3* ( � ��� - ? W - � W
	 X
�
� � � / �� � �> � �� � / 5 3*� eg� � ( � �� � - ? W � � Q

(93)

The corresponding expression for the coding gain in the causal case can then be lower bounded asD K �. s + � + * N � !#" $� " n � ��� 	 � � �!#" $� " n � �, s � 	 � � �5 !#" $� " n � ��� 	 � � �!#" $� " n ������ �, s � 	 � � � � D - ( <
>
? KML � m+n� K @ �CB 	�
 D ��� � N � b N - b � c( <
>
? KML � m n� K D ��� N � b N - b � c
� W � b	 � W ? � ��� � � � � ��� � � b � � � � ��� � � b �c n � ?�� n�c � @ 
 K @ �CB 	 D � � � � N � b � �� W � c � b	 5 bn � bc 6 ?�� n�c � @ 
 K�D s&�& N � b � � �

(94)

where
! * � # d&% k � �
��� � . As in Section 3, since the r.v.

� ) � � tends to be Gaussian very quickly as d grows, the bound in
(94) is a fairly precise measure of the actual coding gain

D K �. s + � + * N for reasonably high N.
Indeed, it can be checked that the expression (94) and (81) tend to (20) and (28) respectively as �7698 , and both to (58) as5 3* 6 � .

6. SIMULATIONS

For the simulations, we generated real Gaussian i.id. vectors with covariance matrix �;:<: � � � � �>= D W � E� , ? � � Q > . �@= D Wis the covariance matrix of a first order autoregressive process with normalized correlation coefficient A : � = D W � Toeplitz( 5 �+A �'�'� A X ? W 6�- , where Toeplitz denotes the Toeplitz matrix made with its first row 5 �BA �'�'� A X ? W 6 . � � is a diagonal matrix
whose i- egf entry is d W
	DC for � W (increasing variances), and ( � /1d � �`- W
	EC (decreasing variances). We assumed entropy
constrained scalar quantizers

� �
with high resolution rate-distortion function

5 3*87 � 9<;=
> ? 32@ 7 5 3A 7 . Thus, when computing the
distortion, the Gaussianity of the transform signals was assumed in the causal case.
In Figure 3, the coding gain with quantization noise is plotted for KLT (upper curves) and LDU (lower curves), for signals
of decreasing variances, and with A � � � F ,

�:� �
. The theoretical exact expressions are given by (20) and (28), and the
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approximated expressions by (21) and (29). In Figure 4, the influence of the ordering of the variances is shown. The upper
curve depicts the gain obtained with the causal approach by decorrelating the signals by decreasing order of variance ( � :<: n ),and the lower curve by increasing order ( � : : b ).The coding gains in presence of estimation noise are compared for LDU and KLT in Figure 5, for

�6� �
and A � � � F (mean

over � � � realizations).
The coding gains in presence of estimation noise and quantization are compared for KLT and LDU (signals of decreasing
variances) in Figure 6, for

�6� �
, A � � � F and a rate of � bits per sample (mean over � � � realizations). The theoretical gains

are given by (81) and (94). The observed behaviors of the transformation corresponds quite well to the theoretically predicted
ones for � � a few tens.
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