
A Practical Method for the Synchronization
of Live Continuous Media Streams

Christian Blum

Institut Eurécom
2229, route des Crêtes,

06904 Sophia-Antipolis, France
Voice: (+33) 93.00.26.38
Fax: (+33) 93.00.26.27

E-mail: blum@eurecom.fr

Abstract - One of the major problems in networked multimedia is the playout synchronization of
continuous media streams. The sink of a set of transmitted media streams has to reestablish the
presentation timing of samples within each stream (intra-stream synchronization) and among streams
(inter-stream synchronization). In applications that include live human-to-human conversation there
is the additional requirement that the delay between acquisition and presentation of media data be kept
low. This article presents a method that allows to synchronize an arbitrary combination of live
continuous media streams and at the same time maintain a minimal end-to-end delay. Emphasis is
given to the description of an implementation of this method.

1 Introduction

At a time where networked multimedia applications like video on-demand are about to be
commercialized, one of the major problems associated with multimedia, the synchronization of
continuous media streams, is still unsolved. The most prominent example for continuous media
streams that need to be synchronized is the combination of audio and video, which is also known
and widely cited as thelip-synch problem. Beyond that there will be the need to synchronize an
arbitrary combination of audio and video, like for instance audio together with two video streams
that show a single scene from different view-points. The continuous stream synchronization
problem is in fact the combination of two problems,intra-stream synchronization andinter-
stream synchronization, which are tightly correlated and cannot be solved separately. If
continuous media are deployed in an interactive application, there is the additional requirement
of keeping the end-to-end delay, i.e., the delay between acquisition and presentation of a medium
sample, as low as possible.

Intra-stream Synchronization

The result of the digitization of a live analog medium is an ordered list of medium samples. Intra-
stream synchronization in the narrow sense stands for the recovery of the time base for an ordered
list of medium samples, thus making it possible to reconstruct the original analog signal. In the
wide sense it stands for all time-related issues a single medium stream has to deal with, i.e.,
network jitter, end-system jitter and codec clock drifts [1]. Additional issues that are of
importance in the context of intra-stream synchronization are rate control and error control.

Network jitter refers to the variable delay that stream packets experience on their way between
the network I/O devices of sender and receiver. End-system jitter refers to the variable delays that
media data experience in end-systems. End-system jitter is mainly caused by varying system
load. Network and end-system jitter have to be equalized by means of an elastic receive buffer.

In general it can be assumed that the codec sample clocks of the sender and receiver of a

digital medium stream are not synchronized. Due to temperature differences and other physical
effects the actual frequency of a crystal clock may vary from its nominal value. A frequency
offset between the codec clocks in sender and receiver will cause receive buffer overflow or
starvation in a long transmission. The synchronization of these clocks is feasible, and it is
considered for instance in the standardization of the Asynchronous Transfer Mode (ATM)
Adaptation Layer 1 (AAL1) [2], but it requires special hardware and synchronized access
network clocks, and is thus far off for the time being.

The sender of media data has to take care not to overwhelm the receive buffers with long
bursts. Rate control rather than flow control is chosen to tackle this problem, considering that
flow control would add to the end-to-end delay. The receiver has to deal with medium data losses
on the network and possibly within the end-system itself. The techniques to mitigate the effects
of these losses are medium dependent.

Inter-Stream Synchronization

Inter-stream synchronization is the establishment of a timing relationship between two or more
media streams. For live media this is the establishment of the timing relationship that existed
between the respective media prior to digitization. Stored or computationally generated media
streams may have artificial timing relationships.

Synchronization of Live Continuous Media Streams

The work described in this article was motivated by the fact that there is an enormous amount of
publications viewing media synchronization problems from all sides and often from an abstract
level [3][4][5], but almost no report about actual implementations. Synchronization of live
continuous media streams deals with both intra- and inter-stream synchronization and with end-
to-end delay control in addition. The implementations that are reported tend to neglect one of
these issues in order to be able to account for the others. [6] concentrates on intra-stream syn-
chronization and delay reduction by sacrificing inter-stream synchronization. [7] bases syn-
chronization on the audio stream and neglects the intra-stream requirements of the video stream.

The following develops a simple scheme for live continuous media stream synchronization
that takes all relevant issues into account. An implementation is described that is based on this
scheme.

2 A Scheme for the Synchronization of Live Media Streams

The scheme is based on the natural priority that intra-stream synchronization has over inter-
stream synchronization. Every stream assures correct reconstruction of the analog signal at the
receiving side before it synchronizes itself with other streams. A stream constantly monitors the
end-to-end delay and the occupancy of the elastic receive buffer, and uses these data to generate
an estimate of the minimal end-to-end delay. This value and other statistical data are
communicated to an arbiter. The arbiter collects these data from all streams that are to be
synchronized, and determines a target end-to-end delay that it communicates to the streams.
Streams then synchronize themselves to this target end-to-end delay. Figure 1 depicts two video
streams that are synchronized by the arbiter. The size of a block indicates the delay a medium
sample experiences at the respective location. The delays that medium samples of stream A and
B experience in sender, network and receiver do differ from each other, but they add up to an
identical end-to-end delay when A and B are synchronized.

Stream Statistics

Figure 2 defines the time values that are relevant for the calculation of time statistics within each
stream. The timestACQ , tSEN , tREC, tREAD , tPLAY correspond to the times a medium sample was created
by the codec, transmitted over the network I/O interface, received from the network I/O interface,
read by the receiving process, and played out. The time interval∆tSEN is the time a sample is

buffered in the sender,∆tNDEL is the network transit delay the sample experiences,∆tKER is the time
spent on communication protocol processing within the operating system kernel of the receiving
end-system, and∆tBUFF is the time the sample is under direct control of the receiving process.∆tDEL

is the end-to-end delay.
The sending process timestamps media samples withtACQ . This requires some knowledge

about the path a medium samples takes from the codec to the sender process. A sender process
uses this knowledge and a timestamp provided by the operating system to calculate the genuine
acquisition time. The receiving process takes the timestampstREAD andtPLAY , the latter requiring
again some advanced knowledge about the sample path. The receiver usestACQ , tREAD andtPLAY to
calculate∆tBUFF and ∆tDEL and will keep a record of these values. It further calculates an average
over a finite number of∆tDEL values and uses this average end-to-end delay plus its knowledge
about the history of∆tBUFF to calculate the estimate for the minimal end-to-end delay. It may
calculate other statistical values that are important for the arbiter in taking end-to-end delay
decisions.

The Arbiter

Streams communicate the results of their statistical calculations to the arbiter which in turn
determines a target end-to-end delay that is realistic for all involved streams. The target end-to-

Arbiter

Receiver A

Statistics A

Sender B Receiver B

Statistics B
!! End-to-End Delay

Sender A
Network

FIGURE 1. Continuous Stream Synchronization (Two Video Streams).

Network

Sender Network Receiver

∆tNDEL

∆tDEL

∆tSEN ∆tKER ∆tBUFF

tACQ tREC tPLAYtREAD
tSEN

FIGURE 2. Time and Interval Definitions.

time

end delay will have an offset to the highest minimal end-to-end-delay in order to be safe from
minor statistical fluctuations of this value. The arbiter dynamically adapts the target end-to-end
delay to the stream statistics. When a stream constantly reports a minimum end-to-end delay
higher than the target end-to-end delay the arbiter will increase the latter. When the offset
between target end-to-end delay and highest minimum end-to-end delay is constantly too large
the arbiter will slowly reduce the target end-to-end delay.

The Synchronization State Machine

The receiver process of a stream is built around a synchronization state machine which is
depicted in Figure 3. After connection setup with the sender the receiver enters the STARTUP
state where it waits for the first media samples to arrive. During STARTUP a stream adjusts the
elastic receive buffer to a size just big enough to account for network and end-system delay jitter.
The receiver changes to state NORMAL as soon as data reception is normal and a first set of
statistical values has been calculated. In state NORMAL the receiver constantly communicates
its statistics to the arbiter, which in turn updates the target end-to-end delay from time to time.
The receiver changes to state RESYNCH if a considerable difference between average and target
end-to-end delay is noted. In state RESYNCH, the receiver resynchronizes to the target end-to-
end delay. As this is done, the receiver returns to state NORMAL. If delayed samples are
encountered, the receiver changes to state DELAY in which it increases the size of the elastic
receive buffer, and thus the end-to-end delay, to a sufficient value. The arbiter will consequently
increase the target end-to-end delay, and other streams will synchronize to it.

The interruption of the medium sample stream will bring the receiver back into state
STARTUP.

Resynchronization

Resynchronization is handled by every stream in an optimized manner. The effects of it should
not be noticeable by the user.

STARTUP

NORMAL

DELAY

IDLE

RESYNCH

FIGURE 3. The Receiver Synchronization State Machine.

Connection

Interruption
Interruption

Synchronize to
Target Delay

Delayed
Samples

Resynchronized

Normal

Normal
Reception

Reception

Setup

Send Statistics
to Arbiter

Interruption

3 An Implementation

An implementation of the scheme described in the previous section was undertaken in order
to validate it and to gain some general understanding about the problems that are associated with
stream synchronization. The implementation synchronizes an audio stream with a video stream.
The platform for the implementation is the Sun Sparc10 workstation running SunOS 4.1.3 with
the Dual Basic Rate ISDN Interface (DBRI) device for audio and the Parallax Board for Video.

The Audio Stream

Figure 4 depicts the implementation of the audio stream. The main problem that was encountered
was the control of the audio buffer which is situated inside the operating system kernel. Some
advancedioctl() system calls have to be employed to monitor audio buffer occupancy, which
is necessary for the calculation of the timestampstACQ and tPLAY. The sender process performs a
blocking read on the audio buffer and transmits read audio data in 20ms chunks via the UDP/IP
socket interface over the network. The receiver performs a blocking read on the socket and
maintains a record with the three timestampstACQ , tPRES and tPLAY for every received audio packet.
In order to reduce the end-to-end delay, the receiver does not buffer audio data. Instead, audio
data is immediately sent to the system audio buffer which takes the role of the elastic receive
buffer. The audio buffer catches operating system signals for buffer starvation/overflow and for
audio message processing. The latter signal can be used to determine the time by which an audio
message is transferred from the buffer to the DBRI device. This gives a good estimate fortPLAY .

The audio receiver records the audio buffer size over time and can does calculate a minimal
end-to-end delay. Resynchronization is done by skipping or adding single samples every 20ms.
The signal distortions that result are audible, but not annoying. A more refined scheme would
look for silence periods in the audio stream and shorten or lengthen them adequately.

Measurements showed that there was no noticeable clock drift between the DBRI devices on
sender and receiver side. This was different for the Sparc 2 station which uses other audio
hardware. Here a clock drift could be noted that changed the end-to-end delay in the range of a

UDP

IP

A
ud

io
 B

uf
fe

r

A/D

NET I/O

Audio Sender Process

UDP

IP

A
udio B

uffer

D/A

NET I/O

Audio Receiver Process

ATM or Ethernet

DBRI DBRI

SUN SPARC10 SUN SPARC10

Kernel

User Space

FIGURE 4. Audio Transmission.

few milli-seconds per minute.

The Video Stream

The Parallax Motion JPEG video board does not generate frames with an adjustable rate. Instead,
frames are read with a rate of 30 frames per second into a frame buffer on the board. From there
frames have to be explicitly read by a user-level process, which means that the user-level process
itself has to generate the frame rate. For this the sender and receiver process (see Figure 5) have
to run an interval timer that dispatches a signal whenever it elapses. This signal causes the sender
to read a frame and the receiver to play a frame out of the elastic frame buffer that it maintains.

The receiver resynchronizes by changing the reload value of the interval timer. With a frame
rate of 25 frames per second, one frame is played every 40ms. Adding 1ms to the reload value
will increase the end-to-end delay by 25ms within on second. The end-to-end delay can therefore
be changed rapidly without that a user would notice this.

The Arbiter

The arbiter is implemented as a separate process and communicates with the audio and video
receiver processes by means of Unix SystemV message passing. In the current version it just uses
the minimal end-to-end delay of audio and video to determine the target end-to-end delay.

Implementation Problems

The SunOS 4.1.3. is a hostile environment for the transmission and synchronization of audio and
video streams. Figure 4 and 5 give an idea about the number of protection boundaries multimedia
data has to pass through. This is usually associated with a large number of internal copies that
keep the end-system busy. Real multimedia operating systems will avoid the detour through user
space and provide a direct link between the codec and the network device, or they will allow user
space processes direct access to devices. The data rate for audio was 64 kbit/s and the one for the

UDP

IP

NET I/O

Video Sender Process

UDP

IP

NET I/O

Video Receiver Process

ATM or Ethernet

SUN SPARC10 SUN SPARC10

Kernel

User Space

P
ar

al
la

x
K

er
ne

l E
xt

en
si

on

Parallax Board

P
ar

al
la

x
K

er
ne

l E
xt

en
si

on

Parallax Board

FIGURE 5. Video Transmission.

compressed video stream about 3 Mbit/s. These are data rates that can be handled by the Sparc10
even when multiple copies are necessary. In the case of audio, there is a minimum of four copies
over the system bus (see Figure 4). A more serious problem is that there is only little control over
process scheduling in SunOS 4.1.3. , which makes it hard to run the audio and video processes
in the background. For instance, starting up a larger program will prevent the audio and video
receiver processes from being scheduled for a large fraction of a second or even more. This
causes the interruption of the transmission. Another problem is that the synchronization scheme
requires the time stamps to be of milli-second precision. It is not feasible to consider scheduling
information for the correction of timestamps. Timestamps are therefore always taken right after
blocking read calls or at the start of a signal handler. Data reception and operating system signals
are high priority events that cause the receiver of these events to be scheduled quickly, which in
turn guarantees that timestamps taken right after these events occur can be trusted.

Performance

Audio and video were transmitted over both Ethernet and Eurécom’s ATM network, with a
higher end-to-end delay resulting in the Ethernet transmission. Transmission, synchronization
and the dynamic adaptation of the end-to-end delay work fine, with the end-to-end delay being
in the range of 200 to 300 ms. This is a good result considering that the operating system on the
sender side produces an inherent audio delay of 120 ms. The subjective quality of audio and
video is good, and there is no noticeable skew between the two.

It has to be stated that the synchronization has to fight end-system jitter rather than network
jitter. Late arrival is mostly the result of periodically running system daemons and the activity of
other users, which causes the audio and video processes to be descheduled at critical moments.
Given this no real performance measurements were undertaken. In the future, the software will
be ported to a real-time operating system with a priority based scheduling scheme in order to
decouple the audio and video processes from other system activity. This will allow to further
reduce the end-to-end delay, and to adapt the synchronization to network rather than end-system
behavior.

4 Conclusion

A scheme for the synchronization of live continuous media streams was presented. This
scheme is medium independent and can be used to synchronize an arbitrary number of streams.
An implementation was undertaken that showed that the scheme can be made to work in an
environment with only marginal support for continuous media streams.

References

[1] J. S. Screenan ,"Synchronisation Services for Digital Continuous Media", Ph.D Thesis, Computer Laboratory,
University of Cambridge, Oct. 1992.

[2] ITU-T Recommendation I.363, "B-ISDN Adaptation Layer (AAL) Specification", Geneva, June 1992.

[3] A. Campbell, G. Coulson, F. Garcia, and D. Hutchinson, "A Continuous Media Transport and Orchestration
Service",Proceedings of the ACM SIGCOMM ’92, Aug. 1992.

[4] M. Woo, N. U. Qazi, and A. Ghafoor, "A Synchronization Framework for Communication of Pre-orchestrated
Multimedia Information",IEEE Network, Jan./Feb. 1994.

[5] T. D. C. Little, and A. Ghafoor, "Multimedia Synchronization Protocols for Broadband Integrated Services",
IEEE Journal on Selected Areas in Communications, Vol. 9, No. 9, Dec. 1991.

[6] H. Crepin, "Compensation d’Erreur et de Gigue pour une Application Audio sur Internet", DEA Thesis, Uni-
versité de Nice-Sophia Antipolis, 1994.

[7] A. Eleftheriadis, S. Peijhan, and D. Anastassiou, "Algorithms and Performance Evaluation of the Xphone
Multimedia Communication System",Proceedings of the ACM Multimedia ’93 Conference, Anaheim, Cali-
fornia, Aug. 1993.

