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Abstract—We devise achievable encoding schemes for dis-
tributed source compression for computing inner products,
symmetric matrix products, and more generally, square matrix
products, which are a class of nonlinear transformations. To
that end, our approach relies on devising nonlinear mappings
of distributed sources, which are then followed by the structured
linear encoding scheme, introduced by Körner and Marton. For
different computation scenarios, we contrast our findings on the
achievable sum rate with the state of the art to demonstrate
the possible savings in compression rate. When the sources have
special correlation structures, it is possible to achieve unbounded
gains, as demonstrated by the analysis and numerical simulations.

Index Terms—Distributed computation, inner product, struc-
tured codes, matrix-vector multiplication, matrix multiplication.

I. INTRODUCTION

The inner product operation between two vectors captures
the similarity between vectors and allows us to describe the
lengths, angles, projections, vector norms, matrix norms in-
duced by vector norms, orthogonality of vectors, polynomials,
and a variety of other functions as well [1]. Inner products are
widely used in geometry and trigonometry using linear algebra
and in applications spanning physics, engineering, and math-
ematics, e.g., to determine the convolution of functions [1],
and the Fourier transform approximations, machine learning
[2] and pattern recognition [3], e.g., the linear regression and
the least squares models [1], and quantum computing, e.g., to
describe the overlap between the two quantum states [4].

With the advent of edge computing systems, massive
parallelization techniques, coded computation frameworks,
and modern distributed computing systems, e.g., MapReduce,
Hadoop, and Spark, have been devised to implement the
computationally intensive task of distributed matrix multipli-
cation with low communication and computation cost [5]. To
that end, novel coded matrix-multiplication constructions, e.g.,
polynomial codes [6], [7], gradient coding [5], and Lagrange
coded computing [8], [9], for mitigating the costs, faulty
nodes, and stragglers. Hence, the inner product is relevant as
it is a building block of distributed matrix multiplication.
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In this paper, we devise structured encoding schemes for
distributed computing of inner products and symmetric and,
more generally, square matrices via distributed matrix prod-
ucts. Our main contributions are summarized as follows:

• We devise a distributed encoding scheme that performs
structured coding on nonlinear mappings of two dis-
tributed sources A and B to compute their inner product.

• We showcase the conditions for which the sum rate
achieved by this structured coding is strictly less than
the sum rate of distributed unstructured encoding of the
sources A and B [10]. Here, the performance criterion
is that both A and B cannot be decoded by the receiver.

• We derive achievable rate regions for distributed com-
putation of symmetric and square matrices, a class of
nonlinear transformations, with a vanishing probability
of error, and determine example scenarios — detailed in
Corollaries 1-2 — with special correlation structures to
guarantee, via the structured coding scheme of Körner
and Marton [11], significant savings over [10].

• We contrast the achievable rates with the existing ap-
proaches (e.g., [10], [12], [13]) via numerical examples.

Connections to the state of the art. Slepian and Wolf have
provided an unstructured coding technique for the asymptotic
lossless compression of distributed source variables X1 and
X2 at the minimum rate needed, i.e., H(X1, X2) [10]. Han-
Kobayashi [14] have provided a characterization to determine
whether computing a general bivariate function f(X1, X2) of
two random sequences {X1i} and {X2i} from two correlated
memoryless sources requires a smaller rate than H(X1, X2).
For distributed coding of a finite alphabet source X with
side information Y , Orlitsky and Roche have devised an
unstructured coding scheme to achieve the minimum rate at
which source X has to compress for distributed computing
of f(X,Y ) with vanishing error [15], exploiting Körner’s
characteristic graph GX and its entropy [16]. This scheme is
equivalent to performing Slepian-Wolf encoding on the colors
of the sufficiently large OR powers of GX given Y [17]–[19].

Körner and Marton have devised a structured encoding strat-
egy that minimizes the sum rate for distributed computing the
modulo-two sum of doubly symmetric binary source (DSBS)
sequences with a low probability of error [11]. Ahlswede and
Han have tightened the rate region for general binary sources
[20] that embed the regions of [11] and [10]. The rate region
for this problem has been extended to a larger class of source
distributions [21], and for reconstructing the modulo-q sum of
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the two sources in a q-ary prime finite field Fq at a sum rate
of 2H(X1 ⊕q X2) [14]. For computing a nonlinear function,
the embedding of the function in a sufficiently large prime
Fq [12], [13], and finding an injective mapping between the
function and X1 ⊕q X2, known as structured binning, may
provide savings over [10].

In this paper, leveraging these fundamental principles, we
demonstrate further savings in compression for computing
inner products as well as matrix products through devising
nonlinear mappings of the sources followed by the linear
encoding scheme in [11], while requiring a smaller prime field
size versus [12], [13].

Notation. We denote by H(X) the Shannon entropy of a
discrete random variable X , which is drawn from probability
mass function (PMF) PX . Similarly, H(·, ·) and H(· | ·) denote
the joint and conditional entropies, given a joint PMF PX1,X2

.
Let h(ǫ) denote the binary entropy function for Bernoulli
distributed X with parameter ǫ ∈ [0, 1], i.e., X ∼ Bern(ǫ).

We denote by Xn the length n realization of X . The
boldface notation X denotes a random matrix with elements in
Fq and X⊺ is its transpose. 1m and 0m are length m all-ones
and all-zeros vectors, respectively. P(A) is the probability of
an event A, and 1x∈A is the indicator function which takes
the value 1 if x ∈ A, and 0 otherwise. The inner product of
two vectors in the vector space V over a field F is a scalar,
which is a map 〈·, ·〉 : V × V → F .

II. SYSTEM MODEL AND MAIN RESULTS

We consider a distributed coding scenario with two sources
and a receiver. The two sources are assigned matrix variables
A ∈ F

m×l
q and B ∈ F

m×l
q , respectively, that model two

statistically dependent independent and identically distributed
(i.i.d.) finite alphabet source matrix sequences with entries
from a field whose characteristic is q ≥ 2. The objective of the
receiver is to compute a function f(A,B), which is the matrix
product of A and B, i.e., A⊺B : Fm×l

q ×F
m×l
q → F

l×l
q . To that

end, we devise a distributed encoding scheme that performs
structured coding on nonlinear source mappings.

We demonstrate different regimes where the sum rate
achieved by structured coding is strictly less than H(A,B)
[10] so that the receiver can recover A⊺B, while it is desired
that sources A and B cannot be decoded by the receiver.
Exploiting [11], we first study the special scenario of dis-
tributed computing of inner products, where the key idea
is to implement linear structured coding of [11] on vector-
wise embeddings of the sources (Propositions 1 and 2), and
propose a hybrid scheme that combines [11] with the unstruc-

tured coding technique of [15]. We contrast the achievable
rate savings over unstructured coding [10], and over linear
embedding of A⊺B in a prime finite field [12] and [13]. We
generalize our scheme for computing symmetric matrices via
distributed multiplication (Proposition 3) and provide a con-
dition for not being able to recover A and B (Proposition 4).
Finally, we consider the distributed computation of square
matrices (Proposition 5 and Corollary 2). We showcase the
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Fig. 1. Gain, η (cf. (3) in Corollary 1. The flat (yellow) line marks η = 1.

compression performance of our schemes versus the existing
results, demonstrating the achievable savings.

We next detail our main achievability results.

A. Distributed Computation of Inner Products of Sources

The distributed sources hold the even-length vector variables
A =

[

a1 a2 . . . am
]⊺

and B =
[

b1 b2 . . . bm
]⊺

,
respectively, with entries chosen from a prime field Fq. The re-
ceiver aims to compute the inner product f(A,B) = 〈A,B 〉.

We next present an achievable coding scheme for distributed
computation of 〈A,B 〉 =

∑m
i=1 aibi. The coding scheme

relies on devising nonlinear mappings from each source and
using the linear encoding scheme of Körner-Marton in [11].

Proposition 1. (Distributed inner product computation.)

Given two sequences of random vectors A =
[

A
⊺

1 A
⊺

2

]⊺

∈

F
m×1
q and B =

[

B
⊺

1 B
⊺

2

]⊺

∈ F
m×1
q of even length m,

generated by two correlated memoryless q-ary sources, where

A1,A2,B1,B2 ∈ F
m/2×1
q , the following sum rate is achiev-

able by the separate encoding of the sources for the receiver

to recover 〈A,B 〉 with a small probability of error:

RΣ
KM = 2H(U, V, W ) , (1)

where U,V ∈ F
m/2×1
q are vector variables, and W ∈ Fq is

a random variable, and they satisfy the following relations:

U = A2 ⊕q B1 ,

V = A1 ⊕q B2 ,

W = A
⊺

2A1 ⊕q B
⊺

1B2 . (2)

Proof. See Appendix A.

We next contrast the sum rate for computing 〈A,B 〉 given
by Proposition 1 with the sum rate of Slepian-Wolf in [10] to
demonstrate the gap between RΣ

KM and RΣ
SW. The following

result indicates that the rate needed to compute 〈A,B 〉 may
be substantially less than H(A,B) for binary-valued sources.

Corollary 1. Consider two sequences of correlated source

vectors A ∈ F
m×1
2 and B ∈ F

m×1
2 , with entries ai and bi that

are i.i.d. across i = 1, . . . ,m each, where ai ∼ Bern(1/2)



and bi ∼ Bern(1/2) are correlated for a given i = 1, . . . ,m.

Assume that U and V, as defined in (2), have entries ui, vi ∼
Bern(p), that are i.i.d. across i = 1, . . . ,m/2.

For this setting, the gain of the encoding technique in

Proposition 1 with a sum rate RΣ
KM given in (1) over the

sum rate RΣ
SW for lossless compression of the sources is

η =
RΣ

SW

RΣ
KM

=
m(1 + h(p))

2mh(p) + 2(1− (1− p)m)
. (3)

Proof. The proof follows from evaluating (1) and contrasting
it with RΣ

SW = H(A,B) = m(1+h(p)). For details, we refer
the reader to Appendix B.

Note from Corollary 1 that when η > 1, the receiver can
compute 〈A,B 〉 without recovering (A,B). It holds that

lim
p→0

η = ∞ , lim
p→1

η =
m

2
, lim

m→∞

η =
1+ h(p)

2h(p)
, (4)

where the limit lim
m→∞

η is the same as the gain for the DSBS

model studied in [11], which tends to infinity as p→ {0, 1}.
We illustrate the gain η as a function of (m, p) in Figure 1,

indicating that RΣ
KM may be substantially less than the joint

entropy of the sources for this special class of source PMFs.
It has been shown in [12], [13] that via embedding the

nonlinear function Dk = akbk, where ak, bk ∈ Fq , in
a sufficiently large prime Fq , the decoder can reconstruct
D̃n = {ak ⊕q bk}

n
k=1, and hence, compute Dn = {akbk}

n
k=1

with high probability. For instance, if ak, bk ∈ F2, we can
reconstruct Dn from D̃n = {ak ⊕3 bk}

n
k=1 using a sum rate

of RΣ
S = 2H(A⊕3 B).

Motivated by the notion of embedding in [12] and [13], we
next devise an achievability scheme for computing 〈A,B 〉,
where the key idea is to compress the vector-wise embeddings
of the sources vectors A and B via employing the linear
structured encoding scheme of [11], in contrast to entry-wise
embeddings that require a sum rate of RΣ

S (cf. [12] and [13]).

Proposition 2. (Vector-wise embeddings followed by linear

encoding for distributed computation of 〈A,B 〉.) Given

two sequences of vectors A ∈ F
m×1
q and B ∈ F

m×1
q ,

generated by two correlated memoryless sources, with entries

from a field Fq with q > 2, restricting the source mappings to

be linear, the following sum rate is achievable via the Körner-

Marton’s scheme to recover 〈A,B 〉 at the receiver with a

small probability of error:

RΣ
SV = 2H

({

ai ⊕r bi

}m

i=1
,

m
⊕

i=1

q
a2i ⊕q b

2
i

)

, (5)

where r = 2(q− 1)m for m even, and r = 2(q− 1)m+1 for

m odd, respectively, and
⊕

q
denotes a modulo-q addition.

Proof. The proof follows from noting that the receiver, upon

receiving
{

ai ⊕r bi
}m

i=1
and

m
⊕

i=1
q
a2i ⊕q b

2
i , can reconstruct

2c = qk +
(

m
∑

i=1

(ai ⊕r bi)
2 −

m
⊕

i=1

q
(a2i ⊕q b

2
i )
)

mod q ,

where there is a unique k ∈ Fq for which c = 〈A,B 〉 ∈ Fq .
For details, we refer the reader to Appendix C.

We next describe a hybrid encoding scheme. Note that
A⊺B can be rewritten as g(A,Y) = A⊺(Y − A) mod q
if Y = A⊕q B is known. Exploiting Körner’s characteristic

graphs [16] to enable nonlinear encoding of A1, the minimum
compression rate of A for computing g(A,Y) given side
information Y equals the conditional graph entropy of A

given Y, denoted by HGA
(A |Y), as introduced by Orlitsky

and Roche [15]. Via concatenating the structured coding
scheme of Körner and Marton [11] to first compute Y and
then the unstructured coding model of Orlitsky and Roche
[15] to next determine g(A,Y), it is possible to achieve a
sum rate RΣ

KM−OR = 2H(Y) +HGA
(A |Y). When Y = B,

the required rate is H(B) + HGA
(A |B), which is smaller

than RΣ
SW because HGA

(A |B) ≤ H(A |B) [15].
In Figure 2, we contrast the sum rate performance of

Propositions 1-2 for distributed computing of 〈A,B 〉 of
vectors A,B ∈ F

m×1
2 with a small probability of error,

with existing unstructured and structured coding schemes. In
Figure 2-(Left), we use the PMF in Corollary 1 where m = 2,
i.e., the pairs (a1, b2) and (a2, b1) represent DSBSs, each with
a crossover probability p. Note that the sum rates RΣ

S and
RΣ

KM−OR perform poorly versus RΣ
SV, and are not indicated.

The sum rate RΣ
KM converges to H(〈A,B 〉) at low p.

In Figure 2-(Middle), we use m = 1, and the pair (a, b) is a
DSBS with a crossover probability p. At low p, RΣ

KM−OR and
RΣ

SW converge to H(〈 a, b 〉) whereas RΣ
S performs poorly. For

large p, structured coding yields low rates (RΣ
S and RΣ

KM−OR).
In Figure 2-(Right), we use m = 2, and the pairs (a1, b1)

and (a2, b2) are DSBSs, each with a crossover probability p.
The performance of RΣ

KM is worse than RΣ
SW and not shown.

Similarly, RΣ
SV is higher than RΣ

KM−OR, and is not indicated.
For any given p value, RΣ

S is always smaller than RΣ
SW, and

RΣ
KM−OR approaches H(〈A,B 〉) for small and large p.

B. Distributed Computation of Symmetric Matrices

We next consider a generalization of Proposition 1 for dis-
tributed computing of inner products to distributed computing
of a square symmetric matrix D = (Dij) ∈ F

l×l
q , given by

the product D = A⊺B, where A,B ∈ F
m×l
q , for q > 2 and

l ≥ 1, and symmetry implies that Dji = Dij for every i, j.

Proposition 3. (Computing symmetric matrices via dis-

tributed multiplication.) Given two sequences of random

matrices A =
[

A
⊺

1 A
⊺

2

]⊺

∈ F
m×l
q and B =

[

B
⊺

1 B
⊺

2

]⊺

∈
F
m×l
q generated by two correlated memoryless q-ary sources,

respectively, where A1,A2,B1,B2 ∈ F
m/2×l
q and q > 2,

the achievable sum rate by the separate encoding of the

sources for the receiver to recover the symmetric matrix

D = A⊺B ∈ F
l×l
q with vanishing error is given as

RΣ
KM = 2H(U, V, W) , (6)

1For a detailed description of characteristic graphs and their entropies, we
refer the reader to [17]–[19].
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Fig. 2. Rate comparisons for various source PMFs. (Left) Corollary 1 for m = 2. (Middle) m = 1, and a, b are DSBSs. (Right) m = 2, and {ai, bi}2i=1

are DSBSs.

where U = A2 ⊕q B1 ∈ F
m/2×l
q , V = A1 ⊕q B2 ∈ F

m/2×l
q ,

and W = A
⊺

2A1 ⊕q B
⊺

1B2 ∈ F
l×l
q are matrix variables.

Proof. The proof is on similar lines as Appendix A. For
details, we refer the reader to Appendix D.

In Figure 3-(Left), we showcase the sum rates RΣ
KM and

RΣ
SW versus p (in log scale) for distributed computing of

symmetric matrices D = A⊺B for q = 2 under assumptions2:
i) A

⊺

1B1 = B
⊺

1A1, i.e., W = 0l×l, and ii) A
⊺

2A1 = B
⊺

1B2.
Because D is symmetric, i) and ii) lead to

U⊺V = (A2 ⊕2 B1)
⊺(A1 ⊕2 B2)

(a)
= A

⊺

2A1 ⊕2 A
⊺

2B2 ⊕2 A
⊺

1B1 ⊕2 B
⊺

1B2

(b)
= A

⊺

1B1 ⊕2 A
⊺

2B2 = D ,

where (a) and (b) follow from assumptions i) and ii), re-
spectively. These assumptions ensure a rate gain of η =
RΣ

SW/R
Σ
KM that grows exponentially fast, as p tends to {0, 1}.

We next state a necessary condition for successful recovery
of D = A⊺B, where A,B ∈ F

m×l
q , without recovering A

and B. This result holds true for any symmetric D ∈ F
l×l
q .

Proposition 4. (A necessary condition for the nonrecovery

of the sources in distributed computation of A⊺B.) For

distributed encoding of A,B ∈ F
m×l
q to compute D = A⊺B,

which is symmetric, the below condition ensures that the sum

rate in (1) is less than the achievable sum rate of [10]:

H(A⊺B) +H(Q |A⊺B) < H(A |Q,A⊺B) , (7)

where Q =

[

U

V

]

∈ F
m×1
q , and U and V are defined in (2).

Proof. The inequality in (7) can be obtained using the expan-
sions of RΣ

KM and RΣ
SW. For the technical steps, we refer the

reader to Appendix E.

2For q > 2, it is clear (from Appendix D of Proposition 3) that the choices
of U, V, and W guarantee the recovery of A⊺B without assumptions i)-ii).

It is clear, using the expansion (24) of RΣ
KM in Appendix E,

that the sum rate RΣ
KM = 2H(A⊺B) is achievable when

H(Q |A⊺B) = 0 in (7). In this case, (7) implies that
H(A⊺B) < H(A |Q,A⊺B), meaning that it is possible
to recover the inner product A⊺B while keeping A and B

unknown to the receiver.

C. Distributed Computation of Square Matrices

Recall that Proposition 3 does not capture non-symmetric
matrix products. We here consider distributed computing of
a square matrix D = (Dij) ∈ F

l×l
q , given by the product

D = A⊺B, where D is not symmetric, and A,B ∈ F
m×l
q ,

for l, m > 1, and q > 2. The following proposition gives an
achievable distributed encoding scheme of the sources A and
B towards computing D.

Proposition 5. (Computing square matrices via distributed

matrix multiplication.) Given two sequences of random ma-

trices A ∈ F
m×l
q and B ∈ F

m×l
q generated by two correlated

memoryless q-ary sources, where q > 2, the following sum rate

is achievable by the separate encoding of the sources for the

receiver to recover a general square matrix D = A⊺B ∈ F
l×l
q

with vanishing error:

RΣ
KM = 2H({A⊕q B̃j}

l
j=1 , {Ã

⊺

j Ãj}
l
j=1) , (8)

where we use the shorthand notation Ã
⊺

j Ãj = A⊺A⊕q B̃
⊺

j B̃j

for j ∈ {1, 2, . . . , l}, where B̃j = Bj11×l ∈ F
m×l
q are matrix

variables, 11×l is a length l row vector of all ones, where B =
[

B1 B2 . . . Bl

]

with Bj ∈ F
m×1
q for j ∈ {1, 2, . . . , l}.

Proof. We refer the reader to Appendix F.

To demonstrate the performance of Proposition 5, we next
consider a corollary, where l = 2, m > 1, and with q = 3.

Corollary 2. Given A =
[

A1 A2

]

∈ F
m×2
3 and B =

[

B1 B2

]

∈ F
m×2
3 with entries aij ∼

(

1
2 − ǫ, 2ǫ, 12 − ǫ

)

for
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Fig. 3. Rate (in log scale) versus p for distributed computing of (Left) symmetric matrices A⊺B = B⊺A via distributed multiplication of matrices
A,B ∈ F

m×m

2
for different m, and (Right) square matrices via distributed matrix multiplication for different m and l = 2, where the joint source PMF is

given in Corollary 2.

some ǫ ∈
[

0, 12
]

, and bi1 = bi2 = −ai2 that are i.i.d. across

i = 1, . . . ,m and the joint PMF of ai1, bi1 satisfies

Pai1,bi1 =





(12 − ǫ)(1− p) (12 − ǫ)p 0
2ǫp 0 2ǫ(1− p)
0 (12 − ǫ)(1− p) (12 − ǫ)p



 .

The sum rate for distributed encoding of (A,B) is given as

RΣ
SW = m(h(2ǫ) + (1 − 2ǫ) + h(p)) . (9)

Exploiting Proposition 5 to compute A⊺B, we can achieve

RΣ
KM ≤ 2mh

(

2
(1

2
− ǫ

)

(1 − p) + 2ǫ(1− p),

2
(1

2
− ǫ

)

p+ 2ǫp
)

+ 2 log2(3) . (10)

Proof. We refer the reader to Appendix G.

In Figure 3-(Right), we demonstrate the sum rate perfor-
mance of Proposition 5 (in log scale) versus p via contrasting
the sum rates in (9) and (10) for the joint PMF model in
Corollary 2, where we assume that ǫ = 0.2. We observe that
the rate gain η = RΣ

SW/R
Σ
KM grows exponentially fast, as p

tends to {0, 1}.
Discussion. We proposed structured coding techniques for

nonlinear mappings of distributed sources in a q-ary prime
finite field to perform inner product-based matrix computation
toward realizing distributed multiplication for special matrix
classes, e.g., symmetric and square matrices, through imposing
structural constraints on sources. Our future work includes the
study of general matrix products, providing insights into the

problems of distributed rank computation, trace computation,
and low-rank matrix factorization, as well as the derivation of
tighter achievability bounds for the distributed multiplication
of general matrices and higher dimensional matrices or tensors.
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APPENDIX

A. Proof of Proposition 1

The receiver aims to compute the inner product 〈A,B 〉 =
∑m

i=1 aibi, with entries from a field of characteristic q ≥ 2.
Here, we focus on q = 2, and the generalization to q > 2 is
straightforward [14].

Encoding: Sources devise mappings g1 : A → X1 and
g2 : B → X2, respectively, defined below, to determine the
binary-valued column vectors

X1 = g1(A) =





A2

A1

A
⊺

2A1



 ∈ F
(m+1)×1
2 , (11)

X2 = g2(B) =





B1

B2

B
⊺

1B2



 ∈ F
(m+1)×1
2 . (12)

We denote by Xn
1 ,X

n
2 ∈ F

(m+1)×n
2 the length n source vec-

tors. The encoders of the sources {X1i} and {X2i} are defined
by functions f1 : Xn

1 → Rf1 and f2 : Xn
2 → Rf2 , where Rf1

and Rf2 denote the ranges of f1 and f2, respectively. The pair



of functions (f1, f2) is called an (n, ǫ)-coding scheme if there
exists a function φ : Rf1 ×Rf2 → Zn such that by letting

Ẑn , φ(f1(X
n
1 ), f2(X

n
2 )) , (13)

we have P(Ẑn 6= Zn) < ǫ. Here, Z is the modulo-two sum of
X1 and X2, i.e., Z = X1 ⊕2 X2 ∈ F

(m+1)×1
2 .

Our encoding scheme requires a well-known lemma of Elias
[22], which showed that linear codes achieve the capacity of
binary symmetric channels, and its adaption to the problem
of computing the modulo-two sum of DSBSs in [11]. Using
a simple generalization of this result to vector variables, for
fixed ǫ > 0 and for sufficiently large n, there exists a binary
matrix C ∈ F

k×n
2 , where f1(Xn

1 ) , C(Xn
1 ) = C · (Xn

1 )
⊺ ∈

F
k×(m+1)
2 and f2(X

n
2 ) , C · (Xn

2 )
⊺ ∈ F

k×(m+1)
2 denote the

modulo-two product of the matrix C with the transpose of
the binary vector sequences Xn

1 and Xn
2 , respectively, and a

decoding function ψ : {0, 1}k×(m+1) → {0, 1}n×(m+1) that
satisfy

φ(f1(X
n
1 ), f2(X

n
2 )) , ψ(f1(X

n
1 ) + f2(X

n
2 ))

such that i) k < n(H(Z)+ǫ), and ii) P(ψ(C(Zn)) 6= Zn) < ǫ.
Hence, application of Elias’s lemma [22] and [11] yields that
(C,C) is an (n, ǫ)-coding scheme.

Decoding: Exploiting the achievability result of Körner-
Marton [11], the sum rate needed for the receiver to recover
the vector sequence Zn = Xn

1 ⊕2 Xn
2 ∈ F

(m+1)×n
2 with a

vanishing error probability can be determined as [11]:

RΣ
KM = 2H(U, V, W ) . (14)

Using ψ given in ii), the receiver can recover Zn. However,
lossless decoding of Xn

1 and Xn
2 is not guaranteed.

We next show that the sum rate in (14) is sufficient to
recover 〈A,B 〉. Using Ẑn, the receiver computes

U⊺V −W = (A⊺

2 ⊕q B
⊺

1)(A1 ⊕q B2)

− (A⊺

2A1 ⊕q B
⊺

1B2)

= B
⊺

1A1 ⊕q A
⊺

2B2

(a)
= A

⊺

1B1 ⊕q A
⊺

2B2 = 〈A,B 〉 , (15)

where (a) follows from B
⊺

1A1 = A
⊺

1B1 ∈ Fq.
Hence, (14) with (15) gives the achievability result we seek.

B. Proof of Corollary 1

Employing the definitions of X1 and X2 in (11), (1) and
[11], we can determine the sum rate needed for the receiver
to recover (U, V, W ) in an asymptotic manner:

RΣ
KM = 2H(U, V, W )

= 2H(U) + 2H(V) + 2H(A⊺

2A1 ⊕2 B
⊺

1B2 |U,V)

= 2
m

2
h(p) + 2

m

2
h(p) + 2H(A⊺

2A1 ⊕2 B
⊺

1B2 |U,V)

(a)
= 2mh(p) + 2H(U⊺A1 ⊕2 A

⊺

2V |U,V)

(b)
= 2mh(p) + 2H(Q⊺A |U,V)

(c)
= 2mh(p) + 2H

(

m
∑

i=1

aizi |Q
)

(d)
= 2mh(p) + 2

m
∑

j=1

(

m

j

)

pj(1− p)m−jH
(

j
∑

i=1

ai

)

(e)
= 2mh(p) + 2(1− (1 − p)m) , (16)

where (a) follows from employing the relations U = A2 ⊕2

B1 =
[

u1 u2 . . . um/2

]⊺

and V = A1 ⊕2 B2 =
[

v1 v2 . . . vm/2

]⊺

, and simplification using condition-

ing, (b) follows from employing Q =

[

U

V

]

∈ F
m×1
2 and

A
⊺

2V = V⊺A2, (c) from the definition of Q, and (d) from

H(Q⊺A |Q) ≤ H(Q⊺A |Q⊺1m), where Q⊺1m =
m
∑

i=1

yi ∼

B(m, p), such that H(Q⊺A |Q⊺1m = j) = H
( j
∑

i=1

ai

)

, j ≥

1 exploiting that ai
i.i.d.
∼ Bern(1/2), and H(Q⊺A |Q⊺1m =

0) = 0. Finally, incorporating H
( j
∑

i=1

ai

)

= 1, j ≥ 1 we

obtain (e).
The encoding rate for asymptotic lossless compression of

A and B is given by the Slepian-Wolf theorem [10]:

RΣ
SW = H(A,B)

(a)
= 2H(A1,B2)

= 2
m

2
(1 + h(p))

= m(1 + h(p)) , (17)

where (a) follows from using A =

[

A1

A2

]

and B =

[

B1

B2

]

,

with A1 ⊥⊥ A2, B1 ⊥⊥ B2, and A and B having i.i.d. entries.
From (16) and (17), η = RΣ

SW/R
Σ
KM is given by (3).

C. Proof of Proposition 2

Here, we provide a sketch of the proof. For binary sources,
i.e., q = 2, it is easy to verify that

〈A,B 〉 =
⌊1

2

(

m
∑

i=1

ai ⊕r bi −

m
∑

i=1

(ai ⊕2 bi)
)⌋

mod 2 ,

where r = 2m for m even, and r = 2m + 1 for m odd,
respectively. Hence, the following sum rate is achievable:

RΣ
S = 2H

(

m
∑

i=1

ai ⊕r bi, {ai ⊕2 bi}
m
i=1

)

. (18)

When the data is generated by two correlated memoryless q-
ary sources for q ≥ 2, it is possible to achieve a sum rate

RΣ
S = 2H

({

ai ⊕r bi

}m

i=1
,

m
⊕

i=1

q
a2i ⊕q b

2
i

)

,

where r = 2(q − 1)m and r = 2(q − 1)m + 1 for even
and odd m, respectively. Upon receiving

{

ai ⊕r bi
}m

i=1
and



m
⊕

i=1
q
a2i ⊕q b

2
i , the receiver can reconstruct

2c = qk +
(

m
∑

i=1

(ai ⊕r bi)
2 −

m
⊕

i=1

q
(a2i ⊕q b

2
i )
)

mod q ,

where there is a unique k ∈ Fq for which c = 〈A,B 〉 ∈ Fq.

D. Proof of Proposition 3

Given two sequences of random matrices A, B ∈ F
m×l
q ,

the receiver aims to compute A⊺B = B⊺A ∈ F
l×l
q .

Encoding: Each source uses mappings g1 : A → X1 and
g2 : B → X2, to determine the respective matrices:

X1 = g1(A) =





A2

A1

A
⊺

2A1



 ∈ F
(m+l)×l
q , (19)

X2 = g2(B) =





B1

B2

B
⊺

1B2



 ∈ F
(m+l)×l
q . (20)

Following the steps of Appendix A, there exists an (n, ǫ)-
coding scheme (C,C) for a matrix C ∈ F

k×n
q , where k =

(m+ l)× l, for decoding Z = X1 ⊕q X2 ∈ F
(m+l)×l
q with a

small probability of error.
Decoding: Exploiting the achievability result of Körner-

Marton [11], the sum rate needed for the receiver to recover
the matrix sequence Zn = Xn

1 ⊕q X
n
2 with a vanishing error

probability can be determined as [11]:

RΣ
KM = 2H(U, V, W) . (21)

For q > 2, given a symmetric matrix D = A⊺B ∈ F
l×l
q ,

the following relation holds:

D =
1

2
(D⊕q D

⊺) = A⊺B = B⊺A . (22)

Using Ẑn, the receiver computes

1

2
((U⊺V −W)⊕q (U

⊺V −W)⊺)

=
1

2
((A⊺

2 ⊕q B
⊺

1)(A1 ⊕q B2)− (A⊺

2A1 ⊕q B
⊺

1B2)

⊕q (A
⊺

1 ⊕q B
⊺

2)(A2 ⊕q B1)− (A⊺

1A2 ⊕q B
⊺

2B1))

=
1

2
((B⊺

1A1 ⊕q A
⊺

2B2)⊕q (A
⊺

1B1 ⊕q B
⊺

2A2))

=
1

2
((A⊺

1B1 ⊕q A
⊺

2B2)⊕q (A
⊺

1B1 ⊕q A
⊺

2B2)
⊺)

=
1

2
(A⊺B⊕q (A

⊺B)⊺) = A⊺B , (23)

where the last equality follows from that D = A⊺B is a
symmetric matrix and it satisfies (22).

Combining (21) with (23) gives the achievability result.

E. Proof of Proposition 4

We first show that the encoding scheme of Proposition 1
does not allow the recovery of A,B ∈ F

m×1
q by the receiver,

i.e., H(A,B |A⊺B,Q) > 0, for m > 1.

The receiver can recover Q =

[

U

V

]

∈ F
m×1
q and W ∈ Fq

with a small probability of error. The extra rate needed from
the encoders for the receiver to determine A, B ∈ F

m×1
q is

H(A,B |A⊺B,Q)
(a)
= H(A,B,A⊺B,Q)−H(A⊺B,Q)

(b)
= H(A,B,Q)−H(A⊺B,Q)

(c)
= H(A,Q)−H(A⊺Q,Q)

(d)
= H(A,A⊺Q,Q)−H(A⊺Q,Q)

(e)
= H(A |A⊺Q,Q)

(f)

≥ 0 ,

where (a) follows from using the definition of conditional
entropy and that the receiver can compute A⊺B = U⊺V−W
from Q and W , (b) from H(A⊺B |Q,A,B) = 0, (c)
from H(B |A,Q) = 0 and A⊺B = A⊺Q given Q, (d)
from H(A⊺Q |A,Q) = 0, (e) from employing the defi-
nition of conditional entropy, and (f) holds with equality
if the function g(A,Q) = A⊺Q is partially invertible, i.e.,
H(A | g(A,Q),Q) = 0, e.g., when g is the arithmetic sum
or the modulo sum of the two vectors. Hence, the inequality
in (f) is strict for inferring A, B ∈ F

m×1
q from Q and W .

We next prove the main result of the proposition. Given
matrix variables A,B ∈ F

m×l
q such that D = A⊺B is

symmetric, letting Q =

[

U

V

]

, we first expand RΣ
KM as

RΣ
KM = 2H(U, V, W )

= 2H(U, V, A⊺B)

= 2H(A⊺B) + 2H(Q |A⊺B) . (24)

We next expand RΣ
SW as

RΣ
SW = H(A,B) = H(A,B,U, V, W,A⊺B)

= H(U, V, A⊺B) +H(A1,B1,A2,B2 |A2 ⊕q B1,

A1 ⊕q B2,A
⊺

1B1 ⊕q A
⊺

2B2)

= H(U, V, A⊺B) +H(A1,A2 |U, V,A
⊺

1(U ⊕q A2)

⊕q A
⊺

2(V ⊕q A1))

= H(Q, A⊺B) +H(A |Q,A⊺Q⊕q A
⊺

1A2 ⊕q A
⊺

2A1)

= H(A⊺B) +H(Q |A⊺B)

+H(A |Q,A⊺Q⊕q A
⊺

1A2 ⊕q A
⊺

2A1) , (25)

where it is easy to observe that A⊺B = A
⊺

1(U + A2) +
A

⊺

2(V +A1) = A⊺Q⊕q A
⊺

1A2 ⊕q A
⊺

2A1.

Similarly, via exploiting Q̃ =

[

V

U

]

, we can show that

RΣ
SW = H(A⊺B) +H(Q |A⊺B)

+H(B | Q̃, Q̃⊺B⊕q B
⊺

1B2 +B
⊺

2B1) , (26)

where A⊺B = Q̃⊺B⊕q B
⊺

1B2 ⊕q B
⊺

2B1.

From (25) and (26), we note that H(A |A⊺Q) =
H(B | Q̃⊺B). Contrasting (24) with (25), the condition

H(A⊺B) +H(Q |A⊺B) < H(A |Q,A⊺B)



= H(B | Q̃,A⊺B)

ensures that RΣ
KM < RΣ

SW.
When l = 1, we have A⊺

1A2 = A
⊺

2A1 and B
⊺

1B2 = B
⊺

2B1,
hence, the above condition is equivalent to

H(A⊺B) +H(Q |A⊺B) < H(A |Q,A⊺Q)

= H(B | Q̃, Q̃⊺B) .

F. Proof of Proposition 5

Note that Dj = A⊺Bj for j ∈ {1, . . . , l}, where Dj =
[

d1j d2j . . . dlj
]⊺

∈ F
l×1
q . Following the steps in Ap-

pendix A, the receiver can recover {A⊕q B̃j}
l
j=1 , {A

⊺A⊕q

B̃
⊺

j B̃j}
l
j=1, and then compute the following l× l matrix:

(A⊕q B̃j)
⊺(A⊕q B̃j)− (A⊺A⊕q B̃

⊺

j B̃j)

= A⊺B̃j ⊕q B̃
⊺

jA

=











d1j ⊕q d1j d1j ⊕q d2j . . . d1j ⊕q dlj
d2j ⊕q d1j d2j ⊕q d2j . . . d2j ⊕q dlj

...
...

. . .
...

dlj ⊕q d1j dlj ⊕q d2j . . . dlj ⊕q dlj











,

which is a symmetric matrix with l unknowns and l(l−1)
2 ≥ l

linearly independent equations for l ≥ 2 and q > 2. Hence,
Dj , for each j = 1, . . . , l, as well as D can be recovered.

G. Proof of Corollary 2

The sum rate for distributed encoding of (A,B) is given as

RΣ
SW = H(A,B) = H(A1,B1,A2,B2)

= H(A1,B1)

= m(h(2ǫ) + (1 − 2ǫ) + h(p)) .

Exploiting Proposition 5 to compute A⊺B, we can achieve

RΣ
KM = 2H(A⊕3 B̃1 , A

⊺A⊕3 B̃
⊺

1B̃1)

= 2mh
(

2
(1

2
− ǫ

)

(1 − p) + 2ǫ(1− p),

2
(1

2
− ǫ

)

p+ 2ǫp
)

+ 2h(A⊺A⊕3 B̃
⊺

1B̃1 |A⊕3 B̃1)

≤ 2mh
(

2
(1

2
− ǫ

)

(1 − p) + 2ǫ(1− p),

2
(1

2
− ǫ

)

p+ 2ǫp
)

+ 2 log2(3) ,

where the last step follows from using that

A⊺A⊕3 B̃
⊺

1B̃1 =

[

A
⊺

1A1 ⊕3 B
⊺

1B1 A
⊺

1A2 ⊕3 B
⊺

1B1

A
⊺

2A1 ⊕3 B
⊺

1B1 A
⊺

2A1 ⊕3 B
⊺

1B1

]

,

and evaluating the conditional entropy as

h(A⊺A⊕3 B̃
⊺

1B̃1 |A⊕3 B̃1)

= h(A⊺

1A1 ⊕3 B
⊺

1B1,A
⊺

1A2 ⊕3 B
⊺

1B1,

A
⊺

2A1 ⊕3 B
⊺

1B1 |A⊕3 B̃1)

= h(
{

m
∑

i=1

a2ij ⊕3 b
2
i1

}2

j=1
,

m
∑

i=1

ai1ai2 ⊕3 b
2
i1 |A⊕3 B̃1)

(a)
= h(

m
∑

i=1

a2i1 ⊕3 b
2
i1,

m
∑

i=1

a2i2 ⊕3 b
2
i1 |A⊕3 B̃1)

(b)

≤ 2 log2(3) ,

where (a) follows from that ai1ai2 ⊕3 b
2
i1 can be recovered

given the side information A ⊕3 B̃1 =
{

aij ⊕3 bi1
}

i,j
for

i = 1, 2, . . . ,m and j = 1, 2, and given
{

a2ij ⊕3 b
2
i1

}

j
, for

j = 1, 2. More specifically, the receiver can recover

2aijbi1 = (aij ⊕3 bi1)
2 − (a2ij ⊕3 b

2
i1) , j = 1, 2 . (27)

Hence, using the side information A ⊕3 B̃1 and (27), the
receiver can recover ai1ai2 ⊕3 b

2
i1 as follows:

ai1ai2 ⊕3 b
2
i1 = (ai1 ⊕3 bi1)(ai2 ⊕3 bi1)

− (ai1bi1 ⊕3 ai2bi1) .

Finally, step (b) follows from exploiting that both variable
m
∑

i=1

a2i1 ⊕3 b
2
i1 and variable

m
∑

i=1

a2i2 ⊕3 b
2
i1 reside in F3.
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