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ABSTRACT

The problem of comparing database instances with incom-

pleteness is prevalent in applications such as analyzing how a

dataset has evolved over time (e.g., data versioning), evaluating

data cleaning solutions (e.g., compare an instance produced by a

data repair algorithm against a gold standard), or comparing solu-

tions generated by data exchange systems (e.g., universal vs core

solutions). In this work, we propose a framework for computing

similarity of instances with labeled nulls, even of those without

primary keys. As a side-effect, the similarity score computation

returns a mapping between the instances’ tuples, which explains

the score. We demonstrate that computing the similarity of two

incomplete instances is NP-hard in the instance size in general.

To be able to compare instances of realistic size, we present an

approximate PTIME algorithm for instance comparison. Exper-

imental results demonstrate that the approximate algorithm is

up to three orders of magnitude faster than an exact algorithm

for the computation of the similarity score, while the difference

between approximate and exact scores is always smaller than 1%.

1 INTRODUCTION

Organizations adopt “data lakes” for collecting their data.

Rather than organizing data in carefully structured warehouses

that aremanaged by administrators, data is now commonly stored

in schema-on-read storage systems [36]. The reliance on data

lakes is driving new techniques for organizing datasets [33, 51].

In this environment, a crucial task is to compare datasets. Be-

ing able to compare instances has multiple uses. First, finding

datasets that are similar to an already discovered dataset or user-

provided data example (e.g., find more census data or medical

records [40, 41]), even if they do not share the same key values.

Second, recover dataset version history in a data lake where new

versions of datasets may be added to the lake without identifying

them as such. Finally, different data exchange and constraint-

based data repair algorithms produce different instances that

need to be evaluated. Measuring how close the result of an al-

gorithm matches a gold standard solution requires a similarity

metric for incomplete databases, i.e., databases with labeled nulls.

However, two challenges make the comparison of incomplete

datasets difficult.

First, it is not possible in general to rely on metadata – such as

keys – to reliably determine a correspondence between the tuples

of two incomplete instances, i.e., key values may be missing.
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Conference I
Name Year Place Org

𝑡1 VLDB 1975 Framingham VLDB End.

𝑡2 VLDB 1976 𝑁𝑢𝑙𝑙 𝑁𝑢𝑙𝑙

𝑡3 SIGMOD 1975 San Jose ACM

Conference I1
Name Year Place Org

𝑡7 SIGMOD 1975 San Jose ACM

𝑡8 VLDB 𝑁𝑢𝑙𝑙 Framingham VLDB End.

𝑡9 𝑁𝑢𝑙𝑙 1976 Brussels IEEE

𝑡10 VLDB 𝑁𝑢𝑙𝑙 𝑁𝑢𝑙𝑙 VLDB End.

Conference I2
Name Year Place Org

𝑡15 𝑁𝑢𝑙𝑙 1975 𝑁𝑢𝑙𝑙 𝑁𝑢𝑙𝑙

𝑡16 CC&P 1980 Montreal 𝑁𝑢𝑙𝑙

𝑡17 VLDB 1976 Brussels VLDB End.

𝑡18 VLDB 1975 Framingham VLDB End.

Figure 1: Three versions of instance 𝐼 .

Second, many datasets are inherently incomplete, either be-

cause the dataset creator has encoded unknown values as nulls

or because the dataset is the result of a data curation step. For in-

stance, idiosyncratic encodings of incompleteness may have been

replaced with SQL-style nulls [47], a constraint-repair algorithm

may have replaced conflicting values with labeled nulls [20], or

outliers may have been replaced with nulls.

Data Versioning. Data versioning systems provide similar func-

tionality for datasets that version control systems, like GIT or

SVN, provide for files or software. Interest in data versioning

is growing with systems like DataHub [12] and Dolt [3]. Such

systems provide version management features (e.g., checkout,

commit, and merge) for datasets. However, they do not support

comparing versions of incomplete datasets to understand what

has changed between two versions.

Example 1.1. Consider the relational schema T describing data-
base conferences: Conference(Name, Year, Place, Org). Fig. 1 shows
an initial instance (𝐼 ). This instance contains missing values (de-

noted by 𝑁𝑢𝑙𝑙). In data versioning, nulls are common. As data

evolves, not every value of a tuple may be available. Fig. 1 shows

two additional versions 𝐼1 and 𝐼2 of 𝐼 .

A natural question in data versioning is which instance is

closer to an original dataset 𝐼 and how different are two versions.

Similarity of instances can be used to show users how instances

evolve over time by determining the order in which versions were

created. Moreover, users may be interested in obtaining a list of

differences across two instances, e.g., both updated versions of

𝐼 contain new tuples (𝑡9 and 𝑡16), two Null values in 𝐼 (𝑡2) has



Conference I3
Name Year Place Org

𝑡21 𝑁1 1975 Framingham 𝑁3

𝑡22 𝑁1 1976 𝑁4 𝑁3

𝑡23 𝑁2 1975 San Jose 𝑁5

Figure 2: Version of I obtained with data exchange.

been updated to “VLDB End.” (𝑡17), etc. The presence of nulls

leads to uncertainty about which tuples are updated versions of

which other tuple. For example, tuple 𝑡15 can be mapped to 𝑡1 or

𝑡3; both 𝑡9 and 𝑡10 can be mapped to 𝑡2. The need for instance

similarity metrics for dataset versioning has been recognized

in related work [11]. However, unlike our work, [11] does not

handle incompleteness and assumes keys.

Empirical Evaluation of Data Cleaning and Integration.

Empirical evaluation is important in data integration and data

cleaning [9]. To provide a few examples, ST-Benchmark [5], IQ-

Meter [44] and iBench [7] are examples of frameworks for data-

exchange evaluation, while BART [8] is an error-generation tool

for data repair. In data cleaning and integration it is common

that systems differ not just in their runtime efficiency but also in

terms of the quality of the results they produce. Thus, empirical

evaluation of such systems requires testing how similar a system-

generated solution is to a known expected solution.

Both data integration and cleaning make use of labeled nulls.
In data exchange, labeled nulls are used to encode incompleteness

in a target instance, e.g., when there are attributes in the target

schema that do not have any correspondence to attributes from

the source schema [23]. In constraint-based data repair, labeled

nulls are used by systems to mark conflicts among values that

require user intervention [10, 19, 20, 26, 29, 39].

Labeled nulls encode incompleteness [35] and turn the in-

stances we need to compare into representation systems of in-
complete databases. For example, in instance 𝐼3 in Fig. 2, labeled

nulls 𝑁1 and 𝑁3 encode the fact that the values for Name and Org
are unknown for tuple 𝑡21, but the values must be the same for

attribute Name (Org) across tuples 𝑡21 and 𝑡22. When we compare

instances involving these nulls, satisfaction or violation of these

constraints must be taken into consideration.

Challenges. The two tasks above are representative examples

of applications that require an effective algorithm for comparing

instances that (i) are incomplete and (ii) have no shared key, i.e.,
the instances do not have keys or the keys are not consistent

across the two instances. Other applications include discovery

tasks such as dataset search, given a data example, or detecting

data theft and plagiarism [2, 27]. The problem of data lake dedu-

plication aims to find duplicate or near duplicate tables [38] from

real data lakes containing incomplete table. Once found, instance

comparison would be valuable in understanding how to resolve

the (near) duplication. We investigate a problem that is present in

all these tasks, which is the one of comparing incomplete instances
without keys, or instance-comparison problem for short.

This problem is challenging for two reasons. First, finding

mappings between instances with nulls is related to known com-

putationally hard problems such as checking the existence of ho-

momorphisms between instances [17]. Indeed, we demonstrate

that the instance comparison problem is NP-hard. Second, since

similarity measurements must be repeated over time in dataset

versioning, often with high frequency, and scalability of the tools

is often an evaluation parameter, a crucial requirement is that

the comparison algorithm is fast and scales to large databases.

Conference
Id Name Year Place Org

𝑡1 1 VLDB 1975 Framingham VLDB End.

𝑡2 2 VLDB 1976 Brussels VLDB End.

𝑡3 3 SIGMOD 1975 San Jose ACM

Paper
Authors Title ConfId

𝑡4 Zloof Query-By-Example... 1

𝑡5 Chen The Entity-Relationship... 1

𝑡6 Rappaport File Structure Design... 3

Figure 3: A Ground Instance 𝐼𝑔.

Recent work for comparing instances considers an easier set-

ting with shared keys and without null values and, instead, fo-

cuses on solving other related problems such as exploring and

summarizing the differences between instances by identifying

transformations that map one instance into the other [15, 50]. To

the best of our knowledge, there are currently no fast algorithms

for comparing database instances with labeled nulls.

Contributions. Our main contributions are:

(1) We formalize the problem of comparing incomplete instances

when no keys are available (Sec. 3).

(2) We formalize matches between incomplete instances (Sec. 4),

enabling a scoringmechanism for instance comparison (Sec. 5).

(3) We introduce an exact and an approximate algorithm for the

instance comparison problem (Sec. 6).

(4) We show experimentally that our approximate algorithm is

accurate and scales to large datasets (Sec. 7).

We then discuss related work in Sec. 8 and conclude in Sec. 9.

2 INSTANCES WITH LABELED NULLS

Let us first formalize the notion of a relational instance with la-

beled nulls (or nulls for short). A relational schema R as a finite set

{𝑅1, . . . , 𝑅𝑘 } of relation symbols, with each 𝑅𝑖 having a fixed arity

𝑛𝑖 ≥ 0. Consider countably infinite domains of constants (Consts)
and labeled nulls (Vars). We will use 𝑐0, 𝑐1, . . . to denote con-

stants and 𝑁0, 𝑁1, . . . to denote nulls. An instance 𝐼 = (𝐼1, . . . , 𝐼𝑘 )
of R consists of finite relations 𝐼𝑖 ⊂ (Consts ∪ Vars)𝑛𝑖 , for
𝑖 ∈ [1, 𝑘]. We denote by Consts(𝐼 ) and Vars(𝐼 ) the set of con-
stants and nulls in 𝐼 , respectively. The union of the two sets,

adom(𝐼 ) = Consts(𝐼 ) ∪ Vars(𝐼 ), is the active domain of 𝐼 . An

instance 𝐼 without nulls (Vars(𝐼 ) = ∅) is called a ground instance.
We assume the presence of unique tuple identifiers in an instance;

by 𝑡id we denote the tuple with identifier “id ” in 𝐼 . Note that these
are not assumed to be semantic keys of the instances, but just

provide us with a way to reference tuples in an instance. A cell is a
location in 𝐼 specified by a tuple id/attribute pair 𝑡id .𝐴𝑖 . We denote

by ids(𝐼 ) the set of tuple ids of instance 𝐼 . When comparing two

instances 𝐼 and 𝐼 ′, we will assume that ids(𝐼 )∩ids(𝐼 ′) = ∅. A map-

ping ℎ : adom(𝐼 ) → adom(𝐼 ′) such that ∀𝑐 ∈ Consts : ℎ(𝑐) = 𝑐

is called a homomorphism if, ∀𝑡 ∈ 𝐼 : ℎ(𝑡) ∈ 𝐼 ′. Two instances

are isomorphic, i.e., they represent the same information, if there

exists a bijective homomorphism between 𝐼 and 𝐼 ′.

Example 2.1. Consider the relational schema T describing data-
base conferences and papers: Conference(Id, Name, Year, Place, Org),
Paper(Authors, Title, ConfId). Fig. 3 shows a ground instance 𝐼𝑔 of

the schema, in which all values come from Consts.
Fig. 4 shows an instance 𝐼𝑛 that, in addition to constants

from Consts, contains nulls from Vars (𝑁1, 𝑁2, 𝑁3). This instance

might be the result of mapping a source database into the target

schema T. Some of the mappings leave unspecified the value of



Conference
Id Name Year Place Org

𝑡7 𝑁1 VLDB 1975 𝑁3 VLDB End.

𝑡8 𝑁2 VLDB 1976 Brussels VLDB End.

𝑡9 3 SIGMOD 1975 San Jose ACM

Paper
Authors Title ConfId

𝑡10 Zloof Query-By-Example... 𝑁1

𝑡11 Chen The Entity-Relationship... 𝑁1

𝑡12 Rappaport File Structure Design... 3

Figure 4: Instance with Labeled Nulls 𝐼𝑛 (Data Exchange).

the conference location – thus null value 𝑁3 is present in the con-

ference column – and perform a vertical partition of the source

by creating surrogate keys for conferences (𝑁1 and 𝑁2).

Finally, Fig. 5 shows another instance 𝐼𝑣 with null 𝑁1 (we do

not report grounded table Paper for the sake of space). This might

be the result of repairing an instance of the database that is dirty

wrt. the functional dependency (FD): Conference : Name→ Org.
Assume the FD identifies two tuples with conflicting values for

the Org attribute – say, “VLDB” and “VLDB End.”. In this case,

the repair algorithm uses a labeled null to mark the conflict so

that a human expert solves it using domain knowledge [31].

Conference
Id Name Year Place Org

𝑡13 1 VLDB 1975 Framingham 𝑁1

𝑡14 2 VLDB 1976 Brussels 𝑁1

𝑡15 3 SIGMOD 1975 San Jose ACM

Figure 5: Instance with Labeled Nulls 𝐼𝑣 (Data Repair).

3 THE INSTANCE COMPARISON PROBLEM

In this section we state natural requirements for an instance-

similarity measure, motivate the concept of instance matches

as a natural generalization of the symmetric difference of two

ground instances, and define our instance similarity measure

as the optimization problem of finding an instance match with

a maximal similarity score. We then formally define instance

matches in Sec. 4 and explain how to score them in Sec. 5.

A common way to measure the similarity of ground instances

is the symmetric difference Δ, normalized to a value in [0, 1]:

Δ(𝐼 , 𝐼 ′) = 1 − |(𝐼 − 𝐼
′) ∪ (𝐼 ′ − 𝐼 ) |
|𝐼 | + |𝐼 ′ |

In the following, we will use similarity(𝐼 , 𝐼 ′) to denote the

similarity score of instances 𝐼 and 𝐼 ′ . Obviously, an instance 𝐼 is

maximally similar to itself. Thus, we require:

similarity(𝐼 , 𝐼 ) = 1 (1)

However, we are comparing incomplete instances represented as

instances with labeled nulls. Such an instance represents a set of

ground instances, each of which is generated by substituting the

nulls in the instance with constants. That is, the identity of a null

does not affect the semantics of an instance: renaming a null does

not change the incomplete instance represented by an instance

with nulls. Thus, isomorphic instances should also be maximally

similar as they encode the same set of ground instances:

𝐼 is isomorphic to 𝐼 ′ ⇒ similarity(𝐼 , 𝐼 ′) = 1 (2)

Also, two instances that are not isomorphic should receive

a score strictly less than 1, e.g., consider 𝐼 = {(𝑁1), (𝑁2)}, 𝐼 ′ =
{(𝑁3), (𝑁4)} and 𝐼 ′′ = {(𝑁5), (𝑁5)}. Intuitively, 𝐼 is more similar

to 𝐼 ′ than 𝐼 is to 𝐼 ′′, because 𝐼 and 𝐼 ′ are isomorphic and, thus,

represent the same set of ground instances. Instances 𝐼 and 𝐼 ′′

share some ground instances, e.g., 𝐼1 = {(1), (1)}, but not all of
them (e.g., 𝐼2 = {(1), (2)} is only a ground instance for 𝐼 , but not

𝐼 ′′). Thus, we require:
𝐼 is not isomorphic to 𝐼 ′ ⇒ similarity(𝐼 , 𝐼 ′) < 1 (3)

If we compare two ground instances 𝐼 and 𝐼 ′ that do not share
any tuples, then 𝐼 and 𝐼 ′ should be minimally similar:

𝐼 ∩ 𝐼 ′ = ∅ ∧ Vars(𝐼 ) = Vars(𝐼 ′) = ∅ ⇒ similarity(𝐼 , 𝐼 ′) = 0 (4)

Finally, we expect our similarity measure to be symmetric:

similarity(𝐼 , 𝐼 ′) = similarity(𝐼 ′, 𝐼 ) (5)

Notice that the symmetric difference fulfills Eq. (1) and (3)

to (5), but not Eq. (2) as it does not take into account the renam-

ing of nulls. To motivate our notion of instance similarity, let

us restate the symmetric difference as follows: find a maximal

matching between tuples from 𝐼 and 𝐼 ′ (called a tuple matching)
such that only tuples that are equal are matched. The symmetric

difference score is then twice the size of this matching relative to

the sum of the cardinality of the two instances. For incomplete

instances, we will take renaming of variables into account and

also account for the fact that under some interpretation a null

can be equal to a particular constant. We do this by relaxing the

requirement that matched tuples have to be equal. Instead we

will require them to be equal under some appropriate mapping

of the variables from both instances into constants and variables

(we refer to such mappings as value mappings). Note that there
may exist many possible such mappings, some of which may

not match tuples that are quite similar. Thus, we will define the

instance comparison problem as the optimization problem of

finding a match that maximizes the number of matched tuples

while preserving the instances as much as possible, i.e., we will

penalize equating two distinct nulls from an instance and prefer

renaming of nulls to mapping of nulls to constants.

Example 3.1 (Example Comparison). Fig. 6 shows two instances.
We can map tuple 𝑡1 to 𝑡4 and 𝑡2 to 𝑡5 by mapping nulls 𝑁1 → 𝑉𝑎 ,

𝑁2 → 𝑉𝑎 , and 𝑁4 → 1976 for 𝐼 and 𝑉𝑏 → VLDB End. for 𝐼 ′.
Note that this is the best mapping we could apply. If we map

𝑁4 → 1975 and 𝑁1, 𝑁2 → 𝑉𝑎 then we can map 𝑡2 to 𝑡4 but we

miss to map 𝑡1 and 𝑡5.

Given a pair of instances 𝐼 and 𝐼 ′ being compared, we will

call 𝐼 the left instance and 𝐼 ′ the right instance. We refer to

a combination of a value mapping ℎ𝑙 for the left instance 𝐼 , a

value mapping ℎ𝑟 for the right instance 𝐼 ′, and a tuple mapping
𝑚 ⊆ 𝐼 × 𝐼 ′ such that for any (𝑡, 𝑡 ′) ∈ 𝑚 we have ℎ𝑙 (𝑡) = ℎ𝑟 (𝑡 ′)
as an instance match and useM to denote the set of all such

matches for the input instances 𝐼 and 𝐼 ′.
We postpone the formal definition of instance matches to

Sec. 4 and will define the score score(M) of a match M in Sec. 5.

GivenM and score we define the instance-comparison problem

as shown below.

Definition 3.2 (Instance-Comparison Problem). Let 𝐼 and 𝐼 ′ be
two instances of a schema 𝑅. The similarity similarity(𝐼 , 𝐼 ′) of 𝐼
and 𝐼 ′ is defined as:

similarity(𝐼 , 𝐼 ′) = max

M∈M
(score(M))

The instance-comparison problem takes as input instances

𝐼 and 𝐼 ′ and outputs similarity(𝐼 , 𝐼 ′)



Id Name Year Org

t1 N1 VLDB 1975 VLDB	End.

t2 N2 VLDB N4 VLDB End.

t3 N3 SIGMOD 1977 ACM

I Id Name Year Org

t4 Va VLDB 1975 VLDB	End.

t5 Va VLDB 1976 Vb

t6 3 ICDE 1984 IEEE

I’

Id Name Year Org

t1 Va VLDB 1975 VLDB	End.

t2 Va VLDB 1976 VLDB End.

t3 Nb SIGMOD 1976 ACM

Id Name Year Org

t4 Va VLDB 1975 VLDB	End.

t5 Va VLDB 1976 VLDB End.

t6 3 ICDE 1984 IEEE
N1 à Va
N2 à Va
N4 à 1976

Vb à
VLDB End.

tuple mapping: 
(t1, t4)
(t2, t5)

hL:

left-to-right 
value mapping

hR:

right-to-left
value mapping

h(Conferencee) h’(Conferenceg)

Figure 6: A Sample Instance Match.

In addition to being required for computing the similarity

similarity(𝐼 , 𝐼 ′), the “optimal” instance match also provides fur-

ther information about the differences between the two instances,

namely: (i) how matched tuples are related to each other (by sub-

stituting nulls with other nulls or constants) and (ii) which tuples

cannot be matched, e.g., tuples 𝑡3 and 𝑡6 in Fig. 6.

4 INSTANCE MATCHES

We now proceed with the formalization of the notion of an

instance match. In the following, without loss of generality, we

assume that we are given instances 𝐼 , 𝐼 ′ of the same relational

schema R with disjoint nulls and tuple identifiers, i.e., such that

Vars(𝐼 ) ∩ Vars(𝐼 ′) = ∅ and ids(𝐼 ) ∩ ids(𝐼 ′) = ∅. Notice that

this is not a limiting assumption as (i) we can always generate

such tuple identifiers as we do not require them to be predictive

of what tuples are related across the two instances and (ii) we

can rename labeled nulls in an instance without changing its

semantics as long as we do not equate nulls that are different

before the renaming. In addition, later in this section we discuss

how to relax the requirement on the same relational schema.

4.1 Value Mappings

To start, let us first formalize the notion of a value mapping
as a mapping ℎ of the values in adom(𝐼 ) into Vars ∪ Consts that
preserves constants:

Definition 4.1 (Value Mapping). Let 𝐼 be an instance. A value

mapping ℎ for 𝐼 is a total function adom(𝐼 ) → Vars ∪ Consts
such that ℎ(𝑐) = 𝑐 for each 𝑐 ∈ Consts(𝐼 ). We use ℎ(𝑡) to denote

the application of value mapping ℎ to the attribute values of a

tuple 𝑡 and ℎ(𝐼 ) to denote the application of ℎ to all tuples in 𝐼 .

As constants are fixed across all ground instances represented

by an instance with nulls, we do not allow a constant to be

mapped to a different constant. For instance, 𝑡20 in Fig. 1 is not

mapped to any tuple in instance 𝐼 .

As a notational conventional, we will sometimes specify a

value mapping ℎ as a partial function and assume that ℎ is the

identity on all other values of adom(𝐼 ).

4.2 Tuple Mappings

Given instances 𝐼 , 𝐼 ′, tuple mappings specify the pairs of tuples
from 𝐼 , 𝐼 ′ we want to match to each other.

Definition 4.2 (Tuple Mapping). Given two instances 𝐼 and 𝐼 ′

for the same schema 𝑅, a tuple mappings m is a subset of 𝐼 × 𝐼 ′.

Notice how we design tuple mappings as relations, not func-

tions. In this way we may take into account not only functional,

total mappings – like homomorphisms – but also non-functional

mappings. In fact, we classify tuple mappings as follows:

• left injective iff ∀𝑡 ∈ 𝐼 : �𝑡1 ≠ 𝑡2 ∈ 𝐼 ′ : (𝑡, 𝑡1) ∈ m ∧ (𝑡, 𝑡2) ∈ m;

• right injective ∀𝑡 ∈ 𝐼 ′ : �𝑡1 ≠ 𝑡2 ∈ 𝐼 : (𝑡1, 𝑡) ∈ m ∧ (𝑡2, 𝑡) ∈ m;

• fully injective iff it is both left injective and right injective;

• right (left) total iff it is right (left) surjective.

4.3 The Notion of an Instance Match

We are now ready to introduce the notion of an instance match.
As discussed in Sec. 3, an instance match is composed of a tuple

mapping and two value mappings:

Definition 4.3 (Instance Match). Let 𝐼 and 𝐼 ′ be two instances

over schema 𝑅. An instance match is a triple M = (ℎ𝑙 , ℎ𝑟 ,m)
where ℎ𝑙 is a value mapping for 𝐼 , ℎ𝑟 is a value mapping for 𝐼 ′,
and m is a tuple mapping for 𝐼 and 𝐼 ′. An instance match M is a

complete match iff

∀(𝑡1, 𝑡2) ∈𝑚 : ℎ𝑙 (𝑡1) = ℎ𝑟 (𝑡2)
We useM to denote the set of all complete instance matches for

𝐼 and 𝐼 ′.

Note that the notion of a complete instance match is a gener-

alization of the notion of a homomorphism between instances

with nulls. Specifically, if 𝑚 is total on 𝐼 (𝐼 ′) and is left (right)

injective, and ℎ𝑟 (ℎ𝑙 ) is the identity, then M is a homomorphism

from 𝐼 to 𝐼 ′ (𝐼 ′ to 𝐼 ). If𝑚 is total on both 𝐼 and 𝐼 ′ and𝑚 is fully

injective, then M is an isomorphism.

The rationale for defining a large number of properties for

tuple, value and instance matches is that our instance similarity

measure can be tailored to specific applications by restricting

value mappings, tuple mappings, and/or instance matches. We

discuss some use cases in the following.

Data Versioning. In data versioning, we may use our instance

similarity measure to test how likely it is that instance 𝐼 evolved

into 𝐼 ′. In such a scenario, some old tuples may no longer exist

in 𝐼 ′ and some new tuples may be inserted (do not exist in 𝐼 ). As-

suming that tuples represent unique entities, we should require

that the tuple mapping is fully injective but does not require it
to be total on either side. If we are dealing with a domain where

tuples may get merged, e.g., we have multiple patient records for

a person with missing information that get merged into a com-

plete record, then we should only require the tuple mapping to

be left injective. Our discussion has primarily centered on match-

ing instances with identical relational schemas. However, our

approach can be modified for instances with different schemas.

For example, if instance 𝐼 has an attribute 𝐴𝑖 not in 𝐼 ′, then our

instance similarity measure can be used by adding a column to

𝐼 ′ with distinct null values for each row. This allows mapping

tuples in 𝐼 to tuples in 𝐼 ′ without constraints over attribute 𝐴𝑖 .

Finally, if we drop the requirement for complete matches, similar

tuples may be matched to each other (e.g., two people with the



same attributes except different salaries). However, such partial

instance matches further increase the size of the search space of

instance matches: even given the value mappings, there are multi-

ple possible tuple mappings as a tuple can be matched against any

other tuple. For the remainder of the paper, we focus on complete

matches and discuss partial instance matches in Sec. 6.3.

Data Exchange. Given an instance 𝐼 for a source schema 𝑆 ,

a target schema 𝑇 , and a schema mapping Σ which is a set of

logical constraints relating these two schemas, data exchange

systems [23] generate an instance 𝐽 of a target schema such that

(𝐼 , 𝐽 ) |= Σ. There are typically many possible target instances

that are solutions for a data exchange scenario. Most approaches

produce so-called universal solutions which have some desirable

properties including being the only solutions over which certain

answers to unions of conjunctive queries (answers that are in

the result to the query for every possible solution) can be com-

puted by simply evaluating the query. This is due to the fact

that for a universal solution 𝐽 and any other solution 𝐽 ′, there
exists a homomorphism from 𝐽 to 𝐽 ′. All universal solutions are
homomorphically equivalent, but typically not unique. Some ap-

proaches produce so-called core solutions which are unique up to

isomorphism. Evaluation of data exchange systems may require

comparing a produced (universal) solution to a (universal) gold

standard solution, such as the core solution or one provided by a

benchmark [6, 7]. Comparing two universal solutions requires

a non injective mapping since the same source information can

be exchanged into multiple tuples in an instance (e.g., (VLDB,

1976, 𝑁1), (VLDB, 𝑁2, Brussels)) or merged in a single tuple in

another instance (e.g., (VLDB, 1976, Brussels)) and vice versa. As

another example, we may want to compare a universal solution

produced by a data exchange system against a core solution to

measure the amount of redundancy in the universal one. Based

on the properties of cores and universal solutions, we can require

tuple mappings to be left and right total since all tuples need to be
mapped to one or more tuples in the other instance. Furthermore,

given that if 𝐽 is a universal solution for 𝐼 , there is a one-to-one

homomorphism ℎ from 𝐽 to the core solution 𝐽0 [25, Corollary

3.5], then the tuple mapping has to be left injective. If we know
that we are comparing two universal solutions, tuple mappings

have to be total, but we cannot require them to be left injective.

Constraint-based Data Repair. Consider repairing an instance

𝐼 that violates a set of integrity constraints Σ. Some data repair

systems update cell values to repair the instance. A constant

value can be changed to another constant value to satisfy a con-

straint [34], or if there is an ambiguity, some tools introduce

variables to identify conflicts that need to be resolved by further

intervention, e.g., by a human [10, 19, 20, 26, 29, 39]. To compare

repairs produced by two systems or compare a repair against a

gold standard repair, we need to use complete and full injective
mapping. In addition to the similarity score, the instance match

can be used to explain the repair by highlighting non-matching

tuples and by identifying how tuples were repaired.

Note that these are just a few of the many applications of some

restricted versions of our instance similarity measure. Our final

goal is to support a wide variety of scenarios by using general

relations and adding in restrictions (injectivity or totality) as

required by the problem setting.

5 SCORING INSTANCE MATCHES

We formalize how instance matches are scored. We first define

a tuple score and then use it to define an instance score. We then

present complexity results for the instance matching problem.

5.1 Match Score

Recall that we require our definition of similarity to be sym-

metric (see Eq. (5)), i.e., the score of an instance match should not

depend on the order in which instances 𝐼 , 𝐼 ′ are considered. As a
consequence, we need a symmetric function to calculate scores.

Given an instance match M = (ℎ𝑙 , ℎ𝑟 ,𝑚), we will define the
similarity measure by assigning scores to each tuple based on

what tuples in the other instance it is matched with by the tuple

matching𝑚. Each tuple 𝑡 will be assigned a score between [0, 𝑛]
where 𝑛 is the arity of 𝑡 . To achieve a similarity score in [0, 1]
we will normalize the sum of the tuple scores by the sizes of the

instances defined below.

Definition 5.1 (Size of an Instance). Let 𝐼 be an instance of a

schema 𝑅
size(𝐼 ) = Σ𝑡 ∈𝐼 (arity(𝑅)) = |𝐼 | · arity(𝑅)

We first define a tuple score score(M, 𝑡) and then use this,

together with the size of instances, to define an instance score.

As a tuple matching m may not be injective, we have to de-

cide how to calculate a score for a tuple based on the tuples it is

matched to by𝑚. For that, we define the image of a tuple accord-
ing to a tuple mapping m. For a tuple 𝑡 ∈ 𝐼 we define the image
of 𝑡 as𝑚(𝑡) = {𝑡𝑚 | (𝑡, 𝑡𝑚) ∈ m}, and for 𝑡 ′ ∈ 𝐼 ′ the image of 𝑡 ′

as𝑚(𝑡 ′) = {𝑡𝑚 | (𝑡𝑚, 𝑡 ′) ∈ m}. We then calculate the score of a

tuple 𝑡 as the average score for the pairs (𝑡, 𝑡 ′) for every tuple

𝑡 ′ in the image of 𝑡 . Finally, we define score(M, 𝑡, 𝑡 ′), the score
of a pair of tuples such that (𝑡, 𝑡 ′) ∈ m, as the sum of scores for

each cell score(M, 𝑡, 𝑡 ′, 𝐴) for attribute 𝐴 in 𝑡 (𝑡 ′), which will be

discussed below.

Definition 5.2 (Tuple Score). Let 𝐼 and 𝐼 ′ be two instances of a

schema 𝑅 and M be an instance match of 𝐼 and 𝐼 ′. Given a tuple

𝑡 ∈ 𝐼 (or 𝑡 ∈ 𝐼 ′), we define the score of 𝑡 with respect to M as:

score(M, 𝑡) =
∑
𝑡𝑚∈𝑚 (𝑡 ) score(M, 𝑡, 𝑡𝑚)

size(𝑚(𝑡))
We are now ready to define an instance match score.

Definition 5.3 (Instance Match Score). Given an instance match

M between instances 𝐼 and 𝐼 ′, the score score(M) of M is:

score(M) =
∑
𝑡 ∈𝐼 score(M, 𝑡) +∑𝑡 ′∈𝐼 ′ score(M, 𝑡 ′)

size(𝐼 ) + size(𝐼 ′)

Recall the four requirements Eq. (1), (2), (4) and (5) for similarity(𝐼 , 𝐼 ′).
Given the definitions for tuple (pair) scores and instance match

scores above, these enforce the following constraints on the as-

signment of cell scores for any tuple pair (𝑡, 𝑡 ′) ∈ m:

Lemma 5.4 (Cell Score Properties). Given the definitions for
scores shown above, unless a function score(M, 𝑡, 𝑡 ′, 𝐴) fulfills the
following conditions then similarity(𝐼 , 𝐼 ′) violates at least one of
Eq. (1), (2), (4) and (5)

(1) If 𝑡 .𝐴 = 𝑡 ′ .𝐴 and 𝑡 .𝐴 ∈ Consts, then score(M, 𝑡, 𝑡 ′, 𝐴) = 1.
(2) If 𝐼 and 𝐼 ′ are isomorphic andℎ𝑙 (𝑡 .𝐴) = ℎ𝑟 (𝑡 ′ .𝐴) for (𝑡, 𝑡 ′) ∈ m,

then score(M, 𝑡, 𝑡 ′, 𝐴) = 1.
(3) If 𝐼 and 𝐼 ′ are not isomorphic then there has to exist at least one

pair (𝑡, 𝑡 ′) ∈ 𝐼×𝐼 ′ and attribute𝐴 such thatℎ𝑙 (𝑡 .𝐴) = ℎ𝑟 (𝑡 ′ .𝐴)
for (𝑡, 𝑡 ′) ∈ m and score(M, 𝑡, 𝑡 ′, 𝐴) < 1.



(4) score(M, 𝑡, 𝑡 ′, 𝐴) = score(M−1, 𝑡 ′, 𝑡, 𝐴) whereM = (ℎ𝑙 , ℎ𝑟 ,m),
M−1 = (ℎ𝑟 , ℎ𝑙 ,m−1), and m−1 = {(𝑡 ′, 𝑡) | (𝑡, 𝑡 ′) ∈ m}.

Proof. Condition (1) is necessary to ensure that comparing a

ground truth instance with itself has score 1 (Eq. (1)). Condition

(2) is necessary to ensure that isomorphic instances have score 𝑞

(Eq. (2)). Condition (3) is required to ensure that non-isomorphic

instances have a similarity strictly less than 1. Finally, condition

(4) is necessary for ensuring symmetry. The full proof in [32]. □

While Lem. 5.4 places some restrictions on score(M, 𝑡, 𝑡 ′, 𝐴) it
does not uniquely define it. We now motivate additional design

decisions for score(M, 𝑡, 𝑡 ′, 𝐴). First, observe that Lem. 5.4 does

not restrict scores for mapping nulls to constants. As a null rep-

resents a different value in each ground instance represented by

an instance with nulls, intuitively, mapping a null to a constant

should get a score less than 1 (the score for matched constants).

Furthermore, we will ensure conditions (2) and (3) by measuring

the degree of non-injectivity for value mappings for a null in 𝐼

(𝐼 ′) and penalize scores for cells which contain nulls with larger

degrees of non-injectivity. This ensures that for isomorphic in-

stances where ℎ𝑙 and ℎ𝑟 will be injective on nulls, there is no

penalty, and for non-isomorphic instances either some tuples do

not match or both value mappings are not injective on all nulls.

Towards this goal, we define a function ⊓ for a value 𝑣 in

𝐼 , 𝐼 ′, that measures that level of “non-injectivity” of the value

mappings ℎ𝑙 , ℎ𝑟 for 𝑣 . We distinguish the case of a constant from

the one of a null. For constants, ⊓ is always equal to 1 – this

captures the fact that constants can only bemapped to themselves

and therefore cannot be the source of non-injectivity. This is due

to the mapping of nulls, for which we distinguish the case of

𝑣 ∈ Vars(𝐼 ), and 𝑣 ∈ Vars(𝐼 ′):

⊓(𝑣) =


1 if 𝑣 ∈ Consts
|{𝑣 ′ |ℎ𝑙 (𝑣 ′) = ℎ𝑙 (𝑣)}| if 𝑣 ∈ Vars(𝐼 )
|{𝑣 ′ |ℎ𝑟 (𝑣 ′) = ℎ𝑟 (𝑣)}| if 𝑣 ∈ Vars(𝐼 ′)

(6)

Based on the discussion so far, for cells 𝑡 .𝐴, 𝑡 ′ .𝐴, which are

both nulls, we set their score to 2/(⊓(𝑡 .𝐴) + ⊓(𝑡 ′ .𝐴)). Thus, if
both ℎ𝑙 is injective on 𝑡 .𝐴 and ℎ𝑟 is injective on 𝑡 ′ .𝐴, as is the
case for isomorphic instances, the score is 1. We use ⊓(𝑡 .𝐴, 𝑡 ′ .𝐴)
to denote ⊓(𝑡 .𝐴) + ⊓(𝑡 ′ .𝐴). We now define tuple pair scores.

Definition 5.5 (Tuple Pair Score). Let 𝐼 and 𝐼 ′ be two instances

of a schema 𝑅 and M be an instance match of 𝐼 and 𝐼 ′. Given
a pair 𝑡 ∈ 𝐼 and 𝑡 ′ ∈ 𝐼 ′, we define the score of (𝑡, 𝑡 ′) wrt. M as

shown below. We assume a parameter 0 ≤ 𝜆 < 1, which defines

the penalty for mapping a variable to a constant, given as input.

score(M, 𝑡, 𝑡 ′) =
∑︁
𝐴∈𝑅

score(M, 𝑡, 𝑡 ′, 𝐴)

score(M, 𝑡, 𝑡 ′, 𝐴) =
0 if ℎ𝑙 (𝑡 .𝐴) ≠ ℎ𝑟 (𝑡 ′ .𝐴)
1 if 𝑡 .𝐴, 𝑡 ′ .𝐴 ∈ Consts ∧ 𝑡 .𝐴 = 𝑡 ′ .𝐴

2

⊓(𝑡 .𝐴,𝑡 ′ .𝐴) if 𝑡 .𝐴, 𝑡 ′ .𝐴 ∈ Vars ∧ ℎ𝑙 (𝑡 .𝐴) = ℎ𝑟 (𝑡 ′ .𝐴)
2×𝜆

⊓(𝑡 .𝐴,𝑡 ′ .𝐴) otherwise, with ℎ𝑙 (𝑡 .𝐴) = ℎ𝑟 (𝑡 ′ .𝐴)

Theorem 5.6 (Correctness). Similaritymeasure similarity(𝐼 , 𝐼 ′)
fulfills Eq. (1) to (5).

Proof. It is easy to see that score(M, 𝑡, 𝑡 ′, 𝐴) fulfills the con-
ditions of Lem. 5.4. Substituting the definitions of instance match

score, tuple score, and tuple pair score, defined above, this implies

that similarity(𝐼 , 𝐼 ′) = maxM∈M (score(M)) fulfills Eq. (1) to (5).

For the full proof please see [32]. □

5.2 Examples

Let us illustrate the score function by means of a few examples.

Example 5.7. Consider the following instances 𝐼 and 𝐼 ′:
𝐼 Id Year Org

𝑡1 𝑁1 1975 VLDB End.

𝑡2 𝑁2 1976 VLDB End.

𝐼 ′ Id Year Org
𝑡3 𝑁𝑎 1975 VLDB End.

𝑡4 𝑁𝑏 1976 VLDB End.

A total fully-injective tuple mapping m maps tuple 𝑡1 in 𝑡3
and tuple 𝑡2 in 𝑡4, with the left-to-right value mapping ℎ𝑙 defined

as 𝑁1 → 𝑁𝑎 , 𝑁2 → 𝑁𝑏 . Since all nulls are properly renamed,

⊓ is equal to 1 for all values. In this case, score(M, 𝑡1, 𝑡3, 𝐼𝑑) =
2/(⊓(𝑁1) + ⊓(𝑁𝑎)) = 1, and similarly for tuple pair 𝑡2 and 𝑡4.

Hence the total score of the mapping is equal to 1.

Example 5.8. Assume now we compare instance 𝐼 with 𝐼 ′′:
𝐼 ′′ Id Year Org

𝑡3 𝑁𝑎 1975 𝑉1

𝑡4 𝑁𝑏 1976 𝑉1

We still map both tuples in 𝐼 to 𝐼 ′′ with the same left-to-right

value mapping ℎ𝑙 in Ex. 5.7. In addition, we have a right-to-left

value mapping ℎ𝑟 defined as 𝑉1 → VLDB End.. Since also in this

case all nulls are properly renamed,⊓ is equal to 1. The final score
is (8 + 4𝜆)/12, which is less than 1 if 𝜆 < 1, since we penalize

that value VDLB End. was approximated with the variable 𝑉1.

Example 5.9. Consider the instance match in Fig. 6. Since all

nulls are properly renamed, the score is (12 + 4𝜆)/24.
Example 5.10. Consider the following instances 𝑆 , 𝑆 ′, 𝑆 ′′:
𝑆 Dept Name
𝑡1 A Mike

𝑡2 A Laure

𝑆 ′ Dept Name
𝑡3 A 𝑁1

𝑡4 A 𝑁2

𝑆 ′′ Dept Name
𝑡5 A 𝑁3

For 𝑆 ,𝑆 ′, there is a total fully-injective tuple mapping that

maps tuple 𝑡1 in 𝑡3 and tuple 𝑡2 in 𝑡4, with the right-to-left value

mapping defined as 𝑁1 → 𝑀𝑖𝑘𝑒 , 𝑁2 → 𝐿𝑎𝑢𝑟𝑒 . Since all nulls are

properly renamed, ⊓ is equal to 1 for all values. In this case, score
(M, 𝑡1, 𝑡3, 𝑁𝑎𝑚𝑒) = (2𝜆)/(⊓(𝑀𝑖𝑘𝑒) + ⊓(𝑁1)) = 𝜆, and similarly

for tuple pair 𝑡2, 𝑡4. Hence the total score is equal to (4 + 4𝜆)/8.
For 𝑆 ,𝑆 ′′, the same null𝑁3 is mapped to only one constant (as a

function, by definition of Value mapping). Therefore score(M, 𝑡1,

𝑡3, 𝑁𝑎𝑚𝑒) = (2𝜆)/(1 + 1), and there is no tuple pair matching 𝑡2
and 𝑡5. The final score of the match is (1 + 𝜆 + 1 + 𝜆)/6, which is

lower than the score for 𝑆 and 𝑆 ′.

5.3 Complexity Analysis

We now analyze the complexity of the instance comparison

problem. Unfortunately, the instance comparison problem is in-

tractable in general. It is tractable if both instances are ground.

Theorem 5.11 (Complexity Results). The instance-comparison
problem is NP-hard in terms of data complexity. The decision ver-
sion of the problem (is similarity(𝐼 , 𝐼 ′) ≥ 𝑘 for a threshold 𝑘) is
NP-complete. The problem remains hard even if one of the two in-
stances is ground. The problem has PTIME data complexity if both
instances are ground.

Proof. We show the hardness result through a reduction from

the NP-complete 3-colorability problem. We provide a PTIME

verification procedure to show that the decision version is NP-

complete. The PTIME runtime for the constant-only case is proven

constructively, i.e., we provide a PTIME algorithm for the problem

under this restriction. For the full proof, please see [32]. □



6 ALGORITHMS

We now present an exact algorithm for the intractable instance-

comparison problem from Def. 3.2. Unsurprisingly, this algorithm

is expensive. We then introduce the signature algorithm, a more

efficient algorithm that returns approximate similarity scores.

6.1 The Exact Algorithm

The exact algorithm (sketched in Alg. 1) works in two steps.

First, we build a set of candidate tuple pairs by looking for compat-
ible tuples. We say that (𝑡, 𝑡 ′) from 𝐼 , 𝐼 ′ are compatible if it is pos-
sible to construct value mappings ℎ𝑙 , ℎ𝑟 such that ℎ𝑙 (𝑡) = ℎ𝑟 (𝑡 ′).
Then, we combine these candidate tuple pairs in all possible ways

to construct candidate instance matches, compute their scores,

and return the instance match with the highest score.

Algorithm 1: Exact(I , I ′)
Input: Two instances I and I ′ for the same schema 𝑅

Output: The best instance match M = (ℎ𝑙 , ℎ𝑟 ,m) .
1 compatible← CompatibleTuples(𝐼 , 𝐼 ′ )
2 m← ∅ // candidate tuple mappings

3 if searching for non left injective mapping then

4 𝑁𝐹𝑀 = GenNonFunctionalMapping(compatible)
5 m← P(𝑁𝐹𝑀 ) // powerset of non-functional mappings

6 else

7 𝐹𝑀 ← GenerateFunctionalMappings(compatible)
8 foreach m ∈ 𝐹𝑀 do // union powersets of func. mappings

9 m← m ∪ P(m)

10 M ← ∅ // instance matches

11 foreach m ∈ m do // construct instance matches

12 M ← FindCompleteInstanceMatch(m)
13 if M exists then // can extend m into instance match?

14 M ← M ∪ {M }
15 return argmaxM∈M score(M )

Algorithm 2: CompatibleTuples(𝑇𝑙 , 𝑇𝑟 )

Input: Sets of tuples𝑇𝑙 and𝑇𝑟 for the schema 𝑅

Output: Dictionary for every 𝑡 ∈ 𝑇𝑙 to compatible ones in𝑇𝑟

1 foreach 𝐴 ∈ 𝑅 do

2 V𝐴 ← ∅ // Init empty dictionary

3 foreach 𝑡 ′ ∈ 𝑇𝑟 do

4 foreach 𝐴 ∈ 𝑅 do

5 if 𝑡 ′ .𝐴 ∈ Consts then
6 V𝐴 [𝑡 ′ .𝐴] ← V𝐴 [𝑡 ′ .𝐴] ∪ {𝑡 ′𝑖𝑑 } // add as 𝑡 ′ .𝐴

7 else

8 V𝐴 [∗] ← V𝐴 [∗] ∪ {𝑡 ′𝑖𝑑 } // add as null

9 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 ← ∅
10 foreach 𝑡 ∈ 𝑇𝑙 do
11 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 [𝑡 ] = ids(𝑇𝑟 )
12 foreach 𝐴 ∈ 𝑅 do // compute c-compatibles

13 if 𝑡 .𝐴 ∈ Consts then // intersect attribute maps

14 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 [𝑡 ] ←
𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 [𝑡 ] ∩ (V𝐴 [𝑡 .𝐴] ∪ V𝐴 [∗] )

15 foreach 𝑡 ′ ∈ compatible[𝑡 ] do // remove non-compatible

16 if ¬ 𝑡 ≃ 𝑡 ′ then
17 compatible[𝑡 ] ← compatible[𝑡 ] − {𝑡 ′ }

18 return 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒

Step 1: Finding Compatible Tuples. A straightforward way to

implement the first step is to compare every tuple 𝑡 in 𝐼 to every

tuple 𝑡 ′ in 𝐼 ′. This has a quadratic cost that can be avoided (as-

suming that there is an upper bound on the number of tuples a

tuple is compatible with) by relying on the following property:

Definition 6.1. Tuples 𝑡 , 𝑡 ′ from 𝐼 , 𝐼 ′ are c-compatible, written
as 𝑡 ∼ 𝑡 ′ iff they do not contain conflicting constant values, i.e.,

there is no attribute𝐴 for which 𝑡 .𝐴, 𝑡 ′𝐴 ∈ Consts and 𝑡 .𝐴 ≠ 𝑡 ′𝐴.
Furthermore, 𝑡 and 𝑡 ′ are compatible, written as 𝑡 ≃ 𝑡 ′ iff there

exists value mappings ℎ𝑙 and ℎ𝑟 such that ℎ𝑙 (𝑡) = ℎ𝑟 (𝑡 ′).

Note that c-compatibility is a necessary, but not sufficient, con-

dition for the compatibility of two tuples. Consider, for example,

𝑡 = ⟨𝑎1, 𝑏1, 𝑐1⟩ and 𝑡 ′ = ⟨𝑎1, 𝑁1, 𝑁1⟩ are c-compatible, yet they

are not compatible: in fact, no pair of value mappings can map

null 𝑁1 to both constants 𝑏1 and 𝑐1. We use c-compatibility to

prune candidate tuple pairs early on as follows:

• Step 1.1. for each attribute 𝐴 find all sets of tuples in 𝐼 , 𝐼 ′ that
are c-compatible on 𝐴, i.e., they have the same value for 𝐴, or

a null value;

• Step 1.2. given tuple 𝑡 ∈ 𝐼 , compute all sets from 𝐼 ′ that are
c-compatible with 𝑡 on some attributes, and their intersection.

• Step 1.3 try to construct value mappings ℎ𝑙 , ℎ𝑟 for all non-

pruned candidates to determine compatible tuples.

The main advantage of this approach comes from the fact that

we can use hashing to solve step 1.1. and 1.2 in linear time. Fur-

thermore, step 1.3 also just requires linear time.

More precisely, for each attribute𝐴 in 𝑅 we build a hash-based

index of the tuples in 𝐼 ′, denoted asV𝐴 (Alg. 2 lines 3-8). Index

V𝐴 maps each constant value 𝑐 that appears in attribute 𝐴 to

the set of all tuple ids id in 𝐼 ′ such that 𝑡id [𝐴] = 𝑐 (Alg. 2 line 6).

To record the position of nulls, we introduce a special, constant

value, say ∗, that does not appear elsewhere in 𝐼 , 𝐼 ′, and map it

to all tuples that contain a null for 𝐴 (Alg. 2 line 8). Fig. 7 shows

the entire value map for instance 𝐼 ′ (Step 1.1). For brevity, we

use 𝐴[𝑐] to denote the set of tuples 𝑡 for which 𝑡 [𝐴] = 𝑐 .

Using V𝐴 , we determine pairs of compatible tuples. Given

𝑡 ∈ 𝐼 , the set of tuples of 𝐼 ′ compatible with 𝑡 , denoted by

compatible(𝑡), is computed as follows (Alg. 2 lines 9-17):

• For each attribute 𝐴 of 𝑅, consider 𝑡 [𝐴] = 𝑣 . We find the set

of tuples c-compatible with 𝑡 wrt. 𝐴. If 𝑣 ∈ Vars, these are

all tuples in 𝐼 ′. If 𝑣 ∈ 𝑐𝑜𝑛𝑠𝑡𝑠 , this is the union of two sets: (i)

V𝐴 [𝑣], i.e., all tuples 𝑡 ′ ∈ 𝐼 ′ such that 𝑡 ′ [𝐴] = 𝑣 ; (ii) V𝐴 [∗],
i.e., all tuples 𝑡 ′ ∈ 𝐼 ′ such that 𝑡 ′ [𝐴] ∈ Vars.
• Then compatible(𝑡) is obtained as the intersection of all sets

compatible(𝑡, 𝐴), for each 𝐴 ∈ 𝑅, discarding all tuples 𝑡 ′ for
which ¬𝑡 ≃ 𝑡 ′ (it is not possible to construct value mappings

ℎ𝑙 , ℎ𝑟 s.t. ℎ𝑙 (𝑡) = ℎ𝑟 (𝑡 ′)). This check is linear in the arity of 𝑅.

Consider, for example, tuple 𝑡2 = ⟨𝑎1, 𝑁3, 𝑐1⟩ in 𝐼 . To find tuples

c-compatible with 𝑡2, we intersect the sets: (𝑖) V𝐴 [𝑎1] ∪ V𝐴 [∗];
(𝑖𝑖) V𝐶 [𝑐1] ∪ V𝐶 [∗]. We disregard attribute 𝐵 since all tuples

in 𝐼 ′ are potentially compatible with null 𝑁3. Then, we check

each of the tuples in the intersection for compatibility. As a

result, 𝑡2 is compatible with 𝑡 ′
1
, 𝑡 ′
2
, as shown in Fig. 7. Once we

have determined all compatible tuple pairs, we construct a value

mapping, ℎ𝑙 , ℎ𝑟 for each such pair (𝑡, 𝑡 ′) such that ℎ𝑙 (𝑡) = ℎ𝑟 (𝑡 ′).

Step 2: Finding Instance Matches. Once we have discovered

the pairs of compatible tuples, we combine these in all possible

ways to generate instance matches. Notice that if 𝑡 and 𝑡 ′ are
compatible with each other, this only guarantees that it is possible

to build some value mappings ℎ𝑙 and ℎ𝑟 that maps nulls into

constants or into each other, such that ℎ𝑙 (𝑡) = ℎ𝑟 (𝑡 ′). However,



Figure 7: The Exact Algorithm.

as soon as we consider two pairs of compatible tuples, say (𝑡1, 𝑡
′
1
),

(𝑡2, 𝑡
′
2
), each with an associated pair of value mappings, ℎ1

𝑙
, ℎ1𝑟 ,

ℎ2
𝑙
, ℎ2𝑟 , we may discover that these are incompatible – for example,

because ℎ1
𝑙
, ℎ1𝑟 map a null 𝑁 to a constant 𝑐 , while ℎ2

𝑙
, ℎ2𝑟 maps 𝑁

to a different constant 𝑐′.
In our example in Fig. 7, for the mapping of 𝑡2 into 𝑡 ′

2
, we

map null 𝑁 ′
2
to 𝑐1. This makes it impossible to map 𝑡3 to 𝑡 ′

3
,

which would require to map 𝑁 ′
2
to 𝑏1. Therefore, we construct

all possible tuple mappings that consist of compatible tuples and

check if value mappings are consistent. This step is combinatorial:

for each tuple 𝑡 ∈ 𝐼 we need to consider all possible mappings, i.e.,

the powerset of compatible(𝑡). Then, we combine the possible

mappings for tuples in 𝐼 in all possible ways and finally check if

value mappings are consistent to generate the instance match.

Notice that the number of possible tuple mappings can be

reduced if we restrict our attention to left-injective mappings,

i.e., those that are functional on 𝐼 . For each tuple in 𝑡 , possible

mappings consist of a single tuple 𝑡 ′ from the set of compatible(𝑡)
– i.e., no need to compute powersets. Still, this does not affect the

asymptotic complexity of the algorithm. As we find a candidate

tuple mapping that is total on 𝐼 ′ – i.e., we have associated a tuple

of 𝐼 ′ with each tuple of 𝐼 – we still must consider all possible

subsets, i.e., all possible non-total tuple mappings. This is neces-

sary, because our scoring function may assign a higher score to

a subset than to the total mapping.

Once all candidate tuple mappings have been constructed, we

check if any of these actually represent a complete instancematch

– i.e., all value mappings are indeed compatible with each other.

To do this, for each candidate tuple mappingm, we consider tuple

pairs one by one, and try to “grow” the final value mappings ℎ𝑙
and ℎ𝑟 such that ℎ𝑙 (𝑡) = ℎ𝑟 (𝑡 ′) for each (𝑡, 𝑡 ′) ∈ m, based on the

partital value mappings for these pairs.

Finally, we consider the set of instance matches generated

above (Step 2 in Fig. 7). If the set is empty, we fail. Otherwise, we

return the instance match with the highest score.

6.2 The Signature Algorithm

We now present a scalable approximate algorithm, that we

show empirically to often obtain optimal or near optimal results

for real use cases. The intuition is that finding mappings between

tuples sharing the same constant values is easier that finding

mappings between tuples that have no conflicting constant values.

To do that, we introduce the concept of a signature of a tuple 𝑡 ,
as a positional encoding of some of the constants in the tuple.

Consider for example tuple 𝑡5 in Fig. 6: 𝑡5 : ⟨𝑉𝑏 ,VLDB, 1976,𝑉𝑐 ⟩.
One signature of 𝑡5 is: [Name: VLDB, Year: 1975].

Algorithm 3: Signature(I , I ′)
Input: Two instances I and I ′ for the same schema 𝑅

Output: An instance match M = (ℎ𝑙 , ℎ𝑟 ,m)
1 𝑇𝑙 = 𝐼 ,𝑇𝑟 = 𝐼 ′

2 M = (ℎ𝑙 , ℎ𝑟 ,m) ← ∅
3 FindSigMatches(𝑇𝑙 ,𝑇𝑟 , M) // determine signature matches

4 FindSigMatches(𝑇𝑟 ,𝑇𝑙 , M)

5 compatible = CompatibleTuples(𝑇𝑙 ,𝑇𝑟 ) // determine compat.

6 foreach 𝑡 ∈ 𝑇𝑙 do // greedy instance match generation

7 foreach 𝑡 ′ ∈ compatible[𝑡 ] do
8 if IsCompatible(𝑡, 𝑡 ′,M ) then
9 UpdateInstanceMatch(M, 𝑡, 𝑡 ′ )

10 if searching for right injective mapping then

11 Remove(𝑡 ′, compatible)
12 if searching for left injective mapping then

13 goto 6

14 return M

The pseudo-code of the signature algorithm is in Alg. 3. The

algorithm is greedy: as soon as it finds a compatible mapping

of two tuples based on their signatures, it uses it to construct

the instance match. The intuition is to start with very promising

matches, i.e., tuples that share most constant values, and then

move to less promising ones. We discuss the algorithm next.

Algorithm 4: FindSigMatches(𝑇𝑙 , 𝑇𝑟 , M)

Input: Sets of tuples𝑇𝑙 and𝑇𝑟 and instance match

M = (ℎ𝑙 , ℎ𝑟 ,m)
1 sigmap← ∅
2 foreach 𝑡 ∈ 𝑇𝑙 do // compute maximal signatures

3 sigmap[S𝑚𝑎𝑥 [𝑡 ] ] ← sigmap[S𝑚𝑎𝑥 [𝑡 ] ] ∪ {𝑡 }
4 foreach 𝑡 ′ ∈ 𝑇𝑟 do

5 A𝑔𝑟𝑜𝑢𝑛𝑑 = {𝐴 | 𝑡 ′ [𝐴] ∈ Consts}
6 foreach A ∈ P(A𝑔𝑟𝑜𝑢𝑛𝑑 ) do
7 foreach 𝑡 ∈ sigmap[S[𝑡 ′,A] ] do // use Property 1

8 if IsCompatible(𝑡, 𝑡 ′,M ) then
9 UpdateInstanceMatch(M, 𝑡, 𝑡 ′ )

10 if searching for left injective mapping then

11 Remove(𝑡, sigmap)
12 Remove(𝑡,𝑇𝑙 )
13 if searching for right injective mapping then

14 Remove(𝑡 ′,𝑇𝑟 )
15 goto 4

Step 1: Building Signatures. Given a tuple 𝑡 over schema 𝑅, we

associate with it a number of signatures.



Definition 6.2 (Signature). Given a tuple 𝑡 over 𝑅, a signature
for 𝑡 is any string of the form [𝐴𝑖1 : 𝑣𝑖1 , . . . , 𝐴𝑖𝑘 : 𝑣𝑖𝑘 ], where:
• for each 𝑗 ∈ {1, . . . , 𝑘}, 𝐴𝑖 𝑗 is an attribute of 𝑅 such that

𝑡 [𝐴𝑖 𝑗 ] ∈ Consts, i.e., 𝑡 has constant values on all 𝐴𝑖 𝑗 ;

• attributes 𝐴𝑖1 , 𝐴𝑖2 , . . . , 𝐴𝑖𝑘 appear in lexicographic order.

We use S[𝑡,A] to denote the signature of tuple 𝑡 on a set of

attributesA. Themaximal signatureS𝑚𝑎𝑥 [𝑡] for 𝑡 is the signature
on A𝑚𝑎𝑥,𝑡 = {𝐴 | 𝑡 [𝐴] ∈ 𝑐𝑜𝑛𝑠𝑡𝑠}.

It is easy to see that the following property holds:

Property 1: Consider tuples 𝑡 and 𝑡 ′. If S𝑚𝑎𝑥 [𝑡] = S[𝑡 ′,A𝑚𝑎𝑥,𝑡 ],
then 𝑡 ∼ 𝑡 ′. □

Consider, for example, our tuple 𝑡5 in Fig 6, and its maximal

signature, S𝑚𝑎𝑥 [𝑡] = [Name: VLDB, Year: 1975]. Based on the

maximal signature, if a tuple 𝑡 ′ over the same schema has val-

ues VLDB and 1975 for attributes Name and Year, respectively,
then 𝑡 ′ is c-compatible with 𝑡 . This means that if 𝑡 ′ has a signa-
ture S[𝑡 ′,A𝑚𝑎𝑥,𝑡 ] – not necessarily the maximal one – equal to

S𝑚𝑎𝑥 [𝑡], then 𝑡 ∼ 𝑡 ′. We call a tuple match that satisfies Property

1 a signature-based match.

Step 2: Finding Signature-Based Matches. Our search for com-

patible tuples relies on signatures. Based on Property 1, we con-

struct all maximal signatures for tuples in one of the instances –

say 𝐼 – and store them in an appropriate hash-based data struc-

ture, called a signature map. Then, we scan the tuples of the other

instance – 𝐼 ′ in our example – and for each of them consider all

of its signatures to find possibly-matching tuples on the other

side. In doing this, we greedily construct our instance match.

Notice that, given tuple 𝑡 ∈ 𝐼 , by Property 1 we can only find

candidate tuples 𝑡 ′ ∈ 𝐼 ′ that have at least as many constants. To

identify candidates with less constants, we need to reverse the

direction of the check. Thus, given the symmetric nature of our

notion of an instance match, the algorithm runs in two steps:

• it first scans tuples in 𝐼 to find candidate tuples in 𝐼 ′ based on

their maximal signatures;

• then, it does the opposite, i.e., it scans the tuples of 𝐼 ′ to find
candidates in 𝐼 .

More precisely:

(1) we start with an empty instance match, M;

(2) we populate this instance match M by calling the procedure

FindSignatureMatches on 𝐼 and 𝐼 ′ (Alg. 3 line 3)
(3) in this procedure, we generate the signature map of all tuples

in 𝐼 (Lines 2-3 in Alg. 4);

(4) we scan tuples in 𝐼 ′; for each tuple 𝑡 ′ ∈ 𝐼 ′: (i) we consider the
set of attributes A𝑔𝑟𝑜𝑢𝑛𝑑 that have constant values in 𝑡 ′; (ii)
we progressively generate the powerset of A𝑔𝑟𝑜𝑢𝑛𝑑 , starting

with subsets of the largest size (Alg. 4 line 6); (iii) for each

subset A we generate the corresponding signature S[𝑡 ′,A];
(iv) using the signature map, we obtain all tuples 𝑡 ∈ 𝐼 such
that S𝑚𝑎𝑥 [𝑡] = S[𝑡 ′,A] (Alg. 4 line 7); (v) for each of these

tuples, we check whether 𝑡 ≃ 𝑡 ′ are indeed compatible with

each other (considering labeled nulls) and with the current

instance match, M ; if this is the case, we update M to include

(𝑡, 𝑡 ′) in the tuple mapping (Alg. 4 line 9).

After this first run, we repeat steps 2–4 above with 𝐼 ′ in place of 𝐼

and vice-versa (Alg. 3 line 4). Consider our example in Fig. 7. All

pairs of compatible tuples satisfy Property 1, thus can be found

with their signatures. Therefore, the generation of compatible

tuples is much faster than with the exact algorithm.

Step 3: Completing the Instance Match. We have derived an

instance match M that contains signature-based matches, but

these do not cover all possible tuple matches. Consider tuples

𝑡2 = ⟨𝑁2,VLDB, 𝑁4,VLDB End.⟩ and 𝑡5 = ⟨𝑉𝑏 ,VLDB, 1976,𝑉𝑐 ⟩ in
Fig. 6. Despite the two tuples are compatible (they are matched

in Fig. 6), they have no signature-based match. This is due to the

different positions of the nulls, that prevent from using maximal

signatures to identify the match. Therefore, we complete the

process by adding non-signature-based matches. This step relies

on the same procedureCompatibleTuples in the exact algorithm

(Alg. 3 line 5). However, instead of trying all powersets, we adopt

a greedy approach: as soon as an extension of M exists for two

compatible tuples, 𝑡 and 𝑡 ′, the match is confirmed (Alg. 3 line 9).

Since signature-based matches are typically a majority of the

matches to identify, the number of tuples in the final step of the

algorithm is lower than the original size of 𝐼 . The worst-case

runtime of the signature-based mapping algorithm is quadratic

in the number of tuples and combinatorial in the number of

attributes with labeled nulls.

We distinguish four cases for the signature algorithm.

Case 1: General Instance Matches. For the most general form

of the instance comparison problem, as defined in Sec. 3, the

algorithm brings an improvement over the exact solution, de-

spite the final step (find matches that are not signature-based)

requires to check every compatible tuple-pair. However, since

the combinatorial aspect of the exact algorithm is avoided, this

step is feasible for large instances, as shown in Sec. 7.

Case 2: Fully Signature-Based Matches. At the opposite end

of the complexity spectrum, when instance matches are fully

signature-based, the algorithm is extremely fast. In this setting,

it runs in linear time wrt. the instance size, and combinatorial

wrt. the number of columns that contain labeled nulls.

Case 3: Functional Matches. The algorithm is still considerably

faster than the exact one in many typical cases. For example, it

brings a considerable speed-up when looking for left-injective –

i.e., functional tuple mappings. In this case, as soon as we have

matched a tuple 𝑡 from 𝐼 to some tuple 𝑡 ′ from 𝐼 ′, we may remove

it from the ones under consideration, since we do not test further

matches for 𝑡 (while it is needed for Case 1).

Case 4: Fully-Injective Matches. The benefit is even more

apparent with fully-injective mappings, i.e., functional mappings

that are also injective. In this case, in addition to removing tuples

from 𝐼 from the ones under consideration as soon as they have

been matched, we do the same for the tuples in 𝐼 ′, thus further
decreasing the time needed to execute the last step.

6.3 Partial Mappings

The algorithms presented so far generate instance matches

that are complete. In some cases, onemight be interested in partial

matches, where a tuple is matched to a similar tuple, having a dif-

ferent constant value for one or more attributes. The framework

presented in Sec. 4 is general enough to handle these mappings.

However, from a practical point of view, this setting further in-

creases the size of the search space of instance matches. Both the

exact and the signature algorithms exploit the c-compatibility to

aggressively reduce the search space. The exact algorithm can

be adapted to support partial mappings by implementing a more

flexible variant of alg. 2. This could involve using string similarity

thresholds to assess the compatibility of two tuples. However,

such a version would be substantially slower, as it cannot use

hashing for comparisons. Moreover, an increase in compatible



tuples leads to a corresponding rise in the number of powersets

that must be managed. As discussed, the signature algorithm

works by greedily finding mappings between tuples sharing the

same constant values. With partial mappings, the Property 1 is

not longer valid, and should be revised in:

Property 2: If S[𝑡,A] = S[𝑡 ′,A], then 𝑡 ∼ 𝑡 ′. □

Partial matches between two tuples occur when they share at

least one signature, which is not necessarily the maximal one.

For the signatureMap construction in alg. 4, line 3, it is necessary

to consider every possible signature of a tuple. Consequently,

the same tuple may be listed multiple times in signatureMap.
Therefore, when a left injective mapping is identified (alg. 4, line

11), it is essential to remove all instances of the tuples involved.

These modifications impact the algorithm in two ways. First,

constructing and accessing the signature map becomes slower

due to the increased number of entries. Second, the impact of

the greedy choice on the quality of matches is more pronounced,

as a tuple 𝑡 in 𝐼 can be matched with a tuple 𝑡 ′ in 𝐼 ′ even if they

share only a single constant. We leave the development of an

optimized solution for partial matching for future research.

7 EXPERIMENTAL RESULTS

We evaluate our approach around three questions: 1) what

is the signature quality vs. the exact algorithm? i.e., what is the

difference in terms of the computed similarity scores?; 2) can the

signature algorithm scale up to higher instances? i.e., can we run

the signature algorithm on instances with thousands of tuples?;

and 3) is our approach useful for empirical evaluation of data cura-

tion? i.e., can we use the score to evaluate the solutions produced

by various systems? All experiments are executed on a MacBook

Pro with Intel i9@2.9GHz and 32GB RAM. Code and datasets are

available at https://github.com/dbunibas/Instance-Comparison.

7.1 Signature VS Exact

In this section, we evaluate the score of the Signature algorithm

and its execution time in comparison with the exact solution.

Ground Truth. Using the Exact algorithm, we obtain the simi-

larity score of the two instances. We then compare such a score

with the one obtained by using our Signature algorithm. This

comparison, however, is feasible only for very small instances

due to the computational complexity of the Exact algorithm.

For settings with bigger instances, we rely on a gold mapping

between the two instances in the comparison. We programmati-

cally modify a given table to generate source and target instances

with the known tuple mappings. Starting from a table 𝐼 , we clone

it into a source instance 𝐼𝑠 and a target instance 𝐼𝑡 . By construc-

tion, the mapping for 𝐼𝑠 and 𝐼𝑡 is an isomorphism, i.e., a mapping

from 𝐼𝑠 to 𝐼𝑡 s.t. their tuples are in the same position. We then

introduce cell value modifications using labeled nulls or new ran-

dom constants in both 𝐼𝑠 and 𝐼𝑡 , updating the mappings according

to these changes. We add redundant and random tuples to 𝐼𝑠 and

𝐼𝑡 for cases with non-functional and non-injective mappings. Fi-

nally, the instances are shuffled. We obtain the instances 𝐼𝑠 and

𝐼𝑡 with their mappings so that we compute the exact similarity

score to evaluate our Signature algorithm.

Datasets.We start with three datasets: Doctors (Doct) is a syn-

thetic dataset with constants and nulls [30]; Bikeshare (Bike) [1]

and GitHub (Git) [4] are real datasets with constants only. Statis-

tics about the datasets are in Tab. 1. For each original dataset, we

generate two scenarios with different source and target instances:

Table 1: Statistics for the original datasets.

Doct Bike Git Bus Iris Nba

Rows 20000 10000 10000 20000 120 9360

#Distinct val. 44600 23974 39142 29930 76 2823

Attrs 5 9 19 25 5 11

Table 2: Score results for Exact (Ex) and Signature (Sig).

Noise: 5%, modCell, functional and injective (1 to 1). For

each dataset, #T, #C, #V are the number of tuples, constants

and nulls. * indicates score by construction.

Source Target Ex Sig Sig Ex

Data #T #C #V #T #C #V Score Score Diff T (s) T (s)

Doct .5k 2.4k 600 .5k 2.4k 600 .759 .759 .000 .1 10

Doct 1k 4.8k 1.1k 1k 4.8k 1.1k .771 .771 .000 .1 40

Doct 5k 24k 6k 5k 25k 5k .768* .768 .000 .5 -

Doct 10k 49k 11k 10k 50k 10k .775* .775 .000 .9 -

Doct 100k 491k 109k 100k 520k 98k .779* .779 .000 30.7 -

Bike .5k 4.9k .1k .5k 4.9k .1k .583 .583 .000 .1 101

Bike 1k 9.8k .2k 1k 9.8k .2k .564 .564 .000 .4 569

Bike 5k 49k 1k 5k 49k 1k .577* .576 .001 3.6 -

Bike 10k 98k 1.9k 10k 97.5k 2.3k .576* .574 .002 7.2 -

Bike 100k 987k 13k 100k 976k 25k .572* .569 0.03 58.7 -

Git .5k 9.7k .2k .5k 9.7k .2k .351 .349 .002 1.2 1450

Git 1k 19.7k .2k 1k 19.4k .5k .333 .331 .002 3.7 2100

Git 5k 98k 2k 5k 97k 3k .320* .318 .002 52.9 -

Git 10k 196k 4k 10k 195k 5k .320* .311 .009 109.6 -

Git 100k 1.96M 33k 100k 1.95M 53.k .315* .314 .001 4539 -

• modCell: modify𝐶% cells with a null or a constant value (equal

probability) in both source and target instances. Notice that

the same null might have multiple occurrences;

• addRandomAndRedundant: run modCell, then generate 𝑅𝑛𝑑%
new tuples (with random values) and duplicate 𝑅𝑒𝑑% tuples

both in source and target.

Intuitively, changing cell values is used to check functional

and injective mappings, while adding extra tuples is used to check

non-functional and non-injective mappings.

Results. Tab. 2 reports the statistics about the source and

target instances in terms of the number of tuples (#T), constants

(#C), and nulls (#V). We use different tuple sizes for each dataset

and start with the modCell scenario with 𝐶%=5. We measure the

score of Exact (Ex) and Signature (Sig), and the execution time

in seconds. When Ex exceeds a timeout of 8 hours, we use the
score computed by constructing the instances as described in the

previous section. The highest score difference for Sig is 0.009. In

six cases, the difference is zero. In terms of execution time, the

Sig algorithm is faster up to three orders of magnitude wrt Ex.

Tab. 3 reports the same results for the addRandomAndRedun-
dant scenario with 𝐶%=5 and 10 for both 𝑅𝑛𝑑% and 𝑅𝑒𝑑%. The

errors committed by Sig are low also in this more challenging

scenario. The execution time increases for both Sig and Ex, while

for Sig is still much lower.

Results confirm that Ex can be used only on small instances,

while Sig scales up to thousands of tuples with a low error in

the computed score. Results on Git shows that Sig is affected by

the increasing size of the attributes, e.g., we observe two order

of magnitude difference between Doct (5 attributes) and Git (19

attributes) on the same instance sizes. We detail how the number

of attributes containing nulls affect Sig in the report [32].

https://github.com/dbunibas/Instance-Comparison


Table 3: Score results for Exact (Ex) and Signature (Sig).

Noise: 5%, addRandomAndRedundant, non-functional and

non-injective (n to m). For each dataset, #T, #C, #V are the #

of tuples, constants, nulls. * indicates score by construction.

Source Target Ex Sig Sig Ex

Data #T #C #V #T #C #V Score Score Diff T (s) T (s)

Doct .6k 2.7k 700 .6k 2.7k 670 .724 .721 .003 .1 15.6

Doct 1.1k 5.5k 1.3k 1.1k 5.5k 1.3k .722 .720 .002 .2 55.3

Doct 5.6k 27.6k 6k 5.6k 28k 5k .754* .751 .003 2.3 -

Doct 11k 55k 12k 11k 55k 11k .763* .761 .002 7.0 -

Doct 110k 544k 120k 110k 556k 108k .776* .771 .005 18.8 -

Bike .6k 5.6k .3k .6k 5.6k .2k .535 .535 .000 .5 147.5

Bike 1.1k 11k .5k 1.1k 11k .5k .543 .543 .000 1.4 688.3

Bike 5.8k 56k 2k 5.7k 55k 2k .549* .549 .000 20.1 -

Bike 11k 111k 4k 11k 111k 4k .544* .543 .001 45.0 -

Bike 115k 1.12M 34k 115k 1.11M 46k .543* .54 .003 279 -

Git .6k 11k .7k .6k 11k .8k .290 .290 .000 3.4 1870

Git 1.2k 22k 1.4k 1.2k 22k 1.4k .317 .316 .001 8.8 8552

Git 6k 113k 6.2k 6k 111k 6.4k .294* .293 .001 211.0 -

Git 12k 225k 12k 12k 223k 12k .298* .295 .002 498.5 -

Git 117k 2.2M 97k 116k 2.2M 107k .297* .297 .000 42k -
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Figure 8: Impact of the C% on the Signature Algorithm

score difference wrt. Exact Algorithm; instances of 1k.

Table 4: Impact of CompatibleTuples in the Signature

Algorithm. We report the % of the matches discovered in

the Signature-Based search step (SB); the % discovered in

Exact search step (Ex); the score using only Signature Based

step (SB); and the overall Score (Final Score).

% Matches % Matches Score Score

Dataset SB Ex SB Final

Doct 1k 98.69 1.31 .712 .720

Bike 1k 99.85 0.15 .542 .543

Git 1k 99.74 0.26 .315 .316

Impact of the % of Cell Changes.We measure the impact

of the injected cell changes over the score difference between the

two algorithms. We generate sources and target scenarios with

different values of 𝐶%, then obtain the scores. In Figure 8, the

highest difference for Sig is 0.005. For Doct, the error is always

zero. With percentages of changes higher than 25%, Sig gener-

ate less erroneous mappings: the more we perturb the original

instance, the lower the number of possible mappings.

Ablation of the Signature Algorithm. Tab. 4 reports the %

of tuple mapping discovered in the two steps of Sig. Almost all

the matches are discovered in the first step, i.e., Signature-Based

Matches, and only a small percentage in the second, exhaustive

step. This explains why Sig is much faster than Ex: most of the

mappings are discovered in the first step, drastically reducing

the number of tuples in the expensive check.

Table 5: Data Cleaning, comparison among F1, F1 Instance

and Score computed with Signature.

Dataset System F1 F1 Inst. Sig Score

Bus Holistic [19] 0.853 0.999 0.994

Bus HoloClean [48] 0.857 0.999 0.998

Bus Llunatic [31] 0.997 0.999 0.999

Bus Sampling [10] 0.406 0.998 0.964

Table 6: Data Exchange, comparison between Wrong (W)

mapping, two correct user mapping (U1, U2) and the core

solution (Gold).

Solution Gold Miss. Row Sig

Scenario #T #C #V #T #C #V Rows Score Score

Doct-W 5627 30526 0 5627 30019 543 5627 1.0 .00

Doct-U1 8959 43003 4351 5627 30019 543 0 .63 .95

Doct-U2 6827 34819 1743 5627 30019 543 0 .82 .98

Doct-W 21981 111086 0 21981 110676 410 21981 1.0 .00

Doct-U1 47281 211786 25800 21981 110676 410 0 .46 .92

Doct-U2 32781 153876 11210 21981 110676 410 0 .67 .95

7.2 Applications

In this section, we first use the Signature (Sig) algorithm for

evaluating Data Cleaning and Data Exchange generated solutions.

While there exist metrics in the literature, they do not consider

incomplete instances. We then evaluate Sig as a tool for data

versioning of incomplete instances without keys.

Data Cleaning. Cleaning systems take an input dataset and

output a “clean” instance, oftentimes called solution. The stan-

dard method to qualitatively evaluate an algorithm is to compare

its generated solution with a ground truth (gold) one. We report

results for four systems that clean instances with constant val-

ues and variables, that we model as labeled nulls [10, 19, 31, 48].

We use the same input for all systems and evaluate their solu-

tions with three metrics: 1) F1: the standard metric used in data

cleaning, i.e., the f-measure calculated only on cells with errors

from the gold solution; 2) F1 Inst.: the f-measure calculated on

all the cells in generated solution wrt. the gold; 3) the Signa-
ture score computed with our algorithm. Metrics F1 and F1 Inst.
do not consider nulls: so a system introduces a null, such null

is counted as an error as it differs from the constant value in

the gold solution. Researchers have adopted different metrics

to handle this problem, but we argue that a standard instance

comparison framework will help reproducibility.

Tab. 5 reports the results. F1 score suffers from the presence

of nulls introduced by the systems, indeed Sampling has a very

low F1, even though 99.8% of the cells are clean in the instance

as reported by F1 Inst. Our Sig score represents a fair metric that

considers also the nulls introduced. Indeed, Sig Score maintains

the same ranking that can be obtained by F1, but considers nulls.
Data Exchange. In a Data Exchange scenario, users write

source-to-target rules to integrate different sources into a target

schema. A generated solution could vary depending on the used

rules, the chase algorithm, and the Skolemization strategy [9].

We evaluate the generated solution using a core solution (gold).

We consider three settings: wrong (W), where mapping rules

are incorrect and two user-provided (U1, U2) mappings rules. As

a baseline, we measure the quality of the solution by calculat-

ing a Row score as the fraction of generated solution rows/gold

solution rows. We compare such a baseline with our Sig score.



Table 7: Data Versioning. Comparison with Diff tool. Com-

paring original dataset, shuffled (S) version, removed

(R) rows, removed rows and shuffled (RS) and removed

columns (C). We report the number of tuple matches (#M),

left/right non matching tuples (#LNM /#RNM).

File Diff Signature

Orig. Mod. #TO #TM #M #LNM #RNM #M #LNM #RNM

Iris Iris-S 120 120 17 103 103 120 0 0

Iris Iris-R 120 99 99 21 0 99 21 0

Iris Iris-RS 120 99 18 102 81 99 21 0

Iris Iris-C 120 120 0 120 120 120 0 0

NBA Nba-S 9360 9360 125 9235 9235 9360 0 0

NBA Nba-R 9360 9043 9043 317 0 9043 317 0

NBA Nba-RS 9360 9043 112 9248 8931 9043 317 0

NBA Nba-C 9360 9360 0 9360 9360 9360 0 0

Tab. 6 reports the results on two different sizes of the Doctor

dataset. We also report the number of missing rows from the gold

solution. The wrong mapping refers to a different table in the

source instances and produces a solution that contains constants

not present in the core solution (non-universal solution).

In this scenario, our approach offers two main contributions:

1) it is the first scalable system that can be used to check homo-

morphism. The state of the art is a brute-force algorithm [9]. 2) it

offers a more robust metric to compare solutions than measuring

the row score, which fails to capture non-universal solutions.

Data Versioning.We compare two incomplete instances with-

out key attributes. Our goal is to find differences between the two

instances, such as the number of tuples that are in common and

the number of tuples that differ. We use two datasets from the

data versioning literature [50]: Iris and NBA. As a baseline, we

adopt the command line tool diff to identify differences among

different versions of the same dataset. While diff was not con-

ceived to detect modification in terms of schema or to handle

placeholders, it is the best available baseline for the problem at

hand. Given an instance, we generate different versions of it:

shuffling the rows (S), removing some rows (R), removing and

shuffling the rows (RS), and removing some columns (C).

Tab. 7 reports comparisons between the original version (Orig.)

and the modified version (Mod). We report the statistics about

the size of the instances (#TO, #TM), number of matching tuples

(#M), left and right non-matching tuples (#LNM, #RNM) for both

diff and Signature. diff returns the same results as Signature

only in the variant generated by simply removing tuples. In all

other cases, diff fails to match tuples. This confirms that even

when a dataset contains only constant values, existing tools fail

to correctly evaluate its evolution in terms of new tuples added or

removed, columns dropped or inserted, or a simple shuffling. Our

approach can be used to compute the similarity of two versions

of the same dataset while explaining the changes.

8 RELATEDWORK

Comparing incomplete instances is related to computing their

homomorphism, a problem with implications for applications

such as query containment [17], schemamapping equivalence [24,

43], and benchmarking instances in general [9, 10, 19, 20, 23, 26,

29, 37, 39]. A homomorphism between two database instances

is a mapping from the domain of one instance to the domain of

the other that preserves the structures. However, finding such

a homomorphism has exponential complexity in general. Our

score formulation subsumes this problem, as discussed in Sec. 3.

Data versioning focuses on the creation of tools to store, re-

trieve, and analyze iterations of large datasets [49]. For example,

DataHub offer a Git-like interface for efficient version control

with a directed graph approach to manage the versions [11, 13].

Research directions focus on exploring [15] and explaining [50]

the differences between dataset versions. While these tools ex-

plain versions, they rely on the availability of preexisting map-

pings between grounded data instances, i.e., no labeled nulls or

variables are considered. Our framework compute such mappings

as a side-product, thereby enabling the comparison in scenarios

with incomplete instances and missing keys. Moreover, our tuple

mappings can serve as explanations for the computed similarities.

Our work is related to entity resolution (ER) which matches

records that refer to the same real-world entities [16, 18, 22,

42, 46]. This problem is also studied under the assumption that

unique keys or identifiers are not shared across instances and

the signature of a tuple, i.e. the hashing of the constants, can

remind the blocking function in ER. The clean-clean ER can be

modeled with an injective and functional mapping, while the

non-injective and non-functional mapping generalizes the dirty

ER case [46]. However, we provide a similarity score between

entire instances in the presence of labeled nulls. It is a global

comparison that takes into consideration incompleteness, while

ER could be seen as a possible component in the overall process of

instance comparison. Finally, ER can be a source of labeled nulls

in the merge step [21]. If two tuples, from different instances, are

aligned with ER methods, they may have conflicting constant

values that are replaced with a labeled null [16].

Ourwork is different from approaches that compute the update

distance between two databases, defined as the minimum number

of insert, delete, and modification operations that transform one

database into the other [45]. Tree edit distance is a widely studied

metric [14], however, instances with variables should be see as

graphs, rather than trees as edges across variable can be seen

as edges among leaves, thus making each instance a graph [44].

Graph edit distance is more complex than tree edit distance [28].

9 CONCLUSIONS AND FUTUREWORK

In this work, we formalized the problem of comparing incom-

plete instances in the absence of shared keys and have shown this

problem to be NP-hard. In addition to an exact algorithm, we in-

troduced an efficient approximate instance comparison algorithm

based on signatures. As we demonstrated in our extensive ex-

perimental evaluation, our approximate algorithm can compute

the similarity of large instances and closely approximates the

similarity computed using the exact algorithm. Our framework

provides a flexible, efficient, and comprehensive addition to the

existing data versioning ecosystem, with its capacity to calculate

similarity scores and mappings between incomplete instances.

Extending the algorithm to support string similarity metrics to

provide a more fine-grained view on the similarity of different

constants is an interesting avenue for future work. Finally, there

might be scenarios where it is desirable to match tuples that

conflict on constants. Our definition is general enough to capture

such a setting, as discussed in Section 6.3. However, developing a

scalable algorithm for partial tuple matches is an open problem.
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