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Abstract—In the context of the expectation-maximization (EM)
algorithm, which often faces challenges due to intractable poste-
rior distributions, this study explores an innovative approach by
integrating the EM algorithm with expectation consistent (EC)
approximate inference. Our method involves the incorporation of
the EC algorithm into the M-step of the EM algorithm, resulting
in the EM-EC algorithm. We demonstrate that the fixed points of
the proposed EM-EC algorithm correspond to stationary points
of a specific constrained auxiliary function, thereby providing a
variational interpretation of the algorithm. Through simulations,
we showcase the effectiveness and robustness of this novel
approach, highlighting its potential for advancing the field of
Bayesian network estimation.

Index Terms—Expectation-Maximization, Expectation Consis-
tency, Fixed points

I. INTRODUCTION

The expectation maximization (EM) algorithm [1] stands
out as a widely embraced technique for maximizing likelihood
in probabilistic models that incorporate hidden variables. This
method can be succinctly conceptualized as a means to op-
timize an auxiliary function, which can be divided into two
distinct steps: the E-step and the M-step. In the E-step, the pri-
mary objective is to compute the probabilities associated with
the hidden variables, given the observed variables (evidence)
and the current set of parameters. Subsequently, in the M-step,
leveraging these computed probabilities leads to the derivation
of a new set of parameters, a process that is guaranteed to
enhance the likelihood. However, complications may arise
during the E-step, particularly when the task of computing the
probability of hidden variables given the evidence becomes
intractable.

A commonly employed strategy involves substituting exact
yet intractable inference in the E-step with approximate meth-
ods, often through sampling or employing deterministic varia-
tion techniques [2]. Notably, the approximate message passing
(AMP) [3]–[5] algorithm and its extensions have emerged as
potent tools for variational inference in recent times which
have found successful applications across a broad spectrum of
problems, as exemplified in references [6]–[9]. Of paramount
significance, when dealing with large, independently and iden-
tically distributed (i.i.d.), sub-Gaussian random measurement
matrices denoted as H , their performance can be precisely
predicted using scalar state evolution (SE), as elucidated in
references [7], [10]. Therefore, there is a substantial body

of work associating EM with AMP for joint estimation and
learning. However, AMP may diverge when dealing with
matrices H that have even mildly non-zero means or are
mildly ill-conditioned, as outlined in reference [11].

To address ill-conditioned matrices H , the vector approxi-
mate message passing (VAMP) [12] algorithm and EM-VAMP
was introduced [13]. This approach accomplishes improved
handling by splitting a single variable node x into two
separate variable nodes, denoted as x1 and x2, with both
representing the original variable x. VAMP has showcased
promising performance, particularly when dealing with right
rotationally invariant H , and its state evolution has been
rigorously established, as discussed in reference [12]. In
VAMP and its variations, there is often an assumption of
a high system dimension. This assumption drives efforts to
avoid costly matrix inversions and necessitates the use of
additional approximations to reduce complexity. However, in
many estimation scenarios, non-Gaussian distributions may
demand approximate Bayesian techniques, even when the
dimension is not particularly high [6], [14], [15]. In such
cases, estimating posterior distributions, especially variances,
becomes a specific area of interest [16]. The original VAMP
algorithm only provides average variances, prompting the use
of the expectation consistent (EC) [17] method in this paper.

In this paper, we introduce an EM-EC via replacing exact
posterior inference through the EC method which leads to an
approximate EM auxiliary function, which we term the EM-
EC optimization function. Subsequently, we present the exact
algorithm designed to maximize this function. Our primary
theoretical finding reveals that the fixed points achieved using
the EM-EC method correspond to local maximum of the EM-
EC auxiliary function. These fixed points, in turn, provide
precise variational interpretations of the parameter estimates
θ and posterior density. Moreover, by incorporating parameter
learning, our results extend and generalize the fixed-point
energy-function interpretation of EC, as described in [18],
[19]. It’s worth emphasizing that VAMP can be derived
through EC approximation [12]. However, it’s essential to note
a potential concern regarding the standard application of the
single-loop EC algorithm, as it does not consistently lead to
convergence. To address this issue, double-loop EC algorithms
with guaranteed convergence properties have been developed.
Nevertheless, it’s important to acknowledge that these double-



loop algorithms tend to exhibit slower computational speeds,
typically being an order of magnitude slower than the standard
EC approach [17].

Notations: We write vectors as x and matrices as X . For a
Gaussian random vector x with mean m and covariance Σ,
we denote its pdf by N (m,Σ). IM and 0M denote M ×M
identity matrix and zero vector of size M . Finally we use
Eq[·], (·)T and R to denote the expectation operation w.r.t the
pdf q, transpose of a matrix and the real field, respectively.

II. EXPECTATION MAXIMIZATION - EXPECTATION
CONSISTENT

A. Review of Expectation Maximization

Consider the linear model of random vector x and measure-
ment data y of the form:

y = Hx+ v, v ∼ N (0M , θ1IM ), x ∼ p(x|θ2), (1)

where H is a known measurement matrix of dimensions
RM×N , the random vector x ∈ RN×1 is characterized as a
non-identically and independently distributed (n.i.i.d.) random
variable, governed by a probability density function (pdf)
denoted as p(x|θ2), v represents additive white Gaussian noise
(AWGN), which is independent of x with the same variance
θ1. The overarching objective is to estimate the parameters
θ = [θ1,θ2]

Consider using the maximum likelihood estimation (MLE)
method to tackle this problem:

θ̂ = argmax
θ

p(y|θ) = argmax
θ

∫
p(y|x, θ1)p(x|θ2)dx.

(2)
Because of the integration involved, this optimization problem
is typically considered intractable. An alternative approach is
to employ the EM algorithm, which can be conceptualized as
comprising two alternating maximization steps. To introduce
this method, we first need to introduce an auxiliary function
as follows:

F (q,θ) ≜ Eq [log p(x,y|θ))] +H(q), (3)

where q represents an arbitrary pdf over x, and H(q) denotes
the entropy of this distribution. Through a straightforward
derivation, we obtain:

F (q,θ) = −DKL [q∥p(x|y,θ)] + log p(y|θ) (4)
= −DKL [q∥p(y|x, θ1)]−DKL [q∥p(x|θ2)]−H(q),

(5)

where DKL is the Kullback–Leibler (KL) divergence. For any
known parameters θ, q̂ can be optimized as:

q̂ = argmax
q

F (q,θ). (6)

If q̂(x) = p(x|y,θ), then F (q̂(x),θ) can be expressed as
log p(y|θ). Consequently, the MLE in (2) corresponds to the
simultaneous maximization of F (q,θ), given by

θ̂ = argmax
θ

max
q

F (q,θ). (7)

Algorithm 1: EM-EC
Input: H , y, g(x)
Output: θ̂ = [θ̂1, θ̂2]

1 Initialize: λr, λq , λs, θ̂1, θ̂2
2 while stopping criterion not fulfilled do
3 // Sending message from r to s
4 λq = Er[g(x)|y,λr, θ̂1]
5 λs = λq − λr

6 // Sending message from s to r
7 λq = Es[g(x)|λs, θ̂2]
8 λr = λq − λs

9 // Learning Parameters
10 θ̂1 = argmaxθ1 Eq[ln p(y|x, θ1)|λq]

11 θ̂2 = argmaxθ2
Eq[ln p(x|θ2)|λq]

Then the steps in the EM algorithm may be viewed as:

E-step: q̂t = argmax
q

F (q, θ̂t) = p(x|y, θ̂t), (8)

M-step: θ̂t+1 = argmax
θt+1

F (q̂t,θt+1) = Eq̂t
[
log p(x,y|θt+1))

]
.

(9)

Unfortunately, in some scenarios, the EM algorithm re-
mains intractable because obtaining the posterior distribution
p(x|y, θ̂t) is challenging due to the integration of involving in
(2). Therefore, it becomes crucial to develop an algorithm that
approximates this posterior distribution with another tractable
distribution. To achieve this goal, we use the EC algorithm.

B. Review of Expectation Consistent Approach

To describe the EC method, some additional notation should
be introduced. First we want to approximate p(x|y,θ) with
q(x) which is chosen in an exponential family, and it can be
expressed as

q(x) =
1

Zq
exp(λT

q g(x)), (10)

where the partition function Zq must be obtained by integra-
tion:

Zq =

∫
exp(λT

q g(x))dx. (11)

The EC algorithm considers the case where the parameters θ
are known. In this case, EC attempts to compute an estimated
belief of the posterior pdf p(x|y,θ) of the form of r(x) and
s(x) as below:

r(x) =
1

Zr
p(y|x, θ1) exp(λT

r g(x)), (12)

Zr =

∫
p(y|x, θ1) exp(λT

r g(x))dx; (13)

s(x) =
1

Zs
p(x|θ2) exp(λT

s g(x)), (14)

Zs =

∫
p(x|θ2) exp(λT

s g(x))dx; (15)



where the choice of the function vector g(x) is designed
to facilitate efficient and tractable calculations of the desired
integrals (Zq , Zr and Zs), with the parameters λ being
adjusted to optimize specific criteria. Therefore, the terms
”efficient” and ”tractable” should be interpreted in relation to
a particular approximating set of functions g(x) and normally
the n.i.i.d. Gaussian component remains effective and tractable
as long as g(x) encompasses the first and second moments of
x. In this case, λ and g(x) can be represented as:

g(x)=(x1,−
x2
1

2
, . . . , xN ,−x2

N

2
)T ,λ=(r1,Λ1, . . . , rN ,ΛN)

T.

(16)
The steps of EC are identical to those presented in Algorithm
1 for the proposed EM-EC. In lines 4 and 7, these steps are
commonly referred to as moment matching among q(x), s(x)
and r(x), respectively, as shown below:

Er[g(x)|y,λr, θ̂1] =

∫
g(x)p(y|x, θ̂1) exp(λT

r g(x))dx∫
p(y|x, θ̂1) exp(λT

r g(x))dx
,

(17)

Es[g(x)|λs, θ̂2] =

∫
g(x)p(x|θ̂2) exp(λT

s g(x))dx∫
p(x|θ̂2) exp(λT

s g(x))dx
. (18)

In addition, (17) and (18) can also be represented as the
solution of minimum KL-divergence as bellow:

qr(x) = argmin
q(x)

DKL[r(x, θ̂1)∥q(x)], (19)

qs(x) = argmin
q(x)

DKL[s(x, θ̂2)∥q(x)]. (20)

And the fixed point can be expressed as:

Er[g(x)|θ̂1] = Es[g(x)|θ̂2] = Eq[g(x)]. (21)

III. FIXED POINTS OF EM-EC
We will now demonstrate that the parameter updates in

EM-EC can be interpreted as an approximation of the EM
algorithm. As previously mentioned in (5) and (21), which are
related to [20] for understanding the combination of EM and
belief propagation-based inference, and given pdfs r(x), s(x),
and q(x), the EM-EC optimization function can be defined as
follows:

F (q, r, s,θ) ≜ −DKL [r∥p(y|x, θ1)]−DKL [s∥p(x|θ2)]−H(q),
(22)

which matches the original auxiliary function in (5) under the
constraint that r = q = s. It’s also worth noting that −F
is commonly referred to as the energy function of EM-EC.
In EC, the approximating pdfs q, r and s are constrained to
be in an exponential family with sufficient statistics. Hence
the moment matching constraints in (5) become equivalent to
the constraints q = r = s, which allows to reformulate the
EM-EC optimization problem as:

θ̂ =argmax
θ

max
r,s

min
q

F (q, r, s,θ),

s. t. Er[g(x)|θ1] = Eq[g(x)],

Es[g(x)|θ2] = Eq[g(x)]. (23)

It is worth noting that the fixed points of EM-EC correspond to
the stationary points of the optimization problem in (23). The
Lagrangian for this constrained optimization can be expressed
as follows:

L(θ, q, r, s,λ1,λ2) ≜ F (q, r, s,θ) + λT
1 (Er[g(x)|θ1]

−Eq[g(x)]) + λT
2 (Es[g(x)|θ2]− Eq[g(x)]). (24)

It should be pointed out that optimizing w.r.t. q, r and
s is equivalent to optimizing w.r.t. their λq , λr and λs,
respectively. To optimize, we first solve for q(x;λq) as

λ̂q = argmin
λq

L(θ, λ̂s, λ̂r,λq,λ1,λ2)

= argmin
λq

[λT
q − (λ1 + λ2)

T ]Eq[g(x)|λq]. (25)

Taking gradient w.r.t. λq , we can get:

∂L(θ, λ̂s, λ̂r,λq,λ1,λ2)

∂λq

= [λT
q −(λ1 + λ2)

T ]
{
Eq[g(x)g(x)

T ]− Eq[g(x)]Eq[g(x)]
T
}
,

(26)

∂2L(θ, λ̂s, λ̂r,λq,λ1,λ2)

∂λq∂λT
q

=
{
Eq[g(x)g(x)

T ]− Eq[g(x)]Eq[g(x)]
T
}T

> 0, (27)

therefore it is a convex function with only one minimum point
λ̂q as:

λ̂q = λ1 + λ2. (28)

Next we turn to solve for s(x;λs) and r(x;λr),

[λ̂s, λ̂r] = argmax
λs,λr

L(θ,λs,λr, λ̂q,λ1,λ2) (29)

= argmax
λs,λr

(λT
1 − λT

r )Er[g(x)|λr] + (λT
2 − λT

s )Es[g(x)|λs].

(30)

Through algebraic analysis, it becomes evident that this func-
tion is concave and possesses fixed points as follows:

λ̂r = λ1, λ̂s = λ2. (31)

Finally, θ = [θ1,θ2] can be estimated as:

θ̂ = [θ̂1, θ̂2] = argmax
θ1,θ2

L(θ, λ̂s, λ̂r, λ̂q,λ1,λ2)

= argmax
θ1

Er[log p(y|x, θ1)] + argmax
θ2

Es[log p(x|θ2)].

(32)

We then have the following theorem:
Theorem 1: At any fixed point of EM-EC, we have:

λ1 = λ̂r, λ2 = λ̂s, λ̂q = λ1 + λ2; (33)

q̂(x) =
exp(λ̂T

q g(x))∫
exp(λ̂T

q g(x))dx
; (34)

r̂(x) =
p(y|x, θ̂1) exp(λ̂T

r g(x))∫
p(y|x, θ̂1) exp(λ̂T

r g(x))dx
; (35)

ŝ(x) =
p(x|θ̂2) exp(λ̂T

s g(x))∫
p(x|θ̂s) exp(λ̂T

s g(x))dx
, (36)



where q̂, r̂, and ŝ represent critical points of the Lagrangian
(24) that satisfy the moment matching constraints (21). If EM-
EC converges, its limit point corresponds to local optimal point
of the EM-EC auxiliary function (22).

IV. NUMERICAL EXPERIMENTS

While the preceding analysis characterizes the fixed point
of EM-EC, it does not provide guarantees on the algorithm’s
convergence to the fixed point in a single loop. To assess
convergence and evaluate the algorithm’s performance, we
conducted a numerical experiment with setting λ and g(x)
as (16).

In this experiment, we consider a sparse signal recover
model aimed at estimating x from measurements y as de-
scribed in (1) with unknown parameters θ = [θ1, θ2] . We
generated x using an non-identically and independent dis-
tributed (n.i.i.d.) Bernoulli-Gaussian distribution with known
and non-identical variances γ = [γ1, · · · , γN ] and a unknown
zero-factor score θ2, defined as follows:

p(xi|θ2, γi) = θ2δ(xi) + (1− θ2)N (0, γi). (37)

The measurement matrix H was constructed using the
singular value decomposition (SVD) H = UΣVT , where
the orthogonal matrices U and V were randomly generated
according to the Haar measure, and the singular values σi

were created as a geometric series, i.e., σi/σi−1 = α for all
i > 1. Here, α was intentionally set to make H ill-conditioned.
For standard AMP, [10] has demonstrated that AMP diverges
when dealing with an ill-conditioned matrix H . The parameter
θ1 is employed to regulate the SNR; nonetheless, in the
estimation phase, we operate under the assumption that it is
an unknown parameter. In assessing the performance of our
estimation, our primary focus is on estimating x̂. We utilize the
Normalized Mean-Squared Error (NMSE) as our evaluation
metric, defined as ∥x̂ − x∥22/∥x∥22, which is then averaged
over 100 independent samples of matrices H , vectors x, and
noise vectors v.

In Fig. 1, the correlation between NMSE when employing
EM-EC and EM-VAMP, and the condition number for sparse
linear regression is illustrated under specific conditions. The
parameters for the experiment are set as follows: M = 32,
N = 48, with each γi generated uniformly from the interval
(0, 1]. The experiment involves varying SNR from 10 dB
to 40 dB, where (θ1, θ2) are unknown parameters. θ1 is
generated in relation to the SNR, and θ2 is randomly chosen
within the range [0.5, 0.8] during simulation. Additionally,
three distinct values of α were tested: 1, 0.8, and 0.6. It
has been demonstrated that our algorithm exhibits excellent
performance when α = 1 with non-ill-conditioned matrix H .
Even when the condition number is as low as 7× 10−4 with
α = 0.8, our algorithm still performs effectively, showcasing
its robustness. Due to the small size of H , EM-EC exhibits
superior performance compared to EM-VAMP in certain cases,
particularly when dealing with more ill-conditioned H and
lower SNR. While the disparity is relatively minor, it is
noteworthy. It is essential to highlight that the performance
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Fig. 1. Performance of EM-EC and EM-VAMP with different α and SNR.

of EM-EC tends to converge to EM-VAMP as the size of H
increases, which can be proven through state evolution [13].

V. CONCLUSION

We present the EM-EC approach for parameter estimation in
an AWGN-corrupted linear model, given by y = Hx+v. This
algorithm combines elements of both EM and EC algorithms
to perform approximate inference of the otherwise intractable
exact posterior. We have demonstrated that its fixed points
coincide with the stationary points of a specific energy func-
tion as Theorem 1 in our paper. Our simulations indicate that
the proposed method exhibits robustness even under varying
conditions of the condition number of H . While the single-
loop EC algorithm shows potential, its convergence remains
unestablished. In contrast, the double-loop EC algorithm guar-
antees convergence but comes at the cost of increased compu-
tational complexity. Therefore, it is worthwhile to explore the
conditions under which a single-loop approach is sufficient
for convergence. Additionally, it is worth noting that under
the EM-EC framework, traditional metrics like the Cramér-
Rao bound (CRB) for parameter estimation are not readily
available. As a result, a potential avenue for future work is
the development of a tight bound for parameter estimation
with EM-EC.
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