Dynamic Information Visualization Using 3D Metaphoric Worlds

C. Russo Dos Santos, P. Gros, and P. Abel
Multimedia Dept.
Eurécom Institute
2229, Route des Crétes
06904 Sophia-Antipolis, France
email: {cristina.russo,pascal.gros,pierre.abel}@eurecom.fr

ABSTRACT

In this paper we discuss the mechanisms that have been
used to deal with the dynamic nature of data in the Cyber-
Net project. The purpose of this project is to study how
three-dimensional (3D) metaphoric visualization may help
the user in the process of monitoring large amounts of dy-
namic information. We present the dynamic data model
and the visualization model and then focus on the problem
of updating a 3D world without disorienting the user.

KEY WORDS
Dynamic Information Visualization, 3D Visual Metaphors

1. Introduction

Nowadays there is more and more demand for information
visualization systems in order to supervise large amounts
of dynamic information such as stock exchange, for ex-
ample [1]. Specific problems arise when dealing with dy-
namic information because the visualization evolves with
time and this may disorient the user. This issue is especially
pertinent when one needs to move objects in the visualiza-
tion in order to make room for newly created objects. An-
other problem is to define a data model that can handle the
dynamic nature of data.

The CyberNet project [2] goal is to deliver an inter-
active 3D dynamic information visualization tool designed
to evaluate the added value that this technology brings to
the visualization of large volumes of dynamic information.
Although the tool has also been designed to deal with any
kind of dynamic data, the system has been experimented
in the context of network management and an example is
reported further in the paper.

In this paper, we present some of the mechanisms that
have been used to deal with the dynamic nature of data
within the CyberNet project.

2. Dynamic data model

We focus this paper on the visualization of dynamic data.
Dynamic data is data that varies in time. Data may vary
in amount (new data may appear and older data may disap-
pear) as well as in value (the value of existing data may vary
in time). In addition to the time dependency, a fundamental

pointis that the system must process data on-line and, thus,
is not aware of the modifications before they happen.

2.1 How to handle data dynamics?

Online processing of dynamic data requires translating the
dynamic data into visual elements. This translation re-
quires several steps. The first step toward this process is to
logically structure the data in order to obtain a data model
— this step is calledata transformationsccording to the
terminology of [3]. Basically, structuring the data requires
to group data according to common properties and to iden-
tify relationships. In our structuring process the final data
model is a tree.

The data model will also be used to handle the dy-
namic nature of the data, each time new data is created or
existing data is modified, the system will automatically up-
date the data model to reflect this modification. Because
the data model is automatically translated into a visual rep-
resentation, the modification will be visualized.

The data model we have developed is based on the
concept ofentities Entities are used to group all the values
that are necessary to describe some logical element of the
data model. An entity can represent a physical device (e.g.,
a router, a hub) or a conceptual item (e.g., a process, a file-
handle). The entities are created by an entity collecting
process described in [4].

Since we are dealing with a dynamic environment, en-
tities have a life cycle: new entities may be created, exist-
ing entities may disappear, and the values of the entity may
vary. In order to cope with this dynamics all the entities are
stored in arentity repository The role of the repository is
to keep track of all the existing entities and to be able to
answer to queries concerning entities (i.e., all the hubs that
have an IP address in a given range). The difference be-
tween the repository and traditional database management
systems is that the queries are persistent. When an object
makes a query to the repository, all the entities that match
the query are returned to the caller; if, later on, a new entity
that matches the query is created, the caller will be notified.
This persistent quergapability is the basis of the dynamic
data model.

The data model tree is composedsefvice nodesA
service node is an object that knows how to interpret part

1: subscribe to a kind
of entity

O Service node
O Entity

Entities
Reposi tory

4: notification
of the entity

5: subcribe to the

3: this entity -
entity and get data / ‘ \

registers

N

6: a new service node is created from

N 4 ! 3
_»O/ O data contained in the new entity
- §o

2: anew entity
is created

Figure 1. Dynamic creation of a new service node in the
model tree when a new entity is created.

dome

Figure 2. Solar system metaphor.

of the data model. The way a service node acts is the fol-
lowing: the service node issues a persistent query to the
entity repository, the repository returns what we ca#la-

tion which groups references to all the entities that satisfy

the query. The service node adds that relation as one of its
children, hence constructing a tree-like structure. Figure 1

depicts this mechanism.

2.2 Slaving the visualization to the dynamic
data model

Using the previous mechanisms, the data model is always
reflecting a hierarchical structure based on the existing en-
tities. This model must be translated into a 3D world. This
translation is called themapping procesand will be briefly
discussed in Subsection 3.3. The visualization is slaved to
the dynamic data model and the system will continuously
update the world in order to present an up-to-date visualiza-
tion of the data model. We take advantage of the hierarchi-
cal structure of the data model that matches quite naturally
the hierarchical representations of 3D scenes generally sup-
ported by most 3D-scene description libraries.

3. The visualization model

Our visual structure is based on the concept of 3D visual
metaphors. We have designed real-world based metaphors
such as a solar system (Figure 2) or a cityscape (Fig-
ure 6) metaphor, that allow the user to better and more
rapidly comprehend the visualizations, since their underly-
ing structure is already familiar. For example, it is straight-
forward that houses in the same district share some com-
mon properties. Examples of those and other metaphors
can be found at CyberNet’s project webpage [2]. It is im-
portant to note that a metaphor is not designed for a spe-
cific service. In fact, a service can be visualized using any
metaphor provided it offers sufficient visual and structural
capabilities for displaying the service information.

3.1 Graphical and metaphoric components

A 3D metaphoric world is a set afhietaphoric components
(MCs) organized hierarchically. Metaphoric components
aregraphical componentwith interaction and navigation
add-on capabilities. Each graphical component has visual
parameters that can be used to visualize information. Cy-
berNet supports two classes of graphical componeils:
glyphs and layout managers

¢ 3D Glyphs(3DGs) are 3D objects that may represent
data through their visual parameters (e.g., color, size,
and texture). The level of complexity of a 3DG can be
related to the number of visual parameters it offers for
modification and, hence, to the dimension of data that
can be displayed.

e Layout Manager¢LMs) are responsible for one of the
most important visual choices: the use of space. They
organize their children — either 3DGs or other LMs —
in space according to a built-in policy and may also
animate these positions along paths. For instance, a
orbit LM organizes elements in orbit around a center,
and a chess LM on a plane in rows/columns.

Using these two kinds of graphical components, we
can build a 3D-scene hierarchy. The result is a tree where
internal nodes are LMs and leaves are 3DGs.

To create a new visual metaphor, one needs to define
the set of MCs that illustrates the metaphor. For example,
a solar system metaphor (Figure 2) is composed of star,
satellite, and planet glyphs, and orbital layout managers.
The more GCs are used in a metaphor, the more numerous
are the ways of visualizing the data.

3.2 Building and updating the worlds

There are two different operationsgeation and update

which can be used to update the metaphoric world. Cre-
ation, as the name implies, involves creating one or more
new graphical components — glyph or layout manager —and

update involves bringing up to date the visual parameters of
one or more GC (e.g., updating the size of a box to reflect
the new value of the mapped data). LMs can receive orders
to add new children (3DGs or LMs) to themselves and any
GC can update itself upon receiving up-to-date data.

Before sending data that will update the world we
need to know which kind of graphical components must
be created from the data model. This is the role of the map-
ping process.

3.3 Mapping the data model visually

Mapping is the process that automatically constructs a 3D
metaphoric world from the information contained in a ser-
vice tree. The result is a graphical hierarchy where internal
nodes are layout managers and leaves are 3D glyphs. In
the CyberNet system, special objects cabeldptorshan-

dle the mapping. These adaptors are dependent on the type
of metaphor used for displaying the information. Basically,
there are two types of visual mapping: hierarchical and vi-
sual parameters mapping.

Each metaphor is defined as hierarchy of MCs —i.e.,
a city metaphor (Figure 6) is based on a metaphoric com-
ponent called City, which contains Districts, Districts MCs
contain Streets and Buildings, Buildings contains Floors,
and so on. We calhierarchical mappingthe process of
defining which service element (entity or relation) will be
visualized using which MC. For instance, a workstation su-
pervision service using a solar system metaphor like in Fig-
ure 2, the model mapping rules states that computers=stars,
users=planets, and processes=satellites.

The main idea behind the mapping process is to de-
fine a set of association rules for each service, based on the
type of each service element and its position in the service
tree. In particular, since an entity may be part of several
relations (thus being located at more than one position in
the service model tree), it may have several visual coun-
terparts in the presentation domain. So far, the mapping
process is mostly hard-coded but we have been developing
an automatic mapping process based on data and visual pa-
rameters characterization. Some prior work in those fields
has already been done, namely by [5], [6], and [7].

Besides mapping the structural elements onto the
graphical components, the attributes of each entity must
also be translated into visual information. This is the pur-
pose of thevisual parameters mappingeach MC has a
number of visual parameters that may be dynamically mod-
ified in order to display information (e.g., position, orienta-
tion, size, color, etc). How we map the data values on these
visual parameters (e.g., CPU percentage on color, memory
on size, and so on) is the responsibility of the visual pa-
rameters mapping. When defining the mapping rules, care
must be taken to preserve metaphor coherency. For exam-
ple, if one rule uses the color for identification purposes,
other rules cannot use this visual parameter to represent a
data value.

size modification

(O Layout manager
@ 3D Glyph
Modified 3D Glyph

an
children layout update

size modification
an(
children layout update —> Constraint propagation

'1, Children layout modification

modification

Figure 3. Bottom-up constraint propagation.

4. Impact of data dynamics on the visualiza-
tion model

While the system automatically modifies the 3D world, it
must take care of global coherency in the world. For ex-
ample, when an object is growing in size, the system must
verify that its geometry does not intersect other objects in
the world. If it detects a potential intersection, the sys-
tem should be able to modify the neighboring objects (for
instance it can slightly push them apart in order to make
some room for the growing object). Thus, the modification
of one object may have impact on its neighborhood, and
the modified neighborhood may require the modification
of other objects. This phenomenon is called modification
propagation. Several types of causes lead to this propaga-
tion, namely: the size of a child is modified, a new child is
created or an existing child is removed.

Managing the modification propagation is an impor-
tant topic directly related to dynamical layout manage-
ment. The traditional way to handle static layout man-
agement is to use global layout constrained optimization
algorithms. However, because of performance problems,
dynamic management requires avoiding centralized solu-
tions since global optimization algorithms cannot be re-
evaluated each time a small modification arises in the
world. We chose to develop a distributed propagation
mechanism: in our system each LM has the responsibil-
ity of modifying itself and its direct children layout. There
are two basic strategies for propagating the modifications:
bottom-upandtop-down

4.1 Bottom-Up constraints propagation

The first solution to handle constraint propagation is to use
a bottom-up approach. The main idea is to let the children
influence the upper part of the hierarchy. For instance, if the
size of a 3DG increases, the space allocated by its parent
LM to the 3DG should be modified accordingly. Thus, the
parent LM should also modify its size and its own parent
must take into account this modification. The modifications
are propagated to the upper part of the hierarchy until the
root (Figure 3). An important consequence of the use of

Layout manager
3D Glyph

2:chilrend layout
and size update New 3D Glyph

Constraint propagation

Children layout modification

1: anew glyph
-~ s created
/

Children size modification

DL @90

Figure 4. Top-Down constraint propagation.

this propagation mode is that the overall world structure
may be modified as soon as a leaf node is modified. This
is due to the fact that when a child modifies its size, the
information is transmitted to its father that in most cases
has to modify the position of all its children according to
its layout policy. In many cases, this global propagation
mechanism can produce globally unstable 3D worlds.

4.2 Top-Down constraints propagation

The second solution to handle constraint propagation is to
use a top-down approach. The advantage of this approach
is to limit the influence of modifications. In this case, it is
the role of the father to allocate space for its children and to
control that they actually fit in the region defined. Since itis
the father that determines the size of its children, the propa-
gation of the space constraints is going from the root to the
leaves (Figure 4). Each child should be able to fit itself into
the region of space that its parent has reserved for it. When
a child is not able to do so, it is the role of its parent to mod-
ify its size in order to fit the child to the region. The main
problem of this propagation mechanism is that the world
loses size coherency: since it is the parent that defines the
space allocated to its children, two conceptually identical
leaf nodes may differ in size and thus cannot be compared
by the user. Another related problem is that when a part of
the world is growing in number of elements, each element
is generally decreasing in size in order to keep the aggre-
gate size constant. These local modifications (as opposed
to the global modifications generated by the previous strat-
egy) can produce local instability in the 3D worlds.

4.3 Directional constraints

In the presentation of the two previous constraint strategies,
we did not make any references to the constraints them-

selves or to the scheme used to define the regions of space.

Our basic statement is that the volume managed by a father
should include all the volumes managed by (or allocated
to) its children. How these volumes are defined is a matter
of implementation. However, why should the propagation
be identical according to every direction in space? A good

constraint
on X and Z
m Top-down

XZ § constraint
onY

VAWV Building

Walls K)

Windows O COCOCD

Y Value forY
VY arrival

EIE.J«ILLL

Figure 5. Constraints in a city metaphor.

example of non-uniform propagation can be found in the
city metaphor implemented in the CyberNet project. In this
metaphor, a district is defined as a LM that places buildings
in space. This could be implemented either by using a top-
down or a bottom-up propagation strategy. The top-down
strategy will fix the size of districts (once created a district

will not be able to grow in size, and adding new buildings

will be done by resizing down existing ones). The bottom-

up strategy will conserve building size and allow district

to grow (when a district grows, the neighboring districts

will be pushed apart in order to make room). In the first

case, even if the districts are limited in the ground plane,
there is no reason to limit the buildings in height. Hence,

the district LM is designed to apply a top-down constraint

to the buildings in the ground plane and leave freedom to
the height direction by using a bottom-up strategy for that
direction (Figure 5).

In other words, buildings have a defined ground size
(X and 2), but they are free to grow in height (Y) accord-
ing to the number and size of the floors. Thus, each floor
is constrained to have the same (X and Z) size as the build-
ing. The walls are constrained in each direction because
they should exactly match the floor size. They are com-
posed of windows and the number of windows is used to
represent some information. Because the walls size is con-
strained and since the number of windows may be variable,
the size of the windows is not relevant (i.e., cannot be used
to map information) although their relative size at a given
floor may be.

The design of complex 3D virtual worlds requires be-
ing able to use both constraint propagation strategies within
the same metaphor hierarchy, as we have seen above. By
mixing both constraint strategies, several propagation con-
figurations may arise — Table 1 depicts the different poten-
tial configurations.

4.4 The city example

An example of the implementation of the city metaphor is
given in Figure 6. This metaphor was used to represent a

Parent
Children

Top-Down propagation

Bottom-Up propagation

Top-Down propagation

The father allocates space for
its children — the children

respect the allocated size and

constrain their own children.

The children decide their owt

size (they constrain their owr

children) — the father allocate
space accordingly.

N

n

Bottom-Up propagation

its children — the children decide|

The father allocates space for

their own size. The potential
conflict is solved by the parent

The children decide their owt

size (they compute their size

from their own children) — the
father allocates space

using a scale operation to constrain
the size of its children.

accordingly.

Table 1. Mixing propagation

Figure 6. CyberNet Project: City metaphor. NFS data vi-
sualization tool.

NFS client/server configuration of about 60 computers. In
this metaphoric visualization example, cities are subnets,
districts are workstations, buildings are disks, and floors
are remotely access disks (each time a client workstation
remotely mounts the disk, a new floor is added to the build-
ing). Additionally, windows are file-handles — each time a
file on that server disk is opened on the client workstation,
a new window appears on the floor that represents the client
workstation.

4.5 Movement animation

Movements of objects in the world must be presented in
such a way that they do not confuse the user. A well-known
technique to try overcoming this problem is to animate the
movement of objects in the visual representation in order to
make the visual representation evolve in time in a way that
is not disruptive to the user [8].

The evolution in time is usually slowed down to make
the changes in the world appear as a smooth transition. In
other words, objects do not appear/disappear or are moved
around simultaneously. There is a four step algorithm for

a transition from a current state to a following state. First,
all deleted objects are removed. Second, remaining objects
are moved to their new position. Third, all resize opera-
tions are done. Finally, new objects are added to the world.
This animation is also used to move the user as the world
evolves, as we will see in next section.

5. Navigation and interaction

Navigation and interaction allow the user to explore and
better comprehend the information being displayed. Nav-
igation gives the user the possibility to travel among the
data and thus explore it more directly. Interaction allows
the user to interact with the world being displayed in order
to change the visualization to better meet his needs.

In this section we will tackle some of the conse-
guences of data dynamics regarding the navigation in and
the interaction with the metaphoric world. However, as it is
out of scope of this paper, we will not delve into a detailed
description of CyberNet’s navigation and interaction mech-
anisms. For further information on these subjects, particu-
larly on our navigation system, please refer to [9].

5.1 Navigating in a dynamic world

In the CyberNet visualization framework, all metaphoric
worlds are constructed using metaphoric components
(MCs) (Section 3.). MCs have mechanisms that help the
user to navigate logically inside the metaphor. The goal
is that the user navigates in the world with the mechanism
most suited to the metaphor itself. We call this principle
metaphor-aware navigatiof9].

In order to assist the user in its navigation task, the
system maintains three parameters regarding the user: the
user’s current objecin the 3D world (the closest object to
the user — the user is always associated with a MC), his
current object of interegtthe node that currently has his at-
tention) and @arget object of interegiwhere the navigation
mechanism is requested to take the user to). When the user

1: The user is looking
at the Ol

2: A new object is added
Objects and user are moved
Direction changes to follow the Ol

ol

CO

Tty

CO

CO = current object, Ol = object of interrest

Figure 7. Automatic movement of the user when objects
are moving.

is simply moving around in the world, the user’s current
object (current location) and his current object of interest
are identical. But some navigation tasks require the user to
be located in a place and to have his center of interest on
another object (an example is thik atnavigation mode).

The difficult part is to know what is the movement that
the system must apply to the user when the world evolves.
If the current object and the object of interest are identi-
cal, the simplest solution is to move the user move in the
same way that his current object is moving. This strategy
produces good results but may not be sufficient when the
current object and the object of interest differ, since the
movement of the object of interest and the movement of
the current object may also differ. In this case, for instance
for the look at navigation mode, the direction the user is
looking at must also be changed towards the new position
of the object of interest (Figure 7). There are still occlusion
problems that may occur, for instance, when the new object
that is created occludes the current object of interest. The
solution is to move the user to a new location from where
the occlusion does not apply.

5.2 Interaction and selection

In addition to the built-in navigation capabilities, the
metaphoric components also provide some interaction fea-
tures. We found it important to be able to interact with the
world in order to modify its appearance. However, the dy-
namic nature of the world implies that the current appear-
ance parameters must be saved in order to be later applied
to the new objects that may be created. If newly created ob-
jects would not inherit those parameters, the world would
lose its coherency.

One of most common ways of interacting with a visu-
alization is the selection mechanism. The user may select
objects to cluster, to render transparent or to isolate from
other objects in the world, are just a few examples. As
the world evolves the selection also evolves. For instance,
if the user selects all the elements of a district in a city
metaphor, each new building added to this district must be
automatically selected.

6. Conclusion

In this paper, we have seen that building 3D visualizations
of highly dynamic information leads to some requirements
that do not exist in the case of static information. The data
model must be able to evolve in time and these evolutions
must have repercussions on the visualization model. Strate-
gies are applied to the visualization model to minimize the
effect of objects movement inside the 3D world so that the
user is not disoriented by the modifications. To our knowl-
edge, there is no ideal solution to overcome the problem
of visualizing a world that evolves, but a well designed
metaphor with special focus on its layout management con-
straints helps the visualization to be more stable, thus more
comprehensible.

References

[1] Ben Delaney. The NYSE'S8D trading floor. IEEE
Computer Graphics and Application49(6):12-15,
November/December 1999.

[2] CyberNet Project's
http://www.eurecom.fr/"abel/cybernet.

Webpage.

[3] S. Card, J. Mackinlay, and B. Shneiderman. Readings
in information visualization: Using vision to think,
1999.

[4] P. Abel, P. Gros, C. Russo Dos Santos, D. Loisel,
and J.-P. Paris. Automatic construction of dynamic 3d
metaphoric worlds: An application to network man-
agement. Visual Data Exploration and Analysis VII
volume 3960, pages 312-323. SPIE, 2000.

[5] Jock Mackinlay. Automating the design of graphical
presentations of relational informatioACM Transac-
tions on Graphics5(2):110-141, April 1986.

[6] Michelle X. Zhou and Steven K. Feiner. Data charac-
terization for automatically visualizing heterogeneous
information. InProceedings IEEE Symposium on In-
formation Visualizationpages 13—20. IEEE, 1996.

[7] Lisa Tweedie. Characterizing interactive externaliza-
tions. In Proceedings of ACM CHI 97 Conference
on Human Factors in Computing Systeruslume 1
of PAPERS: Information Structurepages 375-382,
1997.

[8] George G. Robertson, Jock D. Mackinlay, and Stu-
art K. Card. Cone trees: Animated 3D visualizations
of hierarchical informationProc. ACM Conf. Human
Factors in Computing Systems, CHblages 189-194.
ACM Press, 28 April-2 May 1991.

[9] C. Russo Dos Santos, P. Gros, P. Abel, D. Loisel,
N. Trichaud, and J.-P. Paris. Metaphor-aware 3d navi-
gation. Proceedings of the IEEE Symposium on Infor-
mation Visualization,2000 — InfoVis2008ages 155 —
165. IEEE, October 2000.

