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Abstract—Many signal processing problems involve a Generalized
Linear Model (GLM), which is a type of linear model where
the unknowns may be non-identically independently distributed
(n.i.i.d.). Vector Approximate Message Passing for Generalized
Linear Models (GVAMP) is a computationally efficient belief
propagation technique used for Bayesian inference. However, the
posterior variances obtained from GVAMP with limited com-
plexity are only exact under the assumption of an independent
and identically distributed (i.i.d.) prior, owing to the averaging
operations involved. In numerous problems, it is beneficial not
just to estimate the unknowns but also to obtain accurate
posterior distributions. While VAMP, and especially AMP, are
applicable to high-dimensional problems, many applications
involve dimensions that are not excessively high, allowing for
more complex operations. Furthermore, in finite dimensions,
the asymptotic regime that leads to correct variances under
certain measurement matrix model assumptions is not applicable.
To overcome these challenges, we propose a revised version
of GVAMP, named reGVAMP. This method provides a multi-
variate Gaussian posterior approximation, which includes inter-
parameter correlations, and yields accurate posterior marginals
requiring only the extrinsic distributions to become Gaussian.

I. INTRODUCTION

Recovering the input signal in the context of a generalized
linear model (GLM) [1] is a fundamental challenge in the
field of signal processing. Applications involving this problem
include statistics regression [2], wireless communication [3],
and machine learning [4]. For instance, within the realm
of wireless communication, py|x often characterizes receiver
hardware and inference mechanisms, in the symbol detection
where x represents a vector of discrete symbols to be recov-
ered, or in the channel estimation and localization, where x
comprises propagation channel parameters, A could embody
the propagation features, modulation/demodulation schemes,
or pilot symbols, depending on the scenario. Viewing this
from a Bayesian perspective, the estimation of the random
vector x ∈ RN from observed measurements y ∈ RM is
often tackled through methods such as maximum a posteriori
(MAP) estimation and minimum mean square error (MMSE)
estimation. However, in certain scenarios, these methods be-
come unviable due to the optimization complexities inherent
in MAP or the intractable integrals associated with MMSE.
To tackle this challenge, one established method is approx-
imate inference. Generalized Approximate Message Passing
(GAMP) [5] stands out as a prominent and computationally
efficient approach within the realm of GLM. Expanding upon
the foundation of Approximate Message Passing (AMP) [6]
used in standard linear models (SLM), GAMP showcases its
prowess in recovering high-dimensional signals. The dynamics
of GAMP align with those of AMP, both governed by a state

evolution. Nevertheless, GAMP encounters convergence issues
when faced with an ill-conditioned measurement matrix.

A. Prior Work

In response, a solution comes as an extension to the Vector
Approximate Message Passing (VAMP) [7] algorithm, tai-
lored for GLM scenarios. This approach, named GVAMP [8],
accommodates the challenge of an ill-conditioned matrix. It
applies a vector-level Expectation Propagation [9] algorithm
on a specially designed factorization scheme.
Compared to AMP which requires i.i.d. measurement matrix
to converge, VAMP shines particularly for its converging
behavior in the scenario of a right rotationally invariant
measurement matrix, with a scalar state evolution having
been rigorously established. It is worth noting that GLM-
VAMP and its variants often assume a high system dimension,
which drives efforts to avoid complex matrix inversions and
necessitates additional approximations for efficiency.
However, the original (G)VAMP algorithm solely provides
averaged variances. This limitation serves as the impetus for
introducing the reVAMP (revisited- Vector Approximate Mes-
sage Passing) [10] for a standard linear model with arbitrary
additive Gaussian noise. it gives a Gaussian approximated
posterior distribution including inter-parameter correlations.

B. Main Contribution

In this paper, reGVAMP (revisited- Generalized Vector Ap-
proximate Message Passing) algorithm is extended from re-
VAMP to cover GLM. We derive reGVAMP by utilizing the
multivariate Gaussian marginalization under EP framework.
In reGVAMP, each likelihood and prior is approximated by
a Gaussian distribution. Like reVAMP, it results in an ap-
proximated posterior within the Gaussian family and gives a
covariance matrix with inter-parameter correlations.

II. DERIVATION UNDER EP FRAMEWORK

We consider here a generalized linear model

px(x)=
∏N

i=1 pxi
(xi), z=Ax, py|z(z) =

∏M
j=1 pyj |zj (zj),

(1)
where the ratio N/M is a constant. We interpret the linear
mixing as a conditional probability

pz|x(x, z) = δ(z−Ax). (2)



We obtain the posterior probability by

px,z|y(x, z) ∝ px,y,z(x,y, z)
=
∏

j pyj |zj (zj)pz|x(x, z)
∏

i pxi
(xi).

(3)

We want to approximate this true posterior by

qx,z|y(x, z) ∝
∏

j qzj |y(zj)
∏

i qxi|y(xi)

∝
∏

j qyj |zj (zj)qyj ,zj
(zj)

∏
i qxi

(xi)qy|xi
(xi),

(4)

where for all the events E, qE is the Gaussian approximation
for pE . We shall also see later that qyj ,zj

and qy|xi
are fully

determined by qyj |zj and qxi . Ideally, we wish to find an
approximation by minimizing

KLD[px,z|y∥qx,z|y]

=
∑
j

KLD[px,z|y∥qzj |y]+
∑
i

KLD[px,z|y∥qxi|y]+c

=
∑
j

KLD[pzj |y∥qzj |y]+
∑
i

KLD[pxi|y∥qxi|y]+c,

(5)

where we define KLD(p∥q) =
∫
p(x) log p(x)

q(x)dx to be the
Kullback-Leibler divergence. We can minimize alternatingly
w.r.t. the factors qzj |y and qxi|y . The true posteriors for zj
can be written as

pzj |y(zj) ∝
∫
px,y,z(x,y, z)dxdzj

= pyj |zj (zj)
∫
pyj |zj

(zj)pz|x(x, z)px(x)dxdzj
= pyj |zj (zj)pyj |zj (zj)pzj (zj) = pyj |zj (zj)pyj ,zj

(zj),
(6)

where we define the notation ∀z∀j, zj denotes all the elements
in z except the j-th element.
A similar procedure can be done to derive the true posterior
for xi,

pxi|y(xi) ∝ pxi
(xi)

∫
py|z(z)pz|x(x, z)pxi

(xi)dxidz
= pxi(xi)py|xi

(xi).
(7)

To make the computation tractable, we approximate the extrin-
sic pyj ,zj

and py|xi
(xi) as Gaussian. If Gaussian distributions

are close approximations for pyj ,zj
and py|xi

, then due to the
Central Limit Theory, we have at convergence

KLD[pzj |y∥qzj |y] ≃KLD
[
pyj |zj · qyj ,zj

∥qyj |zj · qyj ,zj

]
=E

[
ln

pyj |zj (zj)

qyj |zj (zj)

]
∑

i KLD[pxi|y∥qxi|y] ≃ KLD
[
pxi

· qy|xi
∥qxi

· qy|xi

]
= E

[
ln

pxi
(xi)

qxi
(xi)

]
,

(8)
where

qyj ,zj
(zj) ∝

∫∫
qy|z(z)δ(z−Ax)qx(x)dxdzj

qyj |zj (zj)
;

qy|xi
(xi) ∝

∫∫
qx(x)qy|z(z)δ(z−Ax)dzdxi

qxi(xi)
,

(9)

and the two expectations are calculated with respect to the
tilted posteriors

qzj |y(zj) ∝ pyj |zj (zj)qyj ,zj
(zj) (10)

qxi|y(xi) ∝ pxi
(xi)qy|xi

(xi) (11)

respectively. It is worth noticing that these tilted posteriors can
be identified as marginal posterior with Gaussian approximated
extrinsic.

A. Output Node

At the output node, we optimize the first expression in (8).
We denote

qy|z(z) =
∏

j qyj |zj (zj) := N (z|mz,Dτz)

qx(x) =
∏

i qxi
(xi) := N (x|mx,Dτx),

(12)

where
Dτz = diag[τz]; Dτx = diag[τx]. (13)

The diag operation either transforms a vector into a diagonal
matrix or extracts the diagonal elements from a matrix into a
vector identical to the MATLAB function.
The optimization of the first KLD in (8) is equivalent to
matching the first and second order moment with respect to
zj of the tilted posterior given by (10). We first compute the
marginalization step of the tilted posterior

qzj |y(zj) ∝
∫ ∫ pyj |zj (zj)

qyj |zj (zj)
qy|z(z)δ(z−Ax)qx(x)dxdzj

=
pyj |zj (zj)

qyj |zj (zj)

∫
qy|z(z)

∫
δ(z−Ax)N (x|mx,Dτx)dxdzj

=
pyj |zj (zj)

qyj |zj (zj)

∫
N (z|mz,Dτz)N (z|Amx,ADτxA

T )dzj
(14)

From the second line to the third line, we consider an auxiliary
joint probability

p̃x,z(x, z) = pz|x(x, z)p̃x(x) :=δ(z−Ax)N (x|mx,Dτx).
(15)

Since z = Ax and x ∼ N (mx,Dτx), we have z ∼
N (Amx,ADτxA

T ). The integral in the last line can be
viewed as a multivariate Gaussian marginalization of Gaussian
joint posterior (with x marginalized out)

N (z|mz,Dτz)N (z|Amx,ADτxA
T ) ∝ N (z|mẑ′ ,Cẑ′),

(16)
where

Cẑ′=(D−1
τz
+(ADτxA

T )−1)−1=A(D−1
τx
+ATD−1

τz
A)−1AT ;

mẑ′ = Cẑ′(D−1
τz

mz + (ADτxA
T )−1Amx)

= A(D−1
τx
+ATD−1

τz
A)−1(D−1

τx
mx +ATD−1

τz
mz).

(17)

Denote
τẑ′ = diag[Cẑ′ ], (18)

we then obtain the extrinsic/cavity distribution qyj ,zj
(zj) by

multivariate Gaussian marginalization

N (zj |mpj
, τpj

) ∝
∫
N (z|mẑ′ ,Cẑ′ )dzj

qyj |zj (zj)
∝

N (zj |mẑ′
j
,τẑ′

j
)

N (zj |mzj
,τzj )

,

(19)
where

1
τpj

= 1
τẑ′

j

− 1
τzj

;

mpj = τpj

(
mẑ′

j

τẑ′
j

− mzj

τzj

)
.

(20)



Thus, the tilted posterior is proportional to

qzj |y(zj) ∝ pyj |zj (zj)N (zj |mpj
, τpj

). (21)

Matching the first and second order moment of the two
parameters in the first KLD in (8), we obtain

qyj |zj (zj)qyj ,zj
(zj) ∝ N (zj |mẑj , τẑj ), (22)

where ẑj and τzj are calculated as the mean and variances of
the tilted posterior

mẑj = Eqzj |y
[zj ] = gz(mpj

, τpj
);

τẑj = Eqzj |y
[(zj −mẑj )

2] = τpj g
′
z(mpj , τpj ),

(23)

where we denote

gz(mpj
, τpj

) =

∫
zjpyj |zj (zj)N (zj |mpj

, τpj
)dzj∫

pyj |zj (zj)N (zj |mpj
, τpj

)dzj
, (24)

and the derivative is with respect to the first parameter mpj .
The new approximated likelihood is then derived as

qyj |zj (zj) ∝
N (zj |mẑj , τẑj )

qyj ,zj
(zj)

=
N (zj |mẑj , τẑj )

N (zj |mpj
, τpj

)
. (25)

It is a quotient of two Gaussian, and thus, the approximated
likelihood is updated by

qyj |zj (zj) = N (zj |m+
zj , τ

+
zj ), (26)

where
1

τ+
zj

= 1
τẑj

− 1
τpj

;

m+
zj = τ+zj

(
mẑj

τẑj
− mpj

τpj

)
.

(27)

If sequential update is used, the j-th entry of mz and τz is
replaced with m+

zj and τ+zj before the proceeding to the update
of next variable node zj+1. The computation of (17) can be
simplified as a rank one update. To simplify the computation
of the covariance, we define

1
∆τzj

= 1
τ+
zj

− 1
τzj

. (28)

The updated covariance according to matrix inverse lemma is

C+
ẑ′ =

(
C−1

ẑ′ + ej∆
−1
τzj

eTj

)−1

= Cẑ′ − Cẑ′eje
T
j Cẑ′

∆τzj
+eT

j Cẑ′ej
.

(29)
Similarly, we define

∆mzj
= ∆τzj

(
m+

zj

τ+zj
−

mzj

τzj

)
, (30)

and the mean update is obtained as

m+
ẑ′ = mẑ′ +

∆mzj
− eTj mẑ′

∆τzj
+ eTj Cẑ′ej

Cẑ′ej . (31)

Thus, the complexity for updating each zj approximated prior
is O(N2) due to (29). The complexity for approximation at
the output node is dominated by O(N3) happening at the start
of a sweep where we need to compute Cẑ′ according to (17)
for the first time. Moreover, there are O(N) variable nodes
to be updated. In other words, the sweep over vector z has
complexity O(N3) +O(N)O(N2) = O(N3).

B. Input Node

At the input node, we optimize the second expression in (8)
with respect to qxi

(xi). This KLD’s optimization is equivalent
to matching the first and second order moment of the tilted
posterior since qxi

belongs to the Gaussian family.
With the notations defined in (12), the tilted posterior is given
by

qxi|y(xi) ∝
∫ ∫ pxi

(xi)

qxi
(xi)

qx(x)qy|z(z)δ(z−Ax)dzdxi

=
pxi

(xi)

qxi
(xi)

∫
qx(x)

∫
δ(z−Ax)N (z|mz,Dτz)dzdxi

=
pxi

(xi)

qxi
(xi)

∫
N (x|mx,Dτx)N (Ax|mz,Dτz)dxi.

(32)
Again, the last integral is proportional to a multi-variate
Gaussian marginalization of the Gaussian joint posterior (with
z marginalized out), and hence, we compute the Gaussian joint
posterior as

N (x|mx,Dτx)N (Ax|mz,Dτz) ∝ N (x|mx̂′ ,Cx̂′), (33)

where

Cx̂′ =
(
D−1

τx
+ATD−1

τz
A
)−1

;

mx̂′ = Cx̂′
(
D−1

τx
mx +ATD−1

τz
mz

)
.

(34)

To obtain the marginal distribution, we denote

τx̂′ = diag[Cx̂′ ]. (35)

The extrinsic/cavity distribution qy|xi
(xi) can be computed as

a quotient of two Gaussian distributions

N (xi|mri , τri) ∝
∫
N (x|mx̂′ ,Cx̂′ )dxi

qxi
(xi)

∝
N (xi|mx̂′

i
,τx̂′

i
)

N (xi|mxi
,τxi

)
(36)

where
1
τri

= 1
τx̂′

i

− 1
τxi

;

mri = τri

(
mx̂′

i

τx̂′
i

− mxi

τxi

)
.

(37)

The tilted posterior is proportional to the product of Gaussian
extrinsic and the prior of xi,

qxi|y(xi) ∝ pxi
(xi)N (xi|mri , τri). (38)

Analog to the discussion (22) to (24), the approximated
posterior is obtained by

qxi
(xi)qy|xi

(xi) ∝ N (xi|mx̂i
, τx̂i

), (39)

where
mx̂i

= Eqxi|y
[xi] = gx(mri , τri);

τx̂i
= Eqxi|y

[(xi −mx̂i
)2] = τri g

′
x(mri , τri),

(40)

with gx(mri , τri) defined by

gx(mri , τri) =

∫
xipxi

(xi)N (xi|mri , τri)dxi∫
pxi

(xi)N (xi|mri , τri)dxi
, (41)

and the derivative g′x(mri , τri) is once again with respect to
the first parameter mri . Hence, the approximated prior can be
updated by

qxi
(xi) ∝

N (xi|mx̂i
, τx,j)

qy|xi
(xi)

=
N (xi|mx̂i

, τx̂i
)

N (xi|mri , τri)
. (42)
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Fig. 1. Performance of GLM-reVAMP algorithm with different variable length
N .

This Gaussian quotient can be calculated by

qxi
(xi) = N (xi|m+

xi
, τ+xi

) ∝ N (xi|mx̂i
, τx̂i

)

N (xi|mri , τri)
, (43)

where
1

τ+
xi

= 1
τx̂i

− 1
τri

;

m+
xi

= τ+xi

(
mx̂i

τx̂i

− mri

τri

)
.

(44)

We use a similar method as described in (28) till (31) to
simplify the LMMSE step (34). Define

1

∆τxi

=
1

τ+xi

− 1

τxi

; ∆mxi
= ∆τxi

(
m+

xi

τ+xi

− mxi

τxi

)
. (45)

The update of (34) with the new estimated prior is

C+
x̂′ = Cx̂′ − Cx̂′eie

T
i Cx̂′

∆τxi
+eT

i Cx̂′ei
;

m+
x̂′ = mx̂′ +

∆mxi
−eT

i mx̂′

∆τxi
+eT

i Cx̂′ei
Cx̂′ei.

(46)

Therefore, at the start of a sweep, the algorithm has a com-
plexity of O(N3) due to the matrix inverse operation. After
that, during the sweep, the algorithm still has a complexity
of O(N3) because there are O(N) messages each of which
has a complexity of O(N2). This algorithm displays a nice
symmetry between the input and output nodes. Considering
both sweeps for the input and output node, the algorithm has
an overall complexity of O(N3). We conclude the discussion
in Algorithm reGVAMP.

III. SIMULATION RESULTS

We present the results of numerical experiments with varying
parameters. In this experiment, we set M to 8 and N to
{3, 5, 7}, respectively. Both the prior distribution px(x) and
the conditional distribution py|x(y|x) are assumed to follow
mixture Gaussian distributions. Specifically, they can be ex-
pressed as:

pxi
(xi) = 0.5N (xi|0, σ2

x1i
) + 0.5N (xi|0, σ2

x2i
), (47)

pyj |zj (zj) = 0.5N (yj |zj , σ2
v1j

) + 0.5N (yj |zj , σ2
v2j

), (48)

Algorithm 1 reGVAMP under EP Framework
Require: y, z = Ax, px(x), py|z(y|z)

1: Initialize: mz, τz, mx, τx
2: repeat[For iteration step t]
3: [Update the Output Nodes]
4: Cẑ′ =A(D−1

τx
+ATD−1

τz
A)−1AT

5: mẑ′ = Cẑ′(D−1
τz

mz + (ADτxA
T )−1Amx)

6: repeat[For j = 1]
7: τẑ′

j
= [Cẑ′ ]jj

8: τpj
=

τzj τẑ′j
τzj−τẑ′

j

; mpj =
mẑ′

j
τzj−mzj

τẑ′
j

τzj−τẑ′
j

9: mẑj = gz(mpj , τpj ); τẑj = τpj g
′
z(mpj , τpj )

10: τ+zj =
τpj τẑj
τpj−τẑj

; m+
zj =

mẑj
τpj−mpj

τẑj
τpj−τẑj

11: Update C+
ẑ′ and m+

ẑ′ according to (29), (31)
12: until j = M
13: [Update the Input Nodes]
14: Cx̂′ =

(
D−1

τx
+ATD−1

τz
A
)−1

15: mx̂′ = Cx̂′
(
D−1

τx
mx +ATD−1

τz
mz

)
16: repeat[For i = 1]
17: τx̂′

i
= [Cx̂′ ]ii

18: τri =
τxi

τx̂′
i

τxi
−τx̂′

i

; mri =
mx̂′

i
τxi

−mxi
τx̂′

i

τxi
−τx̂′

i

19: mx̂i
= gx(mri , τri); τx̂i

= τri g
′
x(mri , τri)

20: τ+xi
=

τx̂i
τri

τri−τx̂i

; m+
xi

=
mx̂i

τri−mri
τx̂i

τri−τx̂i

21: Update C+
x̂′ and m+

x̂′ according to (46)
22: until i = N
23: until Convergence

where σv1j
, σv2j

, σx1i
and σx2i

are independently and
uniformly drawn from the interval (0, 1]. The elements of
the measurement matrix A are drawn independently from
a Gaussian distribution N (0, γ). By adjusting γ, we can
control the signal-to-noise ratio (SNR) of the system. We
conducted simulations with SNR values ranging from 10 to
30 dB. Additionally, the recovery performance was evaluated
using the normalized mean-squared error (NMSE) defined as
∥x̂−x∥2/∥x∥2 of one realization. The NMSE of x̂mmse with
respect to x and x̂reGV AMP were chosen as performance
metrics.
The simulation results are presented in Figure 1. It is evident
from the figure that as SNR increases, the bias decreases.
Furthermore, as N approaches the value of M , the estima-
tion performance deteriorates, although the overall recovery
remains satisfactory. These results confirm the effectiveness
of the proposed algorithm.

IV. CONCLUDING REMARKS

In this paper, we proposed an iterative Bayesian estimation
method for estimating the GLM input signal which enables
us to obtain the posterior mean mx̂′ and covariance matrix
Cx̂′ at the cost of higher complexity. It also gives Gaussian
approximation for the prior and likelihood as a byproduct.
Further study is required to study its convergence behavior.
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