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Abstract—The new technologies introduced by 5G, such as
network slicing, will improve the capabilities of Vehicle-to-
Vehicle (V2V) communications, enabling the introduction of a
new range of services and new forms of Vehicle-to-Everything
(V2X) interactions. In order to deploy these V2X services and
the network slices they are associated with over the 5G network
while ensuring Quality of Service (QoS), intelligent and proactive
network resource managers and orchestrators (RMOs) need to
be developed. The ability to forecast the slice resource demand
can significantly increase the proactivity of these RMOs.

ML-based resource demand predictors (RDPs) are commonly
integrated with RMOs to provide accurate forecasts of the slice
resource demands in V2X use cases. However, prediction errors
are still common, causing the RMOs to reallocate resources to the
slices sub-optimally. When an RDP underestimates the resource
demand, i.e. predicts less demand than expected, the impact is
much more severe for the infrastructure providers (InPs) and
service providers (SPs) than when it overestimates the demand.
Also, the impact of this misprediction is also different for each
InP/SP, for which it is necessary for RDPs to also consider this
difference. In view of this, we introduce a new approach that
makes ML-based RDPs aware of the asymmetry of misprediction
and their dependence to a specific network model, making their
forecasts more useful for RMOs. This approach enhances the
design of RDPs by embedding within them knowledge of the
underlying 5G network and of the relationship between resource
demand, resource allocation and service/network performance.
We refer to our approach as Network-Aware Loss for Demand
Prediction (NALDEP), and it improves the prediction quality by
73.3% and 41.0% with respect to accuracy-based and other state-
of-the-art predictors, respectively.

Index Terms—5G, V2X, Beyond-5G, network slicing, resource
prediction, deep neural network, loss function.

I. INTRODUCTION

The new 5G standard [1] has enabled new use cases for the
communications industry as a result of the new technologies it
introduces [2]. Amongst these, network slicing [3]–[5] adds a
series of features to the communication infrastructure that en-
ables the virtualization of network resources and abstract them
into multiple virtual networks, i.e. network slices. Network
slicing improves capabilities not just for Vehicle-to-Vehicle
(V2V) communication services, but it does so as well for
communications between Vehicle-to-Everything (V2X) [6]–
[10], allowing for vehicles to communicate with more devices.
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In this context, the orchestration and management of net-
work resources amongst slices, while maintaining Quality of
Service (QoS), is in itself a complex task [9], [10], [12]–
[14]. Generally speaking, resource managers and orchestrators
(RMOs) need to be proactive instead of reactive, which
requires to anticipate the resource demand profiles of the
network slices in order to reallocate the needed resources
among them before their resource demand changes. Otherwise,
if they remain reactive without any foresight, the QoS of the
users will be compromised. Being proactive in this sense will
guarantee that the QoS requirements, usually specified through
Service Level Agreements (SLAs), are fulfilled.

For the RMOs to be proactive, they need to be aware of
the resource demand profiles of the slices. Ideally, resource
demand forecasts can be provided to the RMO, for which
AI/ML-based resource demand predictors (RDPs) can be used.
By improving RMOs’ proactivity by using RDPs, it is possible
to prevent SLA violations, i.e. QoS degradations, while in-
creasing the amount of slices deployed by improving resource
utilization efficiency. Preventing SLA violations avoids (mon-
etary) costs for the InPs/SPs, and improvements on resource
utilization efficiency reduces Operational Expenditure (OPEX)
and Capital Expenditure (CAPEX) and also increases revenue
by providing service to more users for the given resources.

SLA violations generate large costs both financial and
technical for the infrastructure providers (InPs) and/or service
providers (SPs), and the gravity and magnitude of these costs
depend on the specifics of the network infrastructure, the slices
and the services. However, when a slice gets resources beyond
its demand (get over-provisioned), no SLA violations occur but
the resource efficiency decreases instead, which doesn’t impact
the InPs/SPs as severely as SLA violations. This means that the
costs associated to under- and over-provisioning of resources,
although undesirable in both cases, is also asymmetrical.

When ML-based RDPs are integrated with RMOs [15], [16],
RDPs are designed to provide accurate forecasts. These RDPs
generate their predictions in a network and service agnostic
way. These RDPs introduce very tangible risks associated to
mispredictions for the InPs/SPs, since an RMO can make
decisions based on this agnostic predictions, and then sub-
optimally reallocate resources. Even if such conditions can be
detected fast, it will take time before resource reconfiguration
takes place, generating SLA violations in the meantime, and/or
reducing revenue. These are situations that V2X verticals
cannot afford to have. Hence, it is necessary to make network-
aware RDPs that generate contextualized forecasts for RMOs.

In view of this, we propose a framework for ML-based
RDPs that go beyond the accuracy objectives, and instead



generates resource demand predictions with an awareness of
the cost asymmetry and of the specifics of the network infras-
tructure, services and slices. We refer to this framework as
Network-Aware Loss for Demand Prediction (NALDEP). Our
approach extends the design of ML-based RDPs by embedding
knowledge of 5G network and resource provisioning models
that impact network and service performance. This knowledge
is embedded by modifying the loss functions used to train the
predictors with regularization terms [17]–[19].

From a practical perspective, the deployment and ap-
plication of NALDEP in real-world V2X services trans-
lates into: 1) reduction of SLA violations which improves
QoS for end-users, because NALDEP prevents RMOs from
under-provisioning resources to slices by avoiding under-
estimation of the resource demand, 2) increased resource
utilization efficiency for the InP by preventing resource de-
mand over-estimation which in turn prevents resource over-
provisioning [20]–[23], and 3) ensuring QoS for users amongst
slices by making NALDEP aware of the cost of resource
reconfiguration that increases OPEX/CAPEX for InPs and SPs,
a factor so far overlooked. In summary, our contributions are:

• A refined definition of network models synthesized as a
form of knowledge embedded in the loss functions to
train RDPs [24]. It extends [25] by introducing more
sophisticated formulations of the relationship between
resource allocation, prediction and SLA violations with
the purpose of steering the behavior of RDPs.

• The extended NALDEP framework for resource predic-
tion applied to 5G networks. The loss functions make the
RDP aware of the misprediction costs associated to SLA
violations, resource utilization efficiency and reconfigu-
ration, the latter of which has been so far overlooked.

• An extensive exploration of the parameter space of
the novel NALDEP-derived loss functions with different
Deep Neural Network (DNN) architectures and compar-
ison with other state-of-the-art predictors.

The rest of this paper is organized as follows. Section II
provides the background on 5G/B5G networks and traffic
prediction using ML. Section IV explains the system model
considered and Section III explains the NALDEP formulation.
Section V describes our experimental methodology. Section VI
shows our results and Section VII concludes this work.

II. BACKGROUND AND RELATED WORK

A. Overview of 5G and Beyond-5G Networks

5G brought about a leap forward in communication tech-
nologies with respect to its predecessors [1], [5]. The integra-
tion of AI/ML into the communications network, which has
ushered in an improved version of 5G commonly referred to as
Beyond-5G (B5G), is expected to push the threshold of innova-
tion even further by enabling the automation of the monitoring,
analytics, orchestration and management processes of the
network substrate for many verticals, including V2X, all while
increasing peak data rates and reducing latencies further.

Network slicing in 5G allows the creation of virtual net-
works over the same physical infrastructure, a feature attractive
for V2X verticals. Network slicing separates the InPs from

SPs (tenants), which deploy and own their slices. When a
tenant deploys a slice, the InP requires an RMO to provision
resources for the slices [26] depending on its characteristics
and desired performance (QoS) constraints.

B. Resource Allocation in V2X with Network Slicing

The tenant specifies the resources and QoS constraints
of its network slices through SLAs. But the resources that
the slices actually use may differ from those requested. If
the network slice needs more resources, the slice ends up
being under-provisioned [27]. This causes SLA violations,
generating revenue losses for the InP and poor QoS for its
users [28]. In the opposite situation, in which the network
slice uses less resources than those allocated, the network slice
becomes resource over-provisioned [27] causing the resources
to sit idle while consuming energy and increasing OPEX. In
addition, over-provisioning will potentially reduce the number
of network slices that can be deployed and will reduce the
number of users that get access to service. Moreover, network
slices have variable resource demands [10], [11], yielding a
situation in which the network slice can be over- and under-
provisioned at different points in time. Thus, it is necessary to
dynamically re-adjust the resources assigned to the slices [26].

C. Resource Demand Prediction in Network Slices for V2X

For the RMOs to proactively reallocate slice resources, they
need forecasts [4] of slice resource demand profiles [29].
One instance of this problem in 5G communication networks
occurs at the Radio Access Network (RAN) domain, in which
the resource demand profile translates into bandwidth demand.
In this work, we will use NALDEP to design RDPs for band-
width demand forecasts (Section IV). The ability to predict
traffic becomes a good approach for bandwidth management
mechanisms at the BS level [4], [30], [32].

There are many approaches for traffic prediction within the
context of 5G/B5G [20], [28], [33]–[35] and V2X [11], [16],
[36]–[38], with the latter being relatively limited. Predictors
such as those using Autoregressive Integrated Moving Average
(ARIMA) [40], Holt-Winters algorithms [4], [33], [35] and
Least Minimum Mean Square Error predictors [11] have been
extensively studied in the literature. ML has also been used
for traffic prediction, in particular Linear Regression, Poly-
nomial Regression, Gaussian Processes, Feed-Forward Neural
Networks (FFNNs) [20], [37], Long Short-Term Memories
(LSTMs) [38], [39] (some of which use attention-based LSTM
layers) and Convolutional Neural Networks (CNNs) [28], [36].
Whereas FNNs and ARIMA methods have similar perfor-
mance [41], ARIMA performs significantly worst than DNN-
based predictors designed with LSTMs [42]. Given this prior
work, NALDEP employs DNN-based predictors since these
are known to better extract features from the traffic profiles.

D. Knowledge Embedding in DNN models

Making ML-based RDPs aware of the network details and
the assymetry of the misprediction errors can be achieved with
multiple methods [43], [44]. These include, for example, pre-
processing and/or transformation of the data’s feature space



(sometimes resulting in the engineering of new features),
deploying specific DNN architectures, or even knowledge
distillation [45]–[47]. Another way is to use regularization
to embed knowledge into the RDP by translating the desired
insight into a mathematical expression and insert it as part of
the loss function, which is the approach in this paper.

Solutions such as those proposed by Sliwa [48] and Man-
alastas [49] are able to successfully predict end-to-end data
rates in vehicular 5G and handover failure, respectively, for
which they exploit additional context knowledge from the
network status. They make available this knowledge to their
predictors through their feature space. However, their ap-
proaches do not use knowledge embedding as in AI/ML, which
can generate higher potential benefits, and they don’t target
resource demand forecasts, both of which NALDEP does.

One of the few approaches we know of that use knowledge
embedding for ML was proposed by Liang et al [50]. Their
solution leverages a knowledge embedding mechanisms previ-
ously described, and it tackles the problem of power allocation
for multiple receive-transmitter pairs in a fading multi-user in-
terference channel. The authors provide a solution to determine
a power allocation profile to maximize the sum of data rates of
the receivers, for which they use a loss function that expresses
this maximization objective based on the physical transmission
model. On the other hand, NALDEP uses supervised learning
for resources demand forecasts, which is a linear regression
problem that naturally maps to this type of learning.

In general, there’s very limited literature regarding the use
of knowledge embedding (much less using regularization) into
RDPs for forecasting problems in 5G/B5G networks despite
the benefits reported by ML-based solutions for communica-
tion networks. NALDEP seeks to fill in this gap by providing
a knowledge embedding framework through regularization for
RDPs, as explained in Section III. This will extend their capa-
bilities to generate network- and resource-aware predictions,
by giving them knowledge about the misprediction costs asso-
ciated to SLA violations, resource utilization inefficiency and
costly resource reconfigurations, the latter so far overlooked.

III. ML-BASED RDPS ENHANCED WITH KNOWLEDGE
EMBEDDING WITH NALDEP

The NALDEP framework consists of an ML-based RDP
trained with a knowledge-embedding loss function that extends
it with problem domain awareness. This loss function includes
service- and infrastructure-oriented models that define the
misprediction costs for given V2X service and infrastructure
instances. The loss functions are paired with different ML-
based RDPs, generating a different predictor specific to a
V2X service or infrastructure element. The way in which
these loss functions are defined and the way they are paired
with ML-based RDPs constitute the core of the NALDEP
methodology. ML-based RDPs consist of a DNN designed to
generate resource utilization forecasts from time series data
describing the amount of used resources. From the perspective
of ML, this is a linear regression problem in which the future
value of a variable is predicted based on its historical values.

For regression cases, loss functions such as Mean-Squared
Error (MSE) and Mean Absolute Error (MAE) are the most

commonly used. However, MSE is less robust due to its
susceptibility to noise in the data and statistical outliers [51].
Huber Loss functions improve this by linearly penalizing
high variances, but quadratically penalizing smaller ones. Log
Hyperbolic Cosine (Log-Cosh) [52] has similar properties to
Huber Loss, but it can be differentiated more times.

All of these functions assume a symmetry in the mispredic-
tion cost, meaning that they make this cost independent of the
direction of the error. This is so because this loss function
gears the predictor towards improved accuracy, making it
agnostic of the problem domain. In order to create RDPs
that are useful in the context of resource manamagement and
orchestration in 5G networks, we extend the formulation of a
loss function used to train DNNs for regression problems.

Our formulation starts with the MAE loss function, shown
in (1), in which B is the batch of values used in the current
iteration, yi is the ground-truth values of the variable (i.e.
real resource demand in the context of RDPs) and ypi is
the predicted value (predicted resource demand). In an RMO
setting, the predicted resource demand ypi can be used as part
of the feature space of the RMOs’ policies in order to make
it more proactive to changes in resource demand.

MAE =

∑B
i=1 |yi − ypi |

B
(1)

Using MAE as the basis, we can define a marginal loss (per
data sample) for the MAE function according to (2). We start
with this marginal loss because it penalizes equally regions
of small and high variance. This allows for more flexibility
in the formulation of NALDEP losses, with the additional
consideration that it has no quadratic nor transcendental terms.

MAEloss = |yi − ypi | (2)

The capability of a predictor based on (2) can be enhanced
by embedding knowledge about the 5G network models as reg-
ularization terms, resulting in a new model-enhanced marginal
loss expressed in (3).

Cmodel = |yi − ypi |+ (λh)Hreg(yi, y
p
i ) (3)

In ML, it is very common to use regularization terms
to prevent over-fitting of the DNN model. In the case of
NALDEP, the constraint Hreg() embeds 5G network models to
make the predictor aware of the cost of mispredictions as they
relate to resource orchestration and management in 5G/B5G
networks. In (3), λh is a weighting factor that determines
the relative importance an RDP will give to the knowledge
embedded into it in compare to the accuracy factor. As λh

becomes larger, the RDP becomes biased into satisfying the
constraints given by Hreg . But as λh becomes smaller, then
the loss function prioritizes prediction accuracy. Thus, λh can
be used to calibrate the behavior of the RDP.

In the context of RDPs for 5G/B5G, the variables yi and
ypi of (1)–(3) represent the real and the predicted resource
demand, respectively. In this case, the predicted resource
demand is a proxy of the resources allocated to a slice when an
RMO follows the prediction with high fidelity. By considering
this, the function Hreg() in (3) can be defined as shown in (4).



Hreg(yi, y
p
i ) =


Hu−p(yi, y

p
i ) if CDu−p(yi, y

p
i ) = True

HI(yi, y
p
i ) if CDI(yi, y

p
i ) = True

Ho−p(yi, y
p
i ) if CDo−p(yi, y

p
i ) = True

(4)
Equation 4 defines a piece-wise function Hreg(yi, y

p
i ) as the

regularization term. In (4) (and here on forward), the subscripts
u-p, I and o-p refer to under-provisioning, ideal and over-
provisioning, respectively, and CD stands for conditionals. If
the conditionals in this function are dependent on the domain
of yi and ypi , then Hreg(yi, y

p
i ) becomes an approximation

constrained (regularization) function [24].
For example, CDu−p(yi, y

p
i ) in (4) represents the case when

the RDP under-estimates the resource demand, condition in
which the error direction of the RDP is negative. As previously
explained, an RMO could decide to under-provision slice
resources based on this prediction, and generate a lot of severe
costs for the InP and SPs. On the other hand, CDI(yi, y

p
i )

represents a region of ideal prediction, in which no costs
are incurred for the InP and/or the SPs, and thus neither
are penalties generated for the RPD. Above this ideal region,
there will be no SLA violations and resource over-provisioning
will be tolerated as long as it is bounded. The reason why
over-provisioning is tolerated above this region relates to the
fluctation-prone behavior of resource demand profiles, which
has small variations within the control cycle intervals in which
sampling takes place. By allowing a zero-penalty region of
over-provisioning, the resulting RDP can absorb these short-
term fluctuations without excessive resource reconfigurations,
which also imply costs for the InPs and/or SPs.

Finally, CDo−p(yi, y
p
i ) corresponds to the case where

the RDP over-estimates the resource demand, prompting
RMOs to over-provision resources for slices, which makes
inefficient utilization of network resources, generating costs
for the InPs/SPs, but less severe than those generated by
CDu−p(yi, y

p
i ).

A. Network Model Knowledge as Regularization Constraints

From the perspective of InPs/SP in 5G/B5G networks, the
costs of under- and over-provisioning resources as a response
to the RDPs inputs is dependent on multiple factors. In
this paper, we differentiate between the terms ”costs” and
”penalty”, the former referring to the quantitative/qualititave
impact that mispredictions have on InPs’ and SPs’ operations,
while the latter refers to the ”punishment” measured by an
RDP when it generates misprediction. These RDP penalties
are used to control and tune its prediction capability.

1) Penalty for Under-Estimating Resource Demand: When
a slice is under-provisioned of resources as a result of resource
demand under-estimation, an RDP experiences the following
penalties:

• A penalty proportional to the difference between the re-
sources allocated to the slice (in response to the predicted
load ypi ) and its real demand. Under-provisioning based
on ypi will increase the probability of SLA violations.

• A penalty associated to resource reconfiguration that
happens in response to the rearrangement of resources

for the under-provisioned slice. This requires hardware
and software support, which increases the total cost of
ownership for the InP [53]. This process is complex and
it is not instantaenous, even if it is automated.

When all of these considerations are accounted for, it is
possible to define Hu−p(yi, y

p
i ) as in (5). Here, TD(yi, y

p
i )

represents the penalty of service degradation as it relates
to resource demand under-estimation, while the function
RR(yi, y

p
i ) represents the penalty of resource reconfiguration.

Hu−p(yi, y
p
i ) = TD(yi, y

p
i ) +RR(yi, y

p
i ) (5)

Following a similar formulation to the one in [53], we define
RR(yi, y

p
i ) according to (6), where the parameter Cr repre-

sents the sensitivity of Hu−p(yi, y
p
i ) to the cost of resource

re-configuration. In this equation, the difference yi − ypi is
larger than zero, and the r in Cr stands for reconfiguration.

RR(yi, y
p
i ) = Cr(yi − ypi ) (6)

In the case of TD(yi, y
p
i ), there are three variations we can

consider: 1) linear, 2) quadratic, and 3) square-root definitions.
The linear case is presented in (7), in which the parameter
Cd (the d meaning degradation) represents the sensitivity
of Hu−p(yi, y

p
i ) to the cost of service degradation. In most

situations, it is expected that Cd ≫ Cr because the cost of
service degradation is expected to be more severe (negative
impact on QoS, on the business model of the InP).

TD(yi, y
p
i ) = Cd(yi − ypi ) (7)

Given the severe impact of under-provisioning and resource
demand under-estimation, the other alternatives for TD(yi, y

p
i )

(quadratic and square-root) are considered as well. Defining
TD(yi, y

p
i ) as a second-degree polynomial yields (8). When

yi − ypi > 1.0, the value of TD(yi, y
p
i ) in (8) is larger than

in (7), generating a larger penalty for the RDP. But when
yi − ypi < 1.0, (8) generates smaller penalties with respect
to (7).

TD(yi, y
p
i ) = Cd(yi − ypi )

2 (8)

The square-root definition of TD(yi, y
p
i ), shown in (9), will

generate a larger penalty than (7) and (8) when yi−ypi < 1.0,
but will generate smaller penalties than both when yi − ypi >
1.0. In many real systems, the penalty costs related to under-
provisioning grow really fast in the proximity of the predicted-
to-real demand value, reach a maximum and do not grow in-
definitely. Thus, different representations of TD(yi, y

p
i ) allows

to model different service degradation characteristics for the
network and the slices.

TD(yi, y
p
i ) = Cd

√
yi − ypi (9)

Depending on the properties of the system, Hu−p(yi, y
p
i )

can be presented in either of the three following variations
shown in (10), (11) and (12).

Hu−p(yi, y
p
i ) = (Cd + Cr)(yi − ypi ) (10)



Hu−p(yi, y
p
i ) = Cd(yi − ypi )

2 + Cr(yi − ypi ) (11)

Hu−p(yi, y
p
i ) = Cd

√
yi − ypi + Cr(yi − ypi ) (12)

2) Penalty for Over-estimation of Resource Demand: When
an RDP over-estimates the resource demand of a network slice,
causing an RMO to over-provision resources, other penalties
are considered:

• A penalty related to the idle resources, which reduces
the revenue perceived (a type of cost) for the InP due to
OPEX and CAPEX increase.

• A penalty due to resource reconfiguration, as in the case
of under-estimation.

• Assuming full resource allocation and resource overbook-
ing, a network slice with idle resources increases the
chances of under-provisioning of other network slices,
and prevents more slices to be admitted for execution.

If a slice has idle resources and the InP decides to re-allocate
them to a different slice, then resource overbooking is taking
place. If overbooking was not enabled, a slice would be taken
out of execution once the InP reclaims its resources below the
ones the slice has initially reserved [4], [54]. If a slice is
over-provisioned in this scenario, these idle resources might
be needed by another slice. However, the latter will not be
able to get the resources it needs instantaneously, resulting in
service degradation during this transient. As a result, there’s a
chance of other slices being under-provisioned.

In view of of this, it is possible to define Ho−p(yi, y
p
i ) as

shown in (13), in which RS(yi, y
p
i ) represents the penalty

of having idle resources in the network slice, RR(yi, y
p
i )

is the penalty for resource reconfiguration, and OB(yi, y
p
i )

represents the penalty of overbooking.

Ho−p(yi, y
p
i ) = RS(yi, y

p
i )+RR(yi, y

p
i )+OB(yi, y

p
i ) (13)

In this case, RR(yi) has an identical form to that of (6).
Similarly, RS(yi, y

p
i ) can also be defined linearly as shown

in (14). The parameter Cw (the w stands for waste) is the
sensitivity of Ho−p(yi, y

p
i ) to resource idleness.

RS(yi, y
p
i ) = Cw(y

p
i − yi) (14)

The term OB(yi, y
p
i ) represents a particular type of under-

provisioning penalty because it is both indirect and probabilis-
tic (because other slices are the ones that will suffer under-
provisioning). As a result, it can be modeled in a similar way
to (7), (8) and (9), as shown in (15), (16) and (17). In these
equations, the parameter Cd has an identical meaning as in
Section III-A1, and Pr represents the sensitivity of the RDP
to the condition of indirect under-provisioning of other slices.

OB(yi, y
p
i ) = PrCd(y

p
i − yi) (15)

OB(yi, y
p
i ) = PrCd(y

p
i − yi)

2 (16)

OB(yi, y
p
i ) = PrCd

√
ypi − yi (17)

Thus, Ho−p(yi, y
p
i ) can be defined using either of its three

possible forms, given by (18), (19) and (20).

Ho−p(yi, y
p
i ) = (Cw + Cr + PrCd)(y

p
i − yi) (18)

Ho−p(yi, y
p
i ) = (Cw + Cr)(y

p
i − yi) + PrCd(y

p
i − yi)

2

(19)

Ho−p(yi, y
p
i ) = (Cw + Cr)(y

p
i − yi) + PrCd

√
ypi − yi (20)

For all definitions of Hu−p(yi,y
p
i )

and Ho−p(yi, y
p
i ), the

domain of the sensitivity parameters is Cw, Cd, Cr ∈ R+

(i.e. real positive values). The values they take are instrumental
in tuning the RDP’s knowledge of the network model to the
specifics of the infrastructure and the slices. Also, their values
need to be chosen in order to make training convergence
feasible within reasonable time frames.

3) Conditionals in Hreg(yi, y
p
i ): In Eq. 4, the conditionals

CDu−p, CDI and CDo−p were defined as corresponding to
Ho−p(yi, y

p
i ), HI(yi, y

p
i ), and Hu−p(yi, y

p
i ).

For CDu−p, it is straightforward to define it as ypi −yi < 0,
where the predicted resource demand ypi for the current sample
i is smaller than the real demand yi. In the same manner,
it is possible to define CDo−p as ypi − yi ≥ ys, where the
predicted demand is larger than the real one. In the latter
expression, the term on the right is introduced as a ”safety
gap” [20] or ”slack” (the s in ys) between the predicted and
real resource demands. This value can be adjusted according
to the constraints of the InP. These are cases in which
a small degree of over-provisioning is desired in order to
prevent negative effects related to short-term fluctuations of
the resource demand profiles. Thus, CDI can be defined as
0 < ypi − yi < ys, which provides a specific definition for the
ideal allocation region. Hence, (4) can be re-written as (21).

Hreg(yi, y
p
i ) =


Hu−p(yi, y

p
i ) ypi − yi < 0

HI(yi, y
p
i ) 0 ≤ ypi − yi ≤ ys

Ho−p(yi, y
p
i ) ys < ypi − yi

(21)

The ys parameter can be shifted to move the ideal allocation
region, satisfying different InP constraints, if the services
tolerate a degree of under-provisioning without degrading
QoS. For example, (22) considers this since it defines ys
around the difference between ypi and yi, and reformulates
(21) modifying CDu−p, CDI and CDo−p.

Hreg(yi, y
p
i ) =


Hu−p(yi, y

p
i ) ypi − yi < −ys

2

HI(yi, y
p
i ) −ys

2 ≤ ypi − yi ≤ ys

2

Ho−p(yi, y
p
i )

ys

2 < ypi − yi

(22)

B. Defining Loss Functions for NALDEP

After defining the misprediction penalties and how they
relate to resource provisioning for network slices, we can
formulate a series of NALDEP loss functions. We introduce
the variable ∆xi = ypi − yi for readability and safe space.



1) Linear Loss with a Positive Region of Ideal Estimation:
Similar to [25], we will use the linear variation of Hreg(yi, y

p
i )

shown in (23), with the conditionals in (21).

Hreg(yi, y
p
i ) =

(Cd + Cr)(−∆xi) ∆xi < 0

0 0 ≤ ∆xi ≤ ys

(Cw + Cr + PrCd)(∆xi − ys) ys < ∆xi

(23)

Given this definition for Hreg(yi, y
p
i ), we can define the first

marginal loss from NALDEP, labelled C01 shown in (24).

C01 = |∆xi|+ λh ∗Hreg(yi, y
p
i ) =

λh(Cd + Cr +
1
λh

)(−∆xi) ∆xi < 0

0 0 ≤ ∆xi ≤ ys

λh(Cw + Cr+

PrCd +
1
λh

)(∆xi − ys) ys < ∆xi

(24)

In (24), the marginal loss generates zero penalty within the
ideal allocation region. We set λh = 1, integrating the differen-
tial of the MAE marginal loss into the knowledge constraints
represented by the regularization term. The resulting marginal
loss is shown in (25), considering that Cr + 1 ≈ Cr.

C01(yi, y
p
i ) =

(Cd + Cr)(−∆xi) ∆xi < 0

0 0 ≤ ∆xi ≤ ys

(Cw + Cr + PrCd)(∆xi − ys) ys < ∆xi

(25)

In (25), ys is included both in the inequality ys < ∆x and
the function corresponding to this conditional, in order to make
the marginal loss continuous in its domain. This is needed for
it to be differentiable, a condition necessary for the training
process [55]. The resulting loss function for C01(yi, y

p
i ) is

shown in (26), referred to as L01, where B is the batch size.

L01(yi, y
p
i ) = (

1

B
)

B∑
i=1

C01(yi, y
p
i ) (26)

2) Linear Loss Shifting the Ideal Estimation Region: C01

can be modified to get a new linear marginal loss C02 on
RS(yi, y

p
i ), RR(yi, y

p
i ), OB(yi, y

p
i ) and TD(yi, y

p
i ) using the

conditionals in (22), resulting in (27), and a loss function L02

similar to (26), but with C01 replaced by C02.

C02(yi, y
p
i ) =

(Cd + Cr)(
ys

2 −∆xi) ∆xi < −ys

2

0 −ys

2 ≤ ∆xi ≤ ys

2

(Cw + Cr + PrCd)(∆xi − ys

2 ) ys

2 < ∆xi

(27)

3) Second-Degree Loss in TD: In this case, we define a
different marginal loss C03 using the conditionals in (22),
together with the definitions of Hu−p(yi, y

p
i ) and Ho−p(yi, y

p
i )

used in (11) and (19). Starting the formulation from the first
term of (24) and applying a similar procedure, it yields (28).
The resulting loss function is L03, which is similar to (26) but
with C01 replaced by C03.

C03(yi, y
p
i ) =

Cr(
ys

2 −∆xi) + Cd(
ys

2 −∆xi)
2 ∆xi < −ys

2

0 −ys

2 ≤ ∆x ≤ ys

2

(Cw + Cr)(∆xi − ys

2 )+

PrCd(∆xi − ys

2 )2 ys

2 < ∆xi

(28)
4) Square-Root Loss on TD: By using (22), with

Hu−p(yi, y
p
i ) and Ho−p(yi, y

p
i ) used in (12) and (20), re-

spectively, it is possible to derive a fourth marginal loss C04.
In this instance, new approximation constraints are obtained
by changing the functions of C04 in the ranges specified by
conditionals in (22). The formulation of this marginal loss is
presented in (29), which results in a loss function L04 similar
to (26), but with C01 replaced by C04.

C04(yi, y
p
i ) =

Cr(
ys

2 −∆xi) + Cd

√
−∆xi ∆xi < −ys

2

0 −ys

2 ≤ ∆xi ≤ ys

2

(Cw + Cr)(∆xi − ys

2 )+

PrCd

√
∆xi − ys

2 ys/2 < ∆xi

(29)

IV. SYSTEM MODEL

In order to make our RDPs relevant for 5G and V2X
verticals, we will consider the resource demand forecasting
problem in a 5G/B5G communication infrastructure support-
ing V2X services. We will assume that this infrastructure sup-
ports different network slices, each associated with a specific
mobile service. This communication infrastructure possesses
all the technological domains proper of a 5G network: 1) the
5G Mobile Core, 2) a 5G transport, 3) a Multi-Access Edge
Computing Domain (MEC), and 4) a RAN Domain. In order to
be more specific, NALDEP will consider the resource demand
at the RAN, focusing mainly on the bandwidth demand at
the Base Stations (BSs) of the RAN, for which we provided
extensive related work in Section II-C. We assume also that
the MEC nodes close to the BSs run the NALDEP solutions,
in order to keep the RPDs close to the data.

We consider a RAN domain with a set G of BSs. In each
BS g ∈ G, there is a set of slices Sg belonging to different
V2X mobile services. We assume that the number of slices
|Sg| and the resources that all slices requires fit within the
capacity of g. A slice sxg ∈ Sg , in which the variable x
refers to a specific slice in BS g, generates a traffic load
(resource demand) of a specific service at different points in
time t, and this load is measured periodically with a period



of Tp, which is the frequency at which the data is sampled.
We don’t consider the traffic of a specific user equipment
(UE), but only the total traffic of the collective of the UEs.
These UEs could be mobile phones, vehicles or any system
in the V2X infrastructure. Fig. 1 illustrates the system model
considered. We deploy different RDPs to forecast the traffic
load (equivalent to resource demand) generated by three slices
{s1g, s2g, s3g} ⊂ Sg . Every slice sxg is associated with an RDP
of its own. The RDPs are DNNs that are trained with the
NALDEP-based loss functions.

Forecasting and Orchestration: Based on the time-series
data, the predictors are trained to generate a traffic forecast for
time t+Tp, in real time. The forecasts can be used by an RMO
that re-allocates resources among the slices sxg , improving the
latter’s proactivity to reduce the probability of SLA violations
and increase resource utilization efficiency. Based on the
difference between the real and predicted traffic demand, the
probability of SLA violations for each slice sxg is calculated
as well as the physical total costs associated to resource
utilization inefficiency. Figure 2 illustrates these processes
as described. The orange arrows represent the data flow for
the training process that occurs offline and periodically (once
every 12 or 24 hours), while the blue arrows represent the data
flow for performing inferences at every timestep, generating
predictions for future ones.

V. EXPERIMENTAL FRAMEWORK

Our evaluation consisted of training different RDPs with
NALDEP-based loss functions enhanced with 5G network
knowledge and insights on resource management and orches-
tration. The implementation of this framework was done in
Python 3.8 and Tensorflow 2.1 [56].

A. DNN Architectures for RDPs
Table I shows the DNN architectures used to implement

the RDPs and the parameters used for each. The chosen
hyperparameters for the STN (”Spatio-Temporal Neural Net-
work”) [34] and the 3D-CNN [28] architectures were based
on the recommendations of their respective authors. STN uses
an encoder-decoder paradigm, combining a stack of Convo-
lutional Long Short-Term Memory (ConvLSTM) and three-
dimensional Convolutional Networks (3D-ConvNet) layers.
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Fig. 1: 5G Communication Infrastructure for V2X Verticals.

In the case of DNNs based on LSTM and Conv-LSTM2D
networks, the hyper-parameters were chosen experimentally.

B. NALDEP-derived Loss Functions

Different loss functions were tested with each DNN. Our
baseline for comparison consists of three loss functions:
MAE, MSE and the loss function in [28] presented in (30).
The latter has two parameters: α and ϵ, evaluated with the
values [0.01, 0.1, 0.5, 1.0, 2.0, 5.0, 8.0, 10.0, 15.0, 20.0] and
[0.01, 0.1, 0.05, 0.25], respectively.

l′(x) =


α− ϵ(yi − ypi ) if (yi − ypi ) ≤ 0

α− ( 1ϵ )(yi − ypi ) if 0 < (yi − ypi ) ≤ ϵα

(yi − ypi )− αϵ if (yi − ypi ) > ϵα
(30)

We implemented the four loss functions L01, L02, L03 and
L04 developed in Section III-B. Every DNN architecture was
paired with these loss functions, generating 16 different (DNN,
Loss Function) pairs. For every pair, a large set of experiments
were run with different combinations of the parameters Cw, Cd

and Cr, resulting in a large number (∼ 102) of experiments.

C. Dataset Used For Experimentation

To train our NALDEP-based RDPs, we used mobile traffic
data from the city of Milano [57], assuming a communication
infrastructure as described in Section IV. This dataset was
generated from a pre-5G generation of technology. However
our RDPs are agnostic to this and they can be trained using
any time-series data that has resource demand information.
Every BS in this system processes traffic from three different
service types (calls, SMSs and Internet), each associated with
a network slice for which our NALDEP-based RDPs perform
slice-level prediction. For these data traces to be used in our
framework, they need to be processed as follows: 1) do min-
max normalization, 2) shift data to have rollback entries since
the first prediction requires a specific number of prior samples,
and 3) generate the appropriate data structure (a vector of
specific dimensions) in order to be used by the DNNs.

D. Measuring Compliance with RMO Constraints

We compare the predicted traffic values (predicted resource
demand), used as proxy for resource allocation of RMOs, to
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TABLE I: DNNs evaluated with NALDEP and their parameters. For all: learning rate=0.001, Adam Optimizer, Epochs=100.

DNN Parameters Description
Hidden
Layers

Hidden Layer/
Filter Size

Act.
Func.

Dropout
Prob.

Batch
Size

Unrolling

LSTM 4 50 tanh 0.2 42 24 Widely used for time-series prediction.
3Dcnn 4 32-16-64-32 ReLu 0.3 128 24 DNN architecture used in [28].
STN 9 3-3-3-6-6-6-6-6-4 ReLu - 128 6 DNN architecture used in [34].
Conv-LSTM2D 4 4 tanh - 128 6 Using Conv-LSTM2D (CL2D) as hidden layers.

the real traffic values of each slice (real resource demand),
and calculate the physical cost PC(o−p,i) associated to over-
provisioning of sample i using (31).

PC(o−p,i)(yi, y
p
i ) = (PIo−p)(y

p
i − yi) (31)

In (31), PIo−p ∈ R quantifies a factor of physical impact of
over-provisioning. It can, for example, represent the price (in
currency) an InP pays for wasted resources. This is different to
the sensitivity parameters used for Hreg defined in Section III,
since those are defined to tune the behavior of the RDP.
Likewise, the physical cost of under-provisioning PC(u−p,i)

for sample i is calculated with (32).

PC(u−p,i)(yi, y
p
i ) = (PIu−p)(yi − ypi ) (32)

In (32), PIu−p ∈ R is similar to PIo−p, but in this instance
it quantifies the physical impact of SLA violations i.e. of
under-provisioning. It is possible to combine (31) and (32)
into a single equation, as demonstrated by (33).

PCi(yi, y
p
i ) =

{
(PIo−p)(y

p
i − yi) if ypi ≥ yi

(PIu−p)(yi − ypi ) if yi > ypi
(33)

In order to simplify (33), we normalize the quantified
physical cost with respect to PCu−p, which yields (34), for
which we introduce the variable CRUP

OP
as the ratio between

the PCo−p and PCu−p in (35).

CROP
UP

=
PCo−p

PCu−p
(34)

PCi(yi, y
p
i ) =

{
(CROP

UP
)(ypi − yi) if ypi ≥ yi

(1.0)(yi − ypi ) if yi > ypi
(35)

This ratio allows to understand PIo−p as a function of
PIu−p. For example, for CROP

UP
= 0.2, the resulting physical

cost PCt(yi, y
p
i ) corresponds to the case where PCo−p is 20%

that of PIu−p. In our evaluation, we use two different values
for CRUP

OP
: 0.5, and 0.25.

Equation 36 is used to calculate the physical total cost TC
for each sample across a series of them. It is feasible to obtain
TC by a sum of the costs of each sample during a time period
P (usually towards the end) in which each experiment runs,
as in (36). The smaller the value of TC, the better performing
the (DNN, loss function) pair is.

TC =
i=P∑
i=1

PCi(yi, y
p
i ) (36)

(a) Normalized TC for CROP
UP

= 0.5 (less is better) in BS A.

(b) Normalized TC for CROP
UP

= 0.5 (less is better) in BS B.

Fig. 3: Normalized TC for two BSs for CROP
UP

= 0.5

VI. RESULTS AND EVALUATION

First, we evaluate NALDEP considering a network slice
of the same type in two different BSs, labeled A and B,
respectively. Second, we evaluate NALDEP considering the
aggregate of the same slice type across the BSs. In order
to ease readability of the result, the legend in the figures
has been formatted as follows: {DNN}-{Loss Function}-
{Parameters}, in which ”lf0x → L0x” represent the NALDEP
loss functions. The parameters are: w → Cw, r → Cr,
d → Cd, sl → ys, lr → Learning Rate, e → ϵ and a → α.
Different combinations of these yield an RDP with different
sensitivity to slice resource over- and under-estimation, and to
reconfigurability operations. Here, we want to evaluate what is
the knowledge-enhanced RDP, with the best sensitivity tuning,
with the smallest TC.

A. Evaluating Predictions of the Slices in Two Base Stations

In this section, we show the results of BSs A and B chosen
at random from the set of BSs present in the dataset. Showing
all BSs is not feasible due to space constraints, but other BSs
were examined, and they all present a consistent behavior.

1) Results for CROP
UP

= 0.5: Figure 3a shows the normal-
ized TC for CROP

UP
= 0.5 in A. In this case, the (LSTM,

L04) pair generates the smallest TC (best performance). The
pairs (STN, MSE) and (LSTM, Ldeepcog) perform 10.0% and



(a) Probability of SLA violations for A.

(b) Probability of SLA violations for B.

Fig. 4: SLA violation probability for CROP
UP

= 0.5

10.6% worse, respectively. Figure 3b shows the normalized
TC for CROP

UP
= 0.5 in B. In this case, the (3Dcnn, Lecatp04)

pair performs the best. The pair (STN, MSE) performs 47.6%
worse, and the pair (3Dcnn, Ldeepcog) has a TC 35.3% worse.

Notice that different (DNN, Loss Function) pairs perform
the best for different BSs. For A, the LSTM-based DNNs
perform better, while in B, it is the 3Dcnn-based DNNs. This
is because different DNNs are better at extracting different
features from the data, implying that BSs have traffic profiles
with different properties. In all cases, NALDEP-derived loss
functions generate less SLA violation costs. Moreover, there
is a very small difference in performance among the (DNN,
Loss Function) pairs that use NALDEP-based loss functions,
and they perform significantly better than Ldeepcog and MSE.

Fig. 4 shows the SLA violation probability for both BSs,
showing that the (3Dcnn, Ldeepcog) pair has the smallest
one for B, despite being the (3Dcnn, Lecatp04) pair with
the smallest penalty in Fig. 3b. In order to understand this,
we need to look at the avg. magnitude and probability of
under- and over-estimation, shown in Fig. 5. Notice that the
(3Dcnn, Lecatp04) pair has a larger magnitude (Fig. 5b) and
probability (Fig. 5c) of over-provisioning, but the smallest
under-provisioning magnitude (Fig. 5a). We make two obser-
vations regarding these results: 1) the over-provisioning cost
of (3Dcnn, Ldeepcog) is large enough to overcome the fact that
CROP

UP
= 0.5, 2) the (3Dcnn, Lecatp04) pair performs the best

due to its low SLA violation probability and its low magnitude
of over-provisioning. These observations demonstrate the need
to consider the costs of resource over-provisioning, not only
for SLA violations, when evaluating the quality of an RDP.

2) Results for CROP
UP

= 0.25 for Two BSs: Figure 6a shows
the normalized penalty for CROP

UP
= 0.25 in A, meaning

that the cost of resource under-estimation is 4x the cost of
over-estimation. In this case, the (LSTM, L04) pair incurs the
smallest misprediction penalty. The pair (STN, MSE) performs

(a) Average magnitude of under-provisioning for BS B.

(b) Average magnitude of over-provisioning for BS B.

(c) Probability of over-provisioning for BS B.

Fig. 5: Avg. magnitude of under- and over-provisioning, and
probability of over-provisioning for B, CROP

UP
= 0.5.

(a) Normalized TC for CROP
UP

= 0.25 (less is better) in BS A.

(b) Normalized TC for CROP
UP

= 0.25 (less is better) in BS B.

Fig. 6: Normalized TC for two BSs for CROP
UP

= 0.25



(a) Probability of SLA violation in A (less is better).

(b) Probability of SLA violation in B.

Fig. 7: SLA violation probability for CROP
UP

= 0.25

33.2% worse, and the pair (LSTM, Ldeepcog) has a penalty
3.7% worse. Figure 6b shows the normalized penalty for B.
In this case, the (3Dcnn, L04) pair performs the best. The
(3Dcnn, Ldeepcog) pair has a penalty 12.3% larger (worse),
and the pair (3Dcnn, MSE) performs 73.3% worse.

Fig. 7 shows the probability of SLA violations for both
BSs, showing that the (3Dcnn, Ldeepcog) pair has the smallest
probability for B, despite being the (3Dcnn, L04) pair the one
that generates the smallest TC. In the case of A, the (LSTM,
Lecatp01) pair shows the smallest SLA violation probability.
Following a similar reasoning to the case of CROP

UP
= 0.5, we

need to look at the avg. magnitude and probabilities of under-
and over-provisioning for B, shown in Fig. 8.

In Fig. 8, the (3Dcnn, Ldeepcog) pair presents the largest
magnitude of under- and over-provisioning, with the larges
probability of over-provisioning. The large magnitude of the
(3Dcnn, Ldeepcog) pair is what increases its penalty cost. Even
considering that CROP

UP
= 0.25, it still achieves a larger TC

due to the large amount of over-provisioning it generates. A
similar thing happens to the (LSTM, Lecatp01) pair in A, but
we omitted those figures for lack of space.

B. Evaluating Predictions Across Multiple Base Stations

1) Results for CROP
UP

= 0.5: Figure 9a shows the aggre-
gated normalized TC for CROP

UP
= 0.5 across BSs. In this

case, the (STN, L01) pair performs the best. The (LSTM,
Ldeepcog) pair performs the worse with a TC 41.0% higher.

Figure 9b shows that the probability of SLA violation
correlates with the TC of each pair, except for (STN, L04)
that shows a lower probability than (STN, L01). In order to
understand this, we look at Figs. 9c, 9d, 9e which show that
the first and second pair have a similar under-provisioning
avg. magnitude, with (STN, L04) having a larger one enough

(a) Average Magnitude of Under-provisioning.

(b) Average Magnitude of Over-provisioning

(c) Probability of over-provisioning.

Fig. 8: Metrics for base station B for CROP
UP

= 0.25

to push upwards its TC. This demonstrates further that the
penalty for over-provisioning needs to be considered.

2) Results for CROP
UP

= 0.25: Figure 10a shows the
aggregated normalized penalty for CROP

UP
= 0.25 across BSs,

with the (STN, L04) pair having the smallest TC, followed
by (STN, L01) with a TC 9.6% larger (worse). The (3Dcnn,
Ldeepcog) pair with ϵ = 0.1, α = 0.1 has a TC 27.3% higher,
while (3Dcnn, MSE) performs 29.2% worse.

Figures 10b and 10a show that a reduction in the probability
of SLA violations corresponds to a reduction in the TC.
However, the (3Dcnn, Ldeepcog) pair shows a lower probability
of SLA violations than (STN, Lecatp04). Fig. 11 shows that
the (3Dcnn, Ldeepcog) pair has a slightly larger probability
and magnitude of over-provisioning, and a very comparable
magnitude of under-provisioning. These three factors push
upwards the TC of the (3Dcnn, Ldeepcog) pair.

3) Discussion: The NARLEP-based loss L04 generates the
best results for the DNNs in A and B when considering
CROP

UP
= 0.5 and 0.25, while the accuracy-oriented loss

functions used as baselines, namely MSE and MAE, con-
sistently generate the worst quality of prediction (high TC).



(a) Aggregated Normalized Total Penalty.

(b) Probability of SLA Violations.

(c) Avg. Magnitude of Under-provisioning.

(d) Avg. Magnitude of Over-provisioning.

(e) Probability of Over-provisioning.

Fig. 9: Aggregate metrics for CROP
UP

= 0.5 (less is better)

We also noted that the (3DCNN, Ldeepcog) pair in B for
both values of CROP

UP
is less prone to under-estimate the

demand (Figs. 4b and 7b, ), but very prone to over-estimate
it. For all the parameters explored, it generated minimal costs
for SLA violations at the expense of over-estimating demand

(a) Aggregated Normalized Total Penalty.

(b) Probability of SLA Violations.

Fig. 10: Penalty and Probability of SLA violation for
CROP

UP
= 0.25 (less is better)

(a) Average under-provisioning magnitude.

(b) Average over-provisioning magnitude.

(c) Probability of over-provisioning.

Fig. 11: Metrics across BSs for CROP
UP

= 0.25 (less is better)

i.e. causing inefficient resource utilization. Similar behavior
regarding over-stimation is presented by L01 in Fig. 7a.

In addition, we note also that for each individual BS,



different DNN architectures trained with NALDEP-based loss
functions generated the least TC, being LSTM and CNN
architectures for A and B, respectively. This result shows
that, for time-series forecasting, different DNN architectures
to implement RDPs with knowledge embedding extract better
the features present in the data. This capability of the DNNs is
also affected by the sensitivity parameters Cd, Cw, Cr and ys.
These data set features in question still need to be determined.

When aggregating inputs from multiple BSs, STNs with
a NALDEP-based loss function generates the smallest TC.
This result can be partly explained due to the fact that STN
architectures exploit spatial correlation present in the data.
In this case, the NARLEP-based L01 loss generated the best
prediction quality. Similarly to the individual cases of A and
B, the sensitivity to service degradation Cd of the RDP is also
2 to 4 times higher than Cr and Cw.

VII. CONCLUSIONS

Our results for NALDEP show that embedding knowledge
about network models and resource prediction and manage-
ment increases the quality of the predictions, improving the
proactivity of RMOs. This decreases the probability of SLA
violations and increases resource utilization efficiency.

We showed that different (DNN, Loss Function) pairs using
NALDEP-based loss functions generate the best prediction
performance for the same slice in different BSs. The effec-
tiveness of the (DNN, Loss Function) pairs is related to how
well the DNN extracts features from the traffic profiles and
the parameters of the NALDEP functions. When aggregating
costs across BSs, we could observe that the STN architecture
with NALDEP loss functions offered the best performance.

For future work, further refinement of the network and
resource provisioning models will be required. A deeper explo-
ration of the relation between individual BSs and aggregated
TC using NALDEP is also of importance, since this will
provide deeper analysis of the traffic profiles. Integration of
NALDEP with an RMO is also a necessary future step.
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