
Case study of WebAssembly Runtimes for AI
Applications on the Edge

Saif eddine Khelifa∗, Miloud Bagaa∗, Ahmed Ouameur Messaoud∗, Adlen Ksentini§
∗ Department of Electrical and Computer Engineering, Université du Québec à Trois-Rivières,

Trois-Rivières, QC, Canada. Emails: saif.eddine.khelifa, miloud.bagaa, messaoud.Ahmed.Ouameur@uqtr.ca
§ EURECOM, Sophia-Antipolis, France. Email: adlen.ksentini@eurecom.fr

Abstract—In the realm of Artificial Intelligence (AI), the need
for immediate response times has given rise to the Cloud Edge
Computing Continuum (CECC). This new paradigm, aided by
emerging technologies, addresses latency and network delays
while promoting portability, security, and efficiency, thereby
enhancing Quality of Service (QoS). A noteworthy technology
in this context is WebAssembly (Wasm), originally conceived
to amplify web performance. It has transitioned to the CECC,
primarily due to key enablers like the WebAssembly System
Interface (Wasi) and the Wasm runtime. Besides offering height-
ened security through its sandboxing mechanism, WebAssem-
bly’s compact code paves the way for rapid cold start times and
seamless migration in AI applications. However, with WebAssem-
bly’s nascent integration into the CECC, several questions arise.
Prominent among them is the efficiency of deploying AI tasks
in Wasm binary format, particularly the performance of Wasm
runtimes in AI-centric tasks and potential factors affecting such
executions. Addressing these queries, our study examines various
deep-learning models on standalone WebAssembly runtimes.
Our findings indicate that, for smaller networks with optimized
parameters, standalone runtimes approach native performance,
presenting just a 1.1x overhead on average. Contrarily, networks
with an extensive parameter set exhibited pronounced overheads.
We also identified multiple factors, associated both with run-
times and neural networks, offering insights for future research
endeavors.

I. INTRODUCTION

During the last decade, cloud computing gained much
attention among researchers and industry; thus, cloud services
have become increasingly common. Despite all of this, cloud
services have become typically unable to respond in real-time
to intensive computer vision tasks due to inherent service
latency and network delay brought on by congestion or
distance [1]. WebAssembly known as Wasm [2], is a low-
level binary instruction format designed in 2015 to be used
in the browser to permit security and meet portability and
performance features as an extension to JavaScript perfor-
mance drawbacks. Furthermore, Wasm enables the execution
of the code on the web, which would be quicker and more
effective. Wasm features pushed the research community to
bring it beyond the web, more specifically Edge computing,
executing Wasm in such an environment was associated with
standalone runtimes also a WebAssembly System Interface
(Wasi) in order to access and perform on the underlying host
platform [3].

Despite the evident advantages of WebAssembly, particu-
larly its adaptability to edge environments for enhanced secu-
rity and portability, a pertinent research challenge emerges the
efficiency of Wasm runtimes in deploying AI applications as
Wasm binaries. The central questions of this inquiry include:

How does a standalone WebAssembly runtime perform
when executing AI tasks? What quantity of memory is requi-
sitioned by the Wasm runtime to accomplish such operations?

Are all WebAssembly runtimes aptly equipped for AI tasks?
The urgency in addressing these questions stems from the
imperative nature of constructing portable AI solutions tai-
lored for edge computing. When we deploy resource-intensive
AI tasks without meticulous planning and optimization, we
risk sub-optimal performance. Moreover, adapting the Wasm
runtime to every unique system architecture is a formidable
task. Given these complexities, an in-depth study gauging
the efficiency of WebAssembly runtimes for AI applications
becomes vital for future decision-making.

This paper aims to contribute with a use case study on AI
tasks for WebAssembly standalone runtimes using Wasi with
pure WebAssembly because an existing Wasi-Like solution
for AI inference was already introduced called Wasi-nn [4].
However, this technology was not fully generalized on all
WebAssembly runtimes; thus, we conducted our study on
pure WebAssembly inference using Wasi to examine as many
as possible runtimes with the five most used runtimes in
the market today : Wasmtime [5] , Wavm [6],Wasmer [7],
Wasmedge [8], Wamr [9]. Hence, we constructed a simple
Case Study pipeline, that can be extended by future research
to have an AI benchmark suite as MlPerf [10] benchmark
developed by NVIDIA. Hence, we selected a bunch of popular
Deep learning architectures: VGG [11], Mobilenet V1 [12],
Mobilenet V2 [13], YuNet [14] with different parameters.
In summary, the contributions of the paper are manifold,
including:

• We examined the performance overhead of WebAssem-
bly standalone runtimes for Deep learning tasks despite
its portability and security.

• We created a Case Study pipeline for Wasm standalone
runtimes that targets future insights on constructing an
entirely pure functional WebAssembly MlPerf suite.

• We summarized our findings in the well-structured dis-
cussion that can be used to assess the choice of We-
bAssembly standalone runtime regarding the AI task.

The rest of the paper is organized as follows. Section II
presents the background knowledge of WebAssembly and
related works. Section III describes the methodology of our
study. Section IV leverages the experiments and results we
had. Finally, the paper is concluded in Section V.

II. BACKGROUND AND RELATED WORKS

This section explores the WebAssembly (Wasm) format,
its standalone runtimes, and its current limitations in edge
computing and related work upon all of this.

A. WebAssembly enablers on the edge

The WebAssembly System Interface (Wasi) is a crucial
enabler for edge computing environments, providing security



by allowing access to resources, such as sockets and files. It
also provides 46 functions to enable WebAssembly programs
to interact seamlessly with the host platform and can be
converted from POSIX to Wasi calls using popular language
compilers like C and Rust [15].

The second key enabler for WebAssembly independency
is the standalone WebAssembly runtimes, these runtimes can
execute the WebAssembly module in two ways Interpreter
mode, and JIT compilation mode both these modes are crucial
for AI tasks or any applications compiled down to Wasm
binaries.

Just-in-Time Compilation : JIT compilation automatically
converts Wasm code to native binary code, allowing it to be
performed immediately on the host computer. By exploiting
the speed of compiled native code, this strategy provides
significant performance advantages. JIT compilation, on the
other hand, may incur a one-time compilation overhead that
can be partially amortized if the produced code is executed
several times [16].

Interpretation: Interpretation is a technique to read and
execute WebAssembly instructions. It relies on high-level lan-
guage functions. While this method is more portable and has
lower compilation costs, it generally performs less than JIT
compilation due to the overhead associated with interpreting
instructions during execution.

Furthermore, standalone WebAssembly runtimes often mit-
igate the drawbacks of JIT compilation runtime by using
ahead-of-time compilation (AOT) that compiles code into
native binary code in advance, then loads this code into
the memory whenever the Wasm module is invoked for
execution; thus, it enhances the overall performances in terms
of compilation time and execution time [16].

B. Wabassembly Pitfalls on Edge

• Compilation Challenges and Platform Support: Consid-
ering edge computing’s heterogeneous nature and due
to Wasi’s limited support for system calls, compiling
applications to Wasm can be problematic. Extending
Wasi to conform to POSIX completely may limit Wasm’s
ability to execute in the many contexts prevalent in
edge computing scenarios. As a result, developers must
choose between portability and compatibility [15]. For
instance, Wasi-nn is an extension of the Wasi-like in-
terface to execute machine learning. Its main goal is
to make an API on top of WebAssembly runtime that
can access GPU hardware to perform inference of an
AI task [4]. However, this can limit the portability of
Wasm application due to the fact some Wasm runtimes
don’t implement these features, e.g. Wasmer. Thus a
device that uses Wasmer as its interpreter can struggle
to execute the Wasm binaries generated using Wasi-
nn Wasmtime bindings; in addition, the current Wasi-
nn implementation on Wasmtime runtime supports only
OPENVINO as backend, which by itself supports only
Intel processors, thus limits further the portability aspect
even further. Other recent works were to adapt Wasi-nn to
onnx through onnx-runtime [17]. However, there is still
a long way to go for fully portable API AI inference.

• Memory Limitations: Edge devices often have limited
resources, such as memory capacity. Wasm presents an
issue of memory footprint [15], which may not be enough
for some edge computing use cases. Borui Li et al. have

proposed a solution to this problem [18], whereby a
lightweight WebAssembly runtime has been suggested
for resource-constrained devices.

C. Related work

We discuss how prior initiatives inspired and encouraged us
in this part. Even though state-of-the-art [16], [19] described
a few AI tasks, without mentioning whether deep learning
networks were employed or if a machine learning algorithm
was used. Furthermore, they ran their tests on a single image
input without considering batch size, which is an essential
factor in AI inference. Finally, they rely on their research on
the overall process time of the AI task, which includes both
loading and inference time. This distinction is vital because
loading time can be improved by using better-optimized Wasi
interfaces I/O. In contrast, inference time is a parameter
related to both runtime and the AI task, i.e., the neural
network. Our work varies from others in that our goal is to
investigate the effectiveness of WebAssembly runtimes for AI
tasks carefully and the feasibility of running these tasks on
independent runtimes to meet the requirements of the edge
computing environment, i.e., AI as a Service (AIaaS). Finally,
our study introduces a simple case study pipeline, which is
most likely a simplified version of MlPerf.

III. METHODOLOGIES

In this section, we describe our process throughout this
research. First, we conducted our study by looking at the
candidate deep learning networks that work with WebAssem-
bly runtimes, followed by runtime selection, and finally, we
established a case study pipeline and characterized our results.

A. Model selection

Considering the constraints imposed by the tract tensorflow
library in Rust, we carried out a series of experiments on
various computer vision tasks and networks that were publicly
accessible. From the plethora of pre-trained models at our
disposal [20], we selected those most commonly employed
for classification and object detection tasks, which were
highly compatible with tract tensorflow. Nevertheless, it was
necessary to make some changes to the source code. The fixed
issues have been pushed to the tract public GIT repository. The
models that operated successfully after these adjustments are
described in Table I

B. Runtimes selection

To select WebAssembly runtimes, we based on the follow-
ing criteria :

• Support of Wasi is a must since we are going to use file
system I/O to load the models

• Toolchain maturity covers and runs on most of Wasi
instructions and functions

• Runtime is recently underdeveloped and being used by
the community

• Runtime that handles AI models inference (example :
Wasm3 [21] can’t handle AI tasks)

These criteria are crucial for both the technical and the
research parts; thus, the selected runtimes are the following:

• Wavm: [6] is a standalone WebAssembly runtime that
executes WebAssembly programs using an LLVM-based
JIT compiler. It converts WebAssembly code to LLVM
Intermediate Representation (IR), then uses an LLVM



JIT compiler to convert LLVM IR to native binary code.
Wavm can produce high-quality native binary code by
exploiting the numerous optimizations within the LLVM
architecture.

• Wasmer: [7] Wasmer is a WebAssembly runtime that
can function as a standalone or library embedded in
languages. It supports JIT compilers, such as SinglePass,
Cranelift, and LLVM, offering a trade-off between com-
pilation speed and native code quality.

• Wasmedge: [8] Wasmedge is a lightweight, high-
performance, and extensible WebAssembly runtime for
cloud-natives provides a well-defined execution sandbox
that uses an interpretation-based execution mechanism.

• Wasmtime: [5] Wasmtime is the official WebAssembly
runtime developed by the Bytecode Alliance. It employs
a Just-In-Time (JIT) compilation based on Cranelift to
execute WebAssembly binaries.

• Wamr : [9] The WebAssembly Micro Runtime (Wamr)
is a lightweight, standalone WebAssembly runtime built
for low-power, resource-constrained devices. it uses an
interpretation-based execution mechanism.

C. Case study pipeline

In our research, we carried out a pipeline that began with
extracting checkpoints from pre-trained models. Subsequently,
we constructed a custom freezing function utilizing the Ten-
sorFlow v1 library within TensorFlow v2 [22], as TensorFlow
v1 is no longer supported. This freezing function allowed us to
convert the checkpoints into a frozen graph (protobuf) format
compatible with the tract tensorflow library. Following this,
we loaded the model into Rust and employed the cargo and
Wasm32-Wasi toolchain for further processing and execution.

IV. PERFORMANCE AND RESULTS

In this section, we study the generated results from our
case study and test the performance of our WebAssembly
standalone runtimes on three metrics: Memory against deep-
learning models parameters, Execution time against deep-
learning models parameters, and Inference time-Load time. We
have also studied the optimized binaries using the AOT (ahead
of time) method. The case study was tested on Hardware
specifications as follows: Processor AMD architecture x86
Ryzen 9 5900X CPU and 12GB RAM DDR4 main memory,
The operating system Ubuntu 20.04 LLVM 12.0, Cargo 1.69
It is imperative to highlight that our research endeavors to
delineate and categorize the variables involved in executing
artificial intelligence tasks in WebAssembly (Wasm) binary
format. This is undertaken to guide future research in the
field, Moreover, as mentioned above, all test codes were
performed in default 0-level optimization all models were
tested on the publicly available dataset ImageNet [23] since
it is the most used dataset for different computer vision
tasks with 10000 classes. Finally, it’s noteworthy that some
WebAssembly runtimes failed to execute some of the models
due to memory limits like Wamr and great time overhead like
Wasmedge thus some combinations may not be found in the
graphs, Also, all values in all graphs are modified through
the equation below 1 for clear graphs visualization value ’v1’
can be ’GB’ memory or ’Seconds’ for time and ”v2” is the
displayed value that results from the log operation, we added
’2’ since some values can be negative :

v2 = log10(v1) + 2 (1)

Finally, the deep learning models are orchestrated from the
smallest to the largest network based on the number of
parameters.

A. Overall execution Performance

In our study, we have conducted experiments on various
models utilizing Level 0 optimization compilation without
any pre-compilation. The results are presented in Figure 1(a),
where the native runtime serves as the baseline for com-
parison. As shown in Figure 1(a), the overall WebAssembly
runtimes have different time execution results that gradually
amplified from the smaller networks moving to larger net-
works with extensive parameters, We have observed several
notable aspects upon examining the results in Figure 1(a). First
and foremost, Wasmtime and Wasmer outperformed other
runtimes with a 10x difference of speed on average in all
tests (in real values), primarily due to their Just-In-Time (JIT)
compilation nature. JIT compilation is known to generate
higher-quality code, a fact that is well-established in the state
of the art [19].In contrast, the poorest results were generated
from the part of Wasmedge due to the interpretation feature,
however, an interesting note is that Wavm and Wasmer,
Wasmtime use JIT compilation, still, Wavm introduces a huge
overhead compared to Wasmer and Wasmtime due to the way
these runtimes translate the code as it’s stated in the [19] [6]
[7] [5] Wasmtime and Wasmer translate the code into Cranelift
IR then to a machine code, In contrast, Wavm translates the
code into LLVM IR then into machine code, Because LLVM
optimization passes and strategies are mature and have been
refined over many years, Still was outperformed by runtimes
that use Cranelift which its main goal was to quickly translate
WebAssembly and other IRs to machine code with decent
performance, Overall, we deduced that code translation time
to Intermediate format (Cranlefit IR /LLVM IR) plays a crucial
role in executing AI applications.

Another fascinating observation pertains to the network pa-
rameters of the AI models. We found that for most MobileNet
networks with varying convergence parameters, there was only
a small performance gap between Wasmtime, Wasmer, and
native runtimes. However, this gap widened considerably over
10x slower on average than native (in real values) due to the
number of model parameters increasing from tens of millions
to hundreds of millions of parameters, adversely impacting
all runtimes. Finally, some runtimes encountered failures with
certain networks. For instance, Wasmedge struggled with
larger networks due to prolonged execution times. On the
other hand, Wamr failed with the VGG’s network because
of memory constraints.

This implies that an optimized neural network tailored
for mobile devices and IoT devices could be a suitable
use case for AI as a service in the WebAssembly format.
Furthermore, our findings suggest that, in the context of AI
tasks, interpretation-based compilation still has a long way to
go before it can surpass the performance of JIT compilation. In
conclusion, WebAssembly runtimes standalone can be helpful
in terms of execution when it comes to serving optimized
neural networks for edge computing continuum environments
using the already mentioned methods in [24].



TABLE I: Table shows the selected models and their respective details

Neural network nn Parameters input Parameters Other Parameters
1 VGG-16 138 M 1 input image and batch-size of 3 16 conv layers
2 VGG-19 143.7 M 1 input image and batch-size of 3 19 conv layers
3 MobileNet V1 1 4.24 M 1 input image and batch-size of 3 Width multiplier = 1
4 MobileNet V1 0,5 1.34M 1 input image and batch-size of 3 Width multiplier = 0,5
5 MobileNet V1 0,25 0.42M 1 input image and batch-size of 3 Width multiplier = 0,25
6 MobileNet V2 1 3.47 M 1 input image and batch-size of 3 Width multiplier = 1
7 MobileNet V2 1,4 6.5 M 1 input image and batch-size of 3 Width multiplier = 1,4
8 Yunet 75 856 1 input image

(a) Graph shows the Time overall using equation 1 execution for each
runtime to the respective networke

(b) Graph shows the Memory consumption known as Maximum
resident set size for each runtime to the respective network using

equation 1

Fig. 1: figure shows the Time and Memory results against different deep learning networks (from smaller to larger)

B. Memory Overhead

In this section, we continue our study on memory, as previ-
ously mentioned, the memory footprint is a significant limita-
tion of WebAssembly technology. Researchers have already
begun addressing this issue. Standalone runtimes typically
attempt to load models into memory using Wasi interfaces,
resulting in substantial memory consumption. It is crucial to
examine the key factors contributing to this drawback.

During our experiments, we measured gigabytes (GB)
of memory consumption, as some runtimes exhibited high
memory usage for some networks (”VGG”). We extracted
our results by determining the maximum resident set size
(MRSS), which reflects the peak memory consumption during
a process’s execution.

Upon analyzing Figure 1(b), we observed that Runtimes
with JIT compilation have consumed less memory compared
to others over x5 less memory on average. Interestingly, Wamr
did not consume as much memory as Wasmer, despite the
latter’s superior performance in terms of time. Upon further
investigation, we discovered that Wamr has a fixed stack size
value, which limited memory usage for such tasks. Although
the stack size was set to the maximum during our case
study, as shown in Figure 1(b), Wamr’s memory consumption
was notably lower than that of Wasmer. This is because
Wamr runtime is specifically designed for IoT devices and
other resource-constrained devices, leading to more efficient
memory management. [9].

Another noteworthy observation is that memory consump-
tion remained relatively stable across all runtimes for the
MobileNet networks. This can be attributed to two factors:
The converged number of parameters, which determines the
memory allocated for computing these parameters during the
feed-forward pass, and the similar file sizes of the MobileNet
networks, which affect the amount of memory needed to load
the models from disk into WebAssembly’s linear memory.

Finally, Wasmer and Wasmtime demonstrated near-native

memory consumption, even when dealing with large networks,
such as VGG, which have hundreds of millions of param-
eters, resulting in memory consumption of around 2.5 GB
for each. These results highlight the potential for deploying
neural network models in edge computing environments using
JIT compiler standalone runtimes, as both Wasmtime and
Wasmer effectively minimized memory usage with negligible
performance overhead in larger networks compared to native.

C. AOT Compilation performance

In our pursuit of investigating WebAssembly standalone
runtimes execution, we conducted a fair comparison with
native performance as the baseline by examining the overall
execution time of all tasks and runtimes that support Ahead of
Time (AOT) compilation as shown in Figure 2 while excluding
Wamr due to its inefficiency to provide AOT compilation
format. As anticipated, utilizing AOT compilation led to a
substantial increase in execution speed for almost all runtimes.
The following improvements were observed: Wavm’s execu-
tion time improved by 75% of its original duration, signif-
icantly enhancing its performance and surpassing other run-
times during the VGG networks execution. This improvement
can be attributed to the mature optimization capabilities of the
LLVM toolchain that Wavm employs to translate code into
LLVM IR for execution. Moreover, Wasmedge interpreter-
based runtime outperformed others in Yunet and MobileNet
tasks but did not perform as well in tasks with higher numbers
of parameters. Wasmedge’s execution time was optimized by
6.57% of its original value.

Furthermore, JIT compiler-based runtimes, namely Wasm-
time and Wasmer, saw optimizations of 10% and 16% from
their original performance metrics, respectively. Despite these
improvements, they introduced some overhead in smaller
networks against interpreter-based runtimes. We conclude that
for AI tasks, particularly on smaller networks, an interpreter
compiler combined with AOT (Ahead-of-Time) compilation
is notably more effective than JIT compilers. The LLVM



Fig. 2: Graph shows the Time overall execution in AOT mode for each runtime to the
respective network using equation 1

toolchain offers significant potential for code optimization on
larger networks. However, attaining near-native performance
for these bigger networks still poses a significant challenge.

D. Inference and load time

As we proceed to examine the execution time for our neural
networks, it is crucial to consider the inference time, as it
is a key factor in the overall execution time, which consists
of both loading and inference. Analyzing these components
separately can lead to significant conclusions, as they are
related to different origins of problems. Inference time is
associated with the neural network while loading time is
connected to the Wasi interface responsible for I/O files. We
have provided the percentages of inference time contribution
to the overall execution in Table II. Upon further analysis,
we observed that, on average, inference time does not dom-
inate the execution process for smaller networks. However,
when dealing with larger networks with many parameters,
inference time becomes an essential contributor. Interestingly,
this is not the case for some runtimes, such as Wasmer and
Wasmtime, which use JIT compilation. We noted that the
inference time in larger networks, such as VGG networks,
is lower than in other networks. This can be attributed to
various factors, including the relationship between bytecode
execution and neural network operators. VGG and MobileNet
do not necessarily include the same operators (e.g., Depthwise
layer), so compiling these operators using JIT compilers can
impact inference time. On the other hand, with interpreter-
based runtimes (Wasmedge), the inference time contributes
less to the execution of the candidate neural network compared
to JIT compiler-based runtimes. This suggests that improve-
ments can potentially be made to the Wasi (loading) part to
enhance performance and possibly surpass JIT compiler-based
runtimes. In conclusion, carefully examining how runtimes
and their compilers execute AI-related operators may be the
key to developing AI-friendly runtimes that provide secure,
portable, and more efficient AI services.

E. Batch impact on execution time and memory

Finally, we examine our results in a more advanced scope
with a very important factor in the AI field, which is the batch
size of inputs. We did not want to overload the WebAssembly
runtime and thus take a huge time to execute so we fixed
the batch size of 3 images from imagenet dataset with the
dimension of 224x224 and 3 channels. We have conducted
the examination, and we explored both memory and execution
time using the equation (2), whereby t1 is the time for a neural
network for specific runtime with batch mode and t2 is the

time for a neural network for specific runtime without batch
mode. We have averaged all neural network execution times
for a specific runtime for both modes.

avg(t1)÷ (avg(t2)) (2)

Examining Table III, We observed longer execution times
in most JIT compilers, except for Wavm, which uses an
LLVM IR-based JIT. While JIT compilers generally outper-
form interpreter compilers in batch execution without AOT
mode, it’s plausible that interpreter compiler-based runtimes
like Wasmedge might excel for larger networks than VGG,
given their minimal time and memory increments in batch
mode. This area merits further investigation.

Moving on to memory overhead, we observe that all of the
runtimes, including native, require nearly the same amplifi-
cation in the amount of memory. In conclusion, increasing
the batch size has an unfavorable effect on both time and
memory for runtimes. Batch data is commonly associated with
the SIMD (single instruction multiple data) feature, which
can considerably minimize this time and memory expense,
While WebAssembly currently doesn’t support this feature
our investigations did not consider this feature even for the
native. Finally, the batch is a crucial factor when deploying AI
tasks in the WebAssembly binary format. To ensure maximum
efficiency, the batch must be fine-tuned according to the target
device or platform.

F. Discussion

In this section, we will summarize and discuss our interest-
ing findings during the examination, which will be categorized
as follows:

• Important parameterization during AI service
deployment: As discussed in previous sections and
according to our findings deploying AI services will
depend on three factors at least, target compilation
for runtime JIT or interpreter mixed with a head of
time, the second factor is Parameters of neural network
that is a very crucial factor and need to be considered
for optimization before running any AI task on
WebAssembly runtimes. Hence, there are many ways to
optimize neural networks, such as pruning, quantization,
and knowledge distillation [24], also another way of
optimization is using level 2 optimization or level 3
optimization; the last and most important factor is the
batch size of images depending on the target platform
configuration taking consideration of this factors can
impact the deployment of AI services in Wasm binary
format greatly, thus we can benefit from the portability
and security without losing much of efficiency.

• Runtime for which task:
Selecting a runtime for a certain task can be tricky, and
based on our findings JIT compilers like Wasmtime and
Wasmer did a great job overall, however, Wamr consumes
less memory in most of the networks, but it couldn’t
execute huge graphs due to its limited stack size so
Wamr can a good choice for resource-constrained devices
with an average performance However if it’s not the
case Wasmtime and Wasmer with based JIT compilation
can deliver high near-native performance on a medium,
smaller network, however, other runtimes like Wasmedge



TABLE II: Figure shows the inference time contribution to the execution time

Wasmtime native Wamr Wavm Wasmer Wasmedge
mobilenet v1 0.25 128 39.55% 20.55% 40.89% 38.98% 42.42% 44.75%
mobilenet v1 0.5 160 68.20% 32.50% 68.94% 64.63% 96.04% 70.06%
mobilenet v2 1.0 224 97.91% 54.97% 83.22% 97.57% 98.12% failed
mobilenet v1 1.0 224 98.59% 56.47% 88.17% 98.09% 98.65% failed
mobilenet v2 1.4 224 98.00% 92.36% 86.68% 83.35% 87.33% failed
Yunet 51.16% 85,7% 50,61% 59.72% 50% 50.39%
VGG16 86.25% 5.90% failed 86.25% 80.60% failed
VGG19 88.90% 5.87% failed 88.90% 83.75% failed

TABLE III: Table represents the impact of batch size on execution time and memory

Time
Wasmer Wavm Wasmtime Wamr Wasmedge native
3x 1,38x 2,8x 2,75x 2,25x 1,23x
Memory
Wasmer Wavm Wasmtime Wamr Wasmedge native
1,14x 1,2x 1,3x 1,25x 1,22x 1,24x

based on interpreter can bypass this feature on a medium
smaller network using a head of time compilation, In con-
trast, it may encounter a compilation overhead. Finally,
WebAssembly runtimes have a long way to go compared
to the native performance on AI tasks; thus it is better
to make sure of the necessity of having portability and
security issues for certain scenarios since native could be
the best choice after all

• Customization, SIMD Features, and AI Applications
on WebAssembly: To consolidate our findings, We-
bAssembly runtimes are not always suboptimal at ex-
ecuting inference code. This might be related to load-
ing delays or how AI operators are produced using
JIT compilers for various runtimes. Customizing the
compilation process, coupled with efforts to minimize
loading times for such models, can significantly enhance
WebAssembly runtime performance. Additionally, our
observations on batch size underscore the importance
of incorporating SIMD features and GPU support, thus
generalizing Wasi-nn can unlock these features for wasm
modules. While Wasi-nn has a profound impact on
WebAssembly runtime efficiency, designing and creating
WebAssembly inference purely without Wasi-nn allows
for heightened customization and better control. Deploy-
ing AI applications on WebAssembly, given the current
state, demands meticulous neural network optimizations
like pruning, quantization, and selecting appropriate op-
timization levels. The choice of runtime, whether JIT
compilers such as Wasmtime and Wasmer for medium
to smaller networks or interpreter-based solutions like
Wasmedge with AOT mode for larger ones or the choice
of having batched inference or not, is crucial. Inherent
trade-offs, such as memory limit in Wamr or potential
compilation overheads with Wasmedge, should be noted.
In essence, continued research should investigate the
tailored optimization of WebAssembly runtimes for AI
tasks, with an emphasis on integrating SIMD features
and GPU support.

V. CONCLUSION

In this paper, we investigated everything from memory
to time execution for standalone WebAssembly runtimes to
construct a simple case study and study the factors related
to deploying AI services on edge computing, resulting in
exciting findings. The obtained results not only contribute to

the community but also push further research and investigation
to be done and the developer community to look more in-depth
into their developed technologies; Why not we achieve the
goal of having Portable, Secure, Efficient AI services across
edge computing environment by leveraging WebAssembly
technology.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[2] Webassembly. [Online]. Available: https://webassembly.org/
[3] Wasi. [Online]. Available: https://wasi.dev/
[4] Wasi-nn. [Online]. Available: https://github.com/WebAssembly/wasi-nn
[5] Wasmtime. [Online]. Available:

https://github.com/bytecodealliance/wasmtime
[6] Wavm. [Online]. Available: https://github.com/WAVM/WAVM
[7] Wasmer. [Online]. Available: https://github.com/wasmerio/wasmer
[8] Wasmedge. [Online]. Available:

https://github.com/WasmEdge/WasmEdge
[9] Wamer. [Online]. Available: https://github.com/bytecodealliance/wasm-

micro-runtime
[10] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.

Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou et al., “Mlperf
inference benchmark,” pp. 446–459, 2020.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv 1409.1556, 09 2014.

[12] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 04 2017.

[13] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” pp. 4510–
4520, 06 2018.

[14] W. Wu, H. Peng, and S. Yu, “Yunet: A tiny millisecond-level face
detector,” Machine Intelligence Research, 04 2023.

[15] J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni, “Webassembly as a
common layer for the cloud-edge continuum.” New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3526059.3533618

[16] W. Wang, “How far we’ve come – a characterization study of standalone
webassembly runtimes,” pp. 228–241, nov 2022. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/IISWC55918.2022.00028

[17] Wasi-nn-onnx. [Online]. Available: https://github.com/deislabs/wasi-nn-
onnx

[18] B. Li, H. Fan, Y. Gao, and W. Dong, “Bringing webassembly to
resource-constrained iot devices for seamless device-cloud integration,”
in Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services, ser. MobiSys ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 261–272.
[Online]. Available: https://doi.org/10.1145/3498361.3538922

[19] Z. Wang, J. Wang, Z. Wang, and Y. Hu, “Characterization and impli-
cation of edge webassembly runtimes,” pp. 71–80, 2021.

[20] Tensorflow slim pretrained models. [Online]. Available:
https://github.com/tensorflow/models/tree/master/research/slim

[21] Wasm3. [Online]. Available: https://github.com/wasm3/wasm3
[22] tensorflow. [Online]. Available: https://www.tensorflow.org/
[23] Imagenet. [Online]. Available: https://www.image-net.org/index.php
[24] M. M. H. Shuvo, S. K. Islam, J. Cheng, and B. I. Morshed, “Efficient

acceleration of deep learning inference on resource-constrained edge
devices: A review,” Proceedings of the IEEE, vol. 111, no. 1, pp. 42–
91, 2023.


