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Abstract

In recent years, the adoption of Automatic Speaker Verification (ASV) systems
has significantly expanded to meet the rising demand for secure and effective
identity verification methods. However, this widespread adoption of ASV systems
has raised concerns regarding privacy and fairness, necessitating compliance with
regulations like the European General Data Protection Regulation (GDPR). The
GDPR mandates stringent privacy protection measures for biometric data, includ-
ing voice, as it is classified as sensitive personal data. Soft biometrics embedded in
voice data, such as gender, accent, and emotion, present privacy risks if not ade-
quately safeguarded. Additionally, biases within ASV systems can lead to discrim-
inatory outcomes, violating GDPR principles of fairness and non-discrimination.

This thesis addresses the imperative need to enhance compliance with GDPR
principles concerning data privacy and fairness in voice biometrics applications,
extending beyond ASV systems to encompass spoofing countermeasures (CMs)
systems. These CMs are integral for fortifying ASV systems against spoofing
attacks, ensuring the integrity of the authentication process.

To address these challenges, this thesis makes several contributions. The first
contribution is PRIVASP, the privacy-preserving scheme for CMs systems using
secure multi-party computation (MPC). PRIVASP ensures the privacy of individu-
als when using CMs systems and safeguards the intellectual property (IP) of these
systems by keeping model parameters private. This solution successfully balances
privacy requirements with spoofing detection performance, meeting GDPR privacy
by design principles.

In adherence to GDPR principles concerning data privacy, the second contribu-
tion introduces an innovative approach to safeguarding gender information within
ASV systems. This method combines differential privacy (DP) mechanisms with
adversarial auto-encoder (AAE) techniques to conceal gender-related information
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within speaker embeddings while preserving their utility for speaker verification
purposes. Our approach enables the selection of the desired balance between pri-
vacy protection and utility by adjusting the privacy budget of the DP mechanism,
even after the training process is completed.

Furthermore, in compliance with GDPR principles aimed at ensuring data pri-
vacy, non-discrimination and fairness in automated decision-making systems, we
developed an approach that carefully balances trade-offs between speaker verifica-
tion accuracy, gender data privacy, and fairness. This is achieved by fine-tuning
the pre-trained model of wav2vec 2.0. While previous work has addressed these
challenges individually, our research is the first to concurrently address these three
aspects in the context of automatic speaker verification. We also introduce a novel
fairness metric tailored for voice biometrics, adapted from facial biometrics, to
assess the impact of gender information on ASV system fairness. This innovative
metric underscores the significance of fairness evaluation in ASV system devel-
opment, advocating for fairness by design to ensure equitable outcomes across
demographic groups.

Finally, in this thesis, we address the absence of international standards for
fairness evaluation in biometric systems by assessing three fairness metrics in the
context of speaker verification. Our comparative analysis reveals the Gini aggrega-
tion rate for biometric equitability (GARBE) metric as the most suitable for eval-
uating ASV system fairness. We then utilize the GARBE metric to evaluate the
fairness of five state-of-the-art ASV systems. This illustrates the need to integrate
fairness evaluation into ASV system development processes to achieve equitable
and reliable speaker verification systems compliant with regulatory standards.
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Chapter 1

Introduction

1.1 Voice Biometrics
In recent years, biometric technology has revolutionized access control. Instead
of relying on easily forgotten passwords and managing multiple tokens, authenti-
cation of individuals now depends on the use of our physiological and behavioral
traits such as fingerprints, faces, irises, voice, signature dynamics, and gait. These
traits serve as reliable markers of our identity and are impossible to forget or mis-
place. The availability of affordable devices like microphones, smartwatches, and
cameras has made biometric authentication more accessible in our daily lives, pro-
viding a convenient and effective way to secure our data. Among these biometric
modalities, voice biometrics, also known as Automatic Speaker Verification (ASV),
has emerged as a prominent tool.

The advancements in deep neural networks (DNNs) enhanced accuracy and re-
liability of ASV systems [1–3], thereby contributing to the widespread adoption of
these systems. Several banks [4] and call centers have adopted speaker verification
solutions as an alternative to traditional passwords to fortify security measures
and provide a more efficient and user-friendly experiences 1 2.

An ASV system verifies speakers by comparing the new speech data with a
reference previously saved in the system’s database during enrolment. If no ade-
quate match is found that surpasses a predetermined threshold, the system denies
the identity claim.
The ASV system operates in two distinct phases: enrolment phase and verification

1https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4OcMZ
2www.thebanker.com/Voice-recognition-what-your-bank-needs-1462176012
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phase, illustrated in Figure 1.1.
In the enrolment phase, the speech signal is fed into a feature extraction mod-

Figure 1.1: Phases of an automatic speaker verification system.

ule that starts by segmenting the speech signal into frames. A frame-level feature
extraction technique [5] such as linear prediction coding (LPC), mel-frequency cep-
stral coefficients (MFCC), linear frequency cepstral coefficients (LFCC), and Mel
spectrogram, is then used to capture speaker-specific attributes. For each frame,
a feature vector is generated. These features are then aggregated into utterances
that encapsulate the temporal dynamics of the speech signal. The utterance-
level features are then fed to a speaker modeling module like Gaussian mixture
model(GMM) [6], deep neural network (DNN) [7], residual network (ResNet) [8,9],
and time delay neural network (TDNN) [1, 10], to learn speaker-specific patterns
over time. The speaker modeling procedure is also referred to as the front-end
stage, where an utterance in time domain or time-frequency domain is mapped to
high-dimensional feature vector (i.e. embedding) that represents the identity of
the speaker [5]. Finally, the generated speaker model is saved into a database.

During verification, the incoming speech signal undergoes the same feature
extraction and modeling process. The new speaker model is then compared to
the saved model of the claimed identityusing a similarity measure or dissimilarity
measure, such as probabilistic linear discriminant analysis (PLDA), Euclidean
distance, and cosine distance [1, 11]. This comparison computation is also known
as the back-end stage [5]. If there is sufficient correlation, a high similarity score
is obtained and the system authenticates the user. Otherwise, the verification of

2



1.2. REGULATORY REQUIREMENTS

the speaker is rejected.

In order to enhance their robustness, performance, and computational effi-
ciency, state-of-the-art ASV systems make use of a set of background speak-
ers [12, 13] or cohort speakers [14] as negative examples (i.e. imposter speak-
ers). Models like universal background Model (UGMMs) used a set of background
speakers to help the ASV system generalize better to unseen speakers [15, 16].
Recent DNN-based ASV systems use scores of cohort speakers who are close to
the genuine speaker, at the back-end for similarity score normalization [5, 15, 17].

Another technique to enhance performance and robustness across different en-
vironments or datasets of ASV systems is domain adaptation [18]. ASV systems
may encounter domain mismatch problems when dealing with data from ”in-the-
wild” scenarios, where variability in recording conditions, languages, or speaker de-
mographics can occur. Domain adaptation techniques in ASV involve fine-tuning
the parameters of the system, such as feature extraction methods or scoring algo-
rithms, to better align with the characteristics of the target domain.

The ASV systems can be categorized into two main classes: text-dependent
and text-independent. In a text-dependent system, it is imperative that the text
spoken during the verification matches the text from the enrolment phase. On
the other hand, the text-independent system imposes no such requirement, allow-
ing for verification without any predetermined constraints on the phrases uttered
by the speaker. Text-independent speaker verification offers greater flexibility
compared to the text-dependent approach, as it allows the speaker to sponta-
neously interact with the system. Despite the additional challenge of training
text-independent ASV models, which require longer utterances to achieve higher
accuracy, they prove to be more convenient, particularly in scenarios involving
spontaneous speech. In this thesis, we focus on text-independent ASV systems.

1.2 Regulatory Requirements
To govern the security and privacy of biometric data, regulations such as the Euro-
pean General Data Protection Regulation (GDPR) [19] and the European artificial
intelligence (AI) act 3 [20], have been established. Since May 2018, the process-

3https://iapp.org/news/a/biometrics-under-the-eu-ai-act/
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ing of biometric data of European union (EU) citizens and residents has been
regulated by the GDPR [19]. Being considered the strongest in the world 4, this
regulation governs the processing of personal data of individuals in the EU. Article
4.1 of the GDPR defines personal data as any information directly or indirectly
related to identity of individuals. Article 4.2. explains that the term process-
ing includes any operation performed on personal data, including but not limited
to collection, recording, storage, manipulation, transfer, and erasure. Addition-
ally, article 4.14 explicitly categorizes biometric data as personal data. Besides,
biometric data, including voice, is identified as sensitive personal data or special
categories of personal data in Article 9 of the GDPR. The delicacy of processing
such data is stressed in Article 5, which mandates the inclusion of appropriate
security measures for personal data. Recital 51 as well underscores the potential
risk of sensitive personal data processing to fundamental rights and freedoms.

Moreover, the GDPR emphasizes principles of data protection by design, de-
tailed in Article 25, which instructs the consideration of the associated risks to
the rights and freedoms of individuals, as well as integrating privacy-preservation
techniques at an early stage of the processing. Therefore, voice biometric appli-
cations such as automatic speaker verification must implement privacy-enhancing
technologies (PETs) when storing voice biometrics data in databases or using it
during identity verification.

Furthermore, the GDPR requires compliance to fairness principle especially
by automated decision-making systems, including ASVs. Article 5.1 states out
that processing personal data should be fair. Recital 71 further explains that
appropriate measures must be included to prevent discrimination and ensure fair
outcomes of AI systems. The GDPR aims to protect the right of individuals not
only to privacy but also to non-discrimination. Hence, it is imperative to examine
the fairness of outcomes produced by ASV systems.

1.3 Privacy and Fairness Issues
In the context of biometrics, privacy is related to the right of individuals to con-
trol and protect their biometric data from unauthorized access or misuse. Only
authorized entities, that the user has consent to, have the right to process their

4https://www.consilium.europa.eu/en/policies/data-protection/
data-protection-regulation/
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biometric data and for biometric recognition tasks only 5. However, an ASV sys-
tem might intentionally or unintentionally allows other recognition tasks. This
is explained by the complexity of voice data. Beyond the primary identification
attributes, the voice encompasses an extensive amount of data, often known as
soft biometrics [21]. These are anatomical or behavioral characteristic such as age,
gender, ethnicity, and accent [22]. These soft biometrics can be detected automat-
ically via machine learning (ML) systems [23–26] and their integration alongside
primary biometrics enhances the precision of the recognition process [27, 28]. In
addition, short voice recordings have been used to reconstruct average-looking fa-
cial images capturing age, gender, and ethnicity characteristics [29]. Despite their
legitimate utility, soft biometrics also usher in possibilities of misuse that can put
individuals at risk of privacy concerns without their awareness. This can manifest
in unauthorized data processing for illegitimate purposes such as discrimination,
invasive advertising, extortion, and other forms of abuse. Moreover, the biometric
data of speakers is often stored in external databases, which may not have strict
protections. This lack of rigorous security for stored data can lead to breaches and
illegitimate access.

Another issue related to ASV is that of concerns regarding biases in ASV
systems. Disparities in ASV responses have been noted in the form of differential
behavior towards different genders, nationalities, and accents [30, 31]. This leads
to discrimination between individuals which is prohibited by the GDPR under
the fairness principle. Bias can originate from various sources, such as bias in
the data used to train the system, including unbalanced datasets that under-
represent certain groups or biased labeling due to societal biases in human decision-
making. The model itself can also exhibit bias, as a machine learning algorithm
may prioritize achieving higher accuracy on overall samples at the expense of
sacrificing performance on minority groups, thereby placing these minority groups
at a disadvantageous position.

1.4 Research Contributions
This dissertation enhances compliance with GDPR principles concerning data pri-
vacy and fairness in voice biometrics applications extends beyond the realm of ASV

5www.prima-itn.eu/blog/a-reflection-on-privacy-security-and-anonymity
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systems to include spoofing countermeasures (CMs) systems. These CMs play a
pivotal role in fortifying ASV systems against spoofing attacks, ensuring the in-
tegrity of the authentication process (Section 3.1). Our approaches use advanced
cryptographic primitives, data perturbation, and machine learning techniques.

Previous studies only considered preserving privacy of ASV systems. However,
given the recent proliferation of deepfakes [32], such as voice conversion (VC) [33]
and text-to-speech (TTS) [34] technologies, modern ASV systems incorporate CMs
that leverage voice characteristics. These CMs can be cloud-based, therefore, are
susceptible to privacy breaches.

Recognizing the existing gap in the literature, we introduce PRIVASP, the
first solution that ensures not only privacy of individuals but also safeguards intel-
lectual property (IP) of a cloud-based spoofing detection system within real-time
applications. To ensure the compatibility of our spoofing CM with secure multi-
party computation (MPC), we design a shallow NN model from scratch, adhering
to the GDPR privacy-by-design principle.

This work was published in:

• Oubaïda Chouchane, Baptiste Brossier, Jorge Esteban Gamboa Gamboa,
Thomas Lardy, Hemlata Tak, Orhan Ermis, Madhu Kamble, Jose Patino,
Nicholas Evans, Melek Önen, Massimiliano Todisco, “Privacy-preserving
voice anti-spoofing using secure multi-party computation,” in Proc.
INTERSPEECH 2021, Brno, Czech Republic, September 2021.

In harmony with the principle of data privacy by design of the GDPR, we pre-
sented an advanced privacy-preservation data obfuscation technique based on dif-
ferential privacy (DP) mechanisms. DP mechanisms traditionally serves as mech-
anisms for data anonymization. We included it to an adversarial auto-ancoder
(AAE) model to maintain individual identity while masking gender details. Our
approach not only ensures potent gender concealment but also fortifies differential
privacy assurances, presenting a flexible balance between preserving privacy and
retaining utility of speaker verification.

This work was published in:

• Oubaïda Chouchane, Michele Panariello, Oualid Zari, Ismet Kerenciler,
Imen Chihaoui, Massimiliano Todisco, Melek Önen, “Differentially Pri-
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vate Adversarial Auto-Encoder to Protect Gender in Voice Bio-
metrics,” in Proceedings of the 2023 ACM Workshop on Information Hiding
and Multimedia Security 2023, Chicago, United States, June 2023.

In compliance with GDPR principles aimed at ensuring the right of non-
discrimination and fairness in automated decision-making systems, we developed
an approach that carefully balances trade-offs between speaker verification ac-
curacy, gender data privacy, and fairness. This is executed by fine-tuning the
wav2vec 2.0 [35] pre-trained model. While there has been previous work that
addresses these challenges, they have typically been handled individually. Our re-
search is the first to address these three aspects concurrently in the context of voice
biometrics. Additionally, our study introduces the fairness activation discrepancy
(FAD) metric tailored for speech data as a method for analyzing network fairness.
This metric is adapted from the InsideBias [36] metric initially designed for face
biometrics. It represents a novel application to the voice biometrics domain in our
research.

This work was published in:

• Oubaïda Chouchane, Michele Panariello, Chiara Galdi, Massimiliano
Todisco, Nicholas Evans, “Fairness and Privacy in Voice Biometrics:A
Study of Gender Influences Using wav2vec 2.0,” in BIOSIG 2023,
Darmstadt, Germany, September 2023.

The absence of an international standard for measuring fairness in biometric
systems presents a significant challenge in the field. Besides, most of the scien-
tific research addressing the measurement tools of fairness in biometric recognition
systems focus on face recognition (FR). We contributed to the field by assessing
three fairness metrics, proposed for the FR field, in the context of ASV. We evalu-
ated their effectiveness in meeting certain criteria set in the literature for selecting
metrics for fairness assessment. We then used the most suitable metric to eval-
uate five state-of-the-art ASV systems and studied the trade-off between utility
and fairness. This work serves as a benchmark for future developments of more
equitable and effective ASV systems.

This work was submitted in:
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• Oubaïda Chouchane, Christoph Busch, Chiara Galdi, Nicholas Evans,
and Massimiliano Todisco, “A Comparison of Differential Performance
Metrics for the Evaluation of Automatic Speaker Verification Fair-
ness,” in Odyssey 2024, Québec, Canada, June 2024.

1.5 Thesis Outline
This section outlines the structure and content of each chapter in the thesis. The
remainder of this dissertation is structured as follows: In chapter 2, we provide a
background and literature review on privacy and fairness enhancing technologies
related to this thesis. We present cryptographic privacy preservation techniques
namely secure multi-party computation and homomorphic encryption, as well as
differential privacy. We further introduce machine learning techniques studied on
our solutions namely disentanglement and adversarial training. Additionally, we
present a literature review of fairness assessment in the context of biometrics.

In chapter 3, we identify challenges of preserving privacy of speakers while
maintaining utility of the spoofing countermeasures of automatic speaker verifi-
cation systems. We then present our solution for privacy-preserving voice anti-
spoofing using the secure multi-party computation (MPC) technique.

In chapter 4, we delve into the challenges of protecting gender in speaker verifi-
cation applications. We present our novel solution based on combining differential
privacy mechanism and adversarial training to retain identity of speakers and hid-
ing their gender-related information.

In chapter 5, we explore the complexities of ensuring privacy-preserved speaker
verification while also evaluating the fairness of our proposed solution. We provide
an analysis of how gender information impacts data privacy and fairness within
a speaker verification application. Furthermore, we introduce a modified fairness
metric for voice biometrics, adapted from facial biometrics.

In chapter 6, we identify the challenge of non-existent international standards
for fairness evaluation in the field of biometrics. We assess three fairness measures
in the context of speaker verification context and evaluate ASV systems using the
most suitable fairness metric.

Finally, in chapter 7, we draw the dissertation to a close by summarizing our
results and suggesting potential directions for future research.

8



Chapter 2

Background and Literature
Review

In this section we start by expanding our focus to discuss privacy enhancing tech-
nologies (PETs) highlighting their role in safeguarding individual privacy. This
exploration forms the basis for the methodologies central to our study, including
cryptographic methods, data perturbation techniques, disentanglement strategies
and machine learning (ML) approaches. We also delve into the concept of fair-
ness in relation to biometrics. This aspect stresses the importance of equitable
treatment and non discriminatory practices in technological applications while
recognizing that fairness enhancing technologies (FETs) are still developing com-
pared to established privacy measures. In addition to ethical considerations the
section provides a thorough review of existing literature examining past research
and contributions in these areas to foster a comprehensive understanding of both
well established and emerging technologies, for promoting ethical use and imple-
mentation.

2.1 Privacy-Enhancing Technologies
Several technologies have been developed to ensure data privacy. Some of these
techniques have been exploited to preserve privacy of voice biometric data. In
this chapter, we introduce the building blocks of these solutions that are based on
advanced cryptography, data perturbation, and machine learning.

9
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2.1.1 Advanced Cryptographic Techniques
Advanced cryptographic techniques focus on safeguarding data by making it ap-
pear random, either by secretly sharing it, using primitives like secure multi-party
computation, or by encrypting it using a private key, as in the case of homomor-
phic encryption, while still enabling the processing of the data. In the upcoming
subsections, we will discuss key concepts of these techniques and examine related
work in the voice biometrics field.

2.1.1.1 Secure Multi-Party Computation

Secure multi-party computation (MPC) is an advanced cryptographic technique
that allows multiple parties to collaboratively compute a function over their private
data while keeping them concealed from each other. MPC was first proposed by
Andrew Yao in the early 1980s [37] as a two-party scenario. It was demonstrated
by the Millionaire’s Problem, a conceptual challenge where two millionaires aim to
ascertain who is wealthier without revealing their actual wealth. Secure two-party
computation (2PC) techniques were employed in this scenario to reveal only the
identity of the wealthier individual while keeping all other information private.
Building upon this foundation, Goldreich et al. [38] later expanded the scope of
MPC to include an arbitrary number of parties.

In the context of MPC protocols, an adversary is not only one of the play-
ers/parties engaged in the computation procedure. According to the work of
Lindell [39], there are primarily three categories of adversaries in an MPC set-
ting. Each adversary represents a different level of threat based on their potential
actions and intentions:

• Semi-honest adversaries (honest-but-curious/passive): adhere to
protocol specifications but seek to learn private inputs of other parties. Pro-
tocols secure against such adversaries ensure basic privacy that prevent data
leakage.

• Malicious adversaries (active): pose a higher threat that the latter by
arbitrarily deviating from the protocol for malicious purposes. Protocols se-
cure against active adversaries provide robust protection against adversarial
attacks.

10
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• Covert Adversaries: combine traits of semi-honest and malicious adver-
saries. They take the risk of detection when attempting to break the protocol,
with a specific probability of being caught.

To enable parties to jointly and privately perform operations, a range of
techniques have been proposed in the literature. Prominent among these are
Yao’s garbled circuits (GC) [40] and secret sharing methods, both additive and
Boolean [38, 41]. In this thesis, in Chapter 3, we use a semi-honest 2PC protocol
that makes use of additive secret sharing.

2.1.1.1.1 Yao’s Garbled Circuits

Yao’s garbled circuit is a 2PC protocol that allows two semi-honest parties to
jointly evaluate a function f over their private inputs without revealing them to
one another. In a Yao’s GC protocol one party plays the role of a garbler and
the other one plays the role of an evaluator. Let us consider two parties P1, the
garbler, and P2, the evaluator, each holding a secret input x and y, respectively.
The garbler is responsible for converting the function f(x, y) into a Boolean circuit
that is composed of gates such as AND and XOR. Then, P1 garbles this circuit by
creating garbled gates for every gate in the circuit. An example of function f of
an AND gate is presented in Table 2.1.

Input
wires

Output
wire

x y z
0 0 0
0 1 0
1 0 0
1 1 1

Table 2.1: Truth table of an AND gate.

To create the garbled AND gate, P1 first assigns a uniformly random label (i.e.
key) to each bit values 0 and 1 of each wire x, y, and z of the circuit (six keys
in total). Then, P1 encrypts the output keys, kz

(0,1) using the input keys k
(x,y)
(0,1) as

presented in Table 2.2. Ek represents the symmetric encryption procedure using
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the key k to ensure that only with the correct keys P2 can later decrypt the
corresponding output z.

Input
wires

Output
wire

x y z
kx

0 ky
0 (Ekx

0
(Eky

0
(kz

0))
kx

0 ky
1 (Ekx

0
(Eky

1
(kz

0))
kx

1 ky
0 (Ekx

1
(Eky

0
(kz

0))
kx

1 ky
1 (Ekx

1
(Eky

1
(kz

1))

Table 2.2: Encrypted truth table of AND gate.

After randomly shuffling the order of the four output ciphertexts, P1 shares
both the garbled outputs and the mapping from these outputs (kz

(0,1)) to their
corresponding actual bit values with the evaluator. In order to evaluate the GC,
the evaluator needs to receive the corresponding keys as well to decrypt the output
z of f(x, y). Since the input of the garbler is encrypted, sharing the garbled
input GI(x) (kx

0 or kx
1 ) of the first party reveals nothing about its original input.

However, the garbler needs to send one key ky
(0,1) to the evaluator since sending

both keys ky
0 and ky

1 could leak information about the input of the garbler. The
evaluator also cannot share with the garbler its input bit. To receive its GI(y)
without revealing any information about its input, both parties make use of a
cryptographic technique called Oblivious Transfer (OT) [42]. Finally, P2 evaluates
the function f(x, y) using GI(x) his obliviously obtained key GI(y). To reveal
the output, which is the actual result of f(x, y), P2 decrypts the final output z

by correlating the garbled output label (kz
(0,1)) with its corresponding actual bit

value, using the previously shared mapping from P1.

2.1.1.1.2 Additive Secret Sharing
In a 2PC setting using additive secret sharing, a secret x is divided into two
shares in such a way that these shares sum up to the original secret under modulus
arithmetics. Specifically, x is an integer split into two shares: ⟨x⟩1 and ⟨x⟩2. These
shares are distributed among two non-colluding parties, P1 and P2. The shares are
defined as follows:

12
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⟨x⟩1 = random value ∈ ZN (2.1)

⟨x⟩2 = x− ⟨x⟩1 mod n (2.2)

where n is a large integer, typically chosen as a prime number. This methodol-
ogy operates only with integers in ZN and requires the conversion of floating-point
numbers into integers for accurate reconstruction under modular constraints.
After dividing the secret, each party P1 and P2 can independently perform com-
putations on their respective shares.

Computing Addition

To compute the addition of two secrets x and y, each party adds their respective
shares of x and y. Let the shares of x be ⟨x⟩1 and ⟨x⟩2, and the shares of y be
⟨y⟩1 and ⟨y⟩2. The sum x + y is computed by combining these partial sums, as
illustrated in Figure 2.1.

Figure 2.1: Illustration of secure addition in 2PC using additive secret sharing

Computing Multiplication

Multiplication in a 2PC setting using additive secret sharing is more complex
and requires an additional interaction round. It is split into two phases: the
offline (or preprocessing) phase and the online phase. During the offline phase, a
crypto-provider supplies additional secret values to the two non-colluding parties
to assist in securely computing the multiplication without revealing their private
inputs. This technique, illustrated in Figure 2.2, is known as the Beaver Triplets
technique [41].

13
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In this method, the crypto-provider randomly selects two values, a and b, and
computes c = a × b. The values a, b, and c are then secretly shared between the
two parties. Consequently, P1 receives shares ⟨a⟩1, ⟨b⟩1, and ⟨c⟩1, in addition to
its original shares ⟨x⟩1 and ⟨y⟩1. P2 receives ⟨a⟩2, ⟨b⟩2, and ⟨c⟩2, along with ⟨x⟩2
and ⟨y⟩2.

To compute the product x × y using the Beaver triplets, each party first per-
forms specific calculations. P1 and P2 each compute the differences between their
shares of x and a, and y and b respectively. These differences, represented as the
shares of A and B in Figure 2.2, are then revealed to the other party. Next, each
party computes the differences x − a and y − b. These computations lead to the
values of z1 and z2, as illustrated in Figure 2.2. Subsequently, each party shares
its respective shares of z with the other party. The multiplication results of x and
y is then obtained by summing these shares z1 and z2.

Figure 2.2: Illustration of the Beaver triplets technique for secure multiplication
in 2PC

In this thesis

2.1.1.2 MPC-based Approaches in Voice Biometrics
Various researches have contributed to the development of privacy-preserving
speaker verification systems using MPC-based solutions. Portêlo et al. [43] pro-
pose a privacy preserving Gaussian mixture model-universal background model
(GMM-UBM) speaker verification system using Yao’s Garbled Circuit (GC). The
GMM-UBM system uses a large set of background speakers to train a UBM model,
which is a speaker independent-GMM, and adapted user-specific GMMs for each
enrolled speaker. During verification, the similarity score is computed by the ratio
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of the log likelihoods of an MFCC feature vector x with the user-adapted GMM
and the UBM. The score computation function is composed of scalar products and
Logsum. In their setting, the authors assume that the two parties involved in the
Yao’s GC protocol are the user as the garbler and the service provider (i.e. ASV
system provider) as the evaluator. The user is responsible for converting the scalar
products and logsum operation into a Boolean GC. The service provider is respon-
sible for evaluating the GC and making the authentication decision. Experimental
results show that the utility of the privacy-preserving ASV system is almost the
same as the non-private system. The execution time of the private GMM-UBM
system is efficient, but it increases linearly with the number of GMM components.
Another major drawback of this approach is that the service provider has access to
the enrollment user-specific GMM model in plaintext which violates the privacy of
the speaker. The parameters of the adapted model embody the characterization
of the voice of the user.

Aliasgari et al. [44] also make use MPC to preserve privacy of speaker in hidden
Markov model (HMM) framework. The authors perform private computations on
HMMs in both the semi-honest and malicious models of MPC using secret sharing.
The proposed solution is based on floating-point arithmetics and ensures that the
HMMs, which contain speaker information, are not available in cleartext to the
servers using them to perform authentication.

Additionally, to perform speaker verification while preserving the privacy of
users, Treiber et al. [45] propose a semi-honest 2PC approach based on secret
sharing and Yao’s GC . In this setting, a client arithmetically shares his speech
feature vector among two non-colluding servers. The servers then securely compute
the similarity score. In order to perform the comparison, the servers switch from
arithmetic to Yao sharing. The servers evaluate the garbled function greater than
gate > on the Yao-shared similarity score and a pre-fined threshold.

In an attempt to be compliant with the GDPR’s requirements of data privacy,
researchers made use of MPC to preserve the privacy of speakers. Nautsch et
al. [46] introduce a privacy preserving semi-honest 2PC-based solution combined
with a homomorphic encryption scheme (see Section 2.1.1.3) for an i-vector based
ASV system with cohort score normalisation using PLDA comparisons. The au-
thors propose a cohort pruning scheme which enables efficient selection of the top-n
relevant cohort comparisons. This approach operates with binary voice represen-
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tations to reduce the computation time for biometric comparisons caused by the
homomorphic encryption computations.

In [47], Teixeira et al. make use of MPC in order to design a private feature
extraction system for speaker recognition applications. The authors implement a
privacy-enhancing secret sharing MPC-based solution with the intention of pri-
vately extracting the speaker features while keeping both the speaker voice and
the extraction model private. In this work, four cases are considered. In the first,
only the client and the model provider are involved in the computations and a
semi-honest 2PC protocol is employed. In the second, three semi-honest parties
are involved in the computation of the feature extraction: the client, the vendor,
and a trusted non-colluding server. In the third scenario, a second semi-honest
MPC server is added. This setting allows the assumption of one malicious party:
either the client or the ASV system provider. If either parties behave maliciously,
the protocol will detect the malicious behavior and will abort. In the fourth sce-
nario, only the client and the vendor run the 2PC protocol, and one of them might
deviate from the protocol description and behave maliciously. While this solution
provides the strongest level of security, it also incurs the greatest computational
and communication expenses.

2.1.1.3 Homomorphic Encryption
Homomorphic encryption (HE), initially envisioned by Rivest, Adleman, and Der-
touzos in 1978 [48] and further developed by Gentry in 2009 [49, 50], is a crypto-
graphic primitive that enables computation directly on encrypted data. It allows
a third party, like a cloud server, to conduct additive and multiplicative opera-
tions on ciphertexts without decrypting them, ensuring that only the data owner
can access the plaintext results. At its core, HE operates on the principle of ho-
momorphism, an algebraic property that facilitates operations on ciphertexts as
follows:

E(m1 ⋄m2) = E(m1) ⋄ E(m2) (2.3)

where E denotes the encryption function, and ⋄ indicates an operation (i.e.
addition or multiplication). This process ensures that the operations on ciphertexts
yield encrypted results which, when decrypted, equate to the results of the same
operations performed on the plaintexts m1 and m2.
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Homomorphic encryption categorizes into three principal categories: partially
homomorphic encryption (PHE), somewhat homomorphic encryption (SHE), and
fully homomorphic encryption (FHE). Each category is defined by the range and
the number of permissible operations.

• PHE: is capable of performing an unlimited number of either additive or
multiplicative operations. PHE [51] includes foundational schemes such as
RSA [52] and El-Gamal [53] for multiplication and Paillier [54] for addition.

• SHE: supports a limited combination of additive and multiplicative opera-
tions [55], as illustrated by the Boneh-Goh-Nissim (BGN) scheme [56], which
allows numerous additions but restricts to a single multiplication, and the
Polly Cracker scheme [57], notable for its unlimited operational capacity at
the expense of ciphertext scalability.

• FHE: permits limitless operations, yet repeated homomorphic operations,
especially multiplications, amplify errors [58], potentially leading to undeci-
pherable ciphertexts. Gentry’s bootstrapping technique [59]] firstly mitigates
this error accumulation. The Brakerski-Gentry-Vaikuntanathan (BGV) [60]
and Brakerski/Fan-Vercauteren (BFV) [61,62] cryptosystems are prominent
examples leveraging the Learning With Errors (LWE) or Ring Learning With
Errors (RLWE) problems for their security foundation. The Cheon-Kim-
Kim-Song (CKKS) FHE scheme [63] is recognized for its ability to handle
approximate arithmetic on ciphertexts with real or complex number vectors
and has relatively compact keys and small ciphertexts, which makes it more
efficient and practical than some other FHE schemes.

Developing an HE scheme typically involves four stages: key generation, en-
cryption, execution of homomorphic operations (i.e. evaluation), and decryption.
Key generation creates cryptographic keys, encryption transforms a message into
ciphertext, evaluation executes a function over the ciphertexts, and decryption
recovers the original message from the ciphertext.
HE schemes are classified as either symmetric or asymmetric. In the symmetric
HE schemes the same key is used for both encryption and decryption which re-
quires secure key sharing. On the other hand, asymmetric HE schemes use a public
key for encryption and a private key for decryption which enhances security by
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eliminating the need for key exchange.
In the context of asymmetric HE system, a client encrypts sensitive data (m1

and m2) using a public key pk, visually highlighted in yellow in Figure 2.3 and
outsources computations to an untrusted third party, like a cloud server. This
encrypted data is denoted as E(m1) and E(m2) in Figure 2.3 to indicate their en-
crypted state. The server processes these encrypted inputs by applying a specified
function, symbolized by a ⋄, that delivers an encrypted outcome. This result is
then sent back to the client, who can decrypt it using its private key sk (repre-
sented in gray in Figure 2.3), ensuring that only the client can access the plaintext
result of the computation.

Figure 2.3: Illustration of asymmetric homomorphic encryption

2.1.1.4 HE Application to Voice Biometrics
HE-based methods have been used to preserve privacy of speaker in ASV systems.
The work in [64–66] introduces a privacy-preserving protocols for ASV systems
based on GMM using the PHE Paillier scheme [54] in combination with a semi-
honest 2PC protocol. During enrolment, the user generates a private key and a
public key to share it with the ASV system provider. In order to generate the
user-specific GMM, the system provider sends the UBM in plaintext to the user.
The user then encrypts the GMM with its private key and sends it to the system
provider. This technique guarantees the privacy of users during the enrolment
phase. During verification, the user encrypts the MFCC features with its pri-
vate key and send it to the ASV system provider. The system then computes
the log-likelihoods in the encrypted domain for the UBM and the components of
the encrypted GMM of the claimed user. The similarity score is derived from
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component-wise encrypted log-likelihoods using the logsum protocol. This oper-
ation requires additional communication between the user and the ASV service
provider. This approach ensures that the features of the user are kept private
from the system, and the models stored in the system database are kept hidden
from the user. Although this privacy preserving solution maintains verification ca-
pabilities of the baseline system, it leads to a significant computational overhead
compared to the GMM-UBM baseline ASV system. This is caused by the large
amount of time required to perform operations in the encrypted domain.

In order to be compliant with the data privacy principle of the GDPR, Nautsch
et al. [67] also propose Paillier-based approach to preserve privacy of speakers in an
i-vector-based ASV using cosine or PLDA as similarity measure. This approach
not only protects the speech data of the user, but also the model provided by
an ASvendor during verification. In this work, the user in assumed to interact
with two non-colluding servers DBcontroller and ASoperator to privately perform the
authentication task. The ASoperator generates a pair of public and private keys
(pk and sk) and shares pk with the user. During enrolment, the user extract
the reference feature vector, encrypts it using pk, and sends it to the DBcontroller.
During verification, the user extracts and encrypts their probe feature vector and
requests the encrypted reference vector previously saved in DBcontroller. Upon
reception, the user homomorphically computes the similarity over the encrypted
inputs and obtains an encrypted score. This score is then transmitted to the
ASoperator, which decrypts it using the private key sk and compares it to a pre-fixed
threshold. Based on this comparison, the ASoperator either accepts or rejects the
claimed identity. Experiments prove that this solution maintains the verification
performance while meeting privacy requirements. However, the use of HE leads to
a significant increase in communication and computation overhead. This renders
the solution impractical, especially for computationally limited devices like mobile
phones. Moreover, this approach is vulnerable in terms of security considering a
malicious client who can cheat the system by sending an encryption of an accepting
score to the ASoperator.

To preserve the privacy of speakers as mandated by the GDPR, the author
in [68] designs FHE-based scheme to compute the cosine similarity in the encrypted
domain. During enrolment, the user locally extracts the speech embedding (i.e.
features), and generates a pair of public and private keys (pk and sk) for encryption
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and decryption. The user then applies the CKKS FHE [63] scheme to encrypt its
embedding vector using the public key pk and sends it along with its ID and the
public key to the server to get enrolled. During the verification phase, the speaker
follows the same steps and encrypts its embedding vector using the same pk used
during the enrolment. The server receives the encrypted test vector as well as the
user ID which is used to search for the reference vector saved in the database.
Next, the server evaluates the cosine similarity in the encrypted domain. After
generating the encrypted score, the server sends it to the user. Finally, the user’s
device decrypts the score and determines whether it is above the threshold needed
to authenticate the user. This final step poses a security threat as a malicious user
can modify the received score to gain illegitimate access.

2.1.2 Differential Privacy
The question of how to analyse data while preserving privacy of individuals has
puzzled researchers for decades, especially considering that data cannot remain
useful if it is fully private. In 2006, Cynthia Dwork and her colleagues [69, 70]
successfully addresses this riddle and introduced a concept that strikes a balance
between privacy and utility, as well as quantifies privacy loss. This concept is
known as Differential Privacy (DP) [71], also referred to as global differential
privacy (GDP) or centralized DP. The main idea behind DP is that when query-
ing a database for analysis, the outcome of these queries should not disclose the
participation of any specific individual in the database. This privacy promise is
effective even against an adversary (i.e. an individual or organization attempting
to extract sensitive information about people from data analysis results) who pos-
sesses unlimited computational power and comprehensive knowledge of both the
DP privacy-preserving approach and the system used for gathering and processing
the data. DP also promises individuals that no additional harm will arise from
their data being in the database, a harm that would not exist if their data were
absent.

It is crucial to understand that DP itself is not an algorithm but a definition
or a framework. For a given computational task T , numerous differentially private
algorithms (also known as mechanisms) can be designed to execute T in an ϵ-
differentially private way. ϵ > 0 is known as the privacy budget that provides
a measure of the privacy loss incurred by the DP algorithm. The smaller the
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value of ϵ, the smaller the privacy loss (i.e. the stronger the privacy protection)
and vice versa. The DP mechanisms can vary in their accuracy and effectiveness.
For smaller ϵ values, it become more challenging to design a highly accurate DP
algorithm.

2.1.2.1 Local vs Global Differential Privacy
Various mechanisms are employed in DP to protect data privacy. This technique

Figure 2.4: Global vs. Local Differential Privacy

involves integrating carefully calibrated noise into the dataset, which can be ap-
plied either to the query results or directly to the data inputs. Based on the noise
injection point, DP is classified into two categories: global differential privacy and
local differential privacy (LDP), as depicted in Figure 2.4.

GDP relies on a trustworthy central authority, referred to as the data curator,
to gather individual data from data owners and synthesize it. When an untrusted
data querier requests information from this collective database, the curator in-
troduces carefully calibrated noise derived from a DP mechanism to the output
of the query prior to its release. The querier then receives the perturbed result
that maintains meaningful information while preserving the privacy of individuals
present in the database. However, the main drawback of GDP is the inherent need
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to place trust in a central entity, which may not always be feasible in practical,
real-world scenarios.
LDP overcomes this limitation by enabling data owners to add noise to their own
data independently, thus eliminating the need for a central trusted authority. LDP
consists in protecting individual input data before its collection, ensuring that the
privacy of each user is locally preserved (i.e. at the source). This entails safe-
guarding the privacy of each individual record at its source, rather than applying
protection to the dataset as a whole post-aggregation.

In this thesis, we make use of an LDP mechanism in Chapter 4. Below is a
formal definition of LDP.

2.1.2.2 Local Differential Privacy
Local differential privacy plays a crucial role in protecting personal data and as-
sessing the privacy risks. In this paragraph, we formally introduce the LDP model
and give a brief overview of the related notions.

(ϵ)-local differential privacy is defined as follows:

Definition 1 (Local Differential Privacy [72]) A randomized algorithm M
satisfies (ϵ)-LDP if and only if for any pairs of input values x, x′ ∈ X in the
domain of M, and for all possible outputs S ⊆ Range(M), we have:

Pr[M(x) ∈ S] ≤ eϵ · Pr[M(x′) ∈ S] (2.4)

where Pr denotes the probability. This definition quantifies the level of privacy
protection provided byM and ensures that the likelihood of observing a particular
output is not significantly affected by the choice of input between x and x′.

ℓ1-Sensitivity. The ℓ1-sensitivity [73], denoted as ∆f , is a measure of the
maximum influence that a single data point can have on the result of a numeric
query f . In an LDP mechanism, the ℓ1-sensitivity can be defined as shown in
(2.5), where x and x′ represent two adjacent records in a dataset X , meaning they
differ only in one data point, and ∥.∥ denotes the ℓ1 norm of a vector.

∆f = max
x,x′∈X

∥f(x)− f(x′)∥1 (2.5)

The ℓ1-sensitivity is the maximum difference between two adjacent records in
a dataset and it provides an upper bound on the potential impact of an individual
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record, essentially measuring the worst-case scenario impact of a single individual’s
record on the function’s outcome. The ℓ1-sensitivity defines the magnitude of the
noise needed in order to meet the (ϵ)-LDP requirements.

Laplace Mechanism. The Laplace mechanism [74] is a widely adopted tech-
nique for achieving (ϵ)-DP. The Laplace mechanism, presented in (2.6), is ini-
tially proposed and adopted for (ϵ)-GDP and can be adapted for (ϵ)-LDP. The
mechanism works by adding random noise, sampled from the Laplace distribution
centered at 0, to the output of a function in order to obscure any sensitive infor-
mation about individual records in the database. The amount of noise added is
determined by the sensitivity ∆f of the function and the privacy budget ϵ. The
more sensitive the query is, the more noise is needed to achieve a stricter privacy
guarantee. Formally, given a database X and a function f : X → Rd that maps
the database to d real numbers, the Laplace mechanism is defined as:

M(f(x), ϵ) = f(x) + (n1, n2, ..., nd). (2.6)

where each ni ∼ Laplace (∆f/ϵ) is drawn from the zero-centered Laplace distribu-
tion with scale ∆f/ϵ.

The Laplace mechanism has been demonstrated to be particularly effective in
the context of numerical queries (e.g. counting queries, histogram queries, and
classification queries) with low sensitivity [71]. In Chapter 4, we use the Laplace
mechanism in the context of a gender classification task.

Key Properties of Differential Privacy Local differential privacy pos-
sesses three main properties: sequential composition, parallel composition, and
post-processing [71, 74, 75].

The first property, sequential composition, is delineated as:

Definition 2 (Sequential Composition) Consider a sequence of n mecha-
nisms {M1, . . . , Mn}, each providing εi-LDP. When these mechanisms are ap-
plied in sequence to a dataset, the resultant composite mechanism, denoted by
(M1, . . . , Mn), adheres to a cumulative privacy guarantee expressed as (∑n

i=1 εi)-
LDP.

The second key property in DP , called parallel composition, provides an al-
ternative approach to assess the privacy cost of multiple data releases. It involves
partitioning the dataset into disjoint segments and applying a differentially private
mechanism separately to each segment. Formally,
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Definition 3 (Parallel Composition) Assume a set of n mechanisms
{M1, . . . , Mn}, with each ensuring εi-LDP independently. When operated on dis-
joint subsets of the dataset, the combined effect of these mechanisms, represented
by (M1(D1), . . . , Mn(Dn)), conforms to a privacy level characterized by (max(εi))-
LDP.

The sequential composition and the parallel composition properties are essential
to allocate privacy budgets effectively and ensure that the overall privacy of the
system is maintained.

The third property is post-processing, meaning that any function applied to the
output of a differentially private mechanism cannot weaken its privacy guarantees.
This immunity ensures that the privacy level is maintained, regardless of any
further analysis or transformation performed on the data. Formally, the post-
processing is defined as follows:

Definition 4 (Post-processing) LetM be an ϵ-differentially private mechanism
and g be an arbitrary mapping from the set of possible outputs to an arbitrary set.
Then, g ◦M is ϵ-differentially private.

In Chapter 4 of this thesis, the post-processing property ensures that any ar-
bitrary computation performed on the speaker embedding, which is the output of
a DP mechanism, does not compromise the privacy guarantees.

2.1.2.3 Differential Privacy in Biometrics
Differentially private solutions were proposed for more than a decade and regarded
as a privacy protection tool for different areas [76–79]. Recently, DP mechanisms
started to gain the attention of the biometrics field researchers. Chamikara et
al. [80] design PEEP (Privacy using EigEnface Perturbation), a privacy preserving
approach for face recognition system using local differential privacy. The authors
assume that any input device used to capture face images make use of PEEP. The
device starts by capturing the face images of individuals. Then, a technique called
principle component analysis (PCA) is used to identify patterns in data, reduce
the dimensionality of these images while only keeping the most relevant features.
This dimensionality reduction technique increases computational efficiency while
maintaining high accuracy. In a face dataset D = x1, x2, ..., xn, each xi represent
a face vector, and ti denotes the flattened vector xi. The first step of PCA is to
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standardize D by computing the mean of each flattened face vectors ti to construct
the mean face vector Fm, and subtracting Fm from each element ti. The second
step consists of calculating the covariance matrix C of the standardized data to
measure the correlations between the data variables. Next, the third step is re-
ferred to as Eigendecomposition, which involves the calculation of the eigenvectors
and eigenvalues of the covariance matrix. The eigenvectors of C represent the
directions along which there is the highest variance, indicating the most signif-
icant information. Eigenvalues serve as coefficients associated with eigenvectors
to quantifying the amount of variance carried in each eigenvector. The eigenvec-
tors are then sorted in descending order by their corresponding eigenvalues. The
eigenvector corresponding to the highest eigenvalue is the first principal compo-
nent. The final step is to select the first k sorted eigenvectors, where k represents
the reduced dimensionality. At this point, the authors propose to add a Laplacian
noise to the selected eigenvectors/eigenfaces to randomize the facial representa-
tion. This randomized data is shared with an untrusted server which use to train a
face recognition model. During the testing phase, the same dimensionality reduc-
tion and eigenfaces randomization procedure is performed. The serve only receives
perturbed data to carry out the face recognition task. The proposed LDP-based
solution guarantees users privacy during both training and testing, and eliminates
the need of a trusted party. The accuracy of the face recognition model drops
when applying LDP measures, which is expected. Setting a high privacy budget
still ensures privacy against reconstruction attacks while maintaining acceptable
accuracy.

Shamsabadi et al. [81], propose the Laplace-based differentially private speaker
anonymization system. Speaker anonymization is the process of removing the iden-
tity related features from the speech content in order to conceal the identity of the
speaker while keeping all other aspects intact. The authors suppress the identity of
speaker using an x-vector-based speaker anonymization approach. An x-vector [7]
is a speaker embedding that represents the identity of a speaker. The first step of
the anonymization pipeline is to extract the pitch and bottleneck (BN) features as
well as the x-vector from the input speech. Pitch features are the fundamental fre-
quency F0 of a signal which carry out prosodic information (i.e. intonation, stress
and rhythm). BN features are low-dimensional phonetic representation extracted
from an intermediate layer of an automatic speech recognition (ASR) model (i.e.
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a model that transforms speech into text) and are effective in improving the ac-
curacy of ASR systems [82]. During the second step, the x-vector is anonymized
using an external pool of speakers. Finally, the speech waveform is synthesized us-
ing the pitch and BN features and the anonymized x-vector. The authors propose
a DP pitch and BN extractors where a Laplace noise is included to the architec-
ture of these models. The DP pitch extractor is an auto-encoder model with a
Laplace noise added to the output of the encoder. Laplace noise is incorporated
into the ASR model to generate differentially private BN features. Experiments
showed that this approach guarantee speakers privacy while maintaining high level
of utility in term of ASR performance.

2.1.3 Challenges in Applying Advanced Cryptography and
Differential Privacy to Machine Learning Based Sys-
tems

Nowadays, the foundation of voice biometric systems predominantly relies on ma-
chine learning techniques, particularly neural networks. There exist a large number
of advanced cryptographic based solutions proposed to build privacy-preserving
neural networks [83, 84]. These approaches can be classified into three main
categories: (i) MPC-based solutions such as [85, 86]; (ii) HE-based techniques,
like [87, 88]; (iii) Hybrid solutions such as [89] and [90] that combine the use of
MPC and HE.

However, the integration of MPC and HE primitives to NN-based systems
is not straightforward. Computations in the privacy-preserved domain are often
expensive, particularly with NNs and especially DNNs, which require numerous
linear (addition, multiplication) and non-linear (e.g. activation function, compar-
isons) operations. In HE schemes, ciphertexts contain noise that grows during ho-
momorphic evaluation operations. Computations will involve larger data than the
original plaintext, eventually leading to noise overflow which render the decryption
impossible. A technique called bootstrapping [59] was introduced to reduce the
noise. However, this approach is costly and significantly increases computational
overhead.

On the other hand, MPC protocols show an improvement in execution time
compared to HE-based solutions. However, they require multiple rounds of inter-
action, particularly during multiplication, and involve communications between
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parties participating in secure computation. This results in a communication over-
head. Additionally, MPC techniques like additive secret sharing are limited to in-
tegers, whereas speech data is typically represented as real data. This necessitates
converting the data, which may result in information loss and consequently lead to
a drop in system accuracy. Non-linear operations as well need to be approximated
in order to be compatible with MPC primitives, which adds more challenges.

Last but not least, GDP mechanisms require placing trust in an external third
party to manage the data in clear, which poses a privacy threat in real-world sce-
narios. Additionally, DP mechanisms involve adding noise to data. The more
noise added, the greater the privacy guarantee, but at the expense of utility. Par-
ticularly in LDP mechanisms, noise is directly added to the data, and during NN
operations, the noise is amplified, leading to a drop in data utility. Balancing noise
calibration to maintain the trade-off between privacy and utility is challenging.

2.1.4 Disentangled Representations Learning
In machine learning domain, disentangled representations learning (DRL) is a
learning paradigm where ML models are structured to acquire representations
adept at identifying and disentangling (i.e. separating out) the underlying genera-
tive factors of variation embedded within the observed data [91,92]. This definition
is based on the concept that the observed data consist of informational factors,
where certain factors will exhibit variation, while others will remain invariant.
Identifying the generative factors of variation enables learning disentangled rep-
resentations [92, 93]. In speech domain, the disentanglement relies on the specific
informational factors desired and their intended applications [94]. The process of
factorization has been used to remove noise factors from speech representations
as a speech enhancement technique [95]. In speech synthesis, DRL has been used
to independently control different aspects of synthesized speech by disentangling
generative factors such as speaker identity, noise level, and speaking rate [96–98].
In speaker recognition, DRL has been used to disentangle speaker identity-related
and identity-unrelated information to enhance speaker recognition capabilities by
removing irrelevant information [99–102].

DRL approaches can be categorized based on the representation structure into
two groups: dimension-wise and vector-wise methods [92].
In dimension-wise methods, a disentangled representation is composed of one or
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more dimensions where each dimension represents only one generative factor. For
instance, in speech data, each dimension represents one factor such a spitch, vol-
ume, and speaking rate. This technique enables precise control over individual
aspects of the synthesized data.

In vector-wise methods, a single vector is used to represent one coarse-grained
generative factor (i.e. a combination of multiple factors). In speech for example,
distinct vectors represent combinations of factors like speaker characteristics, emo-
tional content, and environmental factors. One vector might represent a blend of
speaker identity and gender, while another represents emotional content. In this
thesis, we introduce a vector-wise DRL technique in Chapter 4

Dimension-wise methods are typically tested on synthetic and simple datasets
which often contain numerous fine-grained latent factors. On the other hand,
vector-wise methods are commonly employed in real-world scenarios (such as iden-
tity swapping, image classification, subject-driven generation, and video under-
standing) which concentrate on two or more coarse-grained factors [92].

Real-world datasets and applications typically focus on two or several broad
factors, such as identity and pose, which align better with vector-wise disentan-
glement.

2.1.4.1 DRL Techniques
DRL methods mainly make use of generative models like variational auto-encoder
(VAE) [103] and generative adversarial networks (GAN) [104].

Figure 2.5: Architecture of a variational auto-encoder.

VAE-based DRL techniques, such as those explored in the works by Higgins
et al. [105], Burgess et al. [106], Kim et al. [107], Kumar et al. [108], and Chen
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et al. [109], harness the capabilities of VAEs to learn rich data representations.
Figure 2.5 present the architecure of an VAE. At its core, a variational auto-
encoder [103] is a variant of the traditional auto-encoder(AE), a type of neural
network that is used to learn representation of an input data. An AE is composed
of two NN modules: and encoder and a decoder. The encoder projects an input x

from an n-dimensional space to a lower d-dimensional latent space. The decoder
then uses the compressed encoded representation to reconstruct the original input
x. A loss function is used to quantifies the discrepancy between the original input
and its reconstruction. The primary objective of an AE is to uncover the essential
features to accurately reconstruct the input data with the fewest possible dimen-
sions. VAE enhances the capabilities of an AE by encoding the input data into
a probability distribution over the latent space instead of mapping it to a single
point. This probabilistic approach allows VAEs to capture uncertainty and varia-
tion in the representation. VAEs enhance disentangled learning by implementing
various regularization techniques and loss function modifications during training.
These include imposing constraints on the latent space to encourage the separation
of underlying factors of variation in the data.

Figure 2.6: Architecture of a generative adversarial network.

Additionally, GAN-based approaches [110–114] provide an alternative path in
DRL that enables advanced data generation and manipulation. GAN consists of
two primary components: a generative network referred to as the generator and a
discriminative network known as the discriminator, as depicted in Figure 2.6. The
role of the generator is to create realistic samples while the discriminator learns
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to distinguish between real samples from the dataset and fake samples generated
by the generator. During training, the generator and discriminator are trained
together in an adversarial manner. The generator learns to produce increasingly
realistic samples that are difficult for the discriminator to differentiate from real
ones, while the discriminator improves its ability to distinguish between real and
fake samples. This adversarial process improves the capabilities of both networks
which result in the generation of high-quality samples by the generator. In the ideal
scenario, the generator achieves the ability to produce images that closely resemble
real ones, causing the discriminator to fail in distinguishing between generated
and real images. GANs contribute to disentangled representations learning by
modifying network architectures and loss functions. Techniques such as adding
auxiliary classifiers or using specific regularization terms enhance disentanglement
in the learned latent space of GAN.

In this thesis, combination of an autoencoder adversarial module is used for
creating privacy protected speaker embeddings in Chapter 4.

2.1.4.2 DRL in Privacy-Preserving Voice Biometrics
Disentangled representation learning has been utilized as a GDPR-compliant tech-
nique for data privacy. Depends on the mainstream task, these techniques can be
categorized in two groups: (i)identity anonymization and (ii)soft biometrics preser-
vation.

2.1.4.2.1 DRL for Voice Anonymization

Voice anonymization techniques aim to disentangled the identity of the speaker
is disentangled while retaining the spoken content unchanged. This technique
is promising in the ASR field where the identity information of the speaker is
irrelevant to the required task. Different approaches [115–120] have been pro-
posed for voice anonymization including disentangled representation learning-
based techniques [121, 122]. Moreover, The VoicePrivacy 2020 and 2022 chal-
lenges (VPC) [123,124] were introduced to evaluate privacy-preserving ASR mod-
eling frameworks focusing on removing speaker identity information from speech
while preserving linguistic content, paralinguistic attributes, intelligibility and
naturalness. Privacy is objectively evaluated by assessing speaker verification/re-
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identification ability. Baseline systems provided by the challenges are either signal-
processing-based [117] or DLR-based. Signal-processing-based systems does not
need training data and directly modifies speech characteristics such as the pitch,
spectral envelope, and time scaling. The DLR-based baseline system operates in
three steps. First, it disentangles frequency information (F0), bottleneck features,
and speaker identity (i.e. x-vector [7]) features from the original audio. Sec-
ond, the disentangled x-vector is replaced with another dissimilar x-vector drawn
from a pool of other users. Finally, an anonymized speech is synthesized using the
anonymized x-vector along with the other features. Most systems submitted to the
VPCs are inspired by the DLR-based baseline system 1 [125]. Evaluation results
of VPC2022 shows that x-vector DLR-based outperform others. In VCPC 2022,
Meyer et al. [126] propose a system that achieved the best speaker anonymization
preformance. The authors make use of a GAN-based model to extract speaker
identity features from the audio.

Thanks to the common datasets, evaluation metrics and baselines systems pro-
vided by the VPCs, numerous disentanglement-based voice anonymization systems
have been proposed [127–131].

2.1.4.2.2 DRL for Soft Biometrics Privacy Preservation

Another direction for ensuring GDPR compliance to data privacy in the field of
biometrics involves disentangling soft biometric attributes while retaining identity-
related information for recognition tasks. Several researchers have centered their
efforts on developing DLR-based solutions that are capable suppressing soft bio-
metric attributes for biometric data. These techniques are either directly applied
to the collected biometric data like face images and voice signals (i.e. at sample
level) [132–137] or to the extracted features (i.e. at feature level) [138–141].

Mirjalili et al. [136] introduce a semi-adversarial network (SAN) using an ad-
versarial convolutional auto-encoder (CAE) to conceal gender information in facial
images while maintaining their biometric recognition utility. Their approach in-
volves training a CAE in an adversarial manner to produce altered facial images
capable of deceiving a discriminator (i.e. gender classifier). During the train-
ing, an auxiliary gender classifier ensures the concealment of gender attributes

1https://www.voiceprivacychallenge.org/results-2022/
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within the facial images, while a face matcher verifies the accuracy of face recog-
nition preservation. In a subsequent study [135], the authors present an ensemble
of semi-adversarial networks (SANs). This ensemble is constituted of multiple
auxiliary gender classifiers and face comparators, which collectively generate di-
verse perturbations for an input face image. The underlying concept is that among
these perturbed images, at least one effectively misleads any arbitrary gender clas-
sifier. In their work [137], Mirjalili et al. attempt to enhance the generalization
capability of SAN models by combining a variety of face perturbations. While
these models effectively preserve the privacy of gender attributes as mentioned
previously, their capacity to generalize to arbitrary classifiers is limited. Tang et
al. [132] introduce an alternative gender adversarial network model, which effec-
tively conceals gender attributes while maintaining image quality and recognition
performance. In addition, this model demonstrates a capacity to generalize across
previously unseen gender classifiers. Further work is proposed by Bortolato et
al. [140] aimed at enhancing privacy preservation in face images at the template
level. The authors propose an AE-based Privacy-Enhancing Face-Representation
learning network (PFRNet), that effectively disentangle gender attribute infor-
mation from identity. This approach results in a good generalization performance
across diverse datasets. Furthermore, Terhöst et al. [141] introduce an incremental
variable elimination (IVE) algorithm, which trains a set of decision trees to ascer-
tain the importance of variables essential for predicting sensitive attributes. These
identified variables are then incrementally removed from facial templates to sup-
press gender and age features while retaining high face-recognition performance.
Building upon this concept, Melzi et al. [138] extend the approach to safeguard
multiple soft biometrics, including gender, age, and ethnicity, within facial images.

In speech-related literature, Aloufi et al. [134] build a voice conversion system
based on a cycle-GAN architecture. This system is capable of concealing the emo-
tional state of the users while maintaining speech recognition utility. Similarly, in
a study by Benaroya et al. [133], a neural VC architecture is introduced to manipu-
late gender attributes within voice signals. This VC architecture involves multiple
auto-encoders designed to convert speech into independent linguistic and extra-
linguistic representations. These disentangled representations are learned through
an adversarial learning process and can be fine-tuned during voice conversion.

At the template level, Noé et. al. [139] introduce an adversarial auto-encoder
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(AAE) architecture aimed at disentangling gender attributes from x-vector speaker
embeddings. In their proposed architecture, an external sex classifier is integrated
with the AE and attempts to predict the gender from the encoded representa-
tions. This AAE system is trained adversarially to mislead the sex classifier. This
method effectively conceals gender-related information within the x-vector embed-
dings while preserving good ASV performance.

2.2 Fairness and Bias Issues
The recent advancements in biometric recognition systems rely on machine learn-
ing algorithms, particularly deep learning models [142]. However, ML algorithms,
including biometric recognition systems [143, 144], have been shown to be sus-
ceptible to biases that impact their decisions to be unfair/biased [145, 146]. ML
algorithms can exhibit bias for several reasons, including inherent human bias in
the labeling of training datasets, unbalanced datasets that under-represent certain
groups, and training mechanisms that prioritize achieving high performance on
majority groups at the expense of minority groups. Bias in automated decision-
making ML algorithm like biometric recognition systems can significantly impact
people’s lives when employed in sensitive position like border control [144]. There-
fore, it becomes urgent to study fairness of such algorithms.

2.2.1 Definitions

Fairness in the machine learning literature refers to the general idea of treat-
ing individuals or groups without bias based on their inherent or acquired char-
acteristics such us age, gender, ethnicity, accent, genetic features, and politi-
cal opinion [145, 147]. However, there is currently no universally agreed-upon
definition of algorithmic fairness. Several fairness definitions have been pro-
posed [148–157]; nonetheless, they are incompatible and cannot be simultaneously
employed [158, 159]. Research suggests that fairness in machine learning varies
depending on the context [160,161], which also applies to machine learning-based
biometric systems [143]. Therefore, the appropriate fairness definition and met-
rics of fairness evaluation depends on the application. In this thesis we focus on
fairness in voice biometrics verification systems.
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2.2.2 Fairness and Bias in Biometrics
Fairness in biometrics system has emerged as a relatively new field of study and has
gained significant attention recently. A biometric system or algorithm is deemed
biased when noticeable variations in its operation are observed across various de-
mographic groups of people [143]. In an effort to facilitate discussion on algo-
rithmic fairness in biometric systems, Haward et al. [162] introduce two terms:
differential performance and differential outcome. Differential performance refers
to the difference in the mated and non-mated score distribution between specific
demographic groups for a given biometric task, regardless of any decision thresh-
old. On the other hand, differential outcome deals with differences in false match
(FM) (i.e. false acceptance) or false non match (FNM) (i.e. false rejection) error
rates among demographic groups relative to a decision threshold.

Most studies evaluating the fairness of biometric systems mainly focus on dif-
ferential outcome metrics [163–165]. These metrics are easy to calculate, using
established error rates, and treat the biometric system as a blackbox [166]. Re-
cently, Kotwal et al. [166] propose an fairness measures based on differential per-
formance to evaluate bias in biometric recognition system. The authors suggest
additional measures to complement rather than replace outcome-based fairness
measures. Both evaluation approaches work together to analyze the demographic
fairness of a biometric verification system. In this thesis, we make use of differential
outcome-based metrics (Chapters 5 and 6).

2.2.3 Fairness Assessment for ASV
Researchers have studied demographic biases in various biometric recognition
systems, such us facial recognition, fingerprints, palmprints, iris, and finger
veins [143]. While face recognition has been the focus of much bias detection
and mitigation works over the past decade, there has been limited research on
fairness in voice-based biometric recognition systems.

In their study [167], the authors discover that a DNN model shows varying
equal error rates (EERs) among individuals based on their language, gender, and
age. However, this study only examins one type of NN architecture and a few
demographic groups. Building upon this research, Fenu et al. [168] propose a
benchmark to assess the fairness of DNN models using two types of DNN-based
ASV systems using differences in EER. They train the models with speakers of
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different ages, genders, and languages.
In addition, the work presented by Hutiri et al. [169], inspired by Suresh and

Guttag’s Framework for Understanding Sources of Harm [170], present a compre-
hensive analysis of bias in the ML development workflow of speaker verification.
Suresh and Guttag identify seven sources of bias-related harms across the machine
learning life cycle, grouped into two streams: (i) data generation (historical, repre-
sentational, and measurement bias), and (ii) model building and implementation
(learning, aggregation, evaluation, and deployment). These biases originate from:
carried out stereotypes, underrepresented groups in the dataset, features and labels
of the dataset, overlooking group differences, modeling choices that amplify per-
formance disparities, the use non-representative benchmarks, and the mismatch
between deployment and model design. The presented study reveals biases at
all stages of development in the VoxCeleb Speaker Recognition Challenge [171],
affecting female speakers and non-US nationals the most.

Furthermore, Fenu et al. [172] conduct fairness assessments using three algo-
rithmic fairness definitions and at different operating points (i.e. decision thresh-
olds). They calculate the false acceptance rate (FAR), false rejection rate (FRR),
and fairness estimate to explore the trade-off between fairness, security, and us-
ability for three DNN-based ASV systems.

Toussaint and Ding [173] suggest a fairness evaluation framework for ASV sys-
tems, using a minimal detection error trade-off (minDET) and DET curves [174]
that focuses on a single operational threshold derived from speaker verification
scores. However, the proposed DET curves depend on demographic-specific thresh-
olds, making them unsuitable for deployment because of the sensitive and compli-
cated nature of inferring private backgrounds of users.

2.2.4 Bias Mitigation for ASV
Different solution have been proposed in the speaker verification literature in order
to mitigate bias therefore improve fairness of ASV systems. These techniques can
mainly be categorized in two groups: (i) pre-processing, and (ii) in-processing
approaches [175].

Pre-processing methods are based on balancing dataset in terms of demo-
graphic characteristics. Fenu et al. [168] make use of this approach and trained
ASV models with balanced training data with respect to gender, language, and
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age. Experiments show that balancing the dataset led to fairer treatment of groups
which reduced the disparity in FAR and FRR between different gender and age
demographic groups. However, it does not consistently improve the ability of the
models to equally recognize users across all demographic groups. This indicates
that simply balancing data is insufficient to achieve fairness in the outcomes of
ASV systems. Estevez and Ferrer [176] use a balanced dataset to evaluate the per-
formance of ASV systems. The authors notice a significant decline in performance
for underrepresented groups in training (females and speakers with nonnative En-
glish accents). They show that a simple data balancing approach mitigates this
bias on minority groups without sacrificing performance on the majority groups.

In-processing methods are based on integrating fairness into the model during
training by introducing fairness constraints. Shen et al. [177] demonstrate that
imbalanced gender representation in training sets can result in model unfairness.
To address this issue, the authors propose training group-adapted encoders to
extract gender-specific embeddings. This technique not only improves fairness but
also enhances the overall system utility. Fairness evaluations are based on the
differences in EER between the genders.

Jin et al. [178] suggest an adversarial reweighting training technique to re-
duce bias in ASV systems. By employing an adversarial network, this approach
automatically identifies underperforming groups and adjusts their impact on the
training loss. The proposed method improves both performance discrepancy across
gender and nationality demographic groups and overall performance of the ASV
system without necessitating explicit information about group membership during
the training.

Peri et al. [175] propose a solution to address gender biases in ASV systems
by using adversarial and multi-task learning techniques. By combining these tech-
nique together, the method aims to generate demographic-aware speaker embed-
dings to reduce bias. The authors use fairness discrepancy rate (FDR) [163] metric
that weights absolute discrepancy in FAR and FRR between demographic groups.

Hutiri et al. [179] highlight the importance of mitigating bias with inclusive
evaluation datasets and developed design guidelines for these datasets. The au-
thors recommend the use of representative datasets that mirrors the diversity of
the demographics of the population. This representation should be maintained
at both the speaker and utterance levels to ensure fair speaker verification assess-
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ments evaluation across demographic groups.

2.3 Conclusion
In this comprehensive chapter, we have presented privacy enhancing technologies,
focusing on secure multi-party computation, homomorphic encryption, and differ-
ential privacy mechanisms. We have examined the state-of-the-art use of PETs
in biometrics, highlighting their role in preserving privacy to be compliant with
the GDPR. We have further presented the challenges associated with integrating
these techniques with machine learning-based speaker verification systems.

Additionally, we have introduced disentanglement representation learning as an
emerging privacy preservation technique within machine learning. Furthermore,
we have presented state-of-the-art applications of these techniques in biometrics,
showcasing their efficacy in safeguarding sensitive data while maintaining utility.

Moreover, we have explored the concept of fairness in biometrics and discuss
fairness assessment measures. We have then presented bias assessment and miti-
gation techniques tailored specifically for speaker verification systems.

Overall, this thorough review of existing literature aims to foster a comprehen-
sive understanding of both well-established and emerging technologies, promoting
data privacy, ethical use, and GDPR compliance to data privacy and fairness
principles.
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Chapter 3

Privacy-Preserving Voice
Anti-Spoofing based on Secure
Multi-Party Computation

In this chapter, we introduce the security vulnerabilities of ASV systems and the
countermeasures to the spoofing threats. We further present the challenges faced
by cloud-based anti-spoofing systems in secure speaker authentication, particularly
when balancing security with privacy. We then introduce PRIVASP, the first
proposed solution for privacy-preserving voice biometric anti-spoofing. PRIVASP
is based on adapting an MPC technique to a shallow neural network anti-spoofing
system.

3.1 Automatic Speaker Verification System Se-
curity Issues and Countermeasures

Despite the reinforced security and user convenience ASV systems provide, just
like other biometric systems, they are susceptible to a range of attacks, catego-
rized following the ISO/IEC 30107-1 standards [180,181]. Figure 3.1 details these
threats which vary from sensor-level threats, such as using a microphone to cap-
ture and replay a voice of a legitimate user, to more sophisticated methods that
can compromise the authentication decision. The most critical vulnerabilities in
ASV systems are physical access (PA) attacks (at the microphone level) and log-
ical access (LA) attacks (at the acquisition stage prior to signal processing). PA
and LA attacks, also referred to as spoofing or presentation attacks, are direct
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attacks and do not require access to the core system [182]. These types of attacks
are easier to perform compared to attacks at other system levels, thereby posing
a greater threat.

Figure 3.1: List of attacks at different vulnerable points on an ASV system

Spoofing attack poses a great security threat and need to be urgently addressed.
Researchers have focused efforts on identifying ASV systems vulnerabilities and
developing adequate countermeasures (CMs), also known as presentation attack
detection (PAD) solutions in the ISO/IEC 30107-1 standard [180]. The four bi-
ennial ASVspoof challenges [183–186] have promoted the development and im-
plementation of CMs to automatically detect and counter ASV system spoofing
attacks. These challenges shared comprehensive databases containing both bona
fide (i.e. genuine) and spoofed utterances, baseline systems, as well as ASV and
CMs evaluation protocols. Anti-spoofing measures are incorporated [185], as de-
picted in Figure3.2. The spoofing countermeasure system produces scores to be
combined with the scores of the ASV system in order to ensure the authenticity
of the speech and confirm the identity of the speaker prior to allowing access.

3.2 Privacy Threats of Cloud-Based Spoofing
Countermeasures Systems

Cloud-based anti-spoofing systems serve as a decentralized solution to ensure se-
cure speaker verification, thwarting fraudsters who impersonate legitimate enrolled
subjects to unlawfully access resources secured by speaker verification systems.
These cloud-based services necessitate the transmission of speech data, which may
traverse potentially vulnerable networks. Besides, cloud-based servers are vulner-
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Figure 3.2: Representation of the Automated Speaker Verification (ASV) and
Countermeasure (CM) Systems.

able to data breach. In January 2018, a significant security breach was reported
in Aadhaar, the world’s largest ID database, compromising the personal and bio-
metric information of over 1.1 billion Indian citizens 1.
Consequently, privacy legislation globally, including the GDPR in Europe, now
requires the implementation of protective measures. It is imperative to consider
alternative mechanisms that prioritize user privacy without compromising secu-
rity. Local processing of speech data presents itself as a potential solution. By
confining data processing to the user’s device, the risks associated with data trans-
mission across networks and cloud-based server vulnerabilities can be significantly
mitigated. This method, however, introduces the necessity of deploying service
provider-developed models onto users’ personal devices. These models, being the
product of extensive data aggregation and intensive research, represent a substan-
tial intellectual and developmental investment. The proprietary nature of these
models raises legitimate concerns for service providers about the potential expo-
sure of their intellectual property. The threat of intellectual property (IP) theft,
whether through reverse engineering or other means, makes service providers un-
derstandably cautious about distributing their models for local processing. Despite
the clear privacy benefits that local processing affords to users, the practicality of
this solution from the standpoint of the service providers remains contentious.

1http://tinyurl.com/bdfefpnx
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The balance between ensuring user privacy and protecting the IP of service
providers is delicate and complex. In this context, the deployment of privacy-
enhancing technologies becomes pivotal.

3.3 Proposed system: PRIVASP
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Figure 3.3: Scenario 1: PRIVASP with Model privacy against the client (red
arrows). Scenario 2: PRIVASP with model privacy against both the client and
the cloud servers (blue arrows).

In our research, we focus on a scenario where a user attempts to authenticate
with an ASV system, like Google Home, using his/her voice. A critical aspect of
this process is the ability of the ASV system to determine if the voice input is
authentic or a spoofing attempt. To assist in this, the ASV system employs an
external anti-spoofing service equipped with a specialized NN model, hosted on
cloud servers.

The challenge arises from the need to protect sensitive information: the user’s
voice data must be kept secret from the anti-spoofing service and the cloud servers,
while the service provider also seeks to safeguard its anti-spoofing model, consid-
ering it a valuable asset. Furthermore, the cloud servers themselves could pose a
threat to the confidentiality of the model.

To tackle these privacy issues, we propose the use of a secure 2PC technique
based on additive secret sharing, where all parties involved are assumed to be hon-
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est but curious (refer to Chapter 2.1.1.1). As previously discussed in Chapter 2.1.3,
implementing a secure 2PC scheme in existing ASV systems is not straightforward
due to their complexity, especially those using deep neural networks with many
non-linear operations, as in [9, 187]. These complexities could lead to prolonged
processing times under MPC. Also, the limitation of MPC to integer calculations
complicates matters further, as these ASV systems usually process real numbers,
and converting these to integers can reduce accuracy. Additionally, executing
non-linear operations like comparisons in MPC requires specific approximations.

Therefore, our solution is to design a new spoofing countermeasure system
compatible with MPC. We introduce PRIVASP, a system with a shallow NN ar-
chitecture that not only facilitates the integration of MPC but also maintains
spoofing detection accuracy. We detail the performance and efficiency of PRI-
VASP in Section 3.4.4.

In the following two sections we explain how MPC is used in PRIVASP and
suggest two versions of it as illustrated in Figure 3.3. In both versions, the speech
is secretly shared among the two cloud servers. On the other hand, in the first
version, the anti-spoofing service fully trusts the cloud and sends the model param-
eters in clear. In the second version, in addition to the input, the model parameters
are also secretly shared. The first version is represented in red in Figure 3.3, where
the same model is shared between the servers, and the second version is represented
in blue in which the model is secretly shared.

3.3.1 PRIVASP with Model privacy against the client
In our proposed system, the process begins with the client, who has a voice ma-
trix representing the user’s voice input. To maintain confidentiality, the client
splits this voice matrix into two separate parts using additive secret sharing (Sec-
tion 2.1.1.1.2). This method involves creating two distinct secret shares, each of
which is sent to a different server. These two servers are set up to be non-colluding
cloud servers.

Upon receiving their respective shares, each server conducts a spoofing detec-
tion task using the same anti-spoofing model, denoted as M . This model is trained
to identify whether the voice input is genuine or a spoofing attempt. A key as-
pect of this setup is that the anti-spoofing model, which is a crucial asset in this
scenario, is kept hidden from the client. The client only provides the input data
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but does not have access to or knowledge of the model itself. The parameters of
the model remain exclusively within the servers, ensuring that the client cannot
reverse-engineer or otherwise obtain insights about the model.

However, an important consideration arises in this setup. In this initial design
of PRIVASP, the model, while protected from the client, is fully accessible to the
cloud servers which perform the classification task. This situation poses a risk in
terms of IP: if the model is a proprietary asset, exposing it to the cloud servers
could lead to unauthorized access or duplication.

Recognizing this challenge, we propose an advanced version of PRIVASP in the
subsequent section of our work. This second version of the system aims to fortify
the confidentiality of the anti-spoofing model and extending privacy protection to
encompass not only the client but also the cloud servers. This enhanced approach
seeks to ensure that the parameters of the model are securely shielded from all
external parties, thereby better safeguarding the IP and maintaining the integrity
of the anti-spoofing service.

3.3.2 PRIVASP with model privacy against both the client
and the cloud servers

In this refined version of our system, we carefully manage the privacy of both
the user’s voice data and the pre-trained anti-spoofing model using a secure 2PC
protocol. Initially, the parameters of the pre-trained model are split into secret
shares and securely distributed to two non-colluding servers, ensuring no single
server has access to the complete model. Simultaneously, the client’s voice data
is also divided into secret shares and sent to these servers. As part of the secure
2PC protocol, the servers, each possessing a piece of the model and the data, col-
laboratively compute the spoofing detection task. This computation is performed
in a way that the servers themselves cannot access or reconstruct the full model
or the original data. The integrity of the model is thus maintained, and the IP
is protected. The final step involves sending the result of the spoofing detection
back to the smart device. While the servers perform the computation, they remain
oblivious to both the input data’s nature and the computation’s outcome. This
end-to-end process ensures that the client’s data and the model’s confidentiality
are preserved, while still providing accurate and reliable spoofing detection.

44



3.4. EXPERIMENTAL SETUP

3.4 Experimental setup
This section outlines the ASVspoof 2019 LA database, evaluation metrics, base-
lines of the challenge, competing state-of-the-art countermeasures, and PRIVASP
implementation details. It is important to note that the countermeasure systems
examined in the experiments are individual systems. This means that they are
not a fusion of multiple individual systems, but are standalone in their operation
and analysis.

3.4.1 ASVspoof 2019 LA database
Experiments were carried out using the publicly available ASVspoof 2019 LA
database 2, a component of the ASVspoof 2019 challenge delineated in subsec-
tion 3.1.

Subset Number of speakers Number of utterances
Male Female Bona fide Spoofed

Training 8 12 2580 22800
Development 4 6 2548 22296
Evaluation 21 27 7355 63882

Table 3.1: Statistics of the database used in ASVspoof 2019 challenge Logical
Access partition.

The ASVspoof 2019 LA subset, presented in Table 3.1, is divided into three
disjoint partitions: training, development, and evaluation. Each partition includes
bona fide utterances and spoofed utterances generated using a variety of advanced
voice conversion (VC), text-to-speech (TTS), and hybrid (VC-TTS) algorithms,
with a total of nineteen algorithms. TTS algorithms generate spoken output from
text input, whereas VC algorithms transform input source speech to to resemble
that of a target speaker. The training and development sets include four TTS
algorithms and two VC algorithms. The evaluation set includes seven TTS algo-
rithms, three VC algorithms, and three hybrid algorithms. Further details on each
attack algorithm can be found in [185]. In the 2019 LA evaluation set, two at-
tacks are categorized as known, as they employ identical algorithms to those used
in the training and development sets, with distinct utterances and speakers. The

2https://datashare.ed.ac.uk/handle/10283/3336
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remaining eleven attacks in the evaluation set are classified as unknown. Although
these unknown attacks may employ similar techniques to the known ones, their
full algorithms differ.

3.4.2 Evaluation metrics
Spoofing detection in ASV systems is formulated as a binary classification task,
with classifiers assigning scores to input trials. Trials with scores exceeding a
pre-fixed threshold, τcm, are deemed genuine; others are classified as spoofed (i.e.
imposter). Two speaker verification evaluation metrics where proposed in this
challenge.

3.4.2.1 Equal Error Rate

Evaluation employs the Equal Error Rate (EER), where the false acceptance rate
(P cm

fa ) and the false rejection rate (P cm
miss) converge. Defined as follows, these rates

are computed using the Bosaris toolkit:

P cm
fa (τcm) = #spoofed trials with CM scores > τcm

#total spoofed trials (3.1)

P cm
miss(τcm) = #bona fide trials with CM scores ≤ τcm

#total bona fide trials (3.2)

Here, False accepts (FAs) occur when spoofed trials are mistakenly accepted,
and False rejects (FRs) when genuine trials are mistakenly rejected. Despite its
recent deprecation in ISO/IEC standards [180, 181], EER remains a prevalent
metric within the speaker recognition community due to its intuitive interpretation.
However, as a parameter-free metric, devoid of priors or detection costs, EER does
not fully reflect practical performance scenarios.

3.4.2.2 Tandem Detection Cost Function

Recognizing the need for a more representative metric, the minimum tandem De-
tection Cost Function (min t-DCF) was introduced in 2018 by Kinnunen et al.
[188,189]. This metric provides a more holistic measure of the impact of spoofing
and CMs on the reliability of an ASV system. This metric accounts for the in-
terdependent operations of the ASV and CM within the same framework. Hence,
min t-DCF is favored for its ability to capture the practical performance of ASV
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systems under potential spoofing conditions. The min t-DCF is defined as:

min t-DCF = min
τ

C0 + C1P
cm
miss(τcm) + C2P

cm
fa (τcm)

C0 + min (C1, C2)
(3.3)

where C0, C1, and C2 are hyper-parameters derived from ASV scores and the
priors of target (i.e. mated), non-target (i.e. non-mated), and spoofed trials, in
addition to ASV and CM detection costs:

C0 = πtarC
asv
missP

asv
miss + πnonCasv

fa P asv
fa (3.4)

C1 = πtarC
cm
miss − (πtarC

asv
missP

asv
miss + πnonCasv

fa P asv
fa ) (3.5)

C2 = πspoofCcm
fa P spoof

fa (3.6)

The min t-DCF metric quantifies the combined security effectiveness of ASV
and CM systems, with values ideally ranging between 0, denoting perfect system
performance, and 1, indicating reduced protection performance against spoofing
attacks. The cost parameters Casv

miss, Casv
fa , and Ccm

miss correspond to the costs of
target trial rejections, non-target acceptances, and bona fide trial rejections by the
ASV and CM systems, respectively. For an in-depth discourse on the computation
and implications of these parameters, readers are directed to [188, 189].

3.4.3 ASVspoof 2019 baselines and post-evaluation sys-
tems

In the ASVspoof 2019 Challenge [185], participants were provided with two base-
line countermeasure (CM) systems. Baseline B01 employs constant Q cepstral
coefficients (CQCCs) [190], which are a set of features derived from a logarithmic
frequency scale where the number of frequency bins per octave is fixed at 96, en-
hancing resolution in lower frequencies. The resampling period is specified as 16,
which determines the rate at which the frequency spectrum is sampled. The feature
vector comprises 29 static coefficients, including the zeroth coefficient, capturing
the spectral envelope of the signal. These static features are further enhanced by
their first and second temporal derivatives, known as delta and delta-delta coeffi-
cients, providing dynamic information about the trajectory of the cepstral features
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over time. Consequently, this results in a comprehensive 90-dimensional feature
vector, utilized in conjunction with a 512-component Gaussian Mixture Model
(GMM) serving as the back-end classifier [191, 192].

Baseline B02 utilizes linear frequency cepstral coefficients (LFCCs), which lin-
early sample the frequency spectrum between 30 Hz and 8 kHz, using a 512-point
Discrete Fourier Transform (DFT) applied to signal frames of 20 ms with a 50%
overlap between consecutive frames. This approach captures both the stationary
and transitional properties of the speech signal. Similar to B01, LFCCs include
19 static coefficients and the zeroth coefficient, with the addition of delta and
delta-delta coefficients to encapsulate the temporal dynamics, resulting in a 60-
dimensional feature vector. This feature set is also analyzed by a 512-component
GMM classifier [193].

Both baseline systems are trained on bona fide and spoofed utterances from
the ASVspoof 2019 training dataset using an expectation-maximization (EM) al-
gorithm. The model outputs are log-likelihood ratios that differentiate between
genuine and spoofed speech. The corresponding Matlab package for both baselines
can be obtained from the ASVspoof website 3.

In addition to these baselines, three advanced systems were evaluated post-
challenge for comparison. These include the high-spectral resolution LFCC sys-
tem with a traditional GMM classifier (LFCC-GMM) [194], RawNet2 [187], and
ResNet18-SP [9] systems. Notably, the latter two are sophisticated DNN mod-
els, comprising millions of parameters, indicative of their complexity and depth in
feature representation.

3.4.4 Implementation details of PRIVASP
PRIVASP is designed for collaborative spoofing detection, engaging a client (such
as a home assistant) and a CM model provider, alongside two non-colluding servers
(e.g. Alice and Bob) to ensure secure and private computation. The client’s input
(and the model’s weights in the second scenario) is secretly shared between Alice
and Bob, while a third party, the crypto Provider, generates random numbers
for secure multiplication, without owning any shares or colluding with the other
parties.

PRIVASP uses LFCCs as the front-end feature extractor. Audio signals are
3https://www.asvspoof.org/index2019.html
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processed by segmenting the speech waveform into overlapping frames, precisely
using a 30 ms window with a 15 ms shift. From each frame, 30 LFCCs are derived,
focusing on the first 1500 ms of each utterance; for utterances less than 1500
ms, repetition is employed to meet the length requirement. The resulting feature
matrix is then vectorized into a column vector comprising 2970 elements.

In the back-end, a shallow NN with a single hidden layer featuring the rectified
linear unit (ReLU) activation function is employed. We evaluate two variants of
PRIVASP: PRIVASP-1024 and PRIVASP-512—distinguished by the number of
neurons in their hidden layers, 1024 and 512, respectively. Figure 3.4 illustrates
the architecture of the shallow NN used in PRIVASP-1024.

Figure 3.4: Architecture of the PRIVASP-1024 shallow neural network.

The PRIVASP-1024 NN processes input features x1, x2, . . . , x2970 through a
single hidden layer to produce the output ŷ. In a fully connected layer, each neuron
is interconnected with all neurons in the previous layer, allowing the network
to learn complex patterns from the input data. Each hidden neuron computes
a weighted sum of the inputs, yielding zi = ∑

j wijxj + bi, where wij are the
weights, xj are the input features, and bi is the bias. The zi values are then passed
through a ReLU, defined as ReLU(zi) = max(0, zi), introducing non-linearity and
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enabling the identification of patterns by activating neurons when input exceeds
a threshold, which helps the network in recognizing diverse features. The training
of the network levarages the adaptive moment estimation (Adam) optimizer to
fine-tune the weights, aiming to minimize the binary cross-entropy loss function.
This optimizer dynamically adjusts learning rates, using estimates of lower-order
moments to enhance convergence. The binary cross-entropy loss function, essential
for binary classification tasks, quantifies the discrepancy between the predicted
outputs and actual labels and guides the model towards more accurate predictions.
Model selection favors the iteration exhibiting the lowest loss value during training.
The training of the spoofing detection model is performed on the model provider’s
side in clear, without applying MPC protection.

The experimental setup consisted of a PC equipped with an Intel i5-9400F
6-core processor at 2.9 GHz, an NVIDIA GeForce GTX 1050 GPU with 4GB of
memory, and 64GB of RAM. PyTorch framework4 was employed for NN construc-
tion. Pysyft library5, which integrates MPC capabilities within PyTorch, was used
for PRIVASP implementation after the training and during the employment of the
CM [195,196].

In the secure 2PC context within PySyft, operations necessary for neural com-
putation, such as addition, multiplication, and the non-linear ReLU, are securely
performed. PySyft’s MPC framework employs protocols like SPDZ [197, 198] and
SecureNN [86] to execute these computations while ensuring data privacy. To com-
ply with the MPC’s requirements, real numbers in the input layer are translated
into integer-based fixed-precision numbers using PySyft’s FixedPrecisionTensor,
which encodes floating-point numbers and maintains the radix point location. For
example, the floating-point number 0.123 with precision 2 is rounded to the integer
12.
The ReLU function is securely computed through the SecureNN protocol. Alice
and Bob engage in a series of sub-protocols that allow them to compare shared
values and compute the most significant bit (MSB) without revealing the actual
input value. If the MSB indicates a negative input, ReLU outputs zero; for non-
negative inputs, it outputs the value itself. This process is conducted without
disclosing individual shares, thereby preserving data privacy and enabling secure

4https://pytorch.org/
5https://github.com/OpenMined/PySyft
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neural network operations. For in-depth details on these sub-protocols, readers
may consult [86].

The output ŷ, illustrated in Figure 3.4, is mathematically represented by:

ŷ =
1024∑
i=1

woi · σi + bout,

where woi is the weight from the i-th hidden neuron to the output neuron,
σi denotes the output of the ReLU activation function ReLU(zi), and bout is the
output neuron’s bias.

In a secure 2PC setting, the output is held as separate shares by Alice and
Bob, noted as ŷA and ŷB. The client combines these shares to form the final score:

Score = ŷA + ŷB.

This computed score, when compared with a predefined threshold, classifies
the speech as genuine if it exceeds the threshold or as spoofed otherwise.

3.5 Results
The evaluation follows a threefold objective: i) analyzing the performance of coun-
termeasures, ii) assess privacy-preserving algorithms, and iii) evaluate the compu-
tational costs.

In Tables 3.2 and 3.3, we present the experimental results for the baseline
systems B01 and B02, alongside advanced post-evaluation models namely the high-
spectral-resolution LFCC, RawNet2, and ResNet18-SP, previously presented in
section 3.4.3, as well as our proposed PRIVASP-1024 and PRIVASP-512 systems.
The tables detail performance metrics in terms of pooled EER and min t-DCF.

The term plaintext in these tables refers to the conventional setting where no
privacy preservation techniques are applied, and all computations are performed
in the clear. This serves as a benchmark to evaluate the spoofing detection per-
formance of the models without the added complexity of secure two-party com-
putation. In this context, PRIVASP plaintext indicates the performance of our
shallow neural network when operating without applying the privacy-preserving
and without distributing data among the two non-colluding servers.

To rigorously assess the spoofing detection performance under privacy con-
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system type EER [%] min-tDCF
B01 [190] plaintext 0.43 0.0123
B02 [193] plaintext 2.71 0.0663

LFCC-GMM [194] plaintext 0.00 0.0000
RawNet2 [187] plaintext 1.09 0.0362
ResNet18-SP [9] plaintext 0.07 0.0018

PRIVASP-1024
plaintext 0.00 0.0000
scenario 1 0.00 0.0000
scenario 2 0.00 0.0000

PRIVASP-512
plaintext 0.00 0.0000
scenario 1 0.00 0.0000
scenario 2 0.00 0.0000

Table 3.2: Performance for the ASVspoof 2019 LA development partition in terms
of pooled EER and min t-DCF for the two baselines, B01 and B02, the high-
spectral-resolution LFCC, RawNet2, ResNet18-SP and our proposed PRIVASP-
1024 and PRIVASP-512 systems. PRIVASP systems are also evaluated in privacy-
preserving scenario 1 and 2.

straints, we conducted separate experiments for PRIVASP systems in the two
scenarios, previously explained in section 3.3. As shown in Table 3.2, associated
with the development partition, both PRIVASP-1024 and PRIVASP-512 exhibit
exemplary performance, achieving perfect scores even under the stringent con-
ditions of privacy-preserved scenarios. In the evaluation partition, represented in
Table 3.3, PRIVASP-1024 marginally outperforms PRIVASP-512 in plaintext con-
ditions with an EER of 7.03% and a min-tDCF of 0.1485. Performance remains
consistent across the two privacy-preserved scenarios, indicating that applying 2PC
did not compromise the accuracy of the system. PRIVASP systems demonstrate
superior performance against the baselines B01 and B02, as well as the RawNet2
system as shown in Table 3.3.

Efficiency is a crucial factor in the practical deployment of spoofing CM sys-
tems. As indicated in Table 3.4, we assess the average inference time, measured in
milliseconds, to determine whether an utterance is bona fide or spoofed. Our analy-
sis reveals that PRIVASP-512 consistently outpaces PRIVASP-1024 in terms of in-
ference time, due to its streamlined architecture with fewer neurons. In ciphertext
scenario 2, PRIVASP-512 achieves an impressive detection time of approximately
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system type EER [%] min-tDCF
B01 [190] plaintext 9.57 0.2366
B02 [193] plaintext 8.09 0.2116

LFCC-GMM [194] plaintext 3.50 0.0904
RawNet2 [187] plaintext 5.54 0.1547
ResNet18-SP [9] plaintext 6.82 0.1140

PRIVASP-1024
plaintext 7.03 0.1485
scenario 1 7.02 0.1481
scenario 2 7.02 0.1481

PRIVASP-512
plaintext 7.10 0.1549
scenario 1 7.13 0.1550
scenario 2 7.13 0.1550

Table 3.3: Performance for the ASVspoof 2019 LA evaluation partition in terms of
pooled EER and min t-DCF for the two baselines, B01 and B02, the high-spectral-
resolution LFCC, RawNet2, ResNet18-SP and our proposed PRIVASP-1024 and
PRIVASP-512 systems. PRIVASP systems are also evaluated in privacy-preserving
scenario 1 and 2.

208ms per utterance, compared to around 350ms for PRIVASP-1024. These times
are competitive with the baseline B01 system when operating in plaintext, and
they are well within the bounds acceptable for real-time application requirements.

In the less stringent ciphertext scenario 1, where model privacy is not a con-
cern, the PRIVASP systems demonstrate even greater efficiency. PRIVASP-1024
and PRIVASP-512 report detection times of roughly 95ms and 60ms, respectively,
surpassing the plaintext performance of the baseline systems B01, B02, and LFCC-
GMM. The PRIVASP variants in plaintext mode exhibit comparable efficiency to
the more complex deep learning models RawNet2 and ResNet18-SP.

It is important to note that these efficiency metrics for PRIVASP are obtained
without the aid of GPU acceleration, which is a standard practice for deep learning
models. This highlights the optimized nature of PRIVASP’s neural network design,
tailored for efficient computation while still ensuring robust privacy-preserving
capabilities in a multi-party computation context.
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3.6 Summary
This chapter introduces PRIVASP, the first privacy-preserving solution to voice
anti-spoofing. Instead of treating privacy as an afterthought, PRIVASP is fun-
damentally built with a privacy by design approach. This pioneering approach
ensures that the spoofing countermeasure is inherently tailored to align with the
capabilities of 2PC. As a result, PRIVASP not only upholds rigorous standards
of privacy protection but also guarantees efficient spoofing detection. The sys-
tem is underpinned by a carefully architected shallow neural network, equipped
with a single layer and the ReLU activation function, making it adept for MPC
environments.

Our experiments were performed on the ASVspoof 2019 Logical Access
database, where we explored two distinct operational scenarios. These scenar-
ios were differentiated based on whether the spoofing countermeasure service
providers opted to disclose their models to the cloud service provider or not.

The outcomes of our experiments underscore the remarkable efficiency of PRI-
VASP, even within the traditionally computation-intensive realm of MPC. By
innovatively designing a shallow neural network, PRIVASP aligns seamlessly with
our secure 2PC framework, effectively overcoming the usual computational over-
head associated with such techniques. The result is a system that not only excels
in real-time spoofing detection but also operates with remarkable efficiency. This
breakthrough represents a significant step in simultaneously achieving the dual
goals of robust user privacy protection and safeguarding the service provider’s
intellectual property by keeping the model parameters private.
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Chapter 4

Protecting Gender in Voice
Biometrics Based on Differential
Privacy and Adversarial Training

This chapter presents a novel privacy-preserving speaker verification solution fo-
cusing on concealing gender attributes from speaker embeddings while retaining
identity of speakers. This approach combines two techniques: adversarial train-
ing and differential privacy previously described in Chapter 2 (Section 2.1.4.1 and
Section 2.1.2.2, respectively).The chapter is structured as follows. First, the mo-
tivation behind the development of this privacy-preserving solution is discussed.
Next, the methods employed for gender concealment are presented. This includes
the implementation of the gender adversarial auto-encoder (Gender-AAE) and the
Gender-AAE with Laplace noise layer. Following this, the experimental evaluation
and results are presented. This encompasses details regarding the databases used,
the experimental settings employed, and the analysis of gender-neutral speaker
representations. Finally, a summary of the key findings and contributions of this
chapter is provided.

4.1 Motivation
The digitization of identity verification through voice biometrics emphasizes the
need for privacy-preserving technologies. As discussed in Chapter 1.3, the human
voice inherently encapsulates numerous physiological and psychological traits, in-
cluding gender, a particularly sensitive attribute. The indiscriminate exposure
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of such traits can lead to significant privacy risks. Hence, it is imperative to
implement robust protection measures against potential misuse or unauthorized
analysis.

Consider the scenario depicted in Figure 4.1, where an online education plat-
form employs speaker verification for user authentication. The platform adheres
to privacy and data minimization principles by maintaining gender-neutral profiles
and using voice prints solely for identity verification. This approach ensures equal
treatment of users and prevents content personalization based on gender, aligning
with a commitment to privacy requirement by the GDPR. However, this setup
is not devoid of risks. If a staff member responsible for maintaining the speaker
verification system decides to analyze the voice data using a pre-trained gender
classifier, they might uncover the user’s gender. Such unauthorized gender infer-
ence could inadvertently bias the educational content, contravening GDPR laws
that advocate for minimal data usage and fostering non-discriminatory practices.

Figure 4.1: The risk of gender inference by an untrusted e-learning website ad-
ministrator.

Traditional cryptographic methods such as MPC present a clear trade-off: they
secure data but often at the expense of compatibility with existing ML models.
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These models must often be completely redesigned to operate efficiently within
the constraints of MPC, as presented in chapter 3. Additionally, not all opera-
tions are supported by MPC and HE, limiting their applicability. MPC, while
robust, is known for its computational complexity, and HE is marked by its time-
intensive computations, as discussed in Chapter 2.1.3. There is also a complex
knowledge required to effectively implement these solution that are not straight-
forward. Consequently, there is a high demand for more accessible solutions within
the biometric community. These solutions should offer lower computational and
communicational complexities and support a wider range of operations to facilitate
their adoption and integration into existing systems.

Data obfuscation techniques offer a refined alternative, striking a balance that
protects sensitive information without compromising the utility of the data. This
balance is critically important in the field of speaker verification, where verifying
a person’s identity must be judiciously weighed against the crucial need to protect
sensitive attributes like gender.

To tackle this challenge, this chapter introduces the first initiative that ef-
fectively utilizes differential privacy, a concept traditionally associated with data
anonymization (see Chapter 2.1.2), to protect gender information in speaker verifi-
cation, all while preserving individual identity. Our innovative approach leverages
the strengths of DP in conjunction with an adversarial auto-encoder framework.
This distinctive integration allows us to uphold the integrity of individual identity
features within speaker embeddings. In this work, DP is employed not to obscure
but to safeguard these identity traits, specifically focusing on the concealment of
gender traits.

4.2 Gender concealment
In this section, we introduce the building blocks of the suggested technique for
obscuring gender information. Initially, we examine the structure of the AAE,
which largely aligns with the system proposed in [139], and discuss its constraints
regarding the task of gender concealment. Subsequently, we demonstrate the inte-
gration of the AAE with LDP to enhance the efficacy of the model in minimizing
gender information within speaker embeddings. This combination offers a config-
urable balance between privacy and utility, backed by solid theoretical assurances
presented in Chapter 2.1.2.2.
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4.2.1 Gender-Adversarial Auto-Encoder
Let x be an embedding representing a speaker identity. The primary objective
of a gender adversarial auto-encoder is to refine x into a new representation, x̃,
which preserves the speaker’s identity while stripping away gender characteristics.
This transformation is achieved through a series of feed-forward neural network
modules, each with a specialized function. The first step of the process involves
compressing x into a latent representation z using an encoder function eϕ1 (x).
This encoder module, parameterized by ϕ1, reduces the dimensionality from the
original space Rd to a smaller latent space Rl. In this phase, the encoder’s primary
task is to maintain the essential characteristics of the speaker’s identity in z while
concealing gender-specific features.

The next key component in the Gender-AAE system is the adversarial discrim-
inator module, denoted as aθ (·). The discriminator initially undergoes training to
identify the gender of the speaker from the latent representation z. This train-
ing phase is crucial as it defines the encoder’s target level of gender obfuscation.
The optimization of the discriminator’s parameters, θ, focuses on minimizing the
following discriminative loss function:

Ldisc (x, y, θ | ϕ1) = −y log (aθ (z))− (1− y) log (1− aθ (z)) (4.1)

where y ∈ {0, 1} is the binary gender label, with 0 representing male and 1
representing female. The term aθ (z) represents the probability assigned by the
discriminator to the likelihood of z being generated by a female speaker.

The interaction between the encoder and the discriminator can be likened to
a strategic two-player game. The encoder is focused on generating a latent rep-
resentation z that effectively masks gender details, making it challenging for the
discriminator to accurately predict the speaker’s gender. Conversely, the discrim-
inator analyzes the compact data z with the aim of uncovering any concealed
gender information. If the discriminator succeeds in detecting gender, it indicates
a need for the encoder to further refine its gender-hiding techniques. In practice,
gender-related information is concealed by training the encoder to ’fool’ the dis-
criminator, with both networks optimizing the same objective as (4.1) but with
the distinction that the predicted probability by the discriminator is inverted:
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Ladv (x, y, ϕ1 | θ) = −y log (1− aθ (z))− (1− y) log (aθ (z)) (4.2)

Finally, a decoder module dϕ2 (·) attempts to reconstruct the original input
embedding from z. The role of the decoder is to guarantee that the reconstructed
embedding can still be used for other tasks (i.e. speaker verification in this case)
despite the suppression of gender-related attributes. Thus, the auto-encoder is
optimized end-to-end according to a further reconstruction objective: the cosine
distance between the original input embedding and the reconstructed one.

Lrec (x, ϕ1, ϕ2) = 1− cos (x, dϕ2 (z)) (4.3)

Overall, we aim to strike a balance between privacy protection (optimizing Ldisc,
Ladv) and utility (optimizing Lrec) of the processed embeddings. The overall sys-
tem is trained by alternating gradient descent steps on the parameters of the
auto-encoder ϕ = {ϕ1, ϕ2} and the parameters of the discriminator θ:

ϕ← ∇ϕ (Ladv + Lrec)
θ ← ∇θLdisc

(4.4)

At test time, we produce a protected embedding x̃ by passing x through the
auto-encoder:

x̃ = dϕ2 (eϕ1 (x)) (4.5)

At this stage, the need for the discriminator module is no longer required, as
our encoder-decoder network is assumed to be trained sufficiently to reconstruct
speaker embeddings that effectively preserve identity while concealing gender-
related information.

The evaluation of the capability of the Gender-AAE to preserve privacy involves
assessing an attacker’s ability to infer the gender of the original speaker from the
protected utterance x̃. To measure it, we train an external gender classifier c (·)
on a separate set of clean embeddings, then report the gender classification perfor-
mance of c (·) on the original test embeddings and their privacy-protected version:
the difference between the two represents the effectiveness of gender concealment
technique. The utility preservation is evaluated by comparing the performance of
the same ASV system on the original and protected speaker embeddings.
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We perform a preliminary evaluation of the reconstructed speaker embeddings
of the Gender-AAE and obtain Area Under the ROC Curve (AUC) for gender
classification = 98.45 (10−2) and EER = 1.86% for ASV performance. In contrast
to EER, AUC provides a comprehensive view, which is ideal for evaluating system
security across diverse threshold selections. In order to ensure that the predictions
of the gender classifier are truly random, the AUC must be close to 0.5. There-
fore, it is necessary to strengthen the adversarial performance to conceal gender
information.

In this work, we investigate the impact of adding noise derived from a Laplace
mechanism, introduced in 2.1.2.2. Our choice of the Laplace mechanism is deliber-
ate, as it is not only well-regarded for its noise addition and calibration properties
but also because it offers robust DP guarantees. We have opted for the Laplace
mechanism due to its suitability for addressing empirical queries, such as classifi-
cation tasks, where the effectiveness of noise addition is crucial. Furthermore, the
Laplace mechanism ensures that the latent vectors z maintain LDP guarantees,
and the post-processing property of DP extends this guarantee to the reconstructed
vectors, as discussed in Chapter 2.1.2.2.

4.2.2 Gender-Adversarial Auto-Encoder with Laplace
noise

To enhance the ability of the Gender-AAE to conceal gender-related information
and further strengthen the adversarial training of the encoder, we introduce a
Laplace mechanism to the learned latent space. More specifically, during training,
we incorporate a Laplace layer denoted as dp (·) into the process. This layer intro-
duces a noisy vector n ∼ Laplace (0, ∆f/ϵ) to the latent embedding z. Figure 4.2
graphically depicts the system. In order to apply the Laplace mechanism effec-
tively, we need to determine the sensitivity ∆f . As outlined in Section 2.1.2.2,
the concept of ℓ1-sensitivity involves measuring how much the output of a function
can change in response to a small change in its input. In our Gender-AAE frame-
work, the function f refers to the encoding mechanism that transforms raw data
into a latent representation. The ℓ1-sensitivity, therefore, captures the maximum
possible change in the encoded output when a single data point in the input is
altered.

To calculate the ℓ1-sensitivity for the Gender-AAE, we examine the encoder’s
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Figure 4.2: Illustration of the proposed system at training time. Solid and dashed
arrows represent forward and backward propagation respectively. Modules are
colored based on which gradient signal they are optimized by.

behavior with respect to two adjacent inputs, denoted by x and x′. In this context,
adjacent inputs refer to pairs of data records or vectors that are part of the dataset
X and are identical in every aspect except for one individual’s data. This difference
could be the presence or absence of an individual’s record or a change in one
individual’s attributes while keeping the rest of the data unchanged. Formally, we
calculate ∆f it as:

∆f = max
x,x′∈X

∥eϕ1 (x)− eϕ1 (x′) ∥1 (4.6)

However, since the eϕ1 function is the result of a neural network’s encoding
process, their values are not predetermined or bounded by any specific range.
Each dimension of the latent vectors can take on a wide range of values, making
it challenging to set an upper bound on their ℓ1-norm. Therefore, we use the same
clipping procedure used in [199]. By the triangle inequality for norms, we have:

∥eϕ1(x)− eϕ1(x′)∥1 = ∥eϕ1(x) + (−eϕ1(x′))∥1 ≤ ∥eϕ1(x)∥1 + ∥−eϕ1(x′)∥1 (4.7)
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Since the norm of a vector is equal to the norm of its negation, we get:

∥eϕ1(x)∥1 + ∥−eϕ1(x′)∥1 = ∥eϕ1(x)∥1 + ∥eϕ1(x′)∥1 (4.8)

Assuming that the ℓ1-norm of eϕ1(x) is constrained by the clipping threshold C

for all x ∈ X , it follows that:

∆f ≤ ∥eϕ1(x)∥1 + ∥eϕ1(x′)∥1 ≤ C + C = 2C (4.9)

Therefore, the ℓ1-sensitivity ∆f is bounded by 2C. The latent space represen-
tation z is scaled by a coefficient 1/ max (1, ∥z∥1/C). This method ensures that if
∥z∥1 ≤ C, z remains unchanged, while if ∥z∥1 > C, it is scaled down to have a
norm of C.

In practice, one pragmatic approach to determine an appropriate value for C is
to compute the median of the norm of unclipped z vectors throughout the training
phase. The value of the privacy budget ϵ can be chosen according to the desired
balance between privacy protection and the utility of the produced embeddings.

The Laplace layer is then defined as

dp (z) = z
max

(
1, ∥z∥1

C

) + n (4.10)

and has no learnable parameters. It is applied before z is passed to the decoder
dϕ2 (·) and to the discriminator aθ (·). The rest of the forward pass, the loss compu-
tation, and the overall training method then proceed as reported in Section 4.2.1.
Once the model has been trained, the adversarial module aθ (·) is removed.

The integration of Laplace noise into the system fulfills a dual purpose. During
the training phase, it acts as a regularizer for both the adversarial module and
the decoder, thereby enhancing the ability of the Gender-AAE to obscure gender
information. In the testing phase, the Laplace layer affords theoretical guarantees
of privacy protection, as elucidated previously. A pivotal advantage of DP is
its post-processing property, presented in Chapter 2.1.2.2. Similarly to the work
in [200], we introduce noise into the latent space of the auto-encoder throughout the
training process. Leveraging the post-processing attribute of differential privacy,
we validate the privacy guarantees: the composition dϕ2 ◦dp satisfies ϵ-DP, thereby
ensuring that the entire auto-encoder pipeline, denoted by dϕ2 ◦ dp ◦ eϕ1 , is also
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compliant with ϵ-DP.

4.3 Experimental Evaluation and Results
In this section, we explore the experimental configurations, methodologies em-
ployed, and a detailed analysis of the results obtained. The core aim of our
empirical study is to assess the effectiveness of the Gender-AAE in concealing
gender information, with a specific focus on evaluating how the integration of the
Laplace mechanism contributes to achieving our privacy objective. We investigate
the utility of the speaker embeddings produced by the Gender-AAE in terms of
speaker verification performance. We conduct a rigorous examination to deter-
mine whether the Laplace noise effectively enhances privacy without significantly
compromising the utility of the reconstructed representations.

4.3.1 Databases
For our study, we used the VoxCeleb1 and VoxCeleb2 speaker recognition
databases [201, 202]. VoxCeleb1 encompasses a substantial collection of over
100,000 utterances from 1,251 celebrities, while VoxCeleb2 is even more extensive,
featuring over a million utterances from 6,112 speakers. Both datasets, compiled
from YouTube videos, are extensively employed in the field of speaker recognition,
as well as in various voice-related machine learning tasks.

System Subset Dataset Number of utterances
Male Female

Gender-AAE Training Subset of the VoxCeleb2
development set 397,032 397,032

External
Gender Classifier Training Subset of the VoxCeleb1

development set 61,616 61,616

All systems Evaluation Subset of the VoxCeleb1
test set 2,900 2,900

Table 4.1: Statistics of the database used in training and evaluating the gender
adversarial auto-encoder with and without the Laplace noise layer, as well as the
external gender classifier

In our experimental setup, we used different datasets to train our systems, as
presented in table 4.1. The Gender-AAE is trained on a carefully curated subset of
the VoxCeleb2 development partition, containing 397,032 segments for each class
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(male and female). Additionally, an external gender classifier is trained using a
subset of the VoxCeleb1 development partition, comprising 61,616 segments for
each gender class. For evaluation purposes, testing is conducted on a subset of the
VoxCeleb1 test partition, consisting of 2,900 segments per class.

4.3.2 Experimental setting
In our experimental setup, the feature extraction for speaker embeddings is accom-
plished using ECAPA-TDNN [203], generating embeddings of dimension d = 192.
The core components of our model include an encoder and decoder, both con-
structed as single-layer fully-connected NNs, and gender classifiers (comprising
both the discriminator and an external classifier) built as two-layer fully-connected
NNs.

The architecture of the encoder is augmented with a ReLU activation followed
by batch normalization, while the decoder utilizes a tanh activation function. We
design the latent space with a dimensionality of l = 64. The adversarial classifier
within our model features a two-layer architecture: the first layer comprises 64
input units with ReLU activation, and the second layer consists of 32 units with
a sigmoid activation function.

Furthermore, an external gender classifier is deployed, mirroring the architec-
ture of the discriminator. It is intended for use by a hypothetical attacker aiming
to infer gender, thereby allowing us to rigorously evaluate the efficacy of our pri-
vacy protection measures. This classifier is composed of 192 input units in its first
layer and 100 units in the second layer.

For speaker verification, we adopt a methodology where a unique template is
constructed for each speaker. Trial scores are subsequently generated by comparing
trial embeddings with the corresponding speaker templates using cosine similarity.
The training process is carried out with Adam optimizer using a learning rate of
1 · 10−3 and a minibatch size of 128.

In the context of setting the clipping threshold C for our differential privacy
mechanism, we determine its value by computing the median of the norms of all
unclipped latent vectors z during training, resulting in C = 18.35.

To better explore the functional difference between the Laplace noise at train-
ing and at testing time, we perform experiments by independently varying the
value of the privacy budget ϵ during the training phase (ϵtr) and during the test-
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ing phase (ϵts).
In the initial phase of our study, we train a series of models, each with a unique ϵtr

value. This methodology enables a systematic examination of the privacy-utility
trade-off, granting us an intricate understanding of how modifications in the pri-
vacy budget ϵtr influence the models’ performance and robustness. Notably, a
smaller ϵtr introduces more noise, thereby bolstering privacy but potentially dis-
rupting model accuracy. Our aim is to delineate the extent to which the privacy
budget ϵtr influences the overall performance and robustness of the models. Sub-
sequently, in the testing phase, each model—characterized by its respective ϵtr—is
rigorously evaluated. Here, a Laplace layer, parameterized by ϵts, is integrated
into the architecture, mirroring the approach during training. The models are in-
dividually assessed to discern the impact of the distinct ϵtr and ϵts values on their
efficacy, thus providing a comprehensive understanding of the dynamics between
the training and testing phases in the context of privacy preservation and utility.

4.3.3 Gender-neutral speaker representation analysis
Our evaluation starts by analyzing models trained with various ϵtr values. Ini-
tially, we set the Laplace layer of the Gender-AAE with ϵts = ∞ during testing,
which means removing the noise addition and retaining only the encoder-decoder
architecture. This step is crucial to establish the best achievable model perfor-
mance, serving as an upper bound for the system’s utility, given that added noise
typically reduces accuracy. As illustrated in Figure 4.3, the term ϵtr represents the
specific epsilon value used during training. The figure presents the resulting ASV
EER and gender classification AUC for each model, with each point representing
a model trained with a distinct ϵtr. Notably, ϵtr = ∞ implies the absence of DP
protection during training, aligning closely with the performance of the original
system before the integration of the Laplace layer. For every model, we analyze
the output of the Gender-AAE, assessing the gender classification AUC using an
external classifier and the ASV EER through cosine similarity. As anticipated,
models with higher ϵtr values exhibit behavior akin to the original Gender-AAE
system.

Our experimental approach fine-tunes the noise scale, focusing on regions where
the privacy/utility trade-off is most pronounced and adopting a low resolution
where variations are minimal. As observed, privacy and utility metrics tend to be
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inversely correlated. Notably, an ϵtr value of 15 achieves a balanced compromise,
yielding a gender classification AUC of 0.55 and an ASV EER of 8.1%. For com-
parison, the same gender classifier and ASV system score nearly 1 in AUC and
1.1% in EER, respectively, on the original ECAPA embeddings.

Figure 4.3: ASV EER and gender classification AUC achieved by the system for
increasing values of ϵtr.

We select the model weights trained with ϵtr = 15 and ϵtr = 20, experimenting
with ϵts <∞ to integrate DP protection into the speaker embeddings, as depicted
in Figure 4.4. Aligning ϵts with ϵtr significantly bolsters gender concealment: AUC
scores diminish to 0.50 from 0.55 and to 0.55 from 0.76 for ϵtr = ϵts = 15 and
ϵtr = ϵts = 20 respectively. However, this adjustment results in an approximate
20-percentage point deterioration in ASV EER for both settings.

Incrementing ϵts by 20 units effectively recuperates the ASV EER to about
10% for both model configurations, while maintaining favorable AUC scores of
0.55 and 0.68 for ϵtr = 15 and ϵtr = 20, respectively. These outcomes underscore
the system’s inherent flexibility post-training, concurrently ensuring DP protection
of the generated embeddings.

Informal experiments with ϵtr = ∞, corresponding to a training phase with
no DP noise, resulted in embeddings that were not adequately protected. Even
when applying a strict DP mechanism during the testing phase (using a low ϵts
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Figure 4.4: ASV EER and gender classification AUC achieved by the system for
increasing values of ϵts, for the cases of ϵtr = 15 and ϵtr = 20.

value), the privacy of the speaker embeddings was not sufficiently safeguarded and
unuseful data for the speaker verification. This outcome emphasizes the necessity
of integrating Laplace noise during the training phase to ensure that the privacy
protection is effective during the testing phase as well.

4.4 Summary
This chapter has introduced an auto-encoder-based system that combines differ-
ential privacy mechanism with an adversarial auto-encoder for concealing gender-
related information in speaker embeddings, while safeguarding their utility for
speaker verification tasks. Traditionally used for data anonymization, the DP
mechanism, in our innovative approach, collaborates with AAE to ensure individ-
ual identity in speaker verification is maintained, with a specific focus on masking
gender details. The concealment of gender is performed through an adversarial
game between an auto-encoder and an external gender classifier. Our improve-
ment upon prior work includes the integration of a Laplace-noise-addition layer
within the architecture. This inclusion not only regularizes the training phase to
enable more robust concealment of gender but also equips the output speaker em-
beddings with solid DP guarantees at inference time. Fine-tuning the ϵ parameter
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of the Laplace layer empowers our system to offer a customizable balance between
privacy protection and utility, even after the model has been trained. The exper-
imental results validate the effectiveness of our proposed solution in maintaining
gender privacy while preserving the utility for speaker verification tasks. The abil-
ity of our approach to tailor the trade-off between privacy and utility makes it an
adaptable and forward-thinking solution for privacy-preserving applications.
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Chapter 5

Fairness and Privacy in Voice
Biometrics: A Study of Gender
Influences

In this chapter, we pursue the same motivation as the previous chapter (Chapter
4) for concealing gender attributes using an alternative approach. Additionally,
we study the impact of the gender attributes on ASV systems performance. We
evaluate as well the fairness of the systems (see Chapter 2.2.2) to ensure equitable
outcomes for both male and female groups. This evaluation aligns with the GDPR
principle of fairness discussed in Chapter 1.2. The organization of this chapter is
as follows: It begins with a detailed exploration of the methodology for automatic
speaker verification, gender recognition, and gender suppression using wav2vec
2.0. This section covers aspects such as pre-training and fine-tuning procedures.
Subsequently, the experimental setup is described, including the databases used,
metrics employed, fine-tuning procedures, and gender privacy threat models. The
chapter then proceeds to present the experimental results, including assessments
of utility, privacy, and fairness. Finally, the chapter concludes with a summary of
of the main findings and contributions.
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AND SUPPRESSION USING WAV2VEC 2.0

5.1 Automatic speaker verification, gender
recognition and suppression using wav2vec
2.0

In this section, we outline our use of the wav2vec 2.0 model [35], a versatile speech
feature encoder that is pre-trained through self-supervision and can be adapted to
specific tasks. We fine-tuned wav2vec 2.0 for three distinct tasks: speaker verifi-
cation, and gender recognition, and gender information suppression. Section 5.1.1
elaborates on the pre-training process of wav2vec 2.0, while Section 5.1.2 details our
contributions to fine-tuning. Both procedures are graphically depicted in Fig. 5.1.

5.1.1 Pre-training
Given a raw audio input signal x, wav2vec 2.0 processes it to generate a sequence of
feature vectors c1, . . . , cT . The model architecture consists of two principal compo-
nents: a 1D-convolutional encoder and a Transformer module [204]. The encoder
transforms the raw audio x into a series of latent feature vectors z1, . . . , zT , which
are then input into the Transformer module. Known for its effectiveness in model-
ing long-range dependencies in sequential data, the Transformer module outputs
the final feature vectors c1, . . . , cT and concurrently generates quantized macro-
codewords q1, . . . , qT . These macro-codewords are composed by concatenating G

codewords qt,1, . . . , qt,G, each selected from distinct codebooks Q1, . . . ,QG. These
codebooks, repositories of vector representations, are thoroughly learned during
training to capture specific data features or patterns. The selection of codewords
from each codebook is directed by a probabilistic distribution, optimized during
the model’s pre-training phase. This distribution is computed as pt,j = GS(zt),
where GS represents a linear projection of zt to V dimensions, succeeded by a
straight-through Gumbel-softmax estimator [205]. The Gumbel-softmax estima-
tor allows the model to differentiably sample discrete codewords, a critical feature
for the optimization of categorical distributions during training. This capability
is particularly valuable when model decisions require interpretability or when the
model needs to choose from a discrete set of options, such as selecting codewords
from codebooks.

During the pre-training phase, wav2vec 2.0 aims to minimize two distinct loss
functions: the contrastive loss Lm and the diversity loss Ld. The contrastive loss is
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instrumental in ensuring that the feature vector ct generated by the Transformer
aligns closely with its corresponding quantized macro-codeword qt, and simultane-
ously diverges from other non-corresponding macro-codewords within the batch.
This loss is particularly vital when some of the latent feature vectors z1, . . . , zT are
randomly masked, as it guides the Transformer to effectively recover the masked
information by comparing ct to the correct macro-codeword qt and distinct dis-
tractor macro-codewords q̃ sampled from the batch. The diversity loss Ld, on
the other hand, plays a crucial role in promoting the uniform use of all the V

codewords within each codebook. It achieves this by maximizing the entropy of
the average probability distribution p̄g, computed from all zt in a batch for each
codebook g. This loss encourages the model to explore and use the full range of
codewords, ensuring that the representations are diverse and comprehensive. The
overall loss is articulated as follows:

L = −
∑

masked
steps t

log exp (s(ct, qt)/κ)∑
q̃ exp (s(ct, q̃)/κ)︸ ︷︷ ︸
Lm

−α
1

GV

G∑
g=1

H (p̄g)
︸ ︷︷ ︸

Ld

(5.1)

In this equation, κ denotes the temperature coefficient, which modulates the
sharpness of the softmax distribution, s represents the cosine similarity function,
α is a hyperparameter that balances the influence of the two loss components, and
H is the entropy, reflecting the diversity of codeword usage across the codebooks.

5.1.2 Fine-tuning for Speaker Verification and Gender
Recognition

In this study, we fine-tune a wav2vec 2.0 model to adapt it for the specific down-
stream tasks of speaker verification and gender recognition. This fine-tuning pro-
cess involves adjusting the pre-trained model parameters to enhance its perfor-
mance on these specific tasks.

For each input utterance x, the model generates a sequence of output features
c1, . . . , cT . These features are then aggregated across the temporal dimension
to form a single 1-dimensional embedding c. This embedding encapsulates the
essential characteristics of the input utterance, serving as a distilled representation
of the audio signal for subsequent processing.

In the context of gender recognition, the embedding c is forwarded through a
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dedicated linear layer fg. This layer is specifically trained to classify the gender by
optimizing the cross-entropy loss Lg. This loss function measures the discrepancy
between the predicted logits, obtained from the linear layer, and the actual gender
labels of the utterances, where ’0’ denotes male and ’1’ denotes female.

Conversely, for speaker verification, the embedding c is processed by a distinct
linear layer fs. This layer consists of N output neurons, with N representing the
total number of speakers in the training dataset. The layer is intricately tuned to
perform speaker identification by minimizing the additive angular margin (AAM)
softmax loss Ls [206]. This loss function enhances the discriminative power of the
model, ensuring that the embeddings of different speakers are well-separated in
the embedding space. During the testing phase, the embedding c is used as a trial
or enrollment vector, serving as the basis for verifying the identity of speakers.

The overall optimization objective of the model is defined by the following loss
function:

L = λLs + (1− λ)Lg (5.2)

where λ is a hyperparameter, ranging from 0 to 1, that balances the contribu-
tion of each task-specific loss component to the total loss.

In our experiments, we explore three distinct model configurations: Model 1
(Ms) is exclusively fine-tuned for speaker verification, implying λ = 1; Model 2
(Msg) is fine-tuned for both tasks, setting λ = 0.5; Model 3 (Msga) is similarly
optimized for both tasks but incorporates a gradient reversal layer (GRL) gr [207].
The GRL is a unique component that introduces an adversarial dynamic to the
training process. Its purpose is to learn representations that are useful for the
primary task (speaker verification) while being invariant to the secondary task
(gender classification). During the forward pass, the GRL acts as an identity
function, allowing the data to pass unchanged. However, during the backpropaga-
tion phase, it modifies the gradient by reversing its sign. As such, for any given loss
that passes through the GRL, the gradient is multiplied by −1. Mathematically,
if we consider the GRL as a pseudo-function R(x) = x for the forward pass, its
derivative with respect to x during the backward pass is dR

dx = −I, where I is the
identity matrix. This negation of the gradient effectively means that if the gender
classification layer fg is reducing the loss Lg, the GRL forces the feature extractor
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to maximize it instead, thereby obscuring gender-related features.
In this adversarial setup, while fg seeks to minimize Lg, the backbone of the

model, preceding the GRL, learns to generate features that confuse the gender
classifier. This is achieved by optimizing the model to maximize Lg, effectively
promoting the learning of gender-agnostic features. At the same time, the speaker
verification task, which does not pass through the GRL, continues to minimize the
speaker identification loss Ls. The overall loss optimized during training can thus
be formulated as usual (Equation 5.2).

5.2 Experimental setup
Described in this section are the databases used for all experimental work, the
metrics used for evaluation, and the fine-tuning procedure.

Dataset Usage Number of speakers Male-Female
Imbalance (%)Male Female

VoxCeleb2
dev partition Fine-turning 3682 2312 22.9

VoxCeleb1
test partition Test 25 15 25

Table 5.1: Statistics of the datasets used for fine-tuning and evaluating the three
models.

5.2.1 Databases
We used the VoxCeleb1 [201] and VoxCeleb2 [202] speaker recognition databases.
Fine-tuning is performed using the VoxCeleb2 development set which contains data
collected from 5994 unique speakers of which 3682 are male and 2312 are female,
corresponding to an imbalance in favour of male speakers of 22.8% (61.4% and
38.6% female). To assess the performance of our systems, we used the VoxCeleb1
test set, which consists of 40 unique speakers of which 25 are male and 15 are
female.

5.2.2 Metrics
To comprehensively evaluate the proposed models, a suite of metrics, primarily
sourced from biometric classification systems such as speaker verification and
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gender classification, was employed. These metrics facilitate a holistic assessment
of utility, privacy, and fairness, three pivotal dimensions of system performance.

5.2.2.1 Utility and Privacy metrics
Utility is quantified by the performance of automatic speaker verification, specif-
ically measured by the equal error rate.

Privacy is evaluated based on the challenge it presents to an adversary in
inferring sensitive attributes from the model’s output. To this end, the AUC is
used as an indicator of the ability of the system to protect gender attributes against
unauthorized detection.

5.2.2.2 Fairness Metrics
Fairness is assessed using two metrics: (i) fairness discrepancy rate and (ii) fairness
activation discrepancy (FAD).

Fairness discrepancy rate examines the fairness of the outcome of the ASV
system to ensure equitable treatment across different demographic groups. The
FDR metric focuses on the balance between the false match rate (FMR) and
the false non-match rate (FNMR) in assessing demographic-related differential
performance [163,164]. It introduces two components: the false positive differential
(FPD) and the false negative differential (FND). These differential terms represent
the maximum discrepancy in FMR and FNMR, respectively, between any two
demographic groups di and dj, belonging to a set D, at a specific decision threshold
τ . The FDR quantifies these discrepancies, modulated by risk parameters α and
1−α, to weight the relative importance of FMR and FNMR differences according
to the security needs of a given application. High-risk situations, for instance,
require a lower FMR to minimise security breaches. The FDR value ranges from
0 to 1, with 1 indicating full fairness. The calculation of the FDR proceeds as
follows:

FPD(τ) = max
(∣∣∣FMRdi

(τ)− FMRdj
(τ)
∣∣∣) ∀di, dj ∈ D (5.3)

FND(τ) = max
(∣∣∣FNMRdi

(τ)− FNMRdj
(τ)
∣∣∣) ∀di, dj ∈ D (5.4)

FDR(τ, α) = 1− (αFPD(τ) + (1− α)FND(τ)) (5.5)
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In addition to the FDR, the area under FDR curve (auFDR) is used to com-
pare the three ASV systems in terms of demographic differentials. The auFDR is
determined by combining the FDR across a particular threshold range τ , denoted
as FARx. To ensure a fair comparison of auFDR between various systems, it is
necessary to report the range of τ used, as the value of the auFDR depends on
this range. The auFDR spans from 0 to 1, with higher values indicating better
fairness. In our experiments, we set the range for FARs from 0.001 to 0.1; FARs
exceeding this threshold indicate a system of limited practical relevance.

Fairness Activation Discrepancy: is a metric derived from InsideBias [36],
a fairness metric initially developed for face biometrics. The InsideBias metric
identifies bias by analyzing layer activations and comparing of the responses of the
model to demographic groups within different layers. Similarly, the FAD metric is
used to study fairness within the network layers. The adaptation of FAD for voice
biometrics is a novel metric in this context.

In voice biometrics, network outputs at each layer can be conceptualized as
bi-dimensional tensors representing neurons across temporal frames:

A
[l]
ij = Ψ[l](·) (5.6)

Here, i = 1, ..., N and j = 1, ..., M , where Aij denotes the activation of the ith

neuron at the jth temporal frame, Ψ[l] is the activation function at layer l, and
N and M represent the total number of neurons and frames, respectively. For
each layer l, we compute the root mean square of Aij over the frames to capture
significant positive or negative activations. We then determine the maximum value
across the neuron dimension:

Λ[l] = max
i

√√√√√
 1

M

∑
j

A2
ij

 (5.7)

FAD is subsequently computed as the absolute difference in Λ between two
distinct demographic groups, defined as FAD = |Λd1 − Λd2|. Values of FAD
approaching zero suggest greater fairness, indicating minimal discrepancy in acti-
vation intensities between the groups under comparison.
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5.2.3 Fine-tuning procedure
As outlined in Section 5.1.2, the Ms, Msg, and Msga models undergo a fine-tuning
process post-initialization. This process begins with a warm-up phase for the
linear classification layers, which is conducted for the first 10, 000 optimization
steps. During this phase, the wav2vec 2.0 backbone remains frozen, allowing the
classification layers to adjust to the task-specific objectives without disturbing
the pre-learned representations. The entire model, including the previously frozen
backbone, is subjected to an end-to-end fine-tuning procedure. This comprehensive
fine-tuning ensures that the entire model is optimally adjusted to the tasks at hand,
allowing for a harmonious integration of the pre-learned representations with the
new classification objectives.

The pre-trained wav2vec 2.0 model, provided by Baevski et al. [208]1, serves as
the starting point for our fine-tuning process. The effectiveness of our fine-tuning
strategy is evident from the performance metrics: for the speaker identification
task, all three models attained an accuracy exceeding 95%, showcasing their ro-
bustness in identifying speakers. In contrast, the adversarial model, Msga, achieved
a gender recognition accuracy of only 47%. This significantly reduced accuracy for
gender recognition underscores the efficacy of the adversarial approach in obfus-
cating gender-related features, thereby enhancing the privacy aspects of the model
without compromising its ability to perform speaker verification.

5.2.4 Gender privacy threat models
To assess to ability of the ASV systems to conceal gender information in speaker
embeddings, we simulate a third party, namely an attacker, by training a 2-layer
fully-connected NN model (N ). This model predicts the gender of the speaker
from the embeddings generated by the the fine-tuned wav2vec 2.0. We examine
two attack scenarios:

1. Uninformed attack (uIA): the attacker is unaware of any gender conceal-
ment techniques. Thus, the attacker trains the gender classifier N using
embeddings that gender-protected, which are generated by the Ms and Msg

models.

1https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec
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2. Informed attack (IA): the attacker knows that a specific model (Msga) has
been used to protect gender identity and has access to it. The attacker
then trains N using embeddings produced by the protected model Msga.
We expect this scenario to result in a more effective attack as the attacker
understands the protection mechanism.

5.3 Experimental results
Results are reported for the three models Ms, Msg, and Msga. Performance is
assessed in terms of utility, privacy, and fairness.

5.3.1 Utility
In terms of utility, results show that speaker verification capabilities of the Ms

model, which is fine-tuned solely for speaker verification, aligns with state-of-the-
art ASV systems [1, 7], achieving an EER of 2.36%, as presented in Table 5.2.
On the other hand, models Msg and Msga, which incorporate a focus on gender
attributes, demonstrate a slightly inferior performance achieving an EER of 3.23%
and 3.89% respectively. This suggests that gender-related factors do not contribute
significantly to enhancing speaker verification. Moreover, a further examination
of the EER based on gender, reveals minimal disparities in speaker verification
between the two genders.

Models
Ms Msg Msga

EER(%)
Overall 2.36 3.23 3.89
Male 3.12 4.22 4.98

Female 3.05 4.21 5.26

Table 5.2: Performance analysis of the three models for utility, including EER
breakdown by gender

5.3.2 Privacy
Privacy performances are presented in Table 5.3.

AUC results for uninformed attacks are presented at the top. When the gender
classifier N is trained and tested using unprotected speaker embeddings extracted
with the Ms and Msg models,the AUC is 97.09% and 98.07% for Ms and Msg,
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Data Attack
Training Test AUC (%)

uIA

Ms Ms 97.09
Ms Msga 46.80
Msg Msg 98.07
Msg Msga 40.76

IA Msga Msga 96.27

Table 5.3: Assessment of gender concealment effectiveness under different threat
scenarios in terms of AUC.

respectively. This indicates a lack of privacy protection. In contrast, when training
the gender classifier with unprotected embeddings and test with gender-protected
embeddings provided by the Msga model, the AUC drops to 46.80% and 40.76%
for Ms and Msg, respectively. The notable decrease in AUC suggests that the
gender classifier predictions approach randomness, effectively obscuring gender
information and thereby demonstrating a successful privacy protection measure.

The performance results of the informed attack are shown in the last row of
Table 5.3. When embeddings are derived using the Msga model, the AUC notably
rises to 96.27%. This underscores the challenge of concealing gender information
from embeddings.

Fig. 5.2 offers insight into this matter. It presents a visualization generated
by PCA (explained in Section 2.1.2.3) of the embeddings produced by each of

Figure 5.2: PCA visualizations of features from three models illustrating gender
recognition capabilities. Blue points correspond to males and red to females.
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the three models. Despite the Msga model being trained to mitigate gender cues,
Fig. 5.2c demonstrates their persistence. Instead of completely obscuring gender
cues, Msga merely rotates the principal components, which explains why gender
recognition remains feasible even when trained on similarly processed training
data. Despite the adversarial training of the Msga model to suppress gender cues,
as illustrated in Fig. 5.2c, these factors persist. It’s apparent that rather than fully
disentangling gender cues, the Msga model only rotates the principal components.
This is why, when trained on similarly pre-processed training data, gender can still
be identified.

5.3.3 Fairness
Fairness assessment is performed using FDR, auFDR, and FAD. Results of the
auFDR for different values of α are shown in Table 5.4. The auFDR results of the
three models are close to 1, indicating reasonable fairness for each group.

In Figure 5.3, we present a graph illustrating the FDR for all three systems
across various thresholds, with α = 0.5. Notably, the FDR consistently exceeds
0.9 for all cases, with the Ms system consistently ranking as the fairest for each
threshold (τ). Once more, it is evident that gender influence fails to enhance
fairness.

Models
Ms Msg Msga

auFDR α

0 0.98 0.97 0.96
0.25 0.97 0.97 0.95
0.5 0.97 0.96 0.94
0.75 0.96 0.95 0.92

1 0.95 0.94 0.91

Table 5.4: Performance analysis of auFDR across various α values (refer to eq.5.5)
for τ ranging from 0.1% to 10%.

. Results of the assessment of the internal bias of the three models is depicted
in Figure 5.4. The FAD metric has been performed at different network layers of
each model while considering two groups: male and female. This analysis seeks to
offer insights into how fairness is measured across the three models and how these
FAD measurements change across different layers of the network. By examining
the internal bias at each layer, we aim to gain a clearer understanding of how

82



5.3. EXPERIMENTAL RESULTS
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Figure 5.3: FDR of different ASV systems for different decision thresholds for τ
from 0.1% to 10%

factors such as model architecture and training data influence fairness outcomes.
As depicted in Fig. 5.4, a total of 32 layers were selected from the wav2vec 2.0

model. Among these, 8 layers originate from the 1D-convolutional encoder, while
the remaining 24 layers stem from the Transformer modules.

Fig. 5.4 illustrates the FAD values computed across various layers. The first
layers of the convolutional neural networks (CNNs) display comparable fairness,
possibly due to their focus on low-level features. On the other hand, Transformer
layers, responsible for processing high-level features, exhibit wider variations in
fairness. The Ms and Msga models demonstrate complementary behavior: when
one model achieves high FAD, the other tends to have lower FAD, and vice versa.
This observation could stem from the fact that the Ms model was fine-tuned for
speaker verification, whereas Msga, equipped with a gradient reversal layer, aimed
to suppress gender information.

As layers progress, all models eventually converge to FAD values, with Ms

emerging as the fairest model by the end, aligning with observations regarding
auFDR fairness measures.
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5.4 Summary
In this chapter, we have introduced a study focusing on the influence of gender
information during the fine-tuning process of wav2vec 2.0 for speaker verification.
We have proposed three models: Ms, Msg, and Msga, each with distinct objectives:
speaker recognition, speaker recognition with gender identification, and speaker
recognition with gender concealment, respectively.

Our experiments reveal that Ms achieves successful speaker verification (with
an EER of 2.36%), while Msga, designed to conceal gender information, performed
less effectively (with an EER of 3.89%). Interestingly, enhancing gender recog-
nition within the Msg model does not improve speaker verification performance
(with an EER of 3.23%). Privacy assessments indicate effective gender conceal-
ment against uninformed attacks, although informed attackers could still extract
gender information. Fairness evaluations, based on FDR, show that highlighting or
concealing gender do not notably affect the fairness of the systems. Additionally,
we have introduced the fairness activation discrepancy metric tailored for speech
data as a method for analyzing network fairness. An analysis of FAD across model
layers demonstrates more discrepancies within Transformer layers, but eventually,
all systems converge to FAD values consistent with the auFDR assessment, with
system Ms displaying superior fairness.

To summarize, while we achieve notable results in utility and privacy protection
against uninformed attacks, future work should focus on strengthening gender
concealment against informed attacks and enhancing fairness across systems.

85



5.4. SUMMARY

86



Chapter 6

A Comparison of Differential
Performance Metrics for the
Evaluation of Automatic Speaker
Verification Fairness

Fairness is a crucial aspect in the development and deployment of biometric sys-
tems, ensuring equitable treatment across various demographic groups. However,
automatic speaker verification systems, despite their effectiveness, encounter fair-
ness issues, as highlighted in Chapter 1.3. Adding to this challenge is the absence
of an international standard for measuring fairness in biometric systems. Addition-
ally, the majority of existing research in this domain has predominantly focused
on face recognition, with limited attention given to voice recognition.

In this chapter, we aim to bridge this gap by directing our focus towards exam-
ining fairness metrics within the context of ASV systems. First, we present three
candidate fairness metrics and fairness criteria in biometric recognition systems.
We then detail the experimental setup, outlining the ASV systems used for gener-
ating outcomes to assess fairness metrics, the databases utilized, and the fairness
evaluation procedure. Next, we present the findings of our experiments and engage
in discussions regarding the behavior of fairness metrics and their alignment with
the required criteria. Additionally, we evaluate the fairness of ASV systems using
the most appropriate fairness metric. Finally, we conclude this chapter with a
summary of our findings and insights.
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6.1 Fairness Metrics and Criteria
In this section, we present three fairness metrics initially proposed for evaluating
face recognition systems, coupled with essential criteria that such metrics must
meet to effectively assess fairness. These guidelines ensure that the metrics possess
both theoretical robustness and practical relevance for real-world applications.

6.1.1 Fairness Discrepancy Rate
The fairness discrepancy rate metric, previously introduced in Section 5.2.2.2,
evaluates demographic disparities by considering false match and false non-match
rates [163,164]. It quantifies the maximum differences in FMR and FNMR between
demographic groups di and dj at threshold τ , with FPD and FND components.
FDR values range from 0 to 1, indicating fairness. Below is a reminder of the FDR
equations:

FPD(τ) = max
(∣∣∣FMRdi

(τ)− FMRdj
(τ)
∣∣∣) ∀di, dj ∈ D (6.1)

FND(τ) = max
(∣∣∣FNMRdi

(τ)− FNMRdj
(τ)
∣∣∣) ∀di, dj ∈ D (6.2)

FDR(τ, α) = 1− (αFPD(τ) + (1− α)FND(τ)) (6.3)

6.1.2 Inequity Rate
The inequity rate (IR) assesses fairness by examining the ratio of the highest
and lowest FMR and FNMR values among different demographic groups di and
dj [164]. This is achieved by comparing the maximum FMR and FNMR with
the minimum FMR and FNMR across all groups. Risk parameters α and 1 − α

are once again employed to scale the ratios before their aggregation. Importantly,
unlike the FDR, lower IR values indicate greater fairness. The IR is computed as
follows:

FPD(τ) = maxdi
FMRdi

(τ)
mindj

FMRdj
(τ)

∀di, dj ∈ D (6.4)

FND(τ) = maxdi
FNMRdi

(τ)
mindj

FNMRdj
(τ)

∀di, dj ∈ D (6.5)

IR(τ, α) = FPD(τ)α · FND(τ)(1−α) (6.6)
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6.1.3 The Gini Aggregation Rate for Biometric Equitabil-
ity

The Gini aggregation rate for biometric equitability (GARBE) is based on the
Gini index, a measure of inequality [164,209]. This metric uses a normalized Gini
coefficient for n demographic groups. Normalization by n

n−1 , as proposed in [210],
corrects for the downward bias when the number of samples (demographic groups)
is small.

The Gini coefficient associated with the FMR is defined as follows:

GFMR(τ) = n

n− 1

(∑n
i=1

∑n
j=1 |FMRdi

(τ)− FMRdj
(τ)|

2n2FMR(τ)

)
(6.7)

where FMR is the mean value.
Similarly, the Gini coefficient related to the FNMR is defined by:

GFNMR(τ) = n

n− 1

(∑n
i=1

∑n
j=1 |FNMRdi

(τ)− FNMRdj
(τ)|

2n2FNMR(τ)

)
(6.8)

for any di, dj ∈ D.
In adapting to be consistent with the notation above, the pair of Gini coeffi-

cients are combined according to:

FPD(τ) = GFMR, FND(τ) = GFNMR (6.9)

GARBE(τ, α) = αFPD(τ) + (1− α)FND(τ) (6.10)

GARBE values range between 0 and 1, where 0 signifies complete fairness and
1 denotes complete unfairness.

6.1.4 Functional Fairness Measure Criteria
The primary objective of fairness metrics is to assess and determine the most
equitable classification algorithms. Howard et al. [209] outline the essential at-
tributes required for such metrics, referred to as the functional fairness measure
criteria (FFMC). These criteria emphasize the interpretability and practicality of
the metrics:

1. FFMC.1: The contributions of FMR and FNMR to the fairness metric
should be intuitive across typical risk parameters and operationally relevant
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error rates.

2. FFMC.2: The metric must have well-defined boundaries, with minimum
and maximum values, to establish clear benchmarks.

3. FFMC.3: The metric must remain computable even for demographic groups
with no observed errors, which is increasingly common with the advancement
of more accurate biometric algorithms.

6.2 Experimental Setup
In this section, we outline the ASV systems used for evaluating the fairness metrics,
the database employed, and the procedure for fairness evaluation.

6.2.1 Speaker Verification Systems
We employ five distinct ASV systems for assessing fairness metrics, each featuring
unique structural and functional characteristics.

1. The ECAPA system [203] utilizes a standard ECAPA-TDNN [1] architecture,
integrating 3 SE-Res2Block modules to derive a 192-dimensional speaker
embedding. It employs cosine similarity as its backend.

2. ResNetSE34L [211] is a streamlined version of ResNet-34 [8], employing
self-attentive pooling (SAP) [212] to aggregate frame-level features into
utterance-level features, focusing on the most informative frames. It uses
squared Euclidean distance as a distance metric.

3. ResNetSE34V2 [213] is a performance-optimized variant of ResNet-34. The
stride is removed at the first convolutional layer to reduce computational
cost. It adopts attentive statistics pooling (ASP) [214] for temporal frames
aggregation.

4. ERes2Net [2] improves upon the Res2Net structure by integrating local and
global feature fusion, capturing both detailed and holistic patterns in the
input signal.

5. CAM++ [3] mainly consists of a front-end convolution module and a densely
connected time delay neural network (D-TDNN) backbone. It incorporates
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an improved context-aware masking (CAM) module in each D-TDNN layer
and employs multi-granularity pooling to capture discriminative speaker
characteristics.

6.2.2 Databases
The pre-trained models1,2,3 of the ASV systems used in our experiments are trained
using the development set of the VoxCeleb2 database [202]. Table 6.1 shows at
the top the statistics of the training subset. Although VoxCeleb2 includes multiple
languages, the predominance of English speakers, and the English language as well,
results in significant imbalance.

Subset Dataset # of speakers # of nationalities # of utterances

Training VoxCeleb2
Dev 5,994 less or equal to

145* 1,092,009

Evaluation VoxCeleb1 72 9 1728
(24 per speaker)

Table 6.1: Statistics of Datasets for training the five automatic speaker verification
systems and evaluating the three fairness metrics.
*Only the total number of nationalities across the entire VoxCeleb2 dataset (com-
bining both dev and test partitions) has been reported. The specific number of
nationalities within each partition has not been provided

All evaluations are conducted using the combined VoxCeleb1 development and
test sets [201]. The statistics for the evaluation subset are presented at the bottom
of Table 6.1. To assess the utility of the five ASV systems, we established a
balanced protocol. This protocol involved selecting speakers from nine different
nationalities: USA, UK, Germany, Australia, Italy, India, Ireland, New Zealand,
and Canada. From each nationality group, eight speakers were randomly chosen,
resulting in a total of 72 speakers. For each speaker, 24 utterances were selected.
The ASV protocol 4 of the pooled is composed of a total of 39,744 comparison
trials. These trials are evenly distributed, comprising 2,208 mated and 2,208 non-
mated combinations for each nationality.

1 https://github.com/TaoRuijie/ECAPA-TDNN
2 https://github.com/clovaai/voxceleb_trainer
3https://github.com/alibaba-damo-academy/3D-Speaker/tree/3dspeaker
4https://github.com/OubaidaOubaida/FairnessMetricsEvaluation/blob/main/

pooled_data.txt
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6.2.3 Fairness evaluation procedure
In this section, we introduce the evaluation procedure of the fairness metrics and
the utility assessment of the ASV systems. Table 6.2 presents results from a prelim-
inary analysis of the ASV performance in terms of pooled EER and FMR/FNMR
at the threshold corresponding to the pooled EER, across nine groups based on
different nationalities.

As expected, pooled EER results reveal differing performance levels across vari-
ous ASV systems. The comparison also highlights consistent variations in the FMR
and FNMR across nationality groups. For instance, results for the ERes2Net the
outcomes for the ERes2Net system are most favorable for the UK group, exhibiting
low FMR and FNMR. In contrast, although the same system demonstrates com-
parable security for the German group (with similar FMR), it lacks the same level
of convenience (resulting in a higher FNMR) comparing to other groups. Interest-
ingly, the opposite behaviour is observed for the Indian group. Similar diverging
results are observed for other nationality groups. This analysis underscores the
importance of a single measure which reflects fairness across the full set of groups.
This approach is essential to guaranteeing the fairness of ASV systems, ensuring
they do not unfairly disadvantage any specific group due to nationality or other
demographic factors.

Noting that the EER is not suited to the assessment of any binary classifier
in the case that a particular application calls for the prioritisation of a lower rate
of FMR or FNMR [163, 175], it is similarly unsuitable as a measure of fairness.
Another measure proposed by Toussaint et al. [173], previously presented in Sec-
tion 2.2.3, is based on the min DCF. This metric also does not generalize and only
considers one particular operating point.

Given that using different operating points inherently involves a trade-off be-
tween the FMR and FNMR, and as advocated in [163], any fairness metric must
consider disparities in both and take them into account. While averaging FMR
and FNMR rates across groups is possible, it results in two metrics that still re-
quire additional interpretation to serve as fairness indicators. This precisely aligns
with what each of the three candidate metrics delivers.

Our approach to evaluating the proposed fairness metrics aligns with the
methodology outlined in [209]. Initially, we adopt a benchmark threshold cor-
responding to an FMR of 0.1% for the initial assessment. Moreover, expanding
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upon the framework in [209], we adhere to the guidelines set forth in ISO/IEC
DIS 19795-10 [164] by exploring a range of thresholds, specifically within an FMR
range of 0.1% to 10%, along with a comprehensive risk parameter range spanning
from 0 to 1. The rationale behind selecting a 0.1% to 10% FMR range is twofold:
first, today’s most advanced ASV systems achieve acceptable levels of FNMR at
FMRs in the order of 0.1%; second, ASV systems (or any other biometric system)
with an FMR exceeding 10% may have limited practical utility. Our objective is
to examine variations in fairness across a range of representative operating points
for five distinct systems, thus acquiring a comprehensive understanding of metric
behavior. This analysis is crucial because, in real-world scenarios, each system
operates optimally at a threshold tailored to the specific application it serves.

6.3 Experimental results and discussion
In this section we present an assessment of the fairness metrics presented in Sec-
tion 6.1. First, we present the assessment results for a fixed threshold which
produces an FMR = 0.1%. Second, we show the assessment results for a range of
thresholds from 0.1% to 10%. Last, we evaluate each fairness metric in terms of
the three FFMCs described in Section 6.1.4.

6.3.1 Metrics evaluation results at a fixed threshold
We assess the performance of fairness metrics across five distinct ASV systems.
We aggregate the evaluation results to gain insights into how these metric behave
across different systems.

For each metric, we present three plots. The first plot depicts the density dis-
tribution of the metric when the importance of the FMN and FNMR differentials
are equal (α = 0.5), similar to the approach outlined in the reference work [209].
The second plot showcases the density distribution of the metric for all alpha val-
ues within the range [0,1]. These two plots serve to illustrate the spread of metric
values, aiding in determining whether the metric offers intuitive comparisons be-
tween systems and how it responds to varying risk parameter alpha. The third
graph displays the FPD and FND terms for alpha values within the range [0,1] to
study the scales of the error rates.

To ensure consistency with the methodology in [209], we evaluate the fairness
metric at a fixed threshold. Experiments were conducted with decision thresholds
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configured to produce an FMR of 0.1%.

6.3.1.1 FDR evaluation
We start our evaluation by computing the FDR metric, described in Section 6.1.1,
for the five ASV. The FDR values are depicted in Figure 6.1. In Figure 6.1(a)
and 6.1(b), FDR values predominantly fall within the range [0.82-1]. Compar-
ing the fairness of systems and gauging the influence of the risk parameter α,
particularly in cases where systems are mostly fair, poses a challenge due to this
concentration. It is challenging to intuitively determine which system is fairer and
to evaluate the influence of the risk parameter α, particularly in the case of mostly
fair systems. Figure 6.1(c) demonstrates that the differential terms (FPD, asso-
ciated with the FMR, and FND, associated with the FNMR) operate on markedly
different scales. Aggregating these terms poses a challenge in accurately configur-
ing them with the term α. This complexity highlights the difficulty in intuitively
assessing the contributions of FMR and FNMR within the FDR metric. As a re-
sult, this method does not meet the criteria set forth by the first FFCM principle
(Section 6.1.4).

6.3.1.2 IR evaluation
The assessment conducted on the IR metric presented in Section 6.1.2 revealed
instances where certain subgroups provided minFMR values of 0. This renders
the computation of the FPD term in Equation (6.4) unfeasible, thereby resulting
in the inability to compute the IR. Among the five evaluated ASV systems, the IR
metric is only computable for the ResNetSEV2 system, with the value being 13.35.
This observation underscores the incapacity of the IR metric to satisfy the third
FFCM (Section 6.1.4). Consequently, this raises concerns about the suitability
of IR as a reliable metric for fairness assessment in such contexts. Moreover, the
ratio-based nature of the IR introduces an additional layer of complexity. Its
values possess no upper limit, implying significant potential for variation and the
possibility of extremely high values. This further complicates its interpretation.

6.3.1.3 GARBE evaluation
We now shift our focus to the GARBE metric detailed in Section 6.1.3. The
results presented in Figures 6.3(a) and 6.3(b) show a broader range compared
to the FDR values. This range spans from 0.19 to 0.61 for α in the interval
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[0,1], which is approximately half of the theoretical range. This provides a more
intuitive comparison between systems and a better assessment of the impact of
α. An additional critical finding is related to the FPD and FND terms, shown in
Figure 6.3(c). These terms are scaled to a comparable magnitude. Specifically, the
median value for the FPD term is found to be 0.55, while the median for the FND
term is observed at 0.29. The normalization of the Gini coefficient computation
reduced the discrepancy in the scale of the differential terms. As a result, the
impact of α becomes more pronounced.

6.3.2 Metrics evaluation results at different thresholds
In an extension of the previous study, we broaden the assessment scope to encom-
pass not only various systems but also different operational points. We extend the
range of our analysis by adjusting the threshold of the five ASV systems, spanning
from a 0.1% to 10% FMR. This methodology ensures that our evaluation captures
scenarios reflective of real-world conditions.

For each metric, we provide three plots as in the previous section. The only
distinction this time is that the FMR values in the plots range from 0.1% to 10%.

6.3.2.1 FDR evaluation

Despite adjusting both the threshold and α values, the FDR values exhibit a
consistent trend, with values concentrated between 0.72 and 1, as depicted in
Figures 6.2(a) and 6.2(b). Comparing which system is fairer remains non-intuitive,
as most FDR values nearly overlap for all α values. Additionally, the persistent
scale disparity between the FPD and FND terms, illustrated in Figure 6.2(c),
suggests challenges in intuitively understanding the contributions of FMR and
FNMR to the FDR metric. Therefore, the FDR metric fails to meet the criteria
outlined in FFMC.1.

6.3.2.2 IR evaluation

The results for the IR metric reaffirm the challenges associated with its compu-
tation in specific scenarios, even with a variable threshold range. The criterion
FFMC.3 remains unfulfilled. The selective representation of 8.6% of computable
values in Figures 6.5(a) and 6.5(b) illustrates the extensive range of the IR, which
can reach up to 200 in certain instances. This underscores the unbounded nature
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of the IR metric, rendering it non-compliant with FFMC.2. However, the FPD
and FND terms exhibit a similar scale, as depicted in Figure 6.5(c). The use of a
ratio-based approach ensures a more balanced comparison between terms, thereby
fulfilling FFMC.1.

6.3.2.3 GARBE evaluation

The GARBE metric effectively overcomes the limitations observed in previous
metrics. As depicted in Figures 6.4(a) and 6.4(b), GARBE values consistently
span the entire theoretical range from 0 to 1. Moreover, Figure 6.4(b) illustrates
the sensitivity of GARBE to changes in α. The FPD and FND terms, showcased
in Figure 6.3(c), with median values of 0.21 and 0.88 respectively, are on the
same scale. This ensures that both terms contribute significantly to the fairness
assessment, thereby meeting FFMC.1.

Analysis of the boxplots reveals a swap in the positions of the FPD and FND
terms between Figures 6.1(c) and 6.2(c), as well as between 6.3(c) and 6.4(c).
This swap occurs because, at certain thresholds, the FPD either exceeds or falls
below the FND, and vice versa. Specifically, in the analysis of the FDR metric,
for thresholds resulting in an FMR lower than 0.9%, the FND term surpasses the
FPD term. Conversely, for thresholds leading to an FMR above 0.9%, the FPD
term becomes higher. Regarding the GARBE metric, thresholds that produce an
FMR below 0.4% result in a higher FPD than FND. This explains the observed
variation in the positions of the boxplots when the FMR is set at 0.1% and for
FMR ranges from 0.1% to 10%.

6.3.3 Summary of the Fairness Metrics Criteria
Our assessment of fairness metrics for ASV within the framework of the Functional
Fairness Measure Criteria (Section 6.1.4) reveals diverse findings regarding the
FDR, IR, and GARBE metrics. These results are summarised in Table 6.3.

FFMC Criteria FDR IR GARBE
FFMC.1 ✓ ✓
FFMC.2 ✓ ✓
FFMC.3 ✓ ✓

Table 6.3: Summary of Fairness Measures Criteria for ASV
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The FDR metric inherently meets the FFMC.2 criterion as it is bounded, of-
fering an interpretable measure of fairness where a value of 1 represents perfect
fairness and a value of 0 signifies complete unfairness. Moreover, the FDR metric
remains computable even when FNMR or FMR is zero, aligning with FFMC.3.
However, challenges arise with FFMC.1 due to the disparate scales of the FPD
and FND terms when using typical risk parameter ranges (α in [0,1]) and opera-
tionally relevant error rates (FMR in [0.1%,10%]). This discrepancy complicates
the interpretation of the contributions of FMR and FNMR in the computation of
the FDR metric. Thus, the FDR metric does not meet FFMC.1.

The IR metric satisfies FFMC.1 by adopting a ratio-based approach, which
effectively balances the contributions of the FPD and FND terms. However, it
encounters limitations in meeting FFMC.2 and FFMC.3 due to its unbounded na-
ture. This characteristic makes it challenging to establish benchmarks and renders
it incalculable when FNMR or FMR reach zero. Therefore, while the IR metric
addresses one criterion, it falls short in fulfilling the others.

GARBE emerges as the most robust metric, satisfying all FFMC criteria. By
leveraging the Gini coefficient, as outlined in Equations 6.7 and 6.8, the FPD and
FND terms are converted to a same scale before their aggregation. This normal-
ization is key for meeting FFMC.1 It ensures an intuitive understanding of the
contributions of FMR and FNMR to the GARBE metric calculation, facilitating
a nuanced and balanced representation across varying α values.

Moreover, GARBE fulfills FFMC.2 by maintaining set boundaries, enabling
the establishment of clear benchmarks. Additionally, it remains computable even
when error rates are zero, thereby meeting FFMC.3. Thus, GARBE not only
addresses the fairness criteria comprehensively but also ensures practicality and
interpretability in real-world scenarios.

Our analysis validates and extends the findings of the study on fairness for
face recognition reported in [209]. It reinforces the conclusion that the GARBE
metric is particularly well-suited for evaluating fairness in biometric systems. This
consistency demonstrates that GARBE is not limited to face recognition systems
but extends to studies of fairness in automatic speaker verification as well.
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Figure 6.6: GARBE of different ASV systems for different decision τ = FMRx

where x varies from 0.1% to 10% and for α = 0.5.

6.4 Fairness and ASV assessment
Although not the primary focus of this study, we now turn our attention to an
analysis of the ASV systems themselves. We present an evaluation of the five ASV
systems based on their verification performance (FMR vs. FNMR) and fairness,
here assessed solely using the GARBE metric.

Figure 6.6 displays a plot of GARBE values over an FMR range from 0.1%
to 10%, with α = 0.5. Figure 6.7 presents a detection error trade-off (DET)
plot. The ResNetSE34L system exhibits the lowest GARBE values across all
FMR thresholds, suggesting that it is the fairest system. However, in terms of
verification performance, the same ResNetSE34L system performs the poorest. In
this case, enhanced fairness, characterized by lower differential performance across
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Figure 6.7: Detection error tradeoff (DET) curve of different ASV systems.

groups, comes at the expense of degraded verification performance.
GARBE values for the least fair system, ResNetSE34V2, are consistently high-

est across most operating points, indicating significant differential performance
across groups. However, despite its fairness shortcomings, verification accuracy
surpasses that of the ResNetSE34L system, suggesting an apparent trade-off be-
tween performance and fairness.

On the other hand, the ERes2Net and CAM++ systems, while not the fairest,
particularly for FMRs under 1%, demonstrate comparable fairness levels. Addi-
tionally, they are among the top performers in terms of verification accuracy.

The ECAPA model displays distinct behavior compared to other systems.
While its verification performance is average, there is considerable variation in
GARBE values between lower and higher FMRs. This pronounced fluctuation
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suggests a particular sensitivity unique to the ECAPA model, highlighting a dis-
tinct aspect of its operational characteristics.

6.5 Conclusions
In this chapter, we have conducted a comparison of three distinct fairness met-
rics, fairness discrepancy rate (FDR), inequity rate (IR), and Gini aggregation
rate for biometric equitability (GARBE), within the context of automatic speaker
verification. We have further performed an analysis of fairness and verification
performance for five state-of-the-art ASV systems. Our findings indicate that the
GARBE metric emerges as the most adept in meeting the Functional Fairness
Measure Criteria (FFMCs).

Our analysis reveals a delicate balance between fairness and accuracy. The
system deemed fairest exhibits the poorest verification performance, while the
system with the highest verification accuracy demonstrates only average fairness.
These findings underscore the challenge of achieving a balance between fairness
and verification performance.

Given the requirement for fairness, the evaluation of fairness should be incor-
porated into the development process of ASV systems, just as it should be for
any biometric system. Relying solely on raw verification performance does not
ensure the creation of equitable solutions. This highlights the potential need for
implementing fairness by design.
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Chapter 7

Conclusions and Future Research

In this chapter, we provide a summary of the research conducted in this thesis.
We begin by outlining the contributions and findings in Section 7.1, followed by a
discussion of potential directions for future research in Section 7.2.

7.1 Summary
In this thesis, we considered the problem of enhancing compliance with European
General Data Protection Regulation (GDPR) principles concerning data privacy
and fairness in voice biometrics applications. We explored privacy concerns within
the context of both automatic speaker verification (ASV) and countermeasure
(CMs) systems. We further evaluated fairness of ASV systems and promoted a
concept of fairness by design. Furthermore, in order to enhance the reproducibil-
ity of our research and allow comparisons with alternative approaches, we have
employed common evaluation protocols and publicly available databases in our
experimental assessments. We provide below a summary of the contributions and
chapters of the thesis.

Chapter 2 provides a background and literature review on privacy and fairness
enhancing technologies used for biometric systems.

Chapter 3 presents, PRIVASP, the first privacy preservation scheme for CMs
systems using secure multi-party computation. PRIVASP not only preserves
the privacy of CMs systems but also protects their intellectual property (IP) by
keeping the model parameters private. Most state-of-the-art cryptographic-based
privacy-preserving schemes often introduce system utility degradation or/and com-
putational overhead compared to non-protected systems. The proposed privacy-
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preserving CMs system successfully meet privacy requirements while maintaining
reasonable spoofing detection performance. Following the privacy by design princi-
ple of the GDPR, a shallow neural network is designed from scratch to meet secure
multi-party computation requirements. Two scenarios were considered depending
on whether or not the CMs system provider wishes to keep the parameter of the
model private to protect the IP. Experiments conducted on the ASVspoof 2019
Logical Access (LA) database validate the effectiveness of PRIVASP in real-time
spoofing detection, as shown in Table 7.1, while operating with maintaining utility,
as indicated in Table 7.2
system / type PRIVASP-1024 PRIVASP-512 B01 B02 LFCC-GMM RawNet2 ResNet18-SP

plaintext 2.8 2.7 339.9 89.9 100.6 12.0 2.8
scenario 1 95.8 59.9 - - - - -
scenario 2 349.6 208.1 - - - - -

Table 7.1: Average inference time in ms per utterance.

system type EER [%] min-tDCF
B01 plaintext 9.57 0.2366
B02 plaintext 8.09 0.2116

LFCC-GMM plaintext 3.50 0.0904
RawNet2 plaintext 5.54 0.1547

ResNet18-SP plaintext 6.82 0.1140

PRIVASP-1024
plaintext 7.03 0.1485
scenario 1 7.02 0.1481
scenario 2 7.02 0.1481

PRIVASP-512
plaintext 7.10 0.1549
scenario 1 7.13 0.1550
scenario 2 7.13 0.1550

Table 7.2: Performance for the ASVspoof 2019 LA evaluation partition in terms of
pooled EER and min t-DCF for the two baselines, B01 and B02, the high-spectral-
resolution LFCC, RawNet2, ResNet18-SP and our proposed PRIVASP-1024 and
PRIVASP-512 systems. PRIVASP systems are also evaluated in privacy-preserving
scenario 1 and 2.

The results highlights the remarkable efficiency of PRIVASP in the tradition-
ally resource-intensive realm of secure multi-party computation. Through the
strategic design of a shallow neural network, PRIVASP seamlessly integrates with
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the secure 2PC framework. This approach effectively reduces the computational
overhead typically associated with such methods and maintains utility in both
non-private and private domains.

Chapter 4 presented an innovative auto-encoder-based system that merges a
differential privacy (DP) mechanism with an adversarial auto-encoder (AAE) to
conceal gender-related information within speaker embeddings, while maintaining
their utility for speaker verification purposes. The concealment process is per-
formed through an adversarial game between the auto-encoder and an external
gender classifier. A Laplace-noise-addition layer is integrated within the architec-
ture to enhance the robustness in gender concealment during training and solidi-
fying DP guarantees at inference time. The ability to fine-tune the Laplace noise
by adjusting the privacy budget ϵ enables our system to provide a customizable
balance between privacy protection and utility, even post-training.

Figure 7.1: ASV EER and gender classification AUC achieved by the system for
increasing values of ϵts, for the cases of ϵtr = 15 and ϵtr = 20.

Experimental evaluations conducted on the VoxCeleb dataset demonstrate
the effectiveness of our approach in carrying out speaker verification tasks while
concealing speaker gender and maintaining ϵ-differential privacy guarantees (Fig-
ure 7.1).

In Chapter 5, we conducted a study on the impact of gender information
during the fine-tuning of wav2vec 2.0 for speaker verification. Three models were
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Models
Ms Msg Msga

EER(%)
Overall 2.36 3.23 3.89
Male 3.12 4.22 4.98

Female 3.05 4.21 5.26

auFDR α

0 0.98 0.97 0.96
0.25 0.97 0.97 0.95
0.5 0.97 0.96 0.94
0.75 0.96 0.95 0.92

1 0.95 0.94 0.91

Table 7.3: Performance analysis of the three models for utility and fairness, in-
cluding EER breakdown by gender and auFDR across various α values (refer to
eq.6.3) for τ ranging from 0.1% to 10%.

Data Attack
Training Test AUC (%)

uIA

Ms Ms 97.09
Ms Msga 46.80
Msg Msg 98.07
Msg Msga 40.76

IA Msga Msga 96.27

Table 7.4: Assessment of gender concealment effectiveness under different threat
scenarios in terms of AUC.

introduced: Ms, Msg, and Msga, each with distinct objectives: speaker recognition,
speaker recognition with gender identification, and speaker recognition with gender
concealment, respectively.

Experiments performed on the VoxCeleb dataset reveal that while Ms achieved
successful speaker verification, Msga, designed for gender concealment, performed
less effectively. Surprisingly, enhancing gender recognition within Msg did not
improve speaker verification performance (Table 7.3). Privacy assessments indi-
cated effective gender concealment against uninformed attacks, though informed
attackers could still extract gender information (Table 7.4). Fairness evaluations
based on auFDR (in Table 7.3) show that highlighting or concealing gender did
not notably affect system fairness.

We also introduced the fairness activation discrepancy (FAD) metric tailored
for speech data, revealing more discrepancies within Transformer layers, as de-
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Figure 7.2: Normalised Fairness Activation Discrepancy (FAD) of different systems
at different wav2vec 2.0 module layers.

picted in Figure 7.2. However, all systems eventually converged to consistent
fairness values, with Ms displaying superior fairness.

Figure 7.3: GARBE of different ASV systems for different decision τ = FMRx

where x varies from 0.1% to 10% and for α = 0.5.

In Chapter 6, we addressed the challenge of the non-existent international
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standards for fairness evaluation in the field of biometrics. We assessed three
fairness measures-fairness discrepancy rate (FDR), inequity rate (IR), and Gini
aggregation rate for biometric equitability (GARBE)-in the context of speaker
verification and evaluate ASV systems using the most suitable fairness metric.

Our comparative analysis of three fairness metrics using the VoxCeleb dataset
five state-of-the-art ASV systems reveals that the GARBE metric stands out as
the most adept in meeting the Functional Fairness Measure Criteria (FFMCs).

We further used the GARBE metric to evaluate fairness of the five ASV sys-
tems. Experimental results provide insights into the delicate balance between
fairness and accuracy. Despite the system with the highest verification accuracy
demonstrating only average fairness, the one deemed fairest exhibits the poorest
verification performance (Figure 7.3).

These findings stress the need to integrate fairness evaluation into ASV system
development, emphasizing the need for implementing fairness by design.

7.2 Future Research Directions
Based on the findings presented in this thesis, the following potential directions
for future research are identified:

• Exploration of Disentanglement Techniques: Future research direc-
tions in the realm of disentanglement techniques for ASV systems hold
promise for advancing privacy preservation while retaining identity. Ex-
panding on the disentanglement technique introduced in Chapter 4, which
employs adversarial auto-encoder (AAE) architecture with a differential pri-
vacy (DP) mechanism to conceal gender information. Further enhancements
could involve disentangling multiple soft biometric attributes simultaneously,
such as age, accent, and emotion.

Additionally, diffusion models [215], as demonstrated in a very recent
work [216], offer potential for learning disentangled representations by mod-
eling the evolution of probability distributions over time. These models
could be further explored in the context of disentanglement to separate
identity-related features from other factors. This area of research remains
relatively unexplored and presents an opportunity to develop more effec-
tive techniques for privacy-preserving speaker verification while maintaining
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identity integrity.

• Privacy Protection against Informed Attacks: The findings from the
simulated informed attacks in Chapter 5 highlight the need to enhance pri-
vacy measures against attackers with knowledge of the protection methods
used. Future efforts should concentrate on strengthening the concealment of
sensitive attributes like gender. To address this concern, we can incorporate
additional layers of obfuscation to hide sensitive attributes effectively.

• Development of Bias Mitigation Techniques: The evaluation of fair-
ness in ASV systems, as presented in Chapters 5 and 6, has revealed dispari-
ties in outcomes among demographic groups, underscoring the imperative for
implementing fairness by design. Building upon this evaluation, the imple-
mentation of bias mitigation techniques tailored for ASV systems becomes
crucial. The literature review in Section 2.2.4 highlights a handful of pro-
posed bias mitigation methods in the ASV domain. With insights gained
from Chapter 6 regarding suitable fairness evaluation metrics for biometric
recognition systems, including ASV, there emerges a clearer framework for
comparing system fairness and selecting appropriate metrics. Moving for-
ward, the development of specific bias mitigation strategies for ASV systems
is essential to address biases that may result in inequitable outcomes across
different demographic groups.

• Investigation into Explainability Methods: The introduction of the
Fairness Activation Discrepancy (FAD) metric in Chapter 5, aimed at study-
ing fairness across network layers, has raised questions about the underlying
reasons for bias within ASV systems. This prompts the need to explore
explainability methods to elucidate the origins of bias within these models.
Understanding the contributing factors to bias is essential for developing ef-
fective mitigation strategies. Moreover, such efforts align with the GDPR
principle of transparency, which mandates providing meaningful informa-
tion about the logic behind automated decision-making processes to data
subjects [217].
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