
Slice Resource Allocation with distributed Deep Neural Networks for 5G+ Networks
Ali Ehsanian 1 Thrasyvoulos Spyropoulos 2

1EURECOM, Sophia Antipolis, France 2Technical University of Crete, Chania, Greece
Funded by 

the European Union

Abstract

End-to-end network slicing is a new concept for 5G+ networks, dividing the network into slices for

distinct services. A key task is satisfying service level agreements (SLA) by forecasting how many

resources to allocate to each slice. The increasing complexity of the network services makes

resource allocation a daunting task for traditional methods. Hence, data-driven methods have

been recently explored. Although such methods excel at the application level, their application to

wireless resource allocation is challenging. Not only are the latencies required significantly lower,

but also the cost of transferring raw data across the network to be processed by a central Deep

Neural Network (DNN) can be prohibitive. For this reasonDistributedDNN (DDNN) architectures

have been considered, where a subset of DNN layers are executed at edge, to improve speed and

communication overhead; if it is deemed that a “good enough” allocation have produced locally,

the additional latency and communication is avoided; if not, intermediate features produced at

the edge are sent to cloud layers. We propose a distributed DNN architecture for this task based

on LSTM that excels at forecasting demandswith long-term dependencies. We investigate (i) joint

training (offline) of the local and remote layers, and (ii) optimizing the (online) decision mechanism

for offloading samples either locally or remotely. We show that our architecture resolves nearly

50% of decisions at the edge, with no additional SLA penalty (compared to centralized models).

Introduction

DDNN: We propose a distributed LSTM architecture for the problem of balancing under-/over-

provisioning of resources to different slices, and investigate how the methodology of DDNNs

can be applied to such larger, more sophisticated architectures. Such an architecture contains

a few LSTM units and a “local exit” (i.e. a prediction layer) at the edge, and a larger number of

units and “remote exit” at the central cloud.

OfflineOptimization: We demonstrate the impact of properly tuning the joint training hyperpa-

rameters of local and remote “exits” (i.e., predicted allocations and related SLA costs).to achieve

a good balance between: (i) making the local layers powerful enough to correctly make a large

number of allocation decisions, while (ii) producing useful enough features that the remote lay-

ers could leverage, when improved allocation decisions are deemed necessary.

Online Optimization: We propose a mechanism that measures the confidence in the local exit

and predicts whether the remote exit (which requires additional latency and communication,)

would improve the SLA costs enough to justify the extra overhead (i.e., a form of unsupervised

learning).

Objective Function:

f (ŷt, dt) =

{
c1 · (ŷt − dt)2 if (ŷt − dt) ≤ 0
c2 · (ŷt − dt) if (ŷt − dt) > 0

Figure 1. Over/Under-provisioning Figure 2. Objective Function

System Model

Proposed DDNN Model:

Input
LSTM

(1 Cell)
FCConfident?

Local 

Exit

LSTM

(128 Cells)

LSTM

(64 Cells)
FC FC FC FC

Remote 

Exit

Yes
LOCAL (Edge)

REMOTE (Cloud)

Z Z
 

No Z

 

Figure 3. LSTM network is distributed over Edge and Cloud

Local Exit: ŷi
L,t = FL(di

t; θL) Remote Exit: ŷi
R,t = FR(zi

t; θR)
Offline DDNN Training:

LossDDNN =
N∑

n=1
wL·f (FL(d; θL), dn)+wR·f (FR(z; θR), dn) =

N∑
n=1

wL·f (ŷL,n, dn)+wR·f (ŷR,n, dn)

backpropagating the local exit performance to the local layers (i.e., θL) to ensure that the majority of local

decisions ŷL can be relied on, despite being based only a small/simple DNN module.

backpropagating the remote exit performance to both the remote layers (i.e., θR) to ensure they can provide

improved inferences ŷR, when needed. It also extends to the local layers (i.e., θL) to ensure that they produce

sufficiently useful intermediate features (i.e., z) for the additional remote layers.

wL is the “local weight”, and wR is the “remote weight”, which they regulate the impact of the local and remote

exit on the overall loss of the DDNN during joint training.

Online Inference and Offloading:
Oracle-based Offloading: The “Oracle” knows the potential value of remote processing for any given sample.

This oracle serves as our reference. The loss difference is:

Ln = f (ŷL,n, dn) − f (ŷR,n, dn)

If we did have such an oracle, we could certainly always keep the local decisions that are better than the remote

ones.

Bayesian Confidence-basedOffloading: In practice, we do not have such an oracle, as the remote decision ŷR,m

and related cost, can not be known at the edge. In this method, the confidence block, includes a dropout layer

with dropout probability p, followed by a linear FC block. The intermediate signal z is given to the confidence

block, and it is forced to infer for each input sample J times. We calculate the Uncertainty as follows:

U = 1
K

K∑
k=1

σk

The confidence mechanism compares the measured uncertainty (U ) value with a given confidence threshold

(η).

In =

{
U <= η the model is confident about the local decision

U > η send the data to the cloud

Data-Driven Optimized Offloading: The idea is to train a function (in the offline) which receives d and z and

operate like a binary classifier. While training the DDNN,we can label the signals as locally or remotely according

to the Oracle. Then use this data to train a binary classifier.{
Ln <= 0 the model is confident about the local decision

Ln > 0 send the data to the cloud

If we can train such a classifier, then during inference time making decisions will be faster, and its overhead is

much less compared to the Bayesian offloading.

DDNN cost function:

CDDNN =
N∑

n=1
In · f (ŷL,n, dn) + (1 − In) · f (ŷR,n, dn)

In =

{
1 if the sample n exited locally

0 else

Simulation Results

c1 = 50
c2 = 1

K = 16
N = 144

J = 10
p = 0.4

Figure 4. Offline vs Online trade-off curve Figure 5. Online trade-off curve

Figure 6. Online trade-off curve

Figure 7. Traffic demand predictions Figure 8. Traffic demand predictions

SEMANTIC Final Conference 2023, University of Athens ali.ehsanian@eurecom.fr

mailto:ali.ehsanian@eurecom.fr

