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Abstract—Multi-Access Edge Computing (MEC) is a key
technology in the field of telecommunications and computing.
It brings computing and storage resources closer to the edge
of the network, typically at or near base stations and hence
reduces the access latency of User Equipment (UE) to applications
hosted at the edge. However, mobility of UEs brings challenging
issues for service continuity and Service Level Agreement (SLA)
fulfilment of 5G services. To solve these issues, 3GPP introduced
a new Network Function (NF) called the Edge Application Server
Discovery Function (EASDF) [1]. The latter aims to support
session breakouts by dynamically resolving the Domain Name
Service (DNS) of MEC applications to application servers closer
to the UE’s physical location. However, the 3GPP specifications
[1] do not provide details about how the EASDF handles the
UE’s mobility. To fill this gap, we propose a novel design and
implementation of the EASDF on the top of OpenAirInterface
(OAI) open-source 5G network [2]. Simulation results show the
efficiency of the EASDF in reducing the access latency during
the UE’s mobility with a small overhead of less than 4ms in
high-load scenarios.

I. INTRODUCTION

Multi-Access Edge Computing (MEC) is a new network
architecture that brings computation and storage resources
closer to User Equipment (UE), which can significantly reduce
latency [3]. This is done by deploying MEC servers at the edge
of the network near the base stations. MEC servers can then
offload tasks from UEs, such as processing data or running ap-
plications. Mobility is primordial for many MEC applications.
For example, a MEC-enabled streaming application needs to
be able to move the user’s streaming session between different
MEC servers as the user moves around. This is because
the user needs to maintain a low latency connection to the
streaming server in order to have a good Quality of Experience
(QoE) [4]. In MEC mobility scenarios, 5G networks must offer
the ability to influence the User Plane (UP) to properly redirect
and offload traffic to edge applications while meeting Quality
of Service (QoS) requirements [5][6]. The 3GPP standards
propose several methods to achieve this goal. Among them,
the Uplink Traffic Classifier [5] allows classifying UP packets
based on their headers and deciding which uplink tunnel to
forward the packet to. This approach allows individual packets
to be routed using their internal IP headers without relying

directly on IP routing, thus taking advantage of the flexibility
of the 5G UP. In Rel. 18, 3GPP introduced the EASDF [1]
to support MEC session breakouts. Within the functionality of
the EASDF is Domain Name Service (DNS) resolution to the
UE, thus resolving to application servers closer to the UE’s
physical location.

In this paper, we introduce a framework that leverages
the EASDF to allow users to discover the IP of the MEC
application instance and integrates this architecture on top of
the 5G UP to dynamically redirect traffic while preserving all
UE SLA requirements by taking advantage of what the 3GPP
specifications offer.

The main contributions of this work are manifolds:
• We propose a novel architecture that enables MEC mo-

bility leveraging the EASDF.
• We implement the EASDF on top of OAI 5G open-source

implementation.
• We tested the MEC mobility under high-load scenarios to

show the efficiency of the EASDF in supporting session
breakouts.

The rest of the paper is organized as follows: Section II
introduces the required background to understand the paper’s
contribution and the key works in the State of The Art (SoTa).
Section III introduces the proposed framework. Section IV
tackles the EASDF implementation details. Finally, Section V
presents the performance evaluation results.

II. BACKGROUND

A. MEC

Multi-access Edge Computing (MEC) [7] is an industry
initiative within the European Telecommunications Standards
Institute (ETSI) that aims to bring computing capabilities
closer to the network edge. This enables low-latency and
high-bandwidth applications, such as augmented reality, IoT,
and content delivery, by leveraging edge computing resources.
ETSI MEC defines standards for the architecture, interfaces,
and Application Programming Interfaces (APIs) to enable
interoperability and efficient deployment of edge computing
services in telecom networks.



Edge computing in 5G introduces mobility challenges due
to the dynamic nature of mobile devices. Seamless han-
dovers, low-latency adaptation, dynamic resource allocation,
congestion management, secure authentication, and consistent
Quality of Service (QoS) are key concerns as devices move,
impacting the efficient functioning of edge computing in a
mobile environment. Exploiting the capabilities offered by the
5G Network, it becomes easier to reduce the impact of the
devices’ mobility on edge computing performances.

B. 5G Core Network

The 5G Core Network [5] meets the needs of different
use cases that require low-latency communication, high band-
width, reliability and seamless integration with the network.
In the 5G Core Network standard, 3GPP defines a cloud-
native, service-based architecture for all network functions
that make up the core network. The 5G Core architecture
embraces the Control and User Plane Separation (CUPS)
paradigm, simplifying the single component (Network Func-
tion) architecture and thus the deployment in cloud-based
scenarios. Communication between different components is
also simplified by the use of interfaces based on open and
standard services.
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Figure 1: 3GPP 5G System Architecture

In edge computing scenarios, 5G networks must offer the
ability to influence the User Plane (UP) to properly redirect
and offload traffic to edge applications while meeting Quality
Of Service (QoS) requirements. The 3GPP standards propose
several methods to achieve this goal. Among them, the Uplink
Traffic Classifier [5] allows classifying UP packets based
on their headers and deciding which uplink tunnel (UL) to
forward the packet to. This approach allows individual packets
to be routed using their internal IP headers, without relying
directly on IP routing, thus taking advantage of the flexibility
of the 5G user plane. These forwarding rules can be applied
dynamically via the Policy and Charging Function (PCF) when
a new application is deployed or when a new compute cluster
is available. The Session Management Function (SMF) will
then translate these rules into Packet Detection Rules (PDRs)
and Forwarding Action Rules (FARs) that will be leveraged by
the UP to detect packets and decide where to forward them
based on user-defined rules. However, despite the ability to
influence the traffic and to handle how the packets are routed
towards the application. The 5G CP or UP themselves do not
offer the UEs the possibility to discover edge applications.
This task can be accomplished at the application layer, using,
for example the Domain Name System Servers.

C. DNS Resolution

Domain Name System (DNS) [8] resolution is a funda-
mental process in computer networks that translates common
application names into IP addresses that are used by machines
to communicate with each other. DNS resolution is a vital
component of the Internet that ensures users can easily access
Web sites and services using easy-to-understand names rather
than having to remember IP addresses that may also change
over time. The DNS system is based on a hierarchical structure
of DNS servers and local caches. Because of the presence of
the caches, a Time To Live (TTL) is added to DNS records
to control how long a cached record remains valid. Clearly,
the TTL plays a critical role, particularly in applications
where the mapping between the application name and IP
changes frequently. When an MEC application is deployed,
it is exposed to other applications and users through the MEC
platform, which allows the domain names of those applications
to be discovered. In addition, a DNS server is configured
during the instantiation phase to store the mapping between
the application name exposed through the MEC platform and
the application instance. A DNS server can support different
types of records depending on the needs of the use case. Each
record has a so-called TTL (Time-To-Live) because, since the
DNS service relies on a DNS cache system between the client
and the most authoritative server, it is important to define an
expiration time for entries. The TTL impacts the propagation
time of any change in DNS records and the amount of DNS
traffic in the network.

D. Related works

AKAMAI CDN [9] uses DNS to point the client to the best
Point of Presence (PoP); however, their work remains general
and does not explain how to fully integrate this paradigm in
a 5G System explain the advantages of the 5G User Plane.
ETSI Enhanced DNS [10] concept still remains generic and
does not give recommendations on how the full framework
should be implemented. 3GPP Traffic Influence service [11]
describes how to dynamically change the Packet Data Unit
Session anchors while maintaining service continuity from the
user perspective. However, this technical specification only
figures out how to influence the UP to deliver the packets
to the application but does not explain how the UE should
know that it is associated with a new application instance
or, more generally, how to handle the steering from L3 and
higher layers perspective. Another solution, often employed
in edge computing scenarios, is based on the Anycast IP.
The Anycast IP is a unique and virtual IP that refers to all
the instances of a specific application. With this solution, the
complexity is moved towards the 5G layer since it is now
up to the 5G UP to handle the association between the UE
and destination instance and to eventually apply destination
NAT rules to substitute the destination anycast IP with the
real application IP. APIs to handle the 5G UP dynamically
may be more complex to operate for a vertical and are also
not often available. Finally, another solution is the DNS-
based steering, but using a central DNS Server. This method
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Figure 2: Dynamic Edge Traffic Steering Framework

exploits a centralized framework and requires a single DNS
Server to manage both the association between the UE and
the associated application instance and the DNS records for
each edge node. Our solution borrows the idea of DNS-based
steering and exploits a decentralized knowledge of the DNS
records in order to scale the infrastructure more easily.

III. DYNAMIC EDGE TRAFFIC STEERING FRAMEWORK
(DETSF)

Our framework DETSF leverages a DNS-based system to
allow UE to discover the IP of the application instance and
integrates this architecture on top of the 5G UP to dynamically
redirect traffic while preserving all UE slicing requirements by
taking advantage of what the standards offer. It addresses two
main issues: how the UE discovers the Edge Application IP
Address and how the user plane is configured to deliver the
UE traffic based on the destination IP.

A. DETSF: how the UE discovers the MEC Application?

The first problem is addressed using the Edge Application
Server Discovery Function (EASDF). The EASDF follows the
latest 3GPP standard in terms of interfaces and procedures
[1]. This makes it easy to integrate this component with any
3GPP-compliant CN and allows verticals to influence traffic
forwarding decisions using the EASDF NF. The system acts
as a DNS server for UE, handling all their DNS requests
and managing them according to instructions given by other
NFs or third-party application functions. In our scenario, the
EASDF is used to forward the DNS request to another DNS
server that is selected from the MEC DNS servers of different
MEC nodes. The local DNS of an MEC platform contains
only the records of the applications deployed in that node.
It is important to note that the DNS name of the application
must be the same in the different edge nodes for the system
to work. With the EASDF, it is possible to discover the IP
address of an application deployed at a specific MEC node
by forwarding the UE’s DNS request to that node’s DNS
server and then sending the DNS response back to the UE.
From the UE’s perspective, the result is that the same DNS
name can be translated into different IP addresses depending
on how the request is forwarded. EASDF’s forwarding rule
can be dynamically updated from its northbound interface [1]
to change the association between a node and an IP address. In
fact, EASDF provides a northbound interface that allows rules

to be installed for each user’s equipment [12]. An example of
the complete EASDF workflow is shown in Figure 3.
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Figure 3: An example of EASDF Workflow

In this framework, the EASDF is implemented within an
edge node of the access network that intercepts the DNS
request near the UE without adding unnecessary latency and
without impacting the performance of the UP. The implemen-
tation of this feature in the access MEC Cluster makes it
possible to exploit the user and network information exposed
by MEC services such as the Radio Network Information
Service (RNIS) [13] and the Location API [14] to determine
the best DNS forwarding rule of the EASDF (i.e., associate
the UE with the best MEC application instance based on these
factors). The component is integrated on top of OAI, including
the Radio Access Network and the Core Network.

B. DETSF: how the UE reaches MEC Application?

The way packets are routed in the 5G UP is not as simple
as it is for the Internet. Indeed, the simplicity of IP routing is
replaced by a more complex packet identification and tagging
system that favors traffic engineering and QoS enforcement.
This means that the destination IP of the application we
want to communicate with is not sufficient to determine the
path of the packet and how it should be routed to reach the
destination. However, thanks to UpLink-CLassifiers (ULCL),
it is possible to detect packets from their IP headers and
apply specific FAR. Finally, by combining ULCL with a
Multi-Anchored PDU session, it is possible to have several
breakout interfaces to different Data Networks (DNs) within a
single PDU session. This feature is used in our framework to
provide an IP-like routing scenario without losing the Traffic
Engineering benefits provided by the 5G UP. In addition, the
ability to dynamically distribute UP functions at the edges
and dynamically modify IP-based forwarding rules to create
local traffic breakout interfaces at the edges can introduce
high degrees of freedom for the network. The combination
of ULCL-capable UPF, the PCF NF used to manage the
traffic rules, and the anchor UPFs deployed at the edge of
the different DNs constitute the lower layer of the proposed
framework.

Figure 4 shows a small example of how the traffic can be
redirected to different DNs by using a ULCL Classifier and
traffic rules enforced via the PCF. This work leverages the
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OAI 5G Core Network [15], which is a full-working, 3GPP
Rel. 15 compliant implementation that offers flexibility and
the possibility to add and integrate new features thanks to its
open-source nature.

IV. EDGE APPLICATION SERVER DISCOVER FUNCTION
(EASDF)

A. EASDF System design

The EASDF component implemented in this work is cloud-
native and can run on any container-based system. One of
the key requirements is resilience to multiple and parallel
requests due to the large number of UEs that can leverage a
single instance of EASDF. However, the cloud-native design
allows the application to scale to cope with the limitations of
the single instance. EASDF can be deployed in a distributed
fashion over the access network, handling a smaller subset of
UEs and also providing lower latency. The UE can access the
EASDF via a distributed local breakout UPF in the access
EDGE and leverage ULCL-based data plane distribution to
access applications on different edge nodes.

The EASDF is mainly composed of three functional blocks:
1) 3GPP Standard Northbound Interface: The northbound

interface implementation relies on the 3GPP EASDF definition
[12]. It allows network functions belonging to the same Public
Land Mobile Network (PLMN) or Vertical Application Func-
tions to install DNS forwarding rules on a per-UE basis. Since
the EASDF can be adopted by verticals to handle redirection
of UE traffic, our implementation is CAPIF-compatible[16]
and offers the ability to be discovered and exploited by third-
party entities without introducing additional security concerns.
This design choice increases the robustness and observability
of the interface, but it also simplifies the use of the service
from the vertical perspective.

2) EASDF Core Application: The core component of
EASDF is used to process incoming DNS requests and forward
the contents of the request to the destination DNS server,
which is selected based on information from the northbound
interface. The Core application can also process the response
from the destination server and possibly modify the fields
contained in the DNS response.

3) UDP/TCP DNS Server: The DNS server receives re-
quests from the user equipment, which are then processed by
the EASDF Core application. The requests are handled and
processed in parallel to enable low-latency resolution, which
can be crucial in edge computing scenarios. The data contained

in and extracted from the DNS query is sent to the EASDF
Core Application, which will forward the requested content
to the destination server defined in the DNS context of the
specific client.

B. EASDF implementation

The system implementation is based on a Python applica-
tion comprising three different components, as described in
the previous section, which run on different threads. Thus,
the minimum number of threads required by EASDF is 3
when no clients interact with the application. Starting with
the Northbound, the server was initially generated using the
OpenAPI document [12] released by 3GPP that describes all
the services exposed by EASDF and their different interfaces.
The neasdf-dns-contexts service is one of the key services. It
allows the creation of a DNS context related to a client-specific
IP, slice, and PLMN. When a new DNS context is created, for
each DNS request that corresponds to the triplet (UE IP, Slice
ID, and PLMN ID), EASDF must apply the actions and rules
described in the body of the request. Within a DNS context,
a rule can be described as the following pseudo-Json:

” d n s Ru l e s ” :
” r u l e 1 ” :

” d n s R u l e I d ” : ” r u l e −8 f f 9 3 8 f ”
” a c t i o n L i s t ” :

” dnsFwd0 ” :
” a p p l y A c t i o n ” : ”FORWARD”
” fwdParas ” :

” d n s S e r v e r A d d r e s s I n f o ” :
” d n s S e r v e r A d d r e s s L i s t ” :

” ipv4Addr ” : ” 1 9 2 . 1 6 8 . 1 2 1 . 5 0 ”

The neasdf-dns-contexts service can then be exposed and
published using the Common API Framework, allowing
EASDF to be discovered by application functions or the
vertical itself that needs to interact with it. Another key
block is the Core Application, which handles client requests
and processes them based on information gathered from the
northbound service. For each incoming request, a new thread
is created to handle it and wait for the response from the
destination DNS. Implementing this function using threads is
necessary, otherwise a blocking query could slow down other
clients or parallel queries. The body of the DNS query is
encapsulated in a new UDP packet and sent to the destination
DNS, which in this use case corresponds to a local DNS server
deployed in an MEC node. At this point, the thread starts
waiting for the DNS response. Once the response containing
the local IP of the application instance deployed in the target
MEC node is received, the EASDF Core Application proceeds
to process the DNS response and modify the TTL field. This
implementation exploits the modification of this field to im-
pose a low Time To Live and prevent DNS clients from storing
information for long periods. This step is critical because,
in high mobility scenarios, the edge of the target MEC can
change very frequently, and therefore DNS information must
be updated very quickly.



V. PERFORMANCE EVALUATION

In the balance of this section, the simulation environment
and parameters will be introduced. The aim of this evaluation
is to understand the limits of the implementation when facing
a growing request rate from multiple clients. To analyze
the impact on the EASDF implementation, three different
parameters are taken into account:

1) The end-to-end latency from the client perspective be-
tween the moment the DNS Query is sent and the
moment the query is received. The results are compared
with the ones obtained by queering directly the target
DNS Server in order to visualize which is the latency
added to the system by the EASDF.

2) The CPU consumption of a EASDF instance in per-
centage in order to monitor how it can be scaled and
optimized.

3) The failure rate of the DNS requests which corresponds
to the rate of rejected requests from the server or the
requests that have encountered a timeout due to the
target DNS.

A. Testbed description

The testbed consists of a physical machine running Ubuntu
Linux 18.04.6 LTS and disposing of an Intel(R) Xeon(R)
Silver 4216 CPU @ 2.10GHz and 32 GB of RAM. In order to
respect the promises of a cloud-native framework, the EASDF
has been deployed as a docker container inside this machine,
ensuring that it could have access to all the CPU cycles of
the 64 Cores offered by the machine and the entire memory
without any limitation. Apart from the EASDF component,
we deployed aswell a dnsmasq-based DNS [17], which will
serve as the target DNS for the EASDF, but also two provide
measurements of latency excluding the EASDF from the chain.
Finally, a Python script simulates the DNS Clients. The Python
script will gradually increase the number of UEs requesting
DNS translation. The script is coded in order to maintain a
fixed per-UE request rate equal to 1.33 req/s/UE. Increasing
the number of UE, the final request rate will increase from 1.33
to the maximum of 1468,33 req/s. The maximum corresponds
to the moment in which the CPU usage does not grow anymore
due to OS Scheduling policies. The simulation is repeated 100
times for each step resulting in an error of 10−2ms

B. Results

Figure 5 and 6 show the impact of introducing the EASDF
component between the UEs and the DNS server in terms
of latency. The testbed does not take into account the network
latency between the EASDF and the destination server.Instead,
the EASDF and the target DNS Server are deployed in the
same physical machine in order to measure only the latency
due to the EASDF processing. Despite the rapid growth
of latency with respect to the increase in request rate, we
can observe that the added latency grows linearly without
any exponential trend. This means that the EASDF can be
exploited even at higher request rates and that the reason for

the rapid growth of end-to-end latency should be found mainly
in the target DNS.
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Figure 7 represents the failure rate of the DNS requests sent
by the UE towards the EASDF and eventually redirected to
the selected destination server. The failure counter is based
on the number of requests that do not receive a reply from
the EASDF. The reported reasons for a possible failure are
the handling thread crashing or a timeout of the DNS Client
in the UE. Despite the increased latency, the failure rate in
figure 7 does not increase with the growth of the request rate
showing that the system is resilient to higher request rates.

Finally, Figure 8 depicts the CPU consumption and its trend
as a function of the request rate. The CPU Usage grows
linearly with the number of requests per second, proving that
the behaviour of the EASDF remains predictable even under
higher loads.

All in all, the framework based on the EASDF introduces a
highly scalable distributed DNS System that can benefit from
UE network information to adapt the DNS replies based on
the UE status. A framework that can scale easily since it does
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not store the DNS information, but only the forwarding rules
to the real DNS. The results presented in this section show that
deploying the EASDF in a live network will not impact the
baseline performances of the DNS resolution system while
enhancing the resolution system with tailor-made rules for
each single UE.

CONCLUSION

This paper introduced a new architecture that exploits the
5G UP, the 3GPP EASDF and the MEC local DNS. The
introduced architecture dynamically changes the association
between the application domain name and the MEC appli-
cation instance associated with it on a per UE basis. Future
work will focus on making the EASDF smarter by dynamically
computing the TTL value according to the UE’s mobility
pattern and the MEC load balancing requirements.
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