
Federated Deep Reinforcement Learning-based task
offloading system in edge computing environment

Hiba Merakchi1
Ecole Nationale Supérieure d’Informatique (ESI ex.INI)

Algiers, Algeria
ih merakchi@esi.dz

Miloud Bagaa2

Department of Electrical and Computer Engineering
Université du Québec à Trois-Rivières

Trois-Rivières, QC, Canada.
miloud.bagaa@uqtr.ca

Ahmed Ouameur Messaoud3

Department of Electrical and Computer Engineering
Université du Québec à Trois-Rivières

Trois-Rivières, QC, Canada.
messaoud.Ahmed.Ouameur@uqtr.ca

Adlen Ksentini4
EURECOM

Sophia-Antipolis, France.
Email: adlen.ksentini@eurecom.fr

Abdenour Sehad5

Ecole Nationale Supérieure d’Informatique (ESI ex.INI)
Algiers, Algeria
a sehad@esi.dz

Abstract—Nowadays, Internet of Things (IoT) devices are
gaining momentum globally. However, due to their limited
size, these devices have limited battery capacity, computational
resources, and wireless bandwidth, making it impossible to run
resource-intensive applications on these devices. Fortunately,
Edge Computing has emerged as a promising solution to meet
this demand by enabling data processing in more capable devices.
Task offloading is a crucial technique used in Edge Computing
to overcome the limitations of IoT devices by offloading some of
their computational tasks to more powerful edge servers. The
traditional methods used for task offloading are often based
on heuristics or simple rules, which may result in sub-optimal
solutions. Moreover, the increasing complexity and heterogeneity
of edge networks, as well as the stochastic nature of the wireless
channel, pose significant challenges for these methods. In this
paper, we leverage Federated Learning (FL) to efficiently train
Deep Reinforcement Learning (DRL) agents to make the best
offloading and power allocation decisions by achieving the near-
optimal trade-off between task execution latency and the power
consumption of the end device. The obtained simulation results
of the proposed method demonstrate its remarkable and superior
performance in comparison to central DQN.

I. INTRODUCTION

Task offloading is a critical aspect of the efficient manage-
ment of computing resources in modern networks, particularly
in the context of the Internet of Things (IoT) and Edge Com-
puting. As the number of connected devices and the volume of
data generated by these devices continue to grow, the demand
for computational resources proportionally increases. Task of-
floading provides a mechanism for transferring computational
tasks from resource-constrained devices to more capable ones,
such as Edge nodes, where the tasks can be executed promptly
and efficiently. This allows for the efficient use of network re-

sources, reduces energy consumption, and enhances the overall
performance of the devices. However, traditional methods like
heuristics and control theory-based algorithms have several
limitations. One of the primary challenges is their limitation in
the face of changing environments and unpredictable events,
such as unexpected arrivals of new tasks, and the stochastic
nature of wireless networks, which makes it difficult to predict
and adapt to network conditions accurately. Additionally, these
methods do not always lead to the optimal solution. The
performance of traditional task offloading methods heavily
relies on the selection of appropriate algorithmic parameters,
which might require extensive manual tuning, which can
be a time-consuming and impractical process. Furthermore,
traditional methods may not be scalable to handle large-scale
systems due to the computational complexity involved.

The promising results obtained by machine learning (ML)
in various fields sparked our motivation to explore its potential
to automatically, intuitively, and adaptively offload tasks in IoT
networks. DRL can address some of the previously explained
challenges and limitations by leveraging the power of neural
networks to approximate complex functions and learn from
previous experiences. By using an agent that interacts with
the environment and receives feedback in the form of rewards,
DRL algorithms can learn to make near-optimal decisions
that optimize a specific objective, such as minimizing energy
consumption and latency. Furthermore, these algorithms can
adapt to changing environments and can handle the stochastic
nature of wireless networks, resulting in more robust and
efficient solutions.

In this work, we use federated learning (FL) to simulta-
neously train many agents in IoT devices to negotiate the



near-optimal policy for task offloading and transmission power
allocation in the Edge Computing environment. The proposed
method will then be tested and evaluated in terms of achieved
performance and convergence.

The remainder of the paper is organized as follows. We
review the related work in Section II. The task offloading
problem is formulated in Section III. Meanwhile, section
IV describes the proposed solution. Section V presents the
simulation results and their analysis, and finally, Section VI
concludes the paper.

II. RELATED WORK

There has been considerable research on task offloading
in wireless networks, particularly in the context of resource-
constrained devices. The conventional task-offloading methods
are usually based on game theory [1], linear regression [2], and
dynamic programming [3]. These methods can only give an
approximation to the optimal solution and are limited against
dynamic task-offloading decision scenarios as they require
prior knowledge of the environment. Most of the previously
published studies optimized either the energy consumption or
the task execution latency in the network [4], [5]. Other works
have considered both [6], [7], while others aim to optimize
other objectives like load balancing [8] and deployment cost
[6], [9].

DRL has been shown to be effective in solving com-
plex decision-making problems, such as task offloading and
resource allocation in wireless networks. For example, the
authors in [10] and [11] formulated the problem of task
offloading for mobile users as a single-agent infinite-horizon
MDP. The designed method aims to minimize the monetary
cost and energy consumption of the end device. In [12],
authors have used a single-agent ϵ-greedy Q-learning-based
algorithm to achieve a better trade-off between the execution
latency and the power consumption of both the end device
and the edge server. However, their solution assumes that the
channel conditions between the end devices and the gateway,
the computation task queue, and the remaining computation
resource of the device are the only network states that need
to be considered for solving the task offloading problem.

There have been some efforts to combine FL and DRL
in wireless networks. For example, in [13], Moon S et al.
have proposed a Federated Deep Deterministic Policy Gradi-
ent (DDPG)-based offloading method with power control in
vehicular edge computing (VEC). The authors used DDPG
to handle the continuous actions that represent the level of
the allocated transmission power for offloading to the VECS.
In the work of [14], the authors propose a federated learning
approach to DRL (F-DRL), where base stations work together
to allocate the optimal transmit power by sharing their models’
weights. Our work is different from these previous works
in terms of the problem’s conception and formulation. In
[14] for example, they only addressed the problem of power
allocation to base stations, while in [13], the researchers tried
to maximize the amount of data that the agent offloads while
alleviating its interference with adjacent links.

In this work, however, we focus on power allocation in edge
computing to design an effective task-offloading solution for
IoT devices. We model the problem of optimizing both energy
consumption and task execution delay in IoT devices as a
Markov Decision Process (MDP). To address this optimiza-
tion problem, we employ a reinforcement learning technique
and propose an ϵ-greedy Q-learning-based task offloading
algorithm. We then leverage federated learning to orchestrate
and speed up the training of multiple agents simultaneously.
We consider many factors in the process of decision-making,
such as the stochastic channel gain between the devices and
the edge servers, the random process of task generation, the
battery power level of the device, and the available resources
in the device. The experimental results demonstrate that the
proposed algorithm outperforms central DQN in terms of
convergence and performance.

III. PROBLEM FORMULATION

A. System model

We consider a wireless cellular network consisting of sev-
eral stationary IoT devices and edge servers. In every cell,
there is an edge server that receives offloaded tasks from a
limited number of predefined stationary IoT devices in its cov-
erage area. IoT devices constantly generate a random number
of computation tasks, but they possess limited computational
capacity and energy, therefore, offloading tasks to the edge
servers can improve the QoS requirements. The batteries in
these devices are supposed to discharge constantly with a
constant discharge rate. We also suppose that the batteries are
charged randomly for a random period of time.

B. Communication model

In our study, we partition the time interval into consecutive
epochs of fixed duration. The epoch index is denoted by an
integer t, where 0 < t ≤ T , and T represents the maximum
number of epochs in the considered time horizon.

We assume that the communication between the IoT devices
and the edge servers is established using sub-gigahertz radio
frequency technology. This allows for reliable and long-range
communication with low power consumption, making it ideal
for IoT applications where devices are often battery-powered
and require a long lifespan. We denote the communication
bandwidth between the IoT device and the edge server by Be.
The set of all the IoT devices in the network is denoted by D
={d1, d2, d3, . . . , dU}.

We assume that the channel condition between the IoT
device and the edge server changes over time, and we use
the channel gain to characterize this change. The channel gain
from a given IoT device to the edge server is represented by
Gt and remains constant during the offloading time epoch.
We assume that the channel gain at every instant is a value
selected from the following set G ={g1, g2, g3, . . . , gn}. We
denote the task computation latency by Lc and the task
transmission latency by Lt. Moreover, we denote the transmit
power allocated by the device by P and the computation power
consumption by Pc.



Depending on certain parameters, such as the number of
tasks in the queue, the channel gain between the device and
the edge server, the percentage of the battery power of the
device, and its available resources, each IoT device makes
its own decision on task offloading by choosing the transmit
power allocated for every task. We suppose that the offloading
decision is implicitly inferred from the transmission power
level allocated by the device. If the transmission power is set to
zero, it indicates that the device is processing the task locally.
However, if the transmission power is greater than zero, it
suggests that the device is offloading the task to the edge server
with the chosen transmission power.

C. Task model

We assume that each IoT device has a queue of stored tasks
Q = {T1, T2, . . . , TMax} that contains independent computa-
tion tasks, each with a different size that requires a different
number of CPU cycles to process. At every instant t, the
device generates a random number based on a fixed task
arrival rate. We attribute to every generated task a unique
identifier, a randomly selected size from the set of sizes
S = {s1, s2, . . . , sM}, a number of required resources, and
processing time that are both proportionate to the task’s size.
Each task is also assigned a random priority between 0 and
1 and a deadline, which is calculated as the product of the
maximal deadline and the task’s priority with some added
random noise. If a task remains in the task queue for longer
than its defined deadline, it is considered to have exceeded its
allotted time and is therefore canceled.

D. Computation model

1) The Local Mode: In the local computing mode (P=
0), the end device executes the computation task itself. We
consider that all the IoT devices require a constant number of
CPU cycles to process one bit of the computation task which
we note ddevice, and the power consumption of the device
per CPU cycle is denoted by Pd. The computation power
consumption of the IoT device required to process 1 bit is
given by ddevice ∗ Pd. The total power cost required for the
whole computation task at the IoT device at time epoch t is
calculated as

Pcd = ddevice ∗ Pd ∗ st (1)

Where st is the size of the task.
The CPU frequency of the IoT device (Fd) refers to the

clock speed of the device’s processor, which indicates the
number of cycles the device’s CPU can execute in a second.
The local computing latency (Lcd) is defined as the time it
takes to execute the task and is calculated as:

Lcd =
ddevice ∗ st

Fd
(2)

Therefore, the processing cost for the local computing mode
is the combination of the local execution latency and local
power consumption, and it is given by:

Ct
loc = (1− β)Pcd + βLcd (3)

With β being the weight factor of the latency cost.
If the device decides not to offload the task, the only cost

incurred is the power consumption for local computation Pcd

and the local task execution latency Lcd, and the transmit
power allocated by the IoT device, in this case, is set to zero
(P= 0).

2) Offloading to the Edge server: The IoT devices are
assumed to use the time division multiple access (TDMA)-
method to send their data to the edge server. This means that
the IoT devices are given specific time slots to transmit data
without the other devices interfering, allowing for efficient use
of the channel and reducing collisions. The transmit power of
the IoT device is represented by P and the resulting achievable
transmission rate (bits per second) is indicated as:

Rt
e = Be ∗ log2

(
1 +

P ∗Gt

σ2

)
(4)

Where:
Rt

e represents the achievable transmission rate between the
end device and the edge server (in bits per second)
Be represents the bandwidth of the channel between the IoT
device and the edge server (in Hertz)
P represents the transmit power (in watts)
Gt represents the channel gain
σ2 represents the variance of additive white Gaussian noise
(AWGN)

The number of CPU cycles needed to process one bit of
the computation task by the edge server is denoted by dedge,
and its power consumption per CPU cycle is denoted by Pe.
Therefore, its CPU frequency is denoted by Fe. The corre-
sponding computation power at the edge server is calculated
as:

Pce = dedge ∗ Pe ∗ sk (5)

And the computation latency can be found as:

Lce =
dedge ∗ sk

Fe
(6)

The time delay that occurs when the task’s data is trans-
mitted from the IoT device to the edge server is represented
by:

Lte =
sk
Rt

e

And the corresponding IoT device’s power consumption is
represented by Pce. Finally, the processing cost of edge com-
puting can be expressed as the combination of edge computing
delay and power consumption:

Ct
edge = (1− β)(Pce + P ) + β(Lce + Lte) (7)

The problem of task offloading formulated in this work in-
volves finding the best trade-off between energy consumption
and latency, which are two contradictory objectives. On the
one hand, energy consumption is a critical constraint for IoT
devices, which are often powered by batteries that have limited
capacity. On the other hand, reducing latency is essential
for real-time applications. Offloading computation tasks to



more powerful servers like the edge servers can potentially
reduce energy consumption, but it also introduces additional
communication latency due to data transmission over wireless
channels. Therefore, the challenge is for every IoT device to
achieve a task allocation policy that can minimize the energy
consumption of the device while satisfying the desired latency
requirements that ensure the service level agreement (SLA).

The aim is to enable the agents (the IoT devices) to
make the best decisions regarding the processing location
of the tasks and the transmit power levels, based on their
computational capabilities, available energy, resources, and
network conditions. This can be achieved by minimizing the
combined cost of power consumption and latency described
by the following cost function:

Ct = Ct
loc + Ct

edge + δt (8)

Whereby δt is a penalty function that describes the cost
that the agent incurs when it takes an action that violates
the constraints of the system. The penalty function is used
to penalize the agent when it chooses to process a task
locally but the device’s remaining resources are not enough
or if the battery power is not enough. Similarly, if the agent
chooses to offload the task to the edge, but the allocated
transmission power surpasses the battery power level, a penalty
is incurred. The penalty is weighted using penalty factors,
and it is proportional to the severity of the violation of the
previously mentioned constraints.

The optimization problem for every agent is formulated as
the following: {

min
∑T

t=1 Ct

0 ≤ P ≤ pmax

(¶)

, whereby Ct is the combined cost of power consumption and
latency achieved by the agent at instant t and pmax is the
maximum transmission power that can be allocated by the
IoT device.

We notice that this problem is a mixed integer nonlin-
ear programming (MINLP) problem that involves nonlinear
functions and integer variables, making it difficult or even
impossible to solve using conventional optimization tech-
niques. Furthermore, optimization techniques take an essential
time before delivering optimal configuration, making them
unfeasible for real-time, whereby the configurations should be
supplied online quickly. Reinforcement learning is an attractive
approach to tackle this problem, as it provides a framework
for learning to make optimal decisions and adapt to the
dynamic environment based on the feedback obtained from
the environment.

IV. FEDERATED DEEP REINFORCEMENT LEARNING

We propose a novel approach to solving the problem (¶)
using federated deep reinforcement learning. We begin by
redefining the problem as an RL setting, where each end
device is an agent whose objective is to maximize its own
reward while satisfying the constraints of the system. Then,

we leverage FL to allow multiple agents to collaboratively
learn a global model by sharing their model weights while
keeping their private experiences local.

The following section will begin by defining the RL problem
in relation to its state space, action space, and corresponding
reward function in light of the previous problem (¶). Sub-
sequently, we will describe the Federated Deep Q-Network
(FDQN) approach in detail.

A. Reinforcement Learning Formulation

The task offloading problem can be formulated as a Markov
decision process (MDP), which can be defined as the tuple
⟨S,A, P,R, γ⟩, where S is the state space, A is the action
space, P is the transition probability function, R is the reward
function, and γ is the discount factor.
S = {s1, s2, ..., sn } is the set of states where each state S

can be defined as the combination of the channel gain between
the device and the edge server Gt, the task queue of the device
Qt, the percentage of the device battery, and the percentage
of the available computation resources in the device.

Thus, we represent the state Sk as:

Sk = (Gk, Qk, Rk, Bk) (9)

A is the set of possible actions, which correspond to the
discrete transmission power levels ranging between 0 and
Pmax as the following: [14]

A =
{
0,

Pmax

M − 1
,
2Pmax

M − 1
, . . . , Pmax

}
(10)

, whereby M is the number of power levels. All agents have
the same action space. A = 0 corresponds to the decision
to process the task locally, while other values correspond to
the levels of transmit power allocated if the agent decides to
offload to the edge.

P(st+1, Ct|st, at) represents the state transition probability,
and it specifies the probability distribution over the next state
st+1 with the cost Ct given the current state st and action at
taken by the agent according to the policy π.

Meanwhile, γ is the discount factor, which is a value
between 0 and 1 that determines the relative importance of
future rewards compared to immediate rewards. A discount
factor of 0 means that only immediate rewards are considered,
while a discount factor of 1 means that all future rewards are
given equal weight.

R(st, at) represents the reward received from the environ-
ment after taking the action at on the state st by the agent,
and it is defined as the negative of the cost.

The long-term expected cost is the following:

V (s, π) = Eπ

[
T∑

t=1

γt · Ct

]
(11)

, whereby γt ∈ [0, 1] represents the discount factor, and E
is the statistical conditional expectation with transition prob-
ability P , which refers to the expected value of the random
variable representing the immediate reward plus the discounted



expected value of the future rewards, given a certain state and
action.

The agent aims at finding the optimal policy π∗ that
minimizes the long-term expected accumulated discounted
Cost V(s, π) over all states S, while considering the state
transition probability and the reward function. The policy π∗

is an optimal policy if we have:

V (s, π∗) ≤ V (s, π),∀s ∈ S (12)

The Q-value Q(s, a) (action-value function) estimates the
expected total discounted cost obtained from taking a particu-
lar action at ∈ A in a given state-action pair and following a
specific policy π thereafter. The action-value function Q(s, a)
is given by:

Q(s, a) = Eπ[Ct+1 + γQπ(st+1, at+1)|st = s, at = a] (13)

A neural network is used to estimate the Q-value for each
action in a given state st. The Q-value function is learned
through the process of trial and error, as the agent interacts
with the environment and receives feedback in the form of
rewards. The network is trained using a loss function that
minimizes the difference between the predicted Q-values and
the actual rewards received. Once the Q-values have been
learned, they are stored and used to determine the best action
to take in a given state.

The update equation used in deep Q-learning is a variant
of the Q-learning update equation that involves updating the
Q-value based on a target value that is computed using the
current estimate of the Q-value and the estimated value of the
next state obtained from the neural network. This is known
as the target Q-value. The update equation used in deep Q-
learning is given by:

Q(st, at)← Q(st, at)+α (Ct + γ ·minQ(s′, a′)−Q(st, at))
(14)

Where:
Q(s,a) is the Q-value for state s and action a
α is the learning rate (0 < α ≤1)
Ct is the immediate cost obtained by taking action a in state
γ is the discount factor
s′ is the next state
a′ is the action that maximizes the Q-value for the next state
minQ(s′, a′) is the minimum Q-value over all actions a’ in
the next state s’

We use the ϵ-greedy approach to balance the exploration of
new actions with exploiting actions that are currently estimated
to be the best. The ϵ-greedy approach allows the agent to
explore new actions while still exploiting the current best
estimate of the optimal action. By gradually decreasing the
value of ϵ over time, the agent can transition from exploring
more to exploiting more as it becomes more confident in its
Q-value estimates.

B. Federated Learning Formulation

The DRL algorithms use Deep Neural Network (DNN) to
approximate either the optimal Q-values or the probability of

Fig. 1. DQN framework

taking an action depending on their type. Combining Federated
Learning with DRL allows us to exploit the strengths of each
technique. FL speeds up the process of learning and allows the
data to be processed on the client devices without transferring
it to a central server, while DRL allows agents to learn, almost
like humans, autonomously by interacting with a dynamic
environment.

Federated DRL functions similarly to standard DRL, where
an agent interacts with its environment and receives rewards
for its actions. However, unlike standard DRL, agents learn
in a synchronized way from a global agent to use their
decentralized data and exploit the experiences of other agents
to update their policies (or its Q-values in the case of value
function-based algorithms).

As Fig 2 shows, the agents share knowledge gained from
their local information while keeping the information itself
decentralized and private. Agents update their local models
by training on their local state information and periodically
sending their model parameters to the global agent, which
will then aggregate them and send the new resulting weights
to the local agents. By sharing the updated model weights,
the different agents can leverage each other’s experiences
and improve performance faster without having to share their
confidential, bandwidth-intensive data.

Fig. 2. Federated DQN Architecture

We can formulate the goal of the training as minimizing the
following objective function:

min
θ

F (θ) =
N∑
i=1

Fi(θi), (15)

, whereby F (θ) and θ represent the global loss function and
weights of the global model weights, Fi and θi are the local



loss function, and the weights of the local model at device i,
respectively.

The accuracy of the action-value estimation determines the
selection of a good action. Therefore, every DQN model q
aims to find the optimal parameters θ∗ that minimize the loss
function L(θ) given by: [15]

L(θq) =
(
r + γmax

a′
Q(s′, a′; θ−q )−Q(s, a; θq)

)2

(16)

, whereby θq is the current model parameters, θ−q is the
target network parameters, s is the current state, a is the action
taken in the current state, r is the reward received for taking
the action, s′ is the next state, a′ is the next action, and γ is
the discount factor.

Similar to classical Q-learning, the agent collects expe-
riences by interacting with the environment. The network
trainer constructs a data set D by collecting the experiences
until time t in the form of (st−1, at−1, rt, st), and they are
then used to optimize the loss function L(θq). In the early
stages of training, a dynamic ϵ-greedy policy is adopted to
control the actions, where the agent with a certain probability
explores different actions regardless of their reward. This
strategy promotes accurate estimation over time and reduces
the risk of over-fitting the model to actions with high rewards
in the first phase of training.

By substituting the DQN cost function into the objective
function of FDQN, we obtain the FDQN cost as:

min
θq

L(θq) =
N∑
i=1

Li(θq,i) (17)

V. SIMULATION AND RESULTS

We have conducted a simulation study to evaluate the per-
formance of the proposed Federated Deep Q-Network (FDQN)
task offloading scheme in comparison to the central Deep
Q-Network (DQN) approach. We implemented both schemes
using the PyTorch framework and we trained both models
with 10, 000 training episodes, each episode consisting of
20 epochs. We modeled the task generation process using a
stochastic approach. To simulate the task arrival process, we
set the arrival rate of tasks to 5 tasks per second. We then
generated a sequence of inter-arrival times between tasks using
a random variable drawn from the Poisson distribution. We set
the maximal length of the Task queue to 10.

The initial power of the IoT device is set to 0.1 W ,
the constant discharging rate is set to 5 · 10−4, and the
charging power is set to 0.08 W . We considered the resource-
constrained nature of IoT devices and modeled it by setting the
granularity of battery power to 5 % and that of the remaining
resources to 2%. This means that we discretized the battery
power and remaining resources of each device into a finite
number of levels, to reflect the practical limitations of such
devices. β the weight factor is set to 0.5. We also set the
beginning and the end of the charging time randomly. For the
transmit power, we set the number of power levels to 10, and

the maximal power to 23 dB. Other simulation details are
resumed in Table I.

TABLE I
PARAMETERS SIMULATION

S [5, 10, 15, 20 ] Kbits
Be 105

σ -160 + 10*log10(105)
β 0.6
Channel Gain [0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5]
γ, α 0.95, 0.001

ddevice, dedge 600, 500 cycles/bit
Pd, Pe 6× 10−7, 1× 10−8 W per CPU cycles
Fd, Fe 500MHz, 4GHz

We have measured the running average reward and the
convergence time of fully central DQN and the proposed
FDQN approach with 4 agents. As shown in Fig 3, the
proposed FDQN scheme exhibits a remarkable convergence in
the mean reward of the agents over 10,000 training episodes.
The average reward is observed to gradually increase, which
implies that the FDQN approach is able to effectively learn
the optimal policies for task offloading while considering the
constraints of the local devices. This is an encouraging result
as it shows that the FDQN approach is capable of achieving
significant improvement in the overall system performance
over time. The convergence in the mean reward also indicates
that the agents were able to effectively coordinate their actions
to achieve the desired task-offloading objectives.

Fig. 3. Convergence performance of the proposed task offloading algorithm
measured by the average reward of agents, the weight factor β = 0.5.

The results in Fig 4 show that the proposed FDQN approach
outperforms the central DQN approach in both average reward
and convergence time. While both models increased in reward
over time, the FDQN demonstrated a much smoother and
organic increase, with fewer fluctuations and more stable con-
vergence. On the other hand, the centralized DQN exhibited
more volatility and instability in all the stages of training,
leading to a less steady convergence to the optimal reward.
These results indicate the superiority of the federated learning
approach over the centralized one, as the former leverages the



benefits of distributed learning to achieve better performance
and stability over time.

Overall, our simulation results demonstrate the potential of
the proposed FDQN approach for speeding up the training
process and improving the efficiency of task offloading in IoT
networks. It provides a decentralized solution that can adapt
to the dynamic nature of IoT environments and provide better
performance compared to the traditional central approaches.

Fig. 4. Comparison of the Running average of the previous 100 episodes
between fully central DQN and FDQN, the weight factor β = 0.5.

VI. CONCLUSION

In this paper, we have proposed a federated learning-based
approach to DQN, in which multiple federated agents collab-
orate to efficiently address the task offloading problem for IoT
devices in the Edge computing environment. They achieve this
by sharing the weights of their individual embedded DNNs
rather than the data generated by the models. We began by
presenting the task offloading and power allocation problem,
formulating it as a Federated Deep Reinforcement Learning
challenge. The evaluation results of this method regarding
performance and convergence demonstrated its superiority
when compared to the central approach.

Future research can focus on further enhancing the proposed
method for task offloading in various scenarios, including the
option of offloading to the cloud and considering mobile IoT
devices rather than stationary ones. Moreover, this method can
be refined to optimize power consumption for Edge servers.
Additionally, it is important to test and compare this method
to other existing baselines.

REFERENCES

[1] S. Chen, S. Sun, H. Chen, J. Ruan, and Z. Wang, “A game theo-
retic approach to task offloading for multi-data-source tasks in mobile
edge computing,” in 2021 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Big Data & Cloud Computing, Sustain-
able Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom). IEEE, 2021, pp. 776–784.

[2] K.-H. Kim, J. Lynskey, S. Kang, and C. S. Hong, “Prediction based sub-
task offloading in mobile edge computing,” in Proceedings of the 2019
International Conference on Information Networking (ICOIN). IEEE,
2019, pp. 448–452.

[3] T. Zhao, S. Zhou, L. Song, Z. Jiang, X. Guo, and Z. Niu, “Energy-
optimal and delay-bounded computation offloading in mobile edge
computing with heterogeneous clouds,” in China Commun, vol. 17,
2020, pp. 191–210.

[4] X. He, H. Xing, Y. Chen, and A. Nallanathan, “Energy-efficient mobile-
edge computation offloading for applications with shared data,” in arXiv
preprint arXiv:1809.00966, 2018.

[5] M. Avgeris, D. Spatharakis, D. Dechouniotis, N. Kalatzis, I. Roussaki,
and S. Papavassiliou, “Where there is fire there is smoke: a scalable
edge computing framework for early fire detection,” Sensors, vol. 19,
no. 3, p. 639, 2019.

[6] Y. Nan, W. Li, W. Bao, F. Delicato, P. Pires, Y. Dou, and A. Zomaya,
“Adaptive energy-aware computation offloading for cloud of things
systems,” IEEE Access, vol. 5, pp. 23 947–23 957, 2017.

[7] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018,
pp. 207–215.

[8] M. Avgeris, D. Dechouniotis, N. Athanasopoulos, and S. Papavassiliou,
“Adaptive resource allocation for computation offloading: A control-
theoretic approach,” ACM Transactions on Internet Technology (TOIT),
vol. 19, no. 2, pp. 1–20, 2019.

[9] C. Sonmez, A. Ozgovde, and C. Ersoy, “Fuzzy workload orchestration
for edge computing,” IEEE Transactions on Network and Service
Management, 2019.

[10] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Perfor-
mance optimization in mobile-edge computing via deep reinforcement
learning,” arXiv preprint arXiv:1804.00514, 2018.

[11] C. Zhang, Z. Liu, and B. Gu, “A deep reinforcement learning based
approach for cost-and energy-aware multi-flow mobile data offloading,”
IEICE Trans. on Commun., pp. 1625–1634, Jan. 2018.

[12] X. Liu, Z. Qin, and Y. Gao, “Resource allocation for edge computing
in iot networks via reinforcement learning,” in ICC 2019-2019 IEEE
International Conference on Communications (ICC), May 2019, pp. 1–
6.

[13] S. Moon and Y. Lim, “Federated deep reinforcement learning based task
offloading with power control in vehicular edge computing,” Sensors
(Basel), vol. 22, no. 24, p. 9595, Dec. 2022.

[14] P. Tehrani, F. Restuccia, and M. Levorato, “Federated deep reinforcement
learning for the distributed control of nextg wireless networks,” in 2021
IEEE International Symposium on Dynamic Spectrum Access Networks
(DySPAN), Dec. 2021, pp. 248–253.

[15] D. Karunakaran, S. Worrall, and E. Nebot, “Efficient statistical validation
with edge cases to evaluate highly automated vehicles,” arXiv preprint
arXiv:2003.01886, 2020.


