
Retrieve, Merge, Predict: Augmenting Tables with Data Lakes
(Experiment, Analysis & Benchmark Paper)
Riccardo Cappuzzo

SODA Team - Inria Saclay
Paris, France

riccardo.cappuzzo@inria.fr

Gael Varoquaux
SODA Team - Inria Saclay

Paris, France
gael.varoquaux@inria.fr

Aimee Coelho
Dataiku

Paris, France
aimee.coelho@dataiku.com

Paolo Papotti
EURECOM
Biot, France

papotti@eurecom.fr

ABSTRACT
We present an in-depth analysis of data discovery in data lakes, fo-
cusing on table augmentation for given machine learning tasks. We
analyze alternative methods used in the three main steps: retrieving
joinable tables, merging information, and predicting with the resul-
tant table. As data lakes, the paper uses YADL (Yet Another Data
Lake) – a novel dataset we developed as a tool for benchmarking
this data discovery task – and Open Data US, a well-referenced real
data lake. Through systematic exploration on both lakes, our study
outlines the importance of accurately retrieving join candidates and
the efficiency of simple merging methods. We report new insights
on the benefits of existing solutions and on their limitations, aiming
at guiding future research in this space.

PVLDB Reference Format:
Riccardo Cappuzzo, Gael Varoquaux, Aimee Coelho, and Paolo Papotti.
Retrieve, Merge, Predict: Augmenting Tables with Data Lakes (Experiment,
Analysis & Benchmark Paper). PVLDB, 14(1): XXX-XXX, 2020.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/rcap107/benchmark-join-suggestions.

1 INTRODUCTION
In our data-rich era, data lakes –large, loosely structured corpora
of raw data– have emerged as central resources in both academia
and industry [32]. Within data lakes, data discovery is crucial, par-
ticularly through the integration of multiple tables. This process
has gained significant attention [11]. In this work, we focus on a
specific usage of data lakes that requires capturing only a fraction
of the tables: augmenting a base table for a machine learning (ML)
task, such as in the following example scenario.

Alice, a data scientist, wants to predict the box office revenue of
a movie: she has access to a table that contains information about
movies (e.g., year of release, director, language, budget, ...). While she

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

can use the available data to train a model, finding more information
on the subject would be beneficial; for example, joining the table about
movies with a table on the cast of those movies might help, as some
actors tend to appear in movies with higher revenue. Alice has access
to some large repository of data, or to some search engine that she
can query [3, 17] to find additional tables. Her objective is therefore
to find the tables that are most relevant to her task, to merge them
with the original table and finally to use the improved table to build
a model that predicts the box office revenue.

Country, Population

Artist, Authored
Movie, Director

YADL

Movie Year Rating
E.T. 1982 7.9

Toy Story 1995 8.3

Join
Candidates
Movie, Director
Movie, Country
Movie, ScoreBy

Movie Year Rating

E.T. 1982 7.9

Toy Story 1995 8.3

Director
Steven

Spielberg
John

Lasseter

Country

USA

USA

Joined
table

Retrieve Predict
AggregateSelect

Merge

Figure 1: The pipeline. Given a base table, the three main
steps (Retrieve, Merge, Predict) augment it with the informa-
tion from the lake to improve the prediction performance.

As depicted in Figure 1, research on this problem is scattered
across three main steps that involve four tasks: (1) retrieving the
tables that are joinable with the original table based on shared
attributes [3, 9, 12, 13, 42, 44], (2) merging the information by
executing the joins that most improve the performance of the sub-
sequent ML model [6, 10, 15, 28], (3) aggregating results in cases
of one-to-many or many-to-many joins [4, 23], (4) predicting with
the model on the resulting table [18, 37]. For each task a variety of
solutions have been proposed, yet each method is evaluated within
disparate datasets and for the specific task it solves, rather than
as a component of the full pipeline. In the absence of a unified
benchmark to compare and evaluate these methods, it becomes
hard for users like Alice to select the most suitable combination of
methods for their specific use case.

Our study aims to promote a deeper understanding of discov-
ery within data lakes for an analytic task. Our dataset, YADL (Yet

https://doi.org/XX.XX/XXX.XX
https://github.com/rcap107/benchmark-join-suggestions
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Another Data Lake) makes such analysis reproducible and exten-
sible. We leverage YADL to systematically explore the underlying
mechanisms of end-to-end learning pipelines within data lakes.

YADL is constructed on the YAGO knowledge base [29] to serve
as a controlled environment for testing various methods by provid-
ing a defined vocabulary that includes entity names, thus alleviating
issues stemming from uncertain matches and other ambiguities. In
addition, it can be instantiated with tables in long or wide form, to
test the robustness of the discovery and assembly processes with
different table types.

We investigate the impact of themain steps in the end-to-end pro-
cess of learning from data lakes: generating potential augmentation
candidates, integrating them with the base table, and subsequently
evaluating the effectiveness of this assembled pipeline.

This study has twomain objectives: firstly,we aim to determine
which tasks of the pipeline affect the prediction performance
the most; secondly, we develop an equitable playing field that
facilitates a holistic and comparative assessment of alternative
solutions.

The architecture of our augmentation pipeline enables the anal-
ysis of various methods in the four tasks, while also providing a
range of datasets to enable a comprehensive study. Our findings
suggest that the retrieval of accurate join candidates is the most im-
portant task (improving performance by 4.8% in median relative to
the worst retrieval method), outweighing the importance of the ML
model used (2.2% difference in median). Results show that relying
on Jaccard Containment (i.e., the fraction of entities of the table to
augment found in a join candidate) as a criterion is an effective way
of retrieving join candidates that improve downstream prediction
performance. The way join candidates are used to augment the
base table has a noticeable effect on the prediction performance,
although the larger difference comes from joining multiple can-
didate tables at the same time rather than only selecting the best
candidate (a difference of 3.1%). Also, simpler aggregation methods
outpace their complex counterparts in terms of speed (being up
to 5 times faster) and experimental results indicate that the larger
cost of more intricate methods does not yield proportionate gains
in prediction performance.

To validate the generality of our findings, we contrast the insights
obtained from the analysis carried out via YADLwith those obtained
fromOpen Data US, a well-referenced real data lake in academia [15,
33] over a range of input base tables. This comparative approach
ensures that YADL upholds the complexity of real scenarios and is
representative enough to be a benchmark.

After outlining the problem setting, enumerating the challenges
and discussing previous work in Section 2, we share our main
contributions:
(1) We develop YADL: a novel benchmarking data lake based on

YAGO that allows to test retrieval and augmentation techniques
in a controlled environment. YADL, the base tables, and the
pipeline are available and easily extendable to spur further
research. YADL is covered in Section 3.

(2) We implement a full prototype pipeline to model the problem
of augmenting tables from data lakes. We track various metrics
across the pipeline to measure the prediction performance,
execution time, and RAM usage of the different methods. This
is discussed in Section 4.

(3) In Section 5, we conduct an extensive experimental campaign
testing 8 base tables over various data lakes, retrieval tech-
niques, join selection methods, aggregation solutions, and ML
models. Through the analysis of the results, we provide insights
on the characteristics and impact of all the tasks involved in
learning from data lakes.
We conclude the paper with a discussion of future research

directions in Section 6.

2 AN END-TO-END ANALYTIC PIPELINE
Problem statement. Consider a user training a ML model to pre-
dict some quantity. The corresponding quantity appears in the
training data as a target column 𝑌 of a base table 𝑇 . Assume our
user has also access to a large collection of tables (a data lake)
𝐷 = {𝑇1,𝑇2, ...,𝑇𝑚}, some of which may contain additional infor-
mation that can enrich the base table 𝑇 . Each of these tables 𝑇𝑘 is
a bi-dimensional collection of data organized in columns 𝐶𝑖

𝑘
∈ 𝑇𝑘

that may include both categorical (names, codes etc.) and numerical
data (price, revenue, tax rates etc.). While cross-table metadata such
as foreign keys is not available in this setting, joining 𝑇 with some
of the tables in 𝐷 would be beneficial for the target prediction task.

Given 𝑇 and 𝐷 , a table 𝑇𝑘 ∈ 𝐷 is considered to be joinable, or
a join candidate, if at least one of the columns 𝐶𝑖

𝑘
∈ 𝑇𝑘 has a non-

empty intersection with one of the columns in table𝑇 : given column
𝑄 ∈ 𝑇 , column 𝐶𝑖

𝑘
∈ 𝑇𝑘 , ∃ 𝐶𝑖𝑘 ∈ 𝑇𝑘 | 𝑄 ∩𝐶𝑖

𝑘
≠ ∅.

The user is interested in optimizing the performance of the ML
model on a collection of columns (or “features”) 𝑋 according to
the quality of the prediction on the output space for the target 𝑌
(e.g., the movie revenue). Columns in 𝑋 may come either from 𝑇 ,
or from joined tables in 𝐷 .

In such a scenario, the user is likely to go over the following
main steps: Join Candidate Retrieval, Join Candidate Merging
(which includes the Join Selection and Aggregation tasks), and
Prediction. Depending on the specific scenario, some of the tasks
may be executed in a different order or not at all. In the following,
we will drop Join from the names when clear from the context.

Finding the join candidates. Given a base table 𝑇 and a data lake
𝐷 , the Candidate Retrieval task consists in discovering join can-
didates (“Retrieval” in Fig. 1). This task looks for tables that can
be considered as “candidate joins” for the given base table. Several
systems tackle this problem [3, 9, 12, 26, 42, 44]. While integrating
data is not a central focus of the ML literature, augmenting features
via joins is recognized as key to ML [27, 35].

Though implementations may vary, retrieval methods share
some similarities: 1) they start by indexing the data lake, and 2)
they rely on a concept of “column similarity” along with a related
metric. Generally, this metric is Jaccard Containment; however,
other measures of set similarity may be used [42]. Jaccard Con-
tainment (JC) is defined as

Jaccard Containment
|𝑄 ∩𝐶𝑖

𝑘
|

|𝑄 | , (1)

where 𝑄 ∈ 𝑇 is a query column, 𝐶𝑖
𝑘
∈ 𝐷 is a candidate column in

table 𝑇𝑘 , |𝑄 ∩𝐶𝑖
𝑘
| is the cardinality of the intersection between the

two sets and |𝑄 | is the cardinality of the query set itself. Intuitively, if
2

this ratio is high, then a large fraction of𝑄 is found in𝐶𝑖
𝑘
, suggesting

that the two columns should be joined.
Retrieval methods are typically designed to be used on large data

lakes (potentially, up to millions of tables) and be as exhaustive as
possible to maximize recall. However, three issues arise. First, these
methods do not assess the relevance of join candidates to the query
or the downstream task. While a large containment value may indi-
cate that a join can be done, it provides no guarantee that this join
is actually meaningful or useful. Second, the number of candidate
joins could become too large for practical use. Manually identifying
the best candidates may be excessively time-consuming, and per-
forming all joins might be too expensive in terms of time/memory
constraints. A user-defined threshold on the containment can be
used to filter the most promising joins, but deciding the correct
threshold is problematic. Third, Jaccard Containment does not take
into account the cardinality of a column: in an extreme case, if a
column 𝑄 ∈ 𝑇 contains only a single value, it would have perfect
overlap with another column 𝐶 𝑗

𝑘
∈ 𝐷 that contains the same value.

While this behavior may be desirable for some specific Information
Retrieval tasks, it further expands the number of candidates with
high containment. These limitations have led to the development
of methods tackling the Join Selection task.

Merging the candidates. After the set of join candidates has been
built by the retrieval task, the candidates need to be merged with
the base table to augment it with their columns (Merge in Fig.
1). Although smaller than the data lake, this candidate set may
remain too large to be handled directly due to resource constraints.
This problem suggests the need for an additional filtering, namely
the Join Selection task, with the goal of identifying a subset of
candidate joins that maximizes the prediction performance over a
downstream task. This task may be performed by removing joins
that are not likely to be useful through the application of rules
(and without executing the joins themselves) to the retrieval result
[27, 38], or by testing each candidate joins to find those that bring
benefit [4, 10, 15, 28]. In this work, we focus on the latter strategy.

It becomes therefore necessary to address the difficulties that
come from joining base table and candidates. We consider ML mod-
els that involve a specific set of samples (rows) with their features.
Augmentation operations in this scenario enrich said features while
keeping the original set of samples constants, thus requiring a left
join. A complication with left joins is that, for any un-joined row
in the left table, null values will be added in the new columns. Al-
ternative methods based on Full Disjunction [16, 25] would add
irrelevant samples that should then be dropped.

It is not always possible to limit joins to one-to-one relations;
often, we need to join on one-to-many or many-to-many relations.
For example, to join a table about movies with one that contains
ratings for the movies on the column “movie title”, everymovie with
more than one rating would be involved in a one-to-many relation,
and the content of all the rows with such relations gets duplicated.
This standard behavior is problematic when the downstream task
involves a ML or statistical analysis method, as such models assume
that each row correspond to one sample, and the sample’s features
are found on that row. Thus, the Aggregation task bridges the
result of the join with the downstream methods, combining the
information contained from a potentially large number of rows

Subject Relation Object

Paris isLocatedIn France
Paris isLocatedIn Europe
Rome isLocatedIn Italy
Rome hasDensity 2236 / 𝑘𝑚2

Rome hasType City
Table 1: Examples of YAGO triplets.

into one. More precisely, given a tuple 𝑡 in the base table 𝑇 that
needs to be joined with 𝑛 tuples from a binary table (𝐴, 𝐵) over 𝐴,
the goal is to augment 𝑡 with attribute 𝐵 by selecting one value
that represents the information coming from the 𝑛 joining tuples.
How to aggregate or select a representative value from the new
attribute reminds traditional data integration problems such as truth
discovery [8] or data fusion [1]. In this spirit, Deep Feature Synthesis
(DFS) [23] takes a set of tables and a join plan to recursively create
new features; it does so by aggregating the replicated instances
using different functions (e.g., average, median, mode).

Learning on the augmented data. Finally, the integrated table
is used to train a model to predict a target variable. This task
can be deployed with easily available methods such linear regres-
sion/classification [36], or more complex methods such as CatBoost
[37]. Though we present this task as distinct from the prior ones,
an optimized pipeline may implement learning at intermediate sec-
tions of the pipeline to ensure the selection of the most appropriate
candidate tables, contributing to improved model performance [15].

3 BUILDING YET ANOTHER DATA LAKE
In this section we detail the construction of YADL (Yet Another Data
Lake), a synthetic data lake built starting from the YAGO knowledge
base (KB). Our goal is to have a scalable and reliable data lake that
allows users to evaluate themain steps of the pipeline in Fig. 1, while
avoiding some of the confounding factors that come from working
with unvetted data, such as typos, inconsistent schemas and data
format, and other sources of noise. These additional challenges can
easily be added to YADL by generating typos in entries of tables or
randomly replacing column names by synonyms. Also, YAGO is a
general content KB and therefore YADL can used to augment base
tables belonging to different domains, as we report in Sec. 5.

3.1 YAGO: the source of the original data
YAGO [40] is a knowledge base (KB), i.e., a semantic database that
contains knowledge about the real world. The KB is composed of
triplets, or “facts”. Triplets in YAGO follow the RDF standard, so
that each triplet has a subject connected to an object through a pred-
icate (or relation). Subjects and objects are considered to be entities.
For example, in the triplet “Paris, isLocatedIn, France”, “Paris” is
the subject entity, “France” is the object entity, and “isLocatedIn”
is the predicate (or relation) that connects them. The object need
not be another entity: it may also be a lexical value such as the
“population density”. Each entity belongs to a set of “classes” (or
“types”), arranged in a taxonomy; “Paris” belongs to the class “City”,

3

YAGO City

Subject isLocatedIn_1 isLocatedIn_2 owns_1 popDensity

Paris France Europe Tour Eiffel null
Rome Italy null Olympic Velodrome 2236

Table 2: Reshaped table produced by selecting entities with
class “City”.

subclass of “Populated place”, itself subclass of “Geographical loca-
tions”. Table 1 shows example triplets from YAGO. We use YAGO
3.0.3 [29], which includes facts up to 2022.

3.2 From knowledge base to relational tables
Information in data lakes is typically stored as tuples in tables,
rather than the triplet format used in YAGO. This format is different
from the typical tabular format found in data lakes: for this reason,
we construct YADL by reshaping the triplets into binary tables.
Wide-form relational tables can then be constructed by joining
binary tables on the column that contains the triplet subjects. We
assemble two YADL variants (Binary and Wordnet), which differ in
the number of tables and in their shape (i.e., the number of rows
and columns of each table).

Binary tables. In the binary variant, a new table is generated for
every predicate in YAGO, such as “hasCapital” or “hasDirected”.
YAGO contains a limited number of predicates (70), so the result
is a small data lake where some of the tables have millions of
rows (e.g., “isLocatedIn”, or “isCitizenOf”), and some have very few
(e.g., “hasTLD”). Each relation table contains an attribute named
“subject” and another attribute named as the actual predicate. For
example, the triplet “France - hasCapital - Paris” leads to a table
“hasCapital” with columns “subject” and “hasCapital”; finally, a row
“France, Paris” is added to the table. This process is applied to all 70
relations and their triplets.

Wordnet tables. Tables in data lakes typically have more than two
columns. To reflect this, we develop a second variant of the YADL
lake where tables have a larger number of columns. In this case, we
leverage the classes to which entities belong. We use the Wordnet
[30] classes (e.g., “Person”, “Company”, “Artist”), as they are more
generic than WikiData classes, whose higher level of granularity
(e.g., “Treaties entered into force in 1994”) is not necessary for
our purpose. We select this particular subset of tables because it
provides a relatively clean set of triplets to use, without excessive
duplication. In principle, it is possible to create a larger number
of tables by employing all classes, or select a subset of the classes
to construct a subject-specific version of YADL. In total, we create
1015 Wordnet seed tables.

For each class, a new table is generated following the example
in Table 2. Initially, the seed table includes solely the “Subject”
column (e.g., the “City” table includes values like “Paris,” “Rome,”
etc.). Subsequently, we join every relation associated with subjects
in the table: in Table 2, the subjects with type “City” are joined with
relations “isLocatedIn”, “owns”, “hasPopDensity”.

This transformation of triplet tables into wide format tables
leads to tables with null values because not all entities of a given

type have the same relations. For example, column “hasPopDensity”
contains null values for subject “Paris” in Table 2.

Addressing one-to-many relations. An issue that arises fromwork-
ing with data stored as triplets is handling subjects that are linked
to many objects through the same predicate: we give an example of
this in Tab. 1, where “Paris” is linked to two objects via the predicate
“isLocatedIn”. We choose to address it in two different ways in the
two versions of YADL: in the case of Binary, triplets that share the
same subject and predicate are transformed into tuples that share
the same value in the “subject” column, and have different value in
the predicate column (e.g., given Tab. 1, the resulting binary table
will have columns “Subject” and “isLocatedIn” and it will contain
tuples (Paris, France) and (Paris, Europe)); for the “Wordnet” vari-
ant, we flatten the group of objects by creating new columns, thus
moving them on the same tuple rather than splitting them (e.g., in
Tab 2, column “isLocatedIn” is flattened over “isLocatedIn_1” and
“isLocatedIn_2”). While this problem is an artefact of the creation
process, it is analogous to the aggregation task already described.

As a result of handling these relations differently in each ver-
sion of YADL, the aggregation step in the pipeline affects them in
different ways, thus exposing different problems.

Sub-tables. We create supplementary tables derived from the
Wordnet tables to augment the table count in the data lake. In
real-life lakes, numerous versions or variants of the same table are
common, encompassing collections of tables that undergo slight
modifications over time [19]. This redundancy poses a challenge for
information retrieval methods in distinguishing between pertinent
and extraneous tables. Hence, it constitutes a crucial aspect in a
benchmark data lake like YADL.

We systematically generate sub-tables for each "class table" by
considering all possible combinations of arity 2 and 3. For Tab.
2, these combinations would include “(isLocatedIn_1, owns_1)”,
“(owns_1, popDensity)”, and “(isLocatedIn_1, owns_1, popDensity)”.
Then, we evaluate each combination by selecting only the columns
involved in it. To maintain a minimum size threshold, we exclude
all combinations with fewer than 100 rows. Rows containing null
values are retained, provided that the column combination involves
at least one non-null value.

Sub-tables may include unrelated columns, or columns that are
not relevant to the downstream task. Another side effect is that
many of the generated tables are similar to each other, as they share
the “subject” column at the very least, and possibly columns in
the combination. This matches real data lakes where many tables
are not related or useful for the downstream task, and yet there
may be a significant amount of redundancy (e.g., because of partly
redundant extraction of primary stores).

Statistics on the two variants Binary and Wordnet are reported
in Table 3. The data lakes are available at https://zenodo.org/doi/
10.5281/zenodo.10600047, while the code to prepare YADL is at
https://github.com/rcap107/YADL.

4 IMPLEMENTATION OF THE PIPELINE
We now discuss in detail the different steps of the pipeline intro-
duced in Figure 1. For the “Retrieve” step, we describe the advan-
tages and disadvantages of each candidate retrieval method; for the

4

https://zenodo.org/doi/10.5281/zenodo.10600047
https://zenodo.org/doi/10.5281/zenodo.10600047
https://github.com/rcap107/YADL

“Merge” step we propose different join selectors and aggregation
methods, and we explain how the two parts of this step are inter-
twined; finally, for the “Predict” step we go over the ML methods
used to test the prediction performance.

4.1 Retrieving the candidates
The first step of the pipeline retrieves tables that can likely be joined
into the target table. We consider retrieval methods that work by
taking a query column and return a – possibly ranked – list of
candidates. Retrieval methods involve offline preparation steps that
build data structures summarizing the data lake, and a querying
step where the candidate joins are retrieved. Preparation steps may
require the construction of sketches [13, 43], indices [42], or the
exhaustive measurement of Jaccard containment for every column
in the data lake; the preparation step also involves persisting the
data structures on disk for future use.

We focus on retrieval strategies estimating Jaccard containment
(Equation 1): a candidate column is considered as a good join if it
contains a large fraction of the entities of the target table (Section 5.2
provides an empirical justification). We consider two different com-
plementary strategies, an exact and a stochastic approximation,
as well as a “hybrid” approach combining them. The rest of the
pipeline is transparent to the retrieval method: given a list of join
candidates, it will test each candidate regardless of how the list
was constructed. Depending on the chosen method, the number of
candidate joins may still be too large (potentially, in the thousands)
to be handled in the merge step, either due to limitations on the
execution time or memory: for this reason, a likely scenario would
be selecting only those candidates whose Jaccard containment is
larger than a certain threshold, or the top-𝐾 candidates proposed by
the retrieval method. For our experiments, we reduce the number
of candidates to the top-30, as we observe that almost all candidates
with high containment are within this limit (Fig. 7).

Exact Matching. We compute Exact Matching (Exact) by exhaus-
tively measuring the exact Jaccard containment between each query
column and every other column in the data lake. This can be im-
plemented efficiently by first building a “vocabulary” on the target
column, and then scanning the whole data lake to compute contain-
ment. Effectively, this builds a “gold standard” for any method that
relies on Jaccard containment as it will provide the candidates that
have the exact best containment across the entire data lake. Having
an exact value for the containment allows to easily rank candidates
according to that, thus providing a better way of selecting either
“top-𝐾” best candidates in the pool, or to apply a threshold and
select candidates based on that.

Naturally, this method has a major drawback: it requires the
computation of the exact containment value for each pair (query
column, candidate column) in the data lake (with a cost that depends
directly on the size of the data lake and the tables therein), and this
operation must be repeated for every new query column. As we
show in Fig. 10, the cost of repeating this operation for multiple
query columns quickly adds up. A more fundamental question is
that the Jaccard containment is probably a proxy of the actual utility
of joining on a table. Thus computing its exact value may be a waste
of resources. We explore the value of containment in more detail
in Sec. 6.

MinHashLSHEnsemble. MinHashLSHEnsemble [44] (MinHash)
requires an indexing step before executing the queries and relies
on Locality Sensitive Hashing (LSH) to find tables whose Jaccard
containment is larger than a threshold set by the user when the
index is initialized. At query time, given a query column MinHash
returns all candidate columns whose containment is approximately
larger than the threshold. MinHash is remarkably robust to noise
in the input data, such as typos, mismatch in surface forms and
inconsistencies in the schemas of the tables to index. Its recall is also
quite high. Once the indexing step is done, the querying operation
itself is very fast.

MinHash has some drawbacks of its own: 1) As the only informa-
tion that MinHash can provide is that a candidate has a containment
larger than the threshold, it is impossible to rank candidates within
this pool, or to select them based on a threshold other than that used
to build the index. 2) Since MinHash returns an approximate result,
it may happen that candidates that have a measured containment
lower than the threshold are proposed: indeed, when the MinHash
query results are compared with the results obtained from Exact,
MinHash produces a large fraction of False Positives. 3) Finally,
the index cannot be updated: any change in the data lake requires
re-indexing, which can take a long time.

Hybrid MinHash. We discuss a third method that combines Ex-
act and MinHash, to provide insight into how to mitigate some of
their issues and improve downstream performance. Hybrid Min-
Hash employs MinHash to find candidates for a given (possibly
unknown) query column, then uses Exact to re-rank all candidates
retrieved by MinHash. This method leverages the stateless nature
of MinHash by producing results for any query, without requiring
any prior operation; it then refines the results by measuring the
exact containment to produce a better ranking of the candidates.
As the size of the candidate pool is much smaller than the entire
size of the data lake, measuring the containment is much faster
than indexing the entire data lake using Exact. Like Exact, it is also
possible to rank the candidates and use a threshold. As we show
in the experimental section, the prediction performance of Hybrid
MinHash is quite similar to that of Exact Matching.

Just as it takes some of the strong suits of both MinHash and
Exact, Hybrid MinHash also retains some of their disadvantages: 1)
just like MinHash, any evolution in the data lake require rebuilding
the entire index. 2) As the first filtering relies on the MinHash
results, False Positives add needless cost and any candidate missed
byMinHash is lost. 3) Re-ranking candidates is done when querying
by measuring the exact containment, which increases the query
time substantially.

Implementing the retrieval methods. The performance and re-
source utilization of retrieval methods is largely dependent on their
implementation. We rely on the Python implementation of Min-
Hash provided by the Datasketch package [43], while we implement
Exact matching in Python using the Polars package [41]. Data struc-
tures are stored by persisting on disk the MinHashLSHEnsemble
for MinHash and the candidate ranking for each query column for
Exact; Hybrid MinHash relies on the MinHash data structures to
work, so no additional storage is required for it. Table 3 reports
the size on disk of the data structures used for either method. The
Datasketch implementation of MinHash does not provide an online

5

The Martian Matt Damon 52
The Martian Kristen Wiig 49
Toy Story Tom Hanks 66
Toy Story Tim Allen 69

Title Actor Age
The Martian
Toy Story

2015
1995

The Shining 1980

630
394
47

Title Year R. M $

Left Join
Aggregation

Title
The Martian
The Martian
Toy Story

Actor
Matt Damon
Kristen Wiig
Tom Hanks

Toy Story Tim Allen

Age
52
49
66
69

Year
2015

1995
1995

2015

R. M $

630

394
394

630
Title

The Martian
Toy Story

Actor
Matt Damon
Tom Hanks

Age
50.5
67.5

Year
2015
1995

R. M $

394
630

Figure 2: Example of how a left join would duplicate rows
from the base table.

interface to query with, which means that the index must be loaded
before querying: this adds a substantial overhead to the “actual”
query time, as reported in Fig. 6.

4.2 Merging base table and join candidates
In this step, the candidates that were retrieved in the previous step
are combined into a new, integrated table that joins the informa-
tion in the base table 𝑇 with additional information sourced from
augmentation tables. As we highlight in Fig. 1, this step combines
two operations that cannot be executed independently: join selec-
tion, and aggregation. We are considering a scenario where we
train a machine learning model using a specific input table, which
means we have a fixed set of training samples. Consequently, we
must use left joins to ensure the merged table maintains a constant
number of rows. Additionally, we need to aggregate one-to-many
relationships to prevent the sample replication that would occur
with a typical join.

The join step is a critical part of the pipeline, as joining two tables
is already an expensive procedure. Indeed, joining all candidates at
once may lead to issues with time and memory; moreover, since
not all joins are always beneficial [27], we are interested in joining
only those that bring actual benefit in the downstream task.

For these reasons, optimizing this step seems important, and one
way of doing this is selecting which candidates provide the most
benefit when they are used to augment the base table. Selecting
these candidates may involve performing additional (intermediary)
joins prior to executing the full join, bringing join execution and
aggregation into play once again.

Aggregation. As mentioned above, when joining tables, one-to-
many relationships must be aggregated to avoid replicating samples
in the base table which would modify the initial data sampling.

Following the example in Fig. 2, a join on “Title” leads to the
duplication of the two first rows in the base table, as both title values
appear in two rows of the candidate table. Our objective is the
prediction of the “Revenue” values for a given movie, characterized
by its title. Which of these rows should be used for this prediction?

We test three different aggregation strategies in “first”, “mean”,
and DFS. With “first”, any row where the values belonging to the
base table are duplicated is dropped from the joined table, with the
exception of the first copy.With “mean”, each categorical attribute is
replaced by the most frequent value (the mode), and each numerical
attribute is replaced by the mean of all values in that attribute. DFS

is functionally a more powerful and exhaustive “mean”, as it uses
additional aggregations (median, standard deviation. etc.) rather
than only the mean and add new features for each aggregation.

Join selection. We implement and test four different join selectors.
All selectors follow the fit-predict paradigm proposed by scikit-
learn [36]: during the fit operation, the training split of the base
table is passed to the selector, which is used to train an internal state
which comprises the list of candidates that should be joined, as well
as a model trained on the training split of the data. Internally, joins
are tested on a validation split that is sampled from the training split
to avoid overfitting. In the predict operation, the test split of the
base table is passed to the selector, which then outputs a prediction
based on the test split joined with the selected candidates. Naturally,
the selection of the candidates depends on the specific selector that
is being used. An advantage of following this paradigm is that it
makes extending the pipeline with new selectors very simple.

The reference selector is No Join, where no join candidates are
provided and the ML model is trained directly on the base table.
Highest Containment Join measures the exact containment of
the candidates provided in the retrieval step, then re-ranks them
by that. The candidate with the highest containment is selected;
ties are broken by taking one candidate at random. This selector
makes no assumptions on whether the candidates are ranked in the
retrieval step or not. Best Single Join iterates over each candidate
one at a time, then trains a separate ML model for each joined
table, evaluating the performance with a validation split. The single
candidate that provides the largest benefit on the validation split is
then joined with the entire training table to re-train the ML model;
during prediction, it is joined on the test split and used to predict
the result. Full Join blindly joins all candidates provided during
the fit, then trains the ML model on the resulting table; the same
join operation is repeated in the predict step on the test split of the
base table. Finally, Stepwise Greedy Join keeps more information
than what is possible using only one table, while avoiding the risk
of joining tables that are irrelevant to the task which comes with
Full Join. This selector re-ranks all candidates like in the Highest
Containment case, then iterates over every re-ranked candidate. In
each iteration, the candidate is joined on the current table, then its
performance is evaluated. If the newly joined table improves over
the previous, it is kept as is and becomes the current table; if the
performance worsens, the candidate is discarded.

Highest Containment and Best Single Join produce smaller out-
put tables as they only join one candidate, rather than all potential
candidates like Full Join and Stepwise Greedy Join: we can therefore
classify the two pairs as single-table selectors andmulti-table
selectors respectively.

In all selectors that involve a join, aggregation is carried out
prior to executing the join itself. 1

4.3 Predicting with a ML model
The learning step is implemented by inputing the final table to a
supervised-learning regressor. We evaluate two different methods:
1In our pipeline, aggregation is carried out before executing any join by grouping the
“right table” by the join key, then applying one of the aggregation functions described
above. This is to avoid materializing large joins, which have a huge cost in memory
and time. Due to how aggregation is carried out, the final result is the same before and
after the join, so executing it before materializing the joined table is more efficient.

6

Statistic Wordnet Binary Open Data US

Data lake size 9648 301.0 3886
Minhash index size 441 1.4 415

Exact matching index size 11.3 0.03 5.43

tables 32103 70 5591
Avg. # rows 287134.33 17124.50 22343.92

Avg. # columns 2.00 23.86 3.17
Avg. # categorical columns 1.70 12.76 2.78
Avg. # numerical columns 0.30 11.10 0.39

Avg. frac. nulls 0.00 0.09 0.31

Table 3: Statistics for the data lakes, along with the size (in
MB) on disk of the data structures of the retrieval methods.

a simple linear regressor/classifier and CatBoost [37]. Our intent
is comparing the performance and resource expenditure (in time
and memory) of either method: linear models are very simple and
inexpensive compared to a gradient boosting method like CatBoost.
We choose CatBoost as our “complex and effective” method because
gradient boosting methods are effective at working with tables [18],
and CatBoost in particular is good with categorical data, which is
common in our scenario.

4.4 Evaluation
We evaluate the full pipeline. The efficacy of these steps can be
measured in the context of modern data analysis tasks, which gen-
erally fall into either predictive (training a machine learning model)
or prescriptive (causal inference to answer what-if and how-to
questions) categories [15]. Because it can easily be evaluated quan-
titatively, we focus on measuring the performance of a predictive
model trained on the base table alone or on integrated tables. Addi-
tionally, we track memory and time requirements in various steps
of the pipeline.

The code for the pipeline is available at https://github.com/
rcap107/benchmark-join-suggestions.

5 EXPERIMENTAL STUDY
For our experimental campaign, we test the different sections of
the pipeline over three main dimensions: prediction performance
(either 𝑅2 score for regression, or AUC for classification), execution
time, and memory consumption. Focusing on multiple dimensions
allows us to have a view of the different trade-offs across methods.

Data lakes. We use the two YADL lakes (as detailed in Section 3)
and Open Data US, a data lake widely employed in the literature [15,
42, 44]. Their statistics are reported in Table 3.

Base tables. We evaluate six tables from sources that are not
related to the lakes: Company Employees (predict “number of em-
ployees”), Movie Revenue (“revenue of movies”), Movie Ratings
(“ratings of movies”), US Elections (“fraction of votes by party in
each US county during the 2020 elections”), US Accidents (“number
of accidents by US county in the year 2019”), Housing Prices (“price
of a house”).

We also include one “internal” table derived for each lake: US
County Population (from YADL, predict “population of each US

Base Table # Num. Att. # Cat. Att. # Rows

Company Employees 2 7 3109
Housing Prices 3 7 22250
Movie Ratings 7 10 3837
Movie Revenue 8 10 3837

Schools 4 3 1774
US Accidents 3 9 5222

US County Population 1 1 3059
2020 US Presidential Results 3 6 22093

Table 4: Statistics for the base tables.

county”), Schools (from Open Data US, “school classification”). For
all datasets, the query column values must be matched with the
entities in YADL using semantic annotation solutions [21, 34]. In
our experiments, we have done the match manually to remove the
noise from this task. Also, query columns are chosen based on what
a user may reasonably consider as “key” (e.g., the movie title). We
include internal tables as those have been used in several previous
works for evaluation [4, 15]. Datasets’ statistics are reported in
Table 4.

Default parameters. All experimental runs are executed over 10
cross-validation splits: the test fraction is 0.2 both in the outer cross-
validation split and in any join selector that requires a validation
step for its fitting step. Experiments were executed on a cluster with
72 CPUs and 376GB of RAM. The implementation of the pipeline is
in Python; aggregation and join operations rely on Polars [41] as
backend, while the ML models are implemented using Scikit-learn
[36] and CatBoost [37]. To reflect the experience of a data scientist
that needs to construct a meaningful table starting from a data lake,
and to highlight the effect of joins on the downstream task, we run
experiments on a depleted version of the tables, i.e., the input tables
include only the primary key column and the target column.

Retrieval We use a containment threshold of 0.2 for the prepa-
ration of the MinHash index, and clamp the number of candidates
returned by each retrieval method (Exact, MinHash, and Hybrid
MinHash) to 30. These values were chosen to balance execution
time and expected number of candidates given the distribution of
containment encountered in the different data lakes (Fig. 7).

SelectionWe fix the number of iterations of Stepwise Greedy
Join to 30: this number is consistent with the number of candi-
dates that are provided in the retrieval step. None of the other join
selectors have features parameters to tweak.

LearningWe fix the number of CatBoost iterations to 300; we
stop training the model 10 iterations after the optimal metric has
been detected; we set the L2 regularization coefficient to 0.01.

5.1 Retrieval is the most impactful pipeline step
Our first goal is to pinpoint which steps of the pipeline have a
significant impact on the studied dimensions (if there are any):
optimizing these influential sections can yield the greater benefits.

For each pipeline task (retrieval, selection, aggregation, learn-
ing), this process involves separating the variance that is due to that
specific task from that due to the dataset and the other tasks. This
is achieved by aggregating variables other than the one of interest.

7

https://github.com/rcap107/benchmark-join-suggestions
https://github.com/rcap107/benchmark-join-suggestions

For instance, when analyzing the impact of the retrieval step, re-
sults are grouped by join selection model, aggregation method,
andML model before averaging prediction performance and run
time. Then, the results obtained with each value in the variable of
interest (e.g., Exact, MinHash and Hybrid MinHash) are plotted as a
difference from the average method for that variable (the “average
retrieval method”). When dealing with binary variables, such as the
ML model, the “best” method is identified using the 𝑅2 score and
compared to alternative. We report the difference in 𝑅2 and relative
execution time with respect to the average method for retrieval
(Fig. 3a), selection (Fig. 3b), aggregation (Fig. 3c), and learning (Fig.
3d). Individual runs are reported as dots; runs are assigned distinct
color palettes depending on their data lake.

Retrieval. We observe that Exact Matching shows the best over-
all prediction performance (2.55% gain in median across all ex-
periments), while MinHash is showing substantially worse results
(-2.26%) and Hybrid MinHash sits in the middle between the other
two methods. MinHash is also faster than the other two, despite the
fact that the number of candidate joins is the same for all methods.
This is due to the fact that, on average, the candidates retrieved by
MinHash have a much lower containment than those proposed by
the other two methods (Fig. 5a): this results in a shorter join and
train time due to the smaller amount of data that must be moved
and used for fitting the models. The difference between Hybrid
MinHash and Exact Matching is likely due to the fact that Min-
Hash does not have perfect recall: some of the higher containment
joins are replaced by candidates with lower containment, which
reduce the overall training time and the prediction performance.
Overall, the two methods based on precise ranking (Exact and Hy-
brid) outperform the method based purely approximate matching
(MinHash), suggesting that the larger computational cost is worth
it.

Selection. The choice of selector shows a noticeable effect when
moving from single-table selectors (Highest Containment and Best
Single Join) to multi-table selectors (Stepwise Greedy and Full Join),
bringing a benefit close to 3% in median (Fig. 3b).

Stepwise Greedy Join is an outlier in how slower it is compared to
all other methods. This is not surprising, since this selector executes
a join and trains a model in each iteration, then re-trains the model
at the end of the fit step. This selector is expected to yield better
results than Full Join by avoiding candidate joins that do not bring
benefit. Fig. 3b shows that this objective is not achieved, which
makes the much longer execution time even more concerning.

Highest Containment is significantly faster than all other solu-
tions because it only re-ranks candidates before joining the best.
Best Single Join trains and evaluates a model for each candidate,
before selecting the former.

The slight difference in performance between two single-table
selectors is consistent with the expectation that the optimal join is
likely to exhibit high containment, and will thus be selected by both
selectors. However, results show that the candidate join with the
highest containment is not necessarily the best overall, suggesting
that relying exclusively on Jaccard Containment is not sufficient to
maximize the prediction performance. On the other hand, the more
significant difference between single-table selectors and multi-table
selectors is explained by the learning model benefiting from an

increased set of features: merging more than one table inherently
results in a richer feature set compared to the scenario where only
a single table is joined.

An important observation is that all selectors rely on the candi-
dates proposed by a retrieval method: if these candidates have poor
quality, the selectors cannot compensate for that.

Aggregation. Among the pipeline steps under evaluation, ag-
gregation exhibits the least variance in prediction performance
between methods. However, the situation changes when consid-
ering the execution time: more complex aggregation methods are
several times slower than the much simpler “first”.

DFS does show slightly better results on average compared to
the other methods, owing to the creation of new features; however,
it is extremely slow compared to the other methods. It also creates
new features greedily, which may lead to memory issues.

Experiments reported in Fig. 3c were obtained using only a subset
of the datasets, and include only the single table selectors because
DFS ran into scalability issues with Full Join and Stepwise Greedy.
Combining DFS with the Stepwise Greedy selector would skew the
time difference plot even further.

Learning. The comparison between learning methods yields pre-
dictable results: CatBoost outperforms the linear model (2.29% in
median); it is however close to two times slower in median, likely
due to the fact that some runs do not converge and early stopping
does not help. This outcome is not very surprising, since CatBoost
is a complex, state-of-the-art model. Additionally, CatBoost has a
significantly larger memory footprint compared to the linear model
(Fig. 11). Due to the clear trade-offs in this step, the user should
make their model choice based on these considerations and their
requirements.

Different Lakes. Figure 4 reports the aggregate results obtained
on the different data lakes. In this plot, we report the absolute gain
from the un-joined base tables (rather than the relative difference
from the average method like in Figure 3), to highlight the poten-
tial gains in prediction performance that can be achieved by aug-
menting them with candidate joins. The figure also shows the risk
involved in joining sub-optimal candidates (shown by the negative
prediction performance). Open Data US shows both the best and
worst prediction results overall. Poor results can be explained by
the inherent “dirtiness” of the data lake, especially when compared
to YADL: this results in a lower average containment compared
to YADL (Figures 5a and 7). On the other hand, the good results
can be attributed to the “Schools” internal dataset, which achieved
perfect classification performance in most cases and skewed the
results in that direction; this is also visible in Figure 5b, where
the results with the highest containment are also those with the
best performance. YADL’s internal table (US County Population)
exhibits a similar behavior to that of Schools. This is explained by
the fact hat internal tables, i.e., tables that are sampled from the
data lake itself, tend to have copies in the data lake, which are likely
to contain information that is correlated with the prediction task.
This highlights the specific behavior of internal tables, which are
routinely used in the experimental campaigns in the literature.

An advantage of YADL is that it is built based on a KB that
contains “general knowledge” notions: as a result, external tables

8

10% 0% 10%

MinHash

Hybrid MinHash

Exact

-2.26%

0.27%

2.55%

R2 difference

0.5x 1x 1.5x

0.74

0.87

1.32

Time differencea. Retrieval method
median median

20% 10% 0% 10%

Highest Cont.
Join

Best Single Join

Full Join

Stepwise Greedy
Join

-1.22%

-0.41%

1.87%

1.78%

0.5x 1x 1.5x 2x 3x

0.31

0.71

0.66

2.18
b. Join selection method

5% 0% 5%

Mean

First

DFS

-0.07%

0.00%

0.13%

0.5x 1x 1.5x 2x

0.69

0.37

1.95
c. Aggregation method (only join selection with Best Single Join and Highest Containment Join)

CatBoost vs Linear

0% 20% 40% 60%

2.29%

1x 1.5x 2x 3x

1.85
d. Supervised learner

Company Employees Housing Prices Movie Revenue Movie Ratings Schools US Accidents US County Population US Elections

Binary

Open Data

Wordnet

Figure 3: Experimental results across all data lakes, comparing the performance difference between evaluated methods in
different steps of the pipeline. The median difference is reported on the right of the plot. (a) reports the difference between
retrieval methods, (b) compares join selectors, (c) compares aggregation methods and (d) compares ML models. In all cases,
results are reported in relation to the “average method”.

are more likely to find matches in YADL than in Open Data US,
whose tables contain mostly US-based demographic data.

5.2 Containment affects the entire process
We now focus our attention on one of the steps with the larger
impact on both prediction performance and execution time: re-
trieval. Indeed, Fig. 3a shows how re-ranking with exact matching
outperforms the approximate matching-base MinHash.

Fig. 5(a) shows the containment results for the tables obtained by
the different retrieval methods. Exact largely outperforms MinHash,
so we use it in the following analysis. It is also evident how, in
general, retrieval on YADL Wordnet yields queries with a far larger
average containment. We report top-200 containment to highlight
how, even when retrieving a quite large number of candidates, the
average containment of MinHash is very low when compared to
the other two methods. Fig. 5(b) shows how the average prediction

9

0.50 0.25 0.00 0.25 0.50 0.75 1.00
Prediction performance

YADL Wordnet

YADL Binary

Open Data US

Figure 4: Comparison in prediction performance for the dif-
ferent data lakes. The performancemetric is𝑅2 for regression
and AUC for classification.

0.00 0.25 0.50 0.75 1.00
Containment

MinHash

Hybrid
MinHash

Exact

YADL Wordnet Open Data US

0.00 0.25 0.50 0.75 1.00
Containment

0.25

0.00

0.25

0.50

0.75

1.00

Pr
ed

ict
io

n
sc

or
e

YADL Wordnet Open Data

Figure 5: Relationship between containment and perfor-
mance. (a) Average top-200 containment by query column
with different retrieval methods. (b) Prediction performance
wrt containment.

performance follows closely the measured containment. In other
words, higher prediction results occur more frequently when the
containment is higher. When the join is exact (like in our scenario),
having a high Jaccard Containment is very important to achieve
good results. This is because left joins between tables that have very
low overlap result in the addition of new features that have mostly
empty values; such features are less useful than high containment
joins, which augment a large fraction of the base table.

On the flip side, working with a larger set of values has the
consequence of increasing the join and training time (Fig. 6).

Looking at the different retrieval methods, it is evident that the
query results proposed by MinHash have a much lower average
containment (Fig. 5a): this is due to the fact that MinHash does not
provide a detailed ranking of the candidates, which may lead to
losing track of candidate tables that have a high containment if the
query result is sampled in some way. This is likely to be the case if
the user has a certain budget of candidate tables to work with. In
fact, MinHash has a threshold that can be tweaked to reduce the
number of candidates that are retrieved, however we have observed
that recall drops sharply at high thresholds.

While Hybrid MinHash appears to be faster than Exact Matching
in the pipeline, it is important to note that re-ranking candidates
incurs a non-negligible additional cost (Fig. 6).

5.3 Smart aggregation brings marginal benefits
While containment impacts heavily both prediction performance
and execution time, aggregation has a similar impact on the ex-
ecution time without the same degree of improvement for the

0 1h 2h 3h 4h

Minhash

Exact

Hybrid
Minhash

7690

14813

11412

964

5

9317

2922

6417

2922

Pipeline Load + Query Index + Persist

Figure 6: Comparison of time spent (in seconds) preparing a
set of experiments with the different retrieval methods.

0 50 100
0.0

0.5

1.0

Co
nt

ai
nm

en
t

30

Wordnet Full

0 20 40 6030

Binary

0 50 10030

Open Data US

Figure 7: Exact containment measured over the top 100 join
candidates for each base table on each data lake. The x-axis
reports the rank, rank 30 is highlighted as it is the retrieval
cutoff we use in our experiments.

prediction performance (Fig. 3c). Aggregating values always leads
to a loss of information: in exchange for a larger cost, complex
aggregation methods that preserve more information (DFS) or that
replace values with better representatives of a group (mean) should
lead to better prediction performance.

However, this is not what we observe: more intricate aggregation
methods do not pay off their larger computational requirements.
This is exacerbated by the fact that aggregation must be performed
whenever a join is executed at any point in the pipeline, including
joins executed during join selection. The result is a compound-
ing slow-down of the entire pipeline, which increases the total
execution time by many times compared to the basic method (first).

A possible explanation is that YADL data is categorical-heavy
(Tab. 3), and features few numerical values. Categorical features
are aggregated by using the mode, which retains less information
than the mean. Working with candidate tables that feature mostly
numerical values may lead to benefiting more from the “Mean” and
“DFS” methods.

Poor performance of DFS are also explained by the fact that we
are not fully exploiting its capabilities. We consider only join chains
of depth 1: at each aggregation step, we join the base table with an
additional table, rather than leveraging the recursive generation of
features that is provided by DFS. As a result, DFS is not as effective
at generating features as it would be with deeper join paths [5].

5.4 Tradeoff between analytic performance and
compute cost

Execution time. Fig. 8 reports a breakdown of where the time is
spent by different join estimation methods, while Figure 9 reports

10

0.00 0.25 0.50 0.75 1.00
Frac. spent in sections

Stepwise Greedy
Join

Full Join
Best Single Join

Highest Cont.
Join

No Join

Predict(join)
Train(join)

Predict(model)
Train(model)

Prepare

Figure 8: Breakdown of where time is spent for each selector.

0 20 40
Execution time (s)

Stepwise Greedy
Join

Full Join
Best Single Join

Highest Cont.
Join

No Join

51.76
7.73

13.89
4.01

0.21

Figure 9: Average execution time for each selector.

the total time required for a run on average by selector. Prepare
tracks the time spent building data structures and loading data,
including loading candidate tables in memory and building the con-
tainment ranking. Train(model) and Predict(model) track the time
spent inside the ML model for training and prediction, respectively.
Finally, Train(join) and Predict(join) track the time spent executing
a merge operation, combining join and aggregation. Results are
aggregated over all experiments, however aggregation is fixed to
“first” because “mean” and “DFS” increase the join time to such an
extent that other costs are almost negligible. The time distribution
follows our expectations: most of the time is spent fitting models,
with time spent joining (and aggregating) in second place. Highest
Containment Join spends a relatively long time in the “Prepare”
step due to the need to re-rank candidates before joining: since
the join and train steps involve only one table, they are faster in
comparison. Stepwise Greedy Join has a similar re-ranking step,
however training the models in each iteration dominates the other
steps. Full Join involves merging all candidates at the same time,
then training a single model on the result: this explains how the
fraction of time spent joining is comparatively larger than in other
methods.

Figure 6 reports the time required to prepare and run the entire
set of experiments. Tracking an entire experiment is needed to
provide a “fair comparison” between the different retrieval methods
and evaluate the time spent preparing their data structures (“Index
+ Persist”), as well as the time spent querying them to obtain the
candidate joins (“Load + Query”), that are then used in the pipeline.
Since the results of querying a column in a table can be reused across
different experiments, the time reported as “Pipeline” is obtained
by running a full set of experiments with default parameters and a
specific retrieval method over all base tables. The total time is then

0 2 4 6 8
Number of query columns

0
15m
30m
45m

1h
1h15m
1h30m

Re
tri

ev
al

 ti
m

e

Exact
Hybrid
Minhash

Figure 10: Evolution of the runtime as a function of the num-
ber of query columns for the different retrieval methods.

compared with the time spent creating and querying the respective
retrieval method.

This combined representation highlights the cost involved in
computing the exact overlap for the given base tables: a single
column requires about 600 seconds (on average) to be executed, and
this cost increases linearly with the number of columns that must
be queried. Conversely, building the MinHash index takes much
longer than a single column, but it is a one-time operation to be
executed on the lake and scales with the size of the data lake itself.
Hybrid MinHash reuses the basic MinHash index and has therefore
the same creation time; query time is much longer, however, owing
to the need to re-rank the query results.

Overall, the time spent performing retrieval depends mostly on
the number of performed query operations, rather than on the
indexing operation. In our experiments, the time to measure the
exact containment on the Wordnet data lake overtook the time for
building the MinHash index after about 5 queries. This is also a
consequence of how MinHash is designed specifically to minimize
query time [43, 44].

The values used in Fig. 10 are obtained assuming that query
retrieval time increases linearly with the size of a table and that
the cost of creating the MinHash index is fixed for the data lake at
hand. It shows how the fixed cost involved in building the MinHash
index pays off after as few as six queries on average thanks to the
fast query time. Hybrid MinHash requires more queries to break
even due to its slower query time, yet it remains faster than Exact
Matching when the number of query columns is larger. While the
assumptions may not hold in general, the plot gives a reasonable
estimate of the break-even points.

Although dependent on implementation, another factor that
should be considered is the size on disk of the indices: the MinHash
index occupies a much larger space on disk compared to the data
required to hold the Exact matching ranking (Tab. 3).

Concluding, the choice of the retrieval method falls on the user.
Exhaustive computation of the containment is a net gain in perfor-
mance at the expense of an execution time that increases quickly
as the number of columns to query increases. This may not be a
problem if the user is aware of which columns should be queried;
if, instead, the user is trying to conduct an exhaustive search over
all columns, a method such as MinHash should be favored. This is
consistent with the observations in [42]. Finally, in scenarios where
the query table and the data lake do not change, query results
can computed offline and reused; in these scenarios, the additional

11

0 2000 4000 6000 8000
Peak Memory (MiB)

Linear
CatBoost

Figure 11: Peak memory usage by ML model.

cost of Exact Matching would be less problematic. In situations
where the data lake tends to evolve over time, methods that support
updating the index such as [3] or [12] should be considered.

Memory footprint. Memory profiling in Fig. 11 shows that peak
memory usage is dominated by the MLmodel used in the prediction
task. Difference across join selection methods is smaller compared
to the difference between using a simple model (Linear) and a
complex one (CatBoost). Another main factors in memory usage is
the size of the candidate tables that must be joined.

5.5 Take-away messages
We summarize the main take-away messages from the experiments.
(1) Retrieving the correct join candidates is the most important task

of the pipeline; good retrieval yields higher quality candidates,
which improves performance in later steps (Figures 3a, 5a, 5b).

(2) Join Selection does not affect the downstream performance
as much as the retrieval method (Figure 3b), and cannot com-
pensate for poor retrieval performance. Joining all candidates
from the retrieval step is the best trade-off between resource
utilization and downstream performance.

(3) Complex aggregation methods are much slower than simpler
ones and do not result in commensurate gains in prediction
performance (Figure 3c). Furthermore, complex methods scale
worse with multi-table selectors.

(4) Regardless of the ML model, execution time is dominated by
the training when the aggregation is simple, while the inverse
is true with complex aggregation functions (Figure 8).

(5) Hybrid retrieval methods led to prediction performance compa-
rable to exact matching (Figure 3a) and scale better with many
query columns (Figure 10).

(6) In general, joining candidates brings benefits over working
with the base table (Fig. 4). The specific characteristics of a data
lake (Table 3, Figure 7) affect many facets of the results (Figures
4, 5).

6 CONCLUSION
In this work, we build a synthetic data lake based on real data
contained in a KB to use as test bed for evaluating methods to
augment user-provided tables. We implement an easily-extendable
augmentation pipeline to test the different steps of the augmenta-
tion procedure and the different algorithms for each of their tasks.
We provide the benchmark data lake, the base tables, as well as
the code required to extend it. Our results uncover a number of
observations that we believe could help with directing research on
this subject.

Indeed, various points remain unaddressed and can be the focus
of extensions and future work.

More Lakes. Our experiments show that YADL Wordnet is repre-
sentative of real data lakes. However, it mostly features categorical
data. This characteristic partially explains the poor performance of
Mean and DFS in the aggregation task. YADL can be extended by
plugging new sources or by changing the functions used to gener-
ate sub-tables. Future work could include deploying more YADL
variants, possibly with domain-specific data lakes [39].
More Tables. In our scenarios the tables are small enough for Full
Join and Stepwise Greedy Join to be viable. Working with larger
tables would stress the pipeline and force the use of methods to
optimize resource use and achieve scalability. While we report more
base tables than any previous work, it would be valuable to extend
such a pool to cover new domains, according to the tables available
in the lakes. An orthogonal problem for base tables and lake tables
is their evaluation under the lenses of the ethical issues in their
selection [31].
More Methods. In our work we do not try to be exhaustive over
the possible methods as we believe the implemented ones are repre-
sentatives of the recent literature for this problem. However, there
are more design choices that have an impact on the performance.
We report here a few examples of methods that could be deployed
and tested in our pipeline.

The selectors in our pipeline join a full table at each iteration.
This has the benefit of adding multiple features without executing
the same join multiple times, but it has the risk of adding noise by
introducing irrelevant columns. A possible solution is executing
joins that add one column at a time [15]. Alternatively, methods
such as [10] could be used to select retrieval candidates with high
correlation.

It has been shown that data lake table profiling can bring in
benefit in selecting joins and augmenting data [14, 15]. Profiling
helps reducing the search space and directing retrieval methods
towards meaningful candidates.
Similarity Joins. As in almost all work, we focus on the scenario
where it is possible to perform joins with equality. However, this is
not possible in general. Joining methods can be extended to over-
come the issues that may arise in practice, such as typos, different
formats, and different granularity. While similarity joins and se-
mantic matching would help with this problem [9, 22], they would
also add another dimension to the analysis of the results.
Chain of Joins.To limit the search space, we keep our chain of joins
for augmentation limited to one. However, some of the methods
have considered chains of join for augmentation [15]. Enabling join
chains would also make clear the benefit of recursive methods such
as DFS [5].
Augmentation Beyond Joins. Finally, another popular augmenta-
tion technique is “table unionability”: tables are considered union-
able if they have the same structure, i.e., they have the same number
of columns with compatible data types [2, 24]. Also, papers tack-
ling table discovery over data lakes includes other approaches that
are not driven by the base table and joins [11]. For example, some
methods are driven by user keywords [19] or by the embedding of
the table [7, 20].

12

ACKNOWLEDGEMENTS
We acknowledge the invaluable insight and expertise provided
by Léo Dreyfus-Schmidt and Du Phan (formerly from Dataiku),
without whom the foundations of this work would not have existed.

As YADL is based on YAGO 3, we acknowledge the work made
by its authors to prepare the original knowledge base, as well as
their efforts into manually evaluating it.

REFERENCES
[1] Jens Bleiholder and Felix Naumann. 2009. Data fusion. ACM computing surveys

(CSUR) 41, 1 (2009), 1–41.
[2] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Konstanti-

nou. 2020. Dataset Discovery in Data Lakes. In 36th IEEE International Conference
on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020. IEEE, 709–720.
https://doi.org/10.1109/ICDE48307.2020.00067

[3] Sonia Castelo, Rémi Rampin, Aécio Santos, Aline Bessa, Fernando Chirigati, and
Juliana Freire. 2021. Auctus: a dataset search engine for data discovery and
augmentation. Proceedings of the VLDB Endowment 14, 12 (2021), 2791–2794.

[4] Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen, Raul Castro Fernandez,
Tim Kraska, and David R. Karger. 2020. ARDA: Automatic Relational Data
Augmentation for Machine Learning. Proc. VLDB Endow. 13, 9 (2020), 1373–1387.
https://doi.org/10.14778/3397230.3397235

[5] Alexis Cvetkov-Iliev, Alexandre Allauzen, and Gaël Varoquaux. 2023. Relational
data embeddings for feature enrichment with background information. Machine
Learning (2023), 1–34.

[6] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael
Stonebraker, Ahmed K Elmagarmid, Ihab F Ilyas, Samuel Madden, Mourad Ouz-
zani, and Nan Tang. 2017. The Data Civilizer System.. In Cidr.

[7] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2022. Turl: Table
understanding through representation learning. ACM SIGMOD Record 51, 1
(2022), 33–40.

[8] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. 2009. Truth discovery
and copying detection in a dynamic world. Proceedings of the VLDB Endowment
2, 1 (2009), 562–573.

[9] Yuyang Dong, Chuan Xiao, Takuma Nozawa, Masafumi Enomoto, and Masafumi
Oyamada. 2023. DeepJoin: Joinable Table Discovery with Pre-trained Language
Models. Proc. VLDB Endow. 16, 10 (2023), 2458–2470. https://doi.org/10.14778/
3603581.3603587

[10] Mahdi Esmailoghli, Jorge-Arnulfo Quiané-Ruiz, and Ziawasch Abedjan. 2021.
COCOA: COrrelation COefficient-Aware Data Augmentation. In Proceedings
of the 24th International Conference on Extending Database Technology, EDBT.
OpenProceedings.org, 331–336. https://doi.org/10.5441/002/EDBT.2021.30

[11] Grace Fan, Jin Wang, Yuliang Li, and Renée J. Miller. 2023. Table Discovery in
Data Lakes: State-of-the-art and Future Directions. In Companion of the 2023
International Conference on Management of Data (Seattle, WA, USA) (SIGMOD
’23). Association for Computing Machinery, New York, NY, USA, 69–75. https:
//doi.org/10.1145/3555041.3589409

[12] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, andMichael Stonebraker. 2018. Aurum: A data discovery system. In 2018
IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 1001–1012.

[13] Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden. 2019.
Lazo: A cardinality-based method for coupled estimation of jaccard similarity
and containment. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 1190–1201.

[14] Javier Flores, Sergi Nadal, and Oscar Romero. 2021. Towards Scalable Data
Discovery. https://doi.org/10.5441/002/EDBT.2021.47

[15] Sainyam Galhotra, Yue Gong, and Raul Castro Fernandez. 2023. Metam: Goal-
Oriented Data Discovery. In 39th IEEE International Conference on Data En-
gineering, ICDE 2023, Anaheim, CA, USA, April 3-7, 2023. IEEE, 2780–2793.
https://doi.org/10.1109/ICDE55515.2023.00213

[16] César A. Galindo-Legaria. 1994. Outerjoins as Disjunctions. In Proceedings of the
1994 ACMSIGMOD International Conference onManagement of Data (Minneapolis,
Minnesota, USA) (SIGMOD ’94). Association for Computing Machinery, New
York, NY, USA, 348–358. https://doi.org/10.1145/191839.191908

[17] Google. 2023. Dataset Search. https://datasetsearch.research.google.com/
[18] Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. 2022. Why do tree-based

models still outperform deep learning on typical tabular data?. In Conference on
Neural Information Processing Systems.

[19] Alon Y. Halevy, Flip Korn, Natalya Fridman Noy, Christopher Olston, Neoklis
Polyzotis, Sudip Roy, and Steven Euijong Whang. 2016. Goods: Organizing
Google’s Datasets. In SIGMOD. ACM, 795–806. https://doi.org/10.1145/2882903.
2903730

[20] Madelon Hulsebos, Xiang Deng, Huan Sun, and Paolo Papotti. 2023. Models
and Practice of Neural Table Representations. In SIGMOD. ACM, 83–89. https:

//doi.org/10.1145/3555041.3589411
[21] Viet-Phi Huynh, Yoan Chabot, Thomas Labbé, Jixiong Liu, and Raphaël Troncy.

2022. From Heuristics to Language Models: A Journey Through the Universe of
Semantic Table Interpretation with DAGOBAH. In Semantic Web Challenge on
Tabular Data to Knowledge Graph Matching (SemTab).

[22] Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. 2014. String similarity
joins: An experimental evaluation. Proceedings of the VLDB Endowment 7, 8
(2014), 625–636.

[23] James Max Kanter and Kalyan Veeramachaneni. 2015. Deep feature synthesis:
Towards automating data science endeavors. In 2015 IEEE international conference
on data science and advanced analytics (DSAA). IEEE, 1–10.

[24] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-
bauer, Renée J. Miller, and Mirek Riedewald. 2023. SANTOS: Relationship-based
Semantic Table Union Search. Proc. ACM Manag. Data 1, 1 (2023), 9:1–9:25.
https://doi.org/10.1145/3588689

[25] Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J. Miller. 2022.
Integrating Data Lake Tables. Proceedings of the VLDB Endowment 16, 4 (dec
2022), 932–945. https://doi.org/10.14778/3574245.3574274

[26] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Katsifodi-
mos. 2021. Valentine: Evaluating Matching Techniques for Dataset Discovery.
In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE.
https://doi.org/10.1109/icde51399.2021.00047

[27] Arun Kumar, Jeffrey Naughton, Jignesh M Patel, and Xiaojin Zhu. 2016. To join
or not to join? thinking twice about joins before feature selection. In Proceedings
of the 2016 International Conference on Management of Data. 19–34.

[28] Jiabin Liu, Chengliang Chai, Yuyu Luo, Yin Lou, Jianhua Feng, and Nan Tang.
2022. Feature Augmentation with Reinforcement Learning. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE). IEEE. https://doi.org/10.
1109/icde53745.2022.00317

[29] Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. 2014. Yago3: A
knowledge base from multilingual wikipedias. In 7th biennial conference on
innovative data systems research. CIDR Conference.

[30] George A. Miller. 1994. WordNet: A Lexical Database for English. In Human
Language Technology: Proceedings of a Workshop held at Plainsboro, New Jersey,
March 8-11, 1994. https://aclanthology.org/H94-1111

[31] Fatemeh Nargesian, Abolfazl Asudeh, and H. V. Jagadish. 2022. Responsible
Data Integration: Next-generation Challenges. In Proceedings of the 2022 Inter-
national Conference on Management of Data (Philadelphia, PA, USA) (SIGMOD
’22). Association for Computing Machinery, New York, NY, USA, 2458–2464.
https://doi.org/10.1145/3514221.3522567

[32] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data Lake Management: Challenges and Opportunities. Proc.
VLDB Endow. 12, 12 (2019), 1986–1989. https://doi.org/10.14778/3352063.3352116

[33] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table
union search on open data. Proceedings of the VLDB Endowment 11, 7 (mar 2018),
813–825. https://doi.org/10.14778/3192965.3192973

[34] Phuc Nguyen, Ikuya Yamada, Natthawut Kertkeidkachorn, Ryutaro Ichise, and
Hideaki Takeda. 2021. SemTab 2021: Tabular Data Annotation with MTab Tool.
In (ISWC (CEUR Workshop Proceedings, Vol. 3103). CEUR-WS.org, 92–101. https:
//ceur-ws.org/Vol-3103/paper8.pdf

[35] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D Lawrence. 2022. Challenges
in deploying machine learning: a survey of case studies. Comput. Surveys 55, 6
(2022), 1–29.

[36] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[37] Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev,
Anna Veronika Dorogush, and Andrey Gulin. 2018. CatBoost: unbiased boosting
with categorical features. In NeurIPS. 6639–6649. https://proceedings.neurips.
cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html

[38] Vraj Shah, Arun Kumar, and Xiaojin Zhu. 2017. Are Key-Foreign Key Joins Safe
to Avoid when Learning High-Capacity Classifiers? Proc. VLDB Endow. 11, 3
(2017), 366–379. https://doi.org/10.14778/3157794.3157804

[39] Junaid Shuja, Eisa Alanazi, Waleed Alasmary, and Abdulaziz Alashaikh. 2021.
COVID-19 open source data sets: a comprehensive survey. Applied Intelligence
51 (2021), 1296–1325.

[40] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web. 697–706.

[41] Ritchie Vink, Stijn de Gooijer, Alexander Beedie, Marco Edward Gorelli, J van
Zundert, Weijie Guo, Gert Hulselmans, universalmind303, Orson Peters, Mar-
shall, chielP, nameexhaustion, Matteo Santamaria, Daniël Heres, Josh Maga-
rick, ibENPC, Moritz Wilksch, Jorge Leitao, Jonas Haag, Marc van Heerden,
cmdlineluser, Oliver Borchert, Chris Pryer, Ryan Russell, Joshua Peek, Colin
Jermain, Adrián Gallego Castellanos, Jeremy Goh, and Liam Brannigan. 2024.
pola-rs/polars: Python Polars 0.20.6. https://doi.org/10.5281/zenodo.10573881

13

https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.14778/3397230.3397235
https://doi.org/10.14778/3603581.3603587
https://doi.org/10.14778/3603581.3603587
https://doi.org/10.5441/002/EDBT.2021.30
https://doi.org/10.1145/3555041.3589409
https://doi.org/10.1145/3555041.3589409
https://doi.org/10.5441/002/EDBT.2021.47
https://doi.org/10.1109/ICDE55515.2023.00213
https://doi.org/10.1145/191839.191908
https://datasetsearch.research.google.com/
https://doi.org/10.1145/2882903.2903730
https://doi.org/10.1145/2882903.2903730
https://doi.org/10.1145/3555041.3589411
https://doi.org/10.1145/3555041.3589411
https://doi.org/10.1145/3588689
https://doi.org/10.14778/3574245.3574274
https://doi.org/10.1109/icde51399.2021.00047
https://doi.org/10.1109/icde53745.2022.00317
https://doi.org/10.1109/icde53745.2022.00317
https://aclanthology.org/H94-1111
https://doi.org/10.1145/3514221.3522567
https://doi.org/10.14778/3352063.3352116
https://doi.org/10.14778/3192965.3192973
https://ceur-ws.org/Vol-3103/paper8.pdf
https://ceur-ws.org/Vol-3103/paper8.pdf
https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
https://doi.org/10.14778/3157794.3157804
https://doi.org/10.5281/zenodo.10573881

[42] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J Miller. 2019. Josie:
Overlap set similarity search for finding joinable tables in data lakes. In Proceed-
ings of the 2019 International Conference on Management of Data. 847–864.

[43] Eric Zhu, Vadim Markovtsev, aastafiev, Wojciech Łukasiewicz, Adam Foster,
Sinusoidal36, Andrii Oriekhov, Joe Halliwell, JonR, Kevin Mann, Keyur Joshi,
Peter Kubov, Qin TianHuan, Senad Ibraimoski, Spandan Thakur, Stefano Ortolani,

Titusz, Vojtech Letal, Zac Bentley, fpug, hguhlich, long2ice, oisincar, and ronassa.
2023. ekzhu/datasketch: v1.5.9. https://doi.org/10.5281/zenodo.7654815

[44] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH
Ensemble: Internet-Scale Domain Search. Proc. VLDB Endow. 9, 12 (2016), 1185–
1196. https://doi.org/10.14778/2994509.2994534

14

https://doi.org/10.5281/zenodo.7654815
https://doi.org/10.14778/2994509.2994534

	Abstract
	1 Introduction
	2 An end-to-end analytic pipeline
	3 Building Yet Another Data Lake
	3.1 YAGO: the source of the original data
	3.2 From knowledge base to relational tables

	4 Implementation of the pipeline
	4.1 Retrieving the candidates
	4.2 Merging base table and join candidates
	4.3 Predicting with a ML model
	4.4 Evaluation

	5 Experimental study
	5.1 Retrieval is the most impactful pipeline step
	5.2 Containment affects the entire process
	5.3 Smart aggregation brings marginal benefits
	5.4 Tradeoff between analytic performance and compute cost
	5.5 Take-away messages

	6 Conclusion
	References

