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Abstract

We investigate the spectral efficiency achievable by random synchronous CDMA with
QPSK modulation and binary error-control codes, in the large system limit where the num-
ber of users, the spreading factor and the code block length go to infinity. For given LDPC
code ensembles, we provide methods to optimize the spectral efficiency assuming a succes-
sive stripping decoder, for the cases of equal rate and equal power users. Finally, we show
that the proposed methods apply to practical (fixed block length) codes and yield in fact a
simple and effective tool for designing encoders and decoders for CDMA.

1 Introduction

All points in the capacity region of the Gaussian multiple-access channel are achievable by
successive single-user decoding and interference cancellation (stripping) [1, 2]. This generalizes
to the CDMA channel as shown in [3], where the optimal stripping decoder incorporates MMSE
filters against yet undecoded users at each successive cancellation stage. Key to the optimality
of stripping is the use of Gaussian codes of rate arbitrarily close (but not larger) than the
capacity of the channel obtained by removing the already decoded users. In this way, optimal
spectral efficiency is achieved by simple single-user coding and decoding, with linear complexity
in the number of users. One drawback of successive stripping is that, in general, every user
must transmit at a different rate, or must be received at a different SNR level, (unless the
spreading waveforms are appropriately chosen, which is impractical under frequency selective
fading).

Existing nonorthogonal CDMA systems [4, 5] are largely based on pseudo-random wave-
forms. The maximum spectral efficiency of randomly spread (synchronous) CDMA, in the large
system limit, where the number of users and the spreading factor grow without bound while
their ratio tends to a constant 3, was found in [6]. Capacity is achieved by Gaussian user
code ensembles. However, practical systems make use of discrete small-size modulation alpha-
bets, such as QPSK. Therefore it is of interest to investigate the penalty in achievable spectral
efficiency incurred by the use of QPSK.

We consider a pragmatic approach to QPSK-modulated CDMA based on applying single-
user binary coding and the same stripping decoding approach which would be optimal for
Gaussian user codes. Moreover, we constrain our “practical” CDMA system to have only a
finite number of coding rates and/or of received SNR levels. For this setting, we compute the
achievable spectral efficiency in the large system regime with optimal (i.e., single-user capacity
achieving) binary codes and with the best known LDPC code ensembles [7], in the limit for
large code block length, in the cases of equal received SNRs and equal rate users. Remarkably,
the proposed equal power and equal rate design approaches can be effectively applied to non-
asymptotic code block length, and provide a simple tool to dimension CDMA systems for given
target BER, user codes, and desired spectral efficiency. In order to illustrate the effectiveness of
the approach, we give an explicit example of equal power system based on a family of Irregular
Repeat-Accumulate (IRA) codes [8] specially designed to cover a large range of user rates.



2 Synchronous CDMA canonical model
We consider the complex baseband discrete-time channel model
yi=SAx;+n;, i=1...,n (1)

originated by sampling at the chip-rate a synchronous CDMA system [9], where: 1) y;, n; € CV,
are the vector of received chip-rate samples and the corresponding AWGN samples ~ N (0,1)
received at time 7; 2) S € CN*K contains the user spreading sequences by columns; 3) A =
diag(A1,...,Ak) contains the user complex amplitudes; 4) x; € CK is the vector of user
modulation symbols transmitted at time 4, taking on values in a unit-energy signal set; 5) N, K
and n denote the spreading factor, the number of users and the code block length, respectively.

Spreading sequences are random with i.i.d. chips with zero mean, variance 1/N and finite
fourth order moment. The k-th user per-symbol SNR is given by |A.|?. Users are partitioned
into J classes. The size of class j is K, and we denote by 5; = K;/N the “class load” of class j.
The total channel load is § = Z}‘le Bj. Users in class j have the same received SNR, denoted
by 7;, where, without loss of generality, v1 < - < ;. Let user k in class j have rate R;;. The
total system spectral efficiency is given by p = Z}‘le BjR; where we define the average user

rate in class j as R; = KL] ZkKi 1 Ri.j. The users individual Ey/Ny’s are in general different.

Nevertheless, for the sake of comparison with a reference equal-rate equal-power system, we
define a “system” Ej,/Ny by
J
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with the meaning that (Ej/Np)sys coincides with the individual £,/Ny’s in the case where users
are dynamically assigned to the classes so that each user belongs to class j for a fraction 3;/f
of the time.

3 Existing Results on Fundamental limits

In [6] the spectral efficiency (in bit/s/Hz) of random CDMA in the large system limit (K, N —
oo with K/N = [3) subject to an input power constraint is found to be

C(B.7) = C™™(8,4) + log, % + (- 1)logye (3)

where (3 = (B1y...,B7) and vy = (71, ---,77), 1 is the solution to the Tse-Hanly equation [10],
which for later use we write as

n=fr(n,81) (4)

where we define
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and where C™™5¢(3, +) is the achievable spectral efficiency of a system based on linear MMSE
filtering followed by single-user decoding, given by

J
(B, ) =Y Byloga (L + ;1) (6)
7j=1

The spectral efficiencies in (3) and in (6) are achieved with codes whose empirical distributions
are Gaussian.



The supremum of (3) over all possible J, 8,4 (for a fixed E,/Ny and ) is achieved by J =1
(omne class only). The supremum over (3 is achieved for  — oo, and coincides with the AWGN
single-user capacity C*, implicitly given by

2¢" 1
C*

= E,/Ny (7)

Spectral efficiency C(83,) can be achieved by single-user decoding with successive stripping
and MMSE filtering against undemodulated users. Suppose that users are decoded one by one,
starting from users in class J, then class J — 1 and so on. Then, C(3,~) can be written as

J [3].
q@w=§;/1%m+%mwm2 (8)
j=179

where 7);(2) is the solution to n = f;(n, 2).

4 Approaching the optimal spectral efficiency

Substantial progress has been made in the last few years in designing binary codes and decoders
whose rate comes fairly close to single-user capacity at vanishing BER. Among those modern
codes are Turbo codes, Repeat-Accumulate (RA) codes, and Low-Density Parity-Check codes
(LDPCQ), all of which are decoded by efficient iterative techniques (see the special issue [11]
and references therein). These code ensembles are characterized by rate-threshold pairs (R, g),
such that for SNR > g the BER can be made arbitrarily small as n — oo. The threshold g is
normally fairly close (see Figure 1) to the SNR solution of R = Cqpek(SNR), where

) S —v2/2
CQpSk(SNR) =2 (1 - / 10g2 <1 + 672SNR72 SNRv) 6ﬁd’l)) (9)

— o0

is the QPSK-input AWGN channel capacity, as a function of SNR.

Then, it makes sense to design CDMA systems assuming that decoding is error-free when
the decoder operates above its threshold SNR. Our goal is to find the vectors 8 and «y so that, at
each stripping decoder stage, the threshold requirement of each single-user decoder is satisfied.
We shall consider two alternative design problems: (1) equal-rate, non-uniform SNR, and (2)
equal-power, non-uniform rate systems.

Loss of stripping decoding with QPSK. In the large system limit, under our system
assumptions, it is well-known that the residual interference at the output of the MMSE filter at
any cancellation stage is complex Gaussian with circular symmetry. Assuming optimal QPSK
codes characterized by the rate-threshold pairs (R,CL (R)), for R € [0,2], (see Fig. 1), the

qpsk
spectral efficiency achieved by a stripping decoder is given by

J ,Bj
cmmmzz/cmeww (10)
j=170

Fig. 2 shows Cqpe(8,y) and C(8,7) (for a single-class system, i.e., J = 1) vs. 3, for E/Ny =3
and 10 dB. The corresponding AWGN capacity C* is shown for comparison. We notice that
the QPSK loss gets more pronounced as Fjp/Nj increases but that for any fixed E,/Ny and
sufficiently large 3, the loss vanishes.



Equal-rate CDMA system design. Assume that users in all classes make use of codes
drawn randomly and independently from the same family with rate-threshold pair (R, g), and
that users in each class ¢ are decoded in parallel, while classes are stripped off from J to 1, i.e.,
in decreasing SNR order. The SINR at the output of the MMSE filter for class i, assuming that
classes i + 1,...,J have been perfectly canceled, is given by ~;n;(8;). Hence, the condition for
successive decodability of all users is 7;(8;) > g/, for all i = 1,...,J.

We fix the received power levels =, and consider the optimization of the class loads f.
Without loss of generality, we assume ; > g, since for all j such that y; < g, we would have
trivially 8; = 0. This problem can be formulated as a linear programming problem as follows.
Because of the monotonicity of the function in (5), if n;(z) satisfies n;(2) = f;(n;(2), ), then

vV z € [0,00] z <ni(2)" &z < fi(z,2) (11)

Accordingly, the successive decodability condition is equivalent to
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which can be written in compact form as A8 < b, where A is a J x J lower triangular matrix
with non-zero elements

1 )
Qi = w 6]0, 1] (13)
Yi + 759

and b is a positive vector with elements

A+9)(v—9)
g

b; = (14)
Notice that a;; = 1, a;; (for 1 < j <) is increasing with j and decreasing with 7 and b; is
increasing with 1.

For a desired spectral efficiency p = SR, the optimal vector 8 which achieves (if possible)
arbitrarily small BER with minimal (Ej/Np)sys is the solution of the linear program:

minimize Z;-Izl Bivi

subject to AB <b
i B2 b,
B>0

(15)

We have the following result:

Proposition 1. Let x be the solution of the equation Ax = b. The feasible set in (15)
is nonempty if and only if g < ZJ‘-JZI Zj. Denote by J the minimum i for which 8 < Z;:1 Zj,
then the solution of (15) is given explicitly by

* Ti — Ti+1, ’l—].,,j

X . 16

g {0 i>J (16)
where 7;, | =0and 7; = § — > ;;llzij for i = 1,...,j.

The proof follows by finding an equivalent problem whose dual has a polymatroid struc-
ture [12], and by showing that the objective function computed for solution (16) and that of
the dual problem yield the same value (the details are given in [13]). O



Equal-power CDMA system design. We consider a system with the same class-by-class
successive decoding scheme from class J to class 1, as before. Classes have all the same SNR 1,
but each class j makes use of a different code ensemble characterized by the rate-threshold pair
(Rj,g;). We assume Ry > --- > Ry and g1 > --- > g;. For example, the pairs (R;, g;) can be
obtained by sampling the curve of Fig. 1 (assuming optimal binary random codes) or by taking
the points corresponding to good existing LDPC codes [7] (see again Fig. 1). Without loss of
generality, we assume y > g1, since for all j such that v < g;, we would have trivially 8; = 0.

The successive decodability condition is now given by 7;(5;) > % foralli=1,...,J, which
translates into

i
> Bi<b, i=1,..J (17)
j=1

with .

Y9i

using again property (11). Hence, for given rate-threshold pairs (Rj, g;), the spectral efficiency
p= Z;']:I Bi R; maximized over the class loads is obtained as the solution of the following linear
program:
maximize Z;Izl BiR;
subject to LB <b
Z;‘Izl /61 < Ba
B>0

(19)

where L is a lower triangular J x J matrix with non-zero elements all equal to 1 and where
b = (b1,...,b;)T with b; given in (18). We have the following result:

Proposition 2. The problem (19) is always feasible, and its solution satisfies Z;‘]:1 Bi=p
if and only if 8 < b;. Denote by J the minimum 7 for which 8 < b;, then the solution to (19)
is given explicitly by

bi_bi—la ’izl,...,J—l
6:: /B_bj,p Z:j (20)
0 i>J

where bg 2.
The proof follows again by finding an equivalent problem with the polymatroid structure
(the details are given in [13]). O

5 Numerical examples

In this section we give some examples of the equal-rate and the equal-power system designs.
First, we consider good (infinite length) LDPC codes found in [7]. Then, we apply the opti-
mization approach to finite-dimensional systems, based on explicitly designed TRA codes, with
finite block length.

Spectral efficiency with LDPCs. In Fig. 3, the curves denoted by “LDPC” and “discr.QPSK”
are the spectral efficiencies achieved by the equal-power design with the LDPC code family
found in [7] with rate-threshold pairs corresponding to the marks in Fig. 1, and rate-threshold
pairs obtained by sampling the QPSK capacity curve from R = 0.05 to 1.95 with step 0.1.
The curves denoted by “QPSK, 8 = 1,5,10,20” are the spectral efficiencies given by formula
(10), achievable with optimal QPSK codes using infinitely fine sampling of the rate-threshold
capacity curve. C* is shown for comparison. We observe that in order to approach C*, it is
necessary to have many different classes. Even a relatively finely discretized distribution of
rates (such as curve “discr.QPSK”) is quite far from C*. Moreover, in order to approach C* at



high (Ejp/No)sys a very high value of § is required. As expected, the low (E/Ng)sys behavior
of spectral efficiency is dominated by the class with lowest coding rate (and SNR threshold).
In fact, the value at which spectral efficiency becomes zero is given by ¢;/Rj, which is the
minimum Ej,/Nj to have a vanishing fraction of users at non-zero rate.

It is worthwhile to mention that the equal-power spectral efficiency curves are obtained as
the upper envelope of the solution of (19), over all v > g; and § € [0, b,], i.e., for all pairs (v, /3)
for which the solution (20) holds.

In Fig. 4, the curves denoted by “LDPC, R=0.2, 1.0, 1.8” are the spectral efficiencies
achieved by the equal-rate design with the LDPC codes of rate 0.2, 1.0 and 1.8 bit per QPSK
symbol (corresponding to binary rate 0.1, 0.5 and 0.9), in the family of Fig. 1. The equal-rate
spectral efficiency curves were obtained considering increasing values of £, and, for each S, a
vector 4 obtained by discretizing the interval [g, (/)] with step of 0.01 dB, where 7(f) is the
minimum <, for which the feasible set of (15) is non-empty. The variable-rate design is able
to approach quite closely C* for low user coding rate, at the price of a very large load § and a
large number of power levels.

5.1 Practical finite-dimensional systems based on TR As

In order to validate the equal-rate and equal-power CDMA system optimization in the case of
practical finite-length codes and finite spreading factor, we consider the family of IRA codes of
block length n. = 2000 (binary symbols) given in Table 1, explicitly designed to cover a large
range of rates (see [13] for the details). The SNR thresholds were determined by simulation, for
a target BER of 107*. IRA codes are decoded by the standard “belief-propagation” iterative
message-passing decoder [8, 13]. We plug the rate-threshold pairs given in Table 1 in our
asymptotic equal-rate and equal-power system optimization. The actual number of users per
each class is obtained by fixing a desired spreading factor N and by letting K; = [3; N |, where
Bj is the partial load for class j, resulting from optimization. Table 2 presents two design
examples for the codes of Table 1 and p = 2 bit/s/Hz.

In a finite-dimensional system users have not all the same SNR degradation 7 (or Asymptotic
Multiuser Efficiency [9]) with respect to their single-user SNR, at every stripping decoder step,
because of the asymmetry due to finite-length random sequences. Fig. 5 shows a snapshot
simulation of the evolution of the AME vs. the stripping decoder iterations for the systems
of Table 2. At each stripping decoder step, all users of the corresponding class is decoded in
parallel, with 15 TRA decoder iterations per user. The minimum and maximum AME (over
the user population) for the two systems are indicated by the vertical intervals. The equal rate
system (squares) converges to single-user performance for all users in exactly 9 steps, i.e., one
step per class is sufficient despite the residual randomness of the finite-dimensional system. On
the contrary, the equal power system (diamonds) needs 14 stripping decoder steps (twice the
requirement of the infinite-dimensional system).
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| Rate (QPSK) | g (dB), 12 iterations | g (dB), 20 iterations | Code name |

1.8030 7.1103 7.1103 code 1
1.6030 5.4103 5.3103 code 2
1.4020 4.3603 4.3603 code 3
1.2050 3.1003 3.1003 code 4
1.0020 2.2603 2.2603 code 5
0.7970 1.5303 1.5303 code 6
0.5880 -0.7997 -0.8997 code 7
0.4580 -1.2697 -1.2697 code 8
0.1930 -4.4897 -4.4897 code 9

Table 1: Table of IRA codes and thresholds for BER < 10~*, QPSK modulation and block
length 2000 (binary symbols).

‘ System H v (dB) ‘ Code ‘ Users per class K; ‘
Equal power 8.2497 1 8
p = 2.0651 2 10
Ey/Ny = 7.6831 dB 3 6
£ =1.8125 4 7

5 5

6 4

7 18

Equal rate 3.3035 5 10
p = 2.0666 4.3035 9
Ey /Ny = 7.5836 dB || 5.3035 8
B = 2.0625 6.3035 7
7.3035 7

8.3035 7

9.3035 7

10.3035 6

11.3035 5

Table 2: Equal power and equal rate finite-dimensional system design examples, for N = 32.



Rate-threshold for QPSK and LDPC codes
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CDMA, QPSK vs. Gaussian inputs
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Figure 2: Spectral efficiency vs. 8 for random CDMA with Gaussian and QPSK inputs (with
stripping decoder).
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Figure 3: Spectral efficiency of LDPC and optimal QPSK codes with equal-power design.



Equal rate CDMA
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Figure 4: Spectral efficiency of some LDPC codes with equal-rate design.
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Figure 5: AME vs. stripping decoder iterations (snapshot simulation) for the systems of Table 2.



