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Abstract—The Bethe Free Energy (BFE) has been found to
be closely connected to various message passing algorithms.
Studies have indicated that the BFE shares stationary points
with message passing algorithms like Belief Propagation (BP) and
Expectation Propagation (EP). Generalized Approximate Mes-
sage Passing (GAMP) algorithms have demonstrated significant
efficacy in signal recovery. Nevertheless, they may encounter con-
vergence issues. To address these convergence issues, algorithms
based on the minimization of the large system limit (LSL) BFE
have been introduced.
In this paper, we explore the BFE within the context of Gen-
eralized Linear Models (GLMs). Applying a BFE based EP
approach leads to the re(G)VAMP algorithm which provides
asymptotically exact marginal posteriors based on asymptotically
Gaussian extrinsics. It also provides equivalent Gaussian priors
and hence an equivalent overall Gaussian linear model, which
allows the application of large random matrix theory. We show
how this leads to the LSL BFE on which GAMP is based. We
also reveal the intimate relation of extrinsics to Component-
Wise Conditionally Unbiased Minimum Mean Squared Error
(CWCU MMSE) estimation for which we provide a novel shortcut
derivation in the GLM.

I. INTRODUCTION

Sparse signal recovery is a fundamental problem in signal
processing with a wide range of applications. Many of these
problems can be framed as the task of estimating a latent
vector x based on a correlated observation vector y [1]. In
the Bayesian framework, the complexity of Canonical Methods
such as MMSE and MAP experiences exponential growth as
the dimension of the problem grows.
By exploiting the structure of the models, graphical model
based methods prove to be effective. Belief Propagation (BP)
transforms the global inference problem into a local inference
problem as outlined by [2]. Loopy Belief Propagation (LBP)
extends BP by directly employing BP on a factorization
scheme for p(x|y) that may involve loops [3]. In comparison
to BP, LBP can be considered as an approximation method.
A limitation of (L)BP is that the (iterative) updating scheme
leads to pdfs that correspond to the product of a large number
of messages, leading to high complexity. To address this issue,
Expectation Propagation (EP) was introduced [4]. EP has
been shown to share a similar updating scheme as (L)BP,
but for computational efficiency, the messages in (L)BP are
projected into a suitable member of the family of exponential
distributions [4].

A. Prior Work

In both [1] and [5], the authors unify EP and BP within
the framework of minimizing variational free energy. They
demonstrate the close relationship between the fixed points of
various message-passing algorithms and the stationary points
of Bethe Free Energy (BFE).

EP can serve as an inference method in the linear Gaussian
model. However, the computational cost in terms of the mes-
sage count is quadratic in the data size. Approximate Message
Passing (AMP) [6] builds upon EP, but through the application
of large system approximations (LSA), it effectively reduces
the number of messages to the order of the data size, providing
a more computationally efficient approach.
In [7], the authors investigated the fixed points of the Gener-
alized AMP (GAMP) algorithm for generalized linear models
(GLMs). They discovered that GAMP shares the same fixed
point as the stationary points of the Large System Limit Bethe
Free Energy (LSL BFE).
The Component-Wise Conditionally Unbiased (CWCU) Min-
imum Mean Squared Error (MMSE) estimator is introduced
in [8] and rederived in [9] for both joint Gaussian models and
linear models. This concept was also used in [10], where the
authors call it individual bias compensation. The connection
between CWCU MMSE estimation and extrinsic information
is explored in [11] specifically for linear Gaussian models.

B. Main Contributions

Building upon the works of [1] and [12], we present the ap-
proximate BFE corresponding to a joint factorization scheme.
We observe that the reGVAMP algorithm, introduced by [12],
can be understood as an iterative approach aimed at identifying
the stationary points of the proposed BFE. Consequently, this
work offers insights into the fixed points of reGVAMP.
The reVAMP method proposed by [11] operates under the
assumption of linear Gaussian measurements. In situations
where the Gaussian noise is uncorrelated, reVAMP can be
considered as a specific instance of reGVAMP.
We also present an alternative derivation of the LSL BFE.
Through the application of large system approximations to
the stationary points, we substitute certain moment constraints
with their equivalent in the large system context. Moreover,
the new variance constraints suggest separable approximated
posteriors.
We elaborate on the CWCU MMSE discussion, extending it to
GLM based on the Gauss-Markov Theorem. This reveals that
the extrinsic for both input and output nodes can be interpreted
as CWCU MMSE estimation.

II. BETHE FREE ENERGY OF GENERALIZED LINEAR
MODEL

In this section, we first give a short introduction to BFE.



A. Bethe Free Energy

Consider a factorization scheme corresponding to a tree-
structured factor graph,

p(x,y) ∝
∏
α

fxα
(xα), (1)

where xα is a subvector of x. The tree structure allows an
alternative equivalent form [2]

p(x|y) =
∏

α p(xα)∏
i p(xi)Mi−1

, (2)

where Mi is the number of subvectors xα that contain xi.
In (2), the p(xα) and p(xi) are the exact factor (subvector)
marginals and variable marginals.
The concept of variational free energy suggests that to infer
the marginals from a tree structured p(x,y) given in (1), we
can use as trial distribution

qx(x) =

∏
α qxα

(xα)∏
i qxi

(xi)Mi−1
. (3)

The true marginals can be obtained by [1]

min
qxα (xα),qxi

(xi)
F = D[q(x)∥

∏
α

fxα(xα)];

s.t.∀i∀α, qxi
(xi) =

∫
qxα

(xα)dxi,

(4)

where we define the shorthand notation (for arbitrary nonnega-
tive functions q, p) D(q∥p) =

∫
q(x) ln q(x)

p(x)dx and xi denotes
all x except xi. The free energy can be expanded as

F =
∑
α

D[qxα
(xα)∥fxα

(xα)]+
∑
i

(Mi−1)H[qxi
(xi)], (5)

where H(.) denotes entropy in nats. Note that this represen-
tation only holds for a tree structured distribution. For general
graphs that contain loops, (2) no longer holds. Thus, in cases
with loops, (5) is only an approximation of the variational free
energy. The expression (5) is instead called Bethe free energy.

B. BFE of GLM

We consider a GLM with

p(x)=
∏N

i=1 p(xi), z=Ax, p(y|z) =
∏M

j=1 p(yj |zj), (6)

where the ratio N/M is a constant for large system con-
siderations. We interpret the linear mixing as a conditional
probability

p(z|x) = δ(z−Ax). (7)

From this general linear model, a joint (loopy) factorization
scheme comes up naturally:

p(x, z|y) ∝ p(x,y, z) = p(y|z)δ(z−Ax)p(x). (8)

According to the definition of BFE (5), the associated BFE
based on the joint factorization scheme (8) is calculated [1] as

F = D[qx|y(x)∥p(x)]+D[qz|y(z)∥p(y|z)]+
∑
i

H[qxi|y(xi)]

+D[bx,z|y(x, z)∥δ(z−Ax)] +
∑
j

H[qzj |y(zj)],

(9)

where qx|y , qz|y , bx,z|y , qxi|y and qzj |y are only approxima-
tions of the true posteriors because of the loops in (8). Since
these approximated posteriors are only locally consistent as is
suggested by the constraints in (4), they may not correspond
to any distribution [2]. As a result, the Bayesian rule can not
be used to link bx,z|y with qx|y and qz|y .
To use (9) as an optimization criterion, we must consider
the local consistency between joint and variable marginals as
constraints. To make the problem tractable, we use relaxed
constraints which contain only the first and second-order
moments. To make the discussion concise, define sufficient
statistics

ϕxi(xi) =

[
xi

x2
i

]
;ϕzj (zj) =

[
zj
z2j

]
. (10)

Reformulate the BFE and the constraints into a Lagrangian
function

L = F + Lc, (11)
where Lc is the Lagrange multiplier term

Lc=
∑
i

λT
xi

(∫
ϕxi

(xi)qxi|y(xi)dxi−
∫

ϕxi
(xi)qx|y(x)dx

)
+
∑
j

λT
zj

(∫
ϕzj (zj)qzj |y(zj)dzj−

∫
ϕzj (zj)qz|y(z)dz

)
+
∑
i

νT
xi

(∫
ϕxi(xi)qxi|y(xi)dxi−

∫
ϕxi(xi)bx,z|y(x, z)dxdz

)
+
∑
j

νT
zj

(∫
ϕzj(zj)qzj |y(zj)dzj−

∫
ϕzj (zj)bx,z|y(x, z)dxdz

)
.

(12)

We neglect the normalization constraints to keep the discussion
concise. However, one can verify that the Lagrangian multi-
pliers associated with the normalization constraints only act as
scaling factors for b·(·). Therefore, in the following context,
we assume that b·(·) are normalized to one.
Since we need to minimize the BFE given by (9), the distri-
bution function bx,z|y(x, z) must be of the form

bx,z|y(x, z) = bx|y(x)δ(z−Ax), (13)

to avoid infinite value of D[bx,z|y(x, z)∥δ(z − Ax)], where
bx|y is the function to be optimized. Substitute (13) into (11)
and set the partial derivative of Lagrangian (11) with respect
to qx|y , qz|y , bx|y , qxi|y and qzj |y to zero, we obtain the KKT
conditions. Recall the definition of ϕxi

and ϕzj in (10). We
obtain the Gaussian form by replacing Lagrangian multipliers,

qx|y(x) ∝ p(x)N (x|mr,Dτr) (14)
qz|y(z) ∝ p(z)N (z|mp,Dτp) (15)

bx|y ∝ N (x|mx,Dσ2
x
)N (Ax|mz,Dσ2

z
) (16)∏

i

qxi|y(xi) ∝ N (x|mr,Dτr)N (x|mx,Dσ2
x
) (17)∏

j

qzj |y(zj) ∝ N (z|mp,Dτp)N (z|mz,Dσ2
z
), (18)



where Dτr , Dτp , Dσ2
x

and Dσ2
z

are diagonal matrices.
These diagonal matrices along with mr, mp, mx and mz

correspond to the Lagrange multipliers. Though optimizing
the variable marginals may seem like maximizing, they are
fully determined by their neighboring factors because of the
constraints [5]. Their diagonal elements are denoted by τr, τp,
σ2
x and σ2

z , respectively. Since the second order moments are
linked with variance by var(x) = E[x2] − E[x]2, using first
and second order moments is equivalent to using mean and
variance moments.

III. RELATION TO MESSAGE PASSING AND ITS
STATIONARY POINTS

These Gaussian distributions can be interpreted as messages.
The algorithms reVAMP [11] and reGVAMP [12] can be
interpreted as finding the set of consistent messages iteratively
in a certain order.

A. Approximation of Prior p(x)

We consider the consistency between (14) and (17) first. By
Gaussian reproduction lemma [6], the product of two Gaussian
distributions is still Gaussian. Therefore, (17) can also be
denoted as ∏

i

qxi|y(xi) = N (x|mx̂,Dx̂), (19)

where

D−1
x̂ = D−1

τr
+D−1

σ2
x
; D−1

x̂ mx̂ = D−1
τr

mr +D−1
σ2

x
mx.

(20)
In order to make the pair (qx|y, qxi|y) in (14) and (17)
consistent, we consider (mr,Dτr) as known and try to derive
(mx,Dσ2

x
). Define the Gaussian projection

proj(p) = argmin
q∈Ω

DKL

[
p

Zp
∥q
]
, (21)

where Ω is the set of uncorrelated Gaussian distributions, Zp

denotes the normalization factor of p and DKL represents
Kullback–Leibler (KL) divergence.
The moment consistency implies that

N (x|mx,Dσ2
x
) =

proj[p(x)N (x|mr,Dτr)]

N (x|mr,Dτr)
. (22)

This indicates that the message N (x|mx,Dσ2
x
) approximates

p(x). This update method is the same as updating the message
from input node xi to factor node δ(z−Ax) proposed in [12].
Since p(x) is separable, this update scheme contains only
scalar integrals.

B. Extrinsic for Output Node z

Now we need to make (bx,z|y, qzj |y) consistent while assum-
ing (16) to be known.
At the stable points, bx|y , qx|y and

∏
i qxi|y(xi) admit

the same mean and variance (mx̂, τx̂). However, their off-
diagonal elements may differ. We denote

bx|y(x) = N (x|mx̂,Cx̂x̂), (23)
where

Cx̂x̂ = (D−1
σ2

x
+ATD−1

σ2
z
A)−1;

mx̂ = Cx̂x̂(D
−1
σ2

x
mx +ATD−1

σ2
z
mz).

(24)

Likewise, we denote
∏

j qzj |y(zj) as∏
j

qzj |y(zj) = N (z|mẑ,Dẑ), (25)

where

D−1
ẑ = D−1

τp
+D−1

σ2
z
; D−1

ẑ mẑ = D−1
τp

mp +D−1
σ2

z
mz.

(26)
Since bx,z|y(x, z) = bx|y(x)δ(z − Ax). We calculate the
marginal distribution of z as

bz|y(z) =

∫
bx,z|y(x, z)dx = N (z|Amx̂,ACx̂x̂A

T ) (27)

We can see that the mean and variances given by
(Amx̂, diag(ACx̂x̂A

T )) corresponds to the update method
for updating the message from δ(z−Ax) to z stated in [12].
Now, look at the variance subsystem. The variance constraints
entail

∀k, eTkACx̂x̂A
Tek = eTkDẑ ek. (28)

To have a better understanding of the extrinsic of zk, define

C−1

x̂x̂,k
= C−1

x̂x̂ − 1

σ2
zk

AT
k,:Ak,:, (29)

where Ak,: denotes the k-th row of matrix A. Applying the
matrix inversion lemma, the LHS of (28) becomes

Ak,:Cx̂x̂A
T
k,: =

σ2
zk
Ak,:Cx̂x̂,kA

T
k,:

σ2
zk

+Ak,:Cx̂x̂,kA
T
k,:

. (30)

Substituting (26), (30) into (28) yields

τpk
= Ak,:Cx̂x̂,kA

T
k,:. (31)

Since Ak,: is independent of Cx̂x̂,k, in the LSL, we get [13]

Ak,:Cx̂x̂,kA
T
k,: ≃ tr[ΘkCx̂x̂], (32)

where Θk = E[AT
k,:Ak,:].

If we further assume each entry of A to have deterministic
absolute value but i.i.d. signs, it follows that Θk = diag(Sk,:),
where S = A.A denotes the element-wise square of A. This
further simplifies (32)

τpk
≃ tr[ΘkCx̂x̂] = Sk,:τx̂ . (33)

A similar analysis can be done for the mean subsystem. Now
we assume that the variance has been made consistent. The
consistency of the mean implies that

eTkAmx̂ = eTkmẑ. (34)
Denote

nx̂ = D−1
σ2

x
mx +ATD−1

σ2
z
mz; nx̂,k = nx̂ − mzk

σ2
zk

AT
k,:.

(35)
By applying the matrix inversion lemma, we can rewrite the
expression for the kth element of Amx̂ in (27)

Ak,:mx̂ =
σ2
zk

Ak,:Cx̂x̂,kA
T
k,:+σ2

zk

Ak,:Cx̂x̂,knx̂,k

+
Ak,:Cx̂x̂,kA

T
k,:

Ak,:Cx̂x̂,kA
T
k,:+σ2

zk

mzk

(36)



Substitute (31) into (36) and equate Ak,:mx̂ with mẑk given
by (26) to obtain the extrinsic mean

mpk
= Ak,:Cx̂x̂,knx̂,k. (37)

We can also calculate the extrinsic mean as a function of mx̂.
By combining (26) and (34), we see

mpk
=

(
1 +

τpk

σ2
zk

)
Ak,:mx̂ − τpk

σ2
zk

mzk . (38)

The discussions above only hold at the stable point where bx|y
has the same mean and variance with

∏
i qxi|y(xi). Therefore,

we can view the relations given by (33) and (34) as alternative
constraints.

C. Approximation of Likelihood p(y|z)
At this point, we consider the extrinsic N (z|mp,Dτp) to
be given. To make (15) and (18) consistent, we use similar
methods described in (19) till (22), which gives

N (z|mz,Dσ2
z
) =

proj[p(y|z)N (z|mp,Dτp)]

N (z|mp,Dτp)
. (39)

This separable update method indicates that the distribution
N (z|mz,Dσ2

z
) stands for the approximate likelihood. In [12],

the update of messages from z to δ(z−Ax) employs the same
method as outlined in (39).

IV. DERIVATION OF LSL-BFE

Observe the stable point relation (33) and (34) which are
alternative constraints for making the pairs (bx,z|y, qzj |y)
consistent. By using this alternative constraint, we modify the
last Lagrangian term of Eqzj |y

[ϕzj (zj)] = Ebx,z|y [ϕzj (zj)] to

∑
j

uzj ,mean

(
mẑj−

∑
i

Aji

∫
xi bx|y(x)dx

)

+
∑
j

uzj ,var

(
τpj

−
∑
i

Sji varbx|y (xi)

) (40)

With this replacement, we see that bx|y(x) is now separable
by considering the variational derivative of (11). Furthermore,
by combining (13), the consistency between separable bx|y
and ∀i, qxi|y(xi) implies that the following two terms in (9)
are identical

D[bx,z|y(x, z)∥δ(z−Ax)] +
∑
i

H[qxi|y(xi)] = 0 (41)

Now we will consider the relation between z side and (40).
The constraints given by (40) are applied to the posterior mean
and extrinsic variance of node z.
We use the ansatz that qz|y is separable. Indeed, in (9),
if we look at the derivative with respect to qz|y , the term
D[qz|y(z)∥p(y|z)] implies a separable qz|y . Furthermore, the
constraints (40) also indicate a separable extrinsic for qz|y .
Therefore, in large system limit, we can use strict marginal
constraint for the pairs (qz|y, qzj |y), which entails qz|y =∏

j qzj |y(zj). This leads to a hybrid message passing algo-
rithm [1].

Calculate the derivative of the Lagrangian function with re-
spect to qz|y for the BFE along with the posterior constraint
given by (40)

d

d qz|y(z)
D[qz|y(z)∥p(y|z)]+H[qz|y(z)]+

∑
j

uzj ,meanmẑj

= − log[p(y|z)] + uT
zj ,meanz+ c

(42)

Combining with the definition of τp in (15), the extrinsic
constraint in (40) suggests that qz|y must be of the form

qz|y ∝ p(y|z)N (z|mp,Dτp), (43)

where Dτp = diag(Sτx̂).
Recall the variation derivative rule

d

dp(x)

∫
p(y) log

p(y)

q(y)
dy = log[p(x)]− log[q(x)] + 1 (44)

It indicates that we can modify the extrinsic for z additively
by adding terms of the form D(qz|y∥qez).
Assume

qez(z) = N (z|µz,Dτp). (45)

To satisfy the implicit extrinsic variance constraint given
by (40) in the Lagrangian function explicitly, the objective
function (which is LSL BFE) is equivalent to

FLSL = D[qx|y(x)∥p(x)] +D[qz|y(z)∥p(y|z)]
+H[qz|y(z)] +D(qz|y∥qez).

(46)

Furthermore, because of the introduction of auxiliary variable
τp, we also need to minimize BFE with respect to it.
As µz is an unconstrained free variable, we optimize it directly
by zeroing the derivative concerning it. Expand the terms
H[qz|y(z)] +D(qz|y∥qez) in (46)

H[qz|y(z)] +D(qz|y∥qez)
= c+ (mẑ − µp)

TD−1
τp

(mẑ − µz).
(47)

We see the minimal is achieve at µz = mẑ.

V. RELATION TO CWCU MMSE ESTIMATOR

The algorithm proposed by [11] can be interpreted as an
iterative method of finding consistent messages in (14) - (18)
in the cases where p(y|z) is modeled as AWGN channel.
[11] also shows the close relation between CWCU LMMSE
estimation and the extrinsic. In the following, we will interpret
the extrinsic as CWCU LMMSE estimation based on the
Gauss-Markov theorem.
Based on the discussion of the previous section, when deriving
the extrinsic for z and x, we find the system to be equivalent
to a Gaussian linear model. Therefore, we can use the approx-
imate prior and approximate likelihood as if they are the true
prior and likelihood when deriving the extrinsics without large
system approximations [9].
Consider jointly Gaussian y and x (scalar)[

y
x

]
∼ N

([
my

mx

]
,

[
Cyy Cyx

Cxy Cxx

])
(48)



Then the extrinsic p(y|x) is Gaussian and based on Gaussi-
Markov theorem

−2 ln p(y|x) = c+(y −my|x)
TC−1

y|x(y −my|x), with
my|x = my +CyxC

−1
xx (x−mx),

Cy|x = Cyy −CyxC
−1
xxCxy

(49)
Interpreting (49) as a pdf in x (which Fisher called fiducial
statistics), we can rewrite this quadratic exponent as
−2 ln p(y|x) = c(y) + (x− x̂CL)

2/Cx̃CLx̃CL
,

x̂CL = mx + dCxyC
−1
yy(y −my) = d x̂L + (1− d)mx

Cx̃CLx̃CL
= dCx̃Lx̃L

,
with
x̂L=mx+CxyC

−1
yy(y −my), Cx̃Lx̃L

=Cxx−CxyC
−1
yyCyx

d =
Cxx

CxyC
−1
yyCyx

≥ 1,

(50)
where x̂CL, Cx̃CLx̃CL

are the CWCU LMMSE estimate and
error variance, and x̂L, Cx̃Lx̃L

are the LMMSE (and hence
MMSE since Gaussian) estimate and error variance.
Now we will investigate the vector case. Define the operation
Diag(C) = diag[diag(C)], which returns a diagonal matrix
composed of the diagonal elements of C.
Interpreting the previous x as a component xi of a vector x,
we can write

x̂CL=mx+DCxyC
−1
yy(y −my) = D x̂L+(I−D)mx

Cx̃CLx̃CL
= Cx̃Lx̃L

+ (D− I)Cx̂Lx̂L
(D− I)

with
D=Diag(Cxx)[Diag(Cx̂Lx̂L

)]−1, Cx̂Lx̂L
=CxyC

−1
yyCyx

(51)
where the expression for Cx̃CLx̃CL

follows from x̃CL = x−
x̂CL = x̃L− (D−I)CxyC

−1
yy(y−my) and the two terms in

this difference are decorrelated by the orthogonality property
of LMMSE estimation.
Next, we’ll show: D = diag(τCL./τL), where τL =
diag(Cx̃Lx̃L

) and τCL = diag(Cx̃CLx̃CL
).

Cx̃CLx̃CL
= Cx̃Lx̃L

+ (D− I)Cx̂Lx̂L
(D− I)

= Cxx −Cx̂Lx̂L
D−DCx̂Lx̂L

+DCx̂Lx̂L
D

(52)

Calculate the diagonal elements

diag(τCL) = Diag(Cx̃CLx̃CL
) = Diag(Cxx)

+DDiag(Cx̂Lx̂L
)D−Diag(Cx̂Lx̂L

)D−DDiag(Cx̂Lx̂L
)

= Diag(Cxx)[Diag(Cx̂Lx̂L
)]−1Diag(Cxx)−Diag(Cxx),

(53)
where we use D = Diag(Cxx) [Diag(Cx̂Lx̂L

)]−1 in (51).
Now we want to show D diag(τL) = diag(τCL) :

Ddiag(τL) = DDiag(Cx̃Lx̃L
)

=Diag(Cxx)[Diag(Cx̂Lx̂L
)]−1·

·[Diag(Cxx)−Diag(Cx̂Lx̂L
)] = diag(τCL)

(54)

The extrinsic for x without large system approximations can
be interpreted as CWCU MMSE estimation from the Gaussian
model[

mz

x

]
∼N

([
Amx

mx

]
,

[
ADσ2

x
AT +Dσ2

z
ADσ2

x

Dσ2
x
AT Dσ2

x

])
.

(55)

The underlying equivalent Gaussian linear model is

mz = Ax+ vx (56)

where x ∼ N (mx,Dσ2
x
) and vx ∼ N (0,Dσ2

z
).

Likewise, we can interpret the extrinsic for z as CWCU
MMSE estimation from[

Amx

z

]
∼ N

([
mz

mz

]
,

[
Dσ2

z
+ADσ2

x
AT Dσ2

z

Dσ2
z

Dσ2
z

])
. (57)

The underlying equivalent Gaussian linear model is

Amx = z+ vz (58)
where z ∼ N (mz,Dσ2

z
) and vz ∼ N (0,ADσ2

x
AT ).

VI. CONCLUDING REMARKS

In this paper, we studied the BFE of GLMs using a joint
factorization scheme. This factorization allows us to extract
approximate priors and likelihood. By looking at the stationary
point in LSL we replace the non-separable constraints with
separable ones. This leads to the LSL BFE. This paper also
interprets extrinsics for both input and output nodes as CWCU
LMMSE estimation operations.
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