
Replication: Contrastive Learning and Data Augmentation
in Traffic Classification Using a Flowpic Input Representation

Alessandro Finamore

Huawei Technologies SASU, France

alessandro.finamore@huawei.com

Chao Wang

Huawei Technologies SASU, France

EURECOM, France

wang.chao3@huawei.com

Jonatan Krolikowski

Huawei Technologies SASU, France

jonatan.krolikowski@huawei.com

Jose M. Navarro

Huawei Technologies SASU, France

jose.manuel.navarro@huawei.com

Fuxing Chen

Huawei Technologies SASU, France

chenfuxing@huawei.com

Dario Rossi

Huawei Technologies SASU, France

dario.rossi@huawei.com

ABSTRACT

Over the last years we witnessed a renewed interest toward Traffic

Classification (TC) captivated by the rise of Deep Learning (DL). Yet,

the vast majority of TC literature lacks code artifacts, performance

assessments across datasets and reference comparisons against Ma-

chine Learning (ML) methods. Among those works, a recent study

from IMC’22 [16] is worth of attention since it adopts recent DL

methodologies (namely, few-shot learning, self-supervision via con-

trastive learning and data augmentation) appealing for networking

as they enable to learn from a few samples and transfer across

datasets. The main result of [16] on the UCDAVIS19, ISCX-VPN and
ISCX-Tor datasets is that, with such DL methodologies, 100 input

samples are enough to achieve very high accuracy using an input

representation called “flowpic” (i.e., a per-flow 2d histograms of the

packets size evolution over time).

In this paper (i) we reproduce [16] on the same datasets and (ii)

we replicate its most salient aspect (the importance of data augmen-

tation) on three additional public datasets (MIRAGE-19, MIRAGE-22
and UTMOBILENET21). While we confirm most of the original re-

sults, we also found a ≈20% accuracy drop on some of the inves-

tigated scenarios due to a data shift in the original dataset that

we uncovered. Additionally, our study validates that the data aug-

mentation strategies studied in [16] perform well on other datasets

too. In the spirit of reproducibility and replicability we make all

artifacts (code and data) available to the research community at

https://tcbenchstack.github.io/tcbench/.

CCS CONCEPTS

•Computingmethodologies→Machine learning; •Networks

→ Network measurement.

KEYWORDS

Traffic Classification, Deep Learning, Data augmentation, Con-

trastive learning.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

IMC ’23, October 24–26, 2023, Montreal, QC, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0382-9/23/10. . . $15.00

https://doi.org/10.1145/3618257.3624820

ACM Reference Format:

Alessandro Finamore, Chao Wang, Jonatan Krolikowski, Jose M. Navarro,

Fuxing Chen, and Dario Rossi. 2023. Replication: Contrastive Learning and

Data Augmentation in Traffic Classification Using a Flowpic Input Repre-

sentation. In Proceedings of the 2023 ACM Internet Measurement Conference

(IMC ’23), October 24–26, 2023, Montreal, QC, Canada. ACM, New York, NY,

USA, 16 pages. https://doi.org/10.1145/3618257.3624820

1 INTRODUCTION

Traffic classification (TC) is a long investigated topic in the network-

ing community with seminal works dating back nearly two decades

ago [27] which have been instrumental for bringing Machine Learn-

ing (ML) tools into networks operation and management. Since

then, the TC field has been flourishing with literature and it is

regularly surveyed [28, 30]. The recent hype of Deep Learning (DL)

has expanded the interest on the field with several contributions

from flagship ACM and IEEE conferences, including IMC [16].

Despite the progress made, reproducing (and replicating) re-

search can still be a challenge [18], especially for TC. This is often

rooted back in the well known self-awareness that “a scientific

publication is not the scholarship itself, it is merely advertising

of the scholarship” [5]. For the networking field, reproducibility

has become more of a commonplace in the last decade, thanks

to the emergence of tools (such as specialized containers [14]),

community-wide awareness (such as dedicated workshops [34])

and policies (such as ACM badging [10]). Considering TC, difficul-

ties are knowingly aggravated by data availability (yet, see Sec.2.3

for a positive outlook) and pertinence (i.e., due to datasets bias [19]

and ageing, which mandates replication across several datasets).

Following a different direction than previous literature, this paper

aims to reproduce and replicate research results from a recent TC

study. In other words, our final goal is not only to investigate the

scientific aspects behind the methodologies under study per-se, but

to enable the research community to take advantage of our code

base and artifacts such as models, logs, and curated datasets with

a complementary website to document and navigate the artifacts

(see App. B).

More in detail, we aim to reproduce the most important aspects

of an interesting recent work on TC that appeared as a short paper

in IMC’22 program [16]. This study uses recent promising DL tech-

niques (notably, few-shot learning, self-supervision via contrastive

learning and data augmentation) that we believe to be worthy of

community-wide interest as they relate to practical problems that

https://tcbenchstack.github.io/tcbench/
https://doi.org/10.1145/3618257.3624820
https://doi.org/10.1145/3618257.3624820

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Alessandro Finamore et al.

Figure 1: Example of a packet time series transformed into a flowpic representation for a randomly selected YouTube flow in

the UCDAVIS19 dataset. Heatmaps are in a log scale normalized between the max and min value for each flowpic, with higher

packets count values having darker shades (images better viewed digitally).

plague ML and DL application for TC (e.g., poor model generaliza-

tion and label scarcity). Summarizing our main findings:

• Regarding reproducibility, from a qualitative viewpoint, we

were able to reproduce most of the results of [16], e.g., con-

firming the interest in few-shot learning, self-supervision

via contrastive loss and data augmentation; from a quantita-

tive viewpoint, we incurred in unexpected results with large

discrepancies that we were able to drill down and explain.

Furthermore, with respect to the original publication, we

calculated confidence intervals on our results to achieve bet-

ter statistical validity, which may require tempering some

of the observations in [16].

• Concerning replicability, we find qualitative agreement and

confirm that the data augmentation policies selected in [16]

behave consistently on other datasets.

• Philosophically, this work could be read as a chapter of the

famous Queneau’s book “Exercises in style”[31], cast to tell

a traffic classification story. In particular, some aspects of

the target paper (that we discuss in detail later) are missing

despite being key for effectively reproducing the study.
1

Hence, readers must be aware that our resulting exercise is

one of the many styles to tell the same story [31].

In the following, we first provide background about the target

study (Sec. 2). We then lay out our replicability and reproducibility

goals, providing information about artifacts (Sec. 3). We continue

by discussing our experimental protocol and results (Sec. 4) before

concluding with final remarks (Sec. 5). Details that we believe to be

needed to make the paper self contained are deferred to App. C–F.

2 BACKGROUND AND MOTIVATION

Due to its nature, the present study falls in the broad area of repro-

ducibility that started becoming a popular subject in networking

a decade ago [14]. Given its breadth, it is out of the scope of this

paper to review the whole reproducibility discipline. Conversely,

we focus on the selected target paper, starting with an overview of

1
We carried out our study based on what is reported in [16]. In fact, due to the double

blind policy of the submission, we reached out multiple times to the original authors

only in the weeks related to the shepherding of this article but we received only short

and delayed responses. It is worth mentioning that we found a git repository [9] related

to [16] but it presents several important limitations (see App. D) and cannot be used

to replicate [16].

its scope and contributions which we expand with relevant related

work.

2.1 Target paper

In this work we replicate [16], which in the remainder of this pa-

per we will also refer to as Ref-Paper or Horowicz et al. In this

short study, Horowicz et al. quantify the performance of classifi-

cation tasks when using only up to 100 training samples (i.e., few

shot learning scenarios) yet increasing the training dataset with

synthetic samples created with data augmentation functions. Au-

thors consider both a supervised and an unsupervised setting, the

latter represented by the popular contrastive learning approach

named SimCLR [6], which starts from pre-training a model in an

unsupervised fashion and later fine-tunes it to address a target

task using a small number of labeled samples. Rather than using

packet time series, Horowicz et al. use a flowpic input representa-

tion, i.e., a 2d summary of a network flow dynamics. Overall, we

identify three contributions from the Ref-Paper: (𝑖) a benchmark

of the effect on the performance of Convolutional Neural Network

(CNN) models across 7 data augmentations (Sec. 2.3), tested on two

datasets, UCDAVIS19 and ISCX (Sec. 3.4); (𝑖𝑖) an evaluation of Sim-

CLR (Sec. 2.4) and its sensitivity to the number of samples used

during fine-tuning; (𝑖𝑖𝑖) an ablation of the fine-tuning performance

when using alternative input formats to flowpic (Sec. 2.2). In the

remainder of this section we expand on each of those contributions.

2.2 Input data representation

Target work. The flowpic representation used in the Ref- Paper
was originally introduced by (part of) the same authors at an IN-

FOCOM’19 workshop [33]. In Figure 1 we show a YouTube flow

(extracted randomly from the UCDAVIS19 dataset) as well as its

related flowpic at different resolutions. The left most plot shows

the packet time series. Notice the expected bursty nature typical

of video streaming services. The Ref-Paper computes a flowpic

using only the first 15s of the time series. Specifically, both the 15s

and the packets size range (0-1500) are split into bins based on the

resolution of the target flowpic.
2
For instance a 32×32 flowpic leads

to 469.8ms time bins and 46B packet size bins. Then, the count of

2
Traffic directionality is not considered when composing the flowpic in the

Ref-Paper although the representation could be reformulated to take it into account.

Replication: Contrastive Learning and Data Augmentation
in Traffic Classification Using a Flowpic Input Representation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

the packets occurring in each time window are tallied based on the

defined packet size bins. In other words, each time window provides

a frequency histogram of the packet sizes, and by vertically stacking

all the histograms we obtain a “picture” of the flow dynamics. For in-

stance, at the 32×32 resolution, the vertical stripes match the packet

bursts of the original time series. This sort of patterns make the

flowpic representation appealing for CNN-based DL architectures

as convolutional layers are explicitly designed to extract features

to detect such patterns. Yet, the higher the flowpic resolution, the

sparser the representation, and the higher their computational pro-

cess. While flowpic was introduced with a 1500×1500 resolution,
in the Ref-Paper this is compared against a 32×32 resolution, i.e.,
a mini-flowpic.

Related work. Despite being well suited for CNN architectures,

the flowpic representation is not a mainstream choice for TC as

it requires to observe multiple seconds of traffic. This can enforce

a late/post-mortem classification (i.e., after the flow ends), which,

while still useful for monitoring, might not fit network management

needs—prioritization, scheduling and shaping benefit from classifi-

cation after the first few packets, so waiting for multiple seconds to

take action can be sub-optimal. Conversely, the most common input

features in the traffic classification literature are packet time series

(e.g., the size, direction, inter-arrival time of the first 10 packets of

a flow) and payload bytes (e.g., the first 784 L4 payload bytes). Since

time series (and payload) features enable early classification, they

have been the go-to choice since seminal works [4, 7, 26]. Addition-

ally, time series and payload input can be combined in “multi modal”

architectures [2, 3, 24] that have become popular in networking

and other fields—rather than selecting either one representation

or the other, a DL model can be designed to learn from different

input formats at the same time. While we acknowledge it would be

interesting to benchmark architectures and input representation, it

is beyond the scope of our reproducibility/replicability study.

2.3 Label scarcity and data augmentation

Target work. Supervised learning requires large labeled datasets.
As these are notoriously difficult to share and labeling is costly, the

ability to learn from as few labeled samples as possible is particu-

larly appealing.

In this direction, the Ref-Paper considered twomid-sized datasets—

UCDAVIS19 [32], which contains 5 classes with up to ≈1,000 samples

per class, and ISCX-VPN and ISCX-VPN [29], which were processed

and combined to obtain 10 classes with a few flows each—and

investigated the classification performance when learning from

only 100 samples. To do so, Horowicz et al. considered data aug-

mentation techniques applied to either flowpics (e.g., rotation) or

to the packets time series (e.g., altering inter-arrival times) from

which the flowpics are then computed. The Ref-Paper shows that

simple data augmentations can indeed be beneficial even when

using a few samples (with authors preferring time series transfor-

mations over image-related ones). These are interesting findings

worth reproducing—on flowpic in the context of this work—and

we believe they should be extended to packet time-series too in a

future work.

Related work. Concerning label scarcity, until recent times only

small-sized datasets for TC were publicly available—tens of classes

and a few thousands of flows at best [29, 32]. This situation changed

with the release of significantly larger datasets—hundreds of classes

and millions of flows [23, 24, 36]. Whereas this encouraging trend

is slowly making TC public datasets reach the scale of computer

vision datasets, reducing dependency from labels is still a desirable

goal and an open question for the ML research community as a

whole.

Concerning data augmentation we find that, while it is widely

adopted in computer vision (from the very first work at the root of

the hype of CNNs in the field [21]), only a handful of studies use

it in TC literature. Particularly relevant is [32] where the authors,

beside introducing the UCDAVIS19 dataset, use as input packet time

series, which are sampled into “subflows”. Specifically, given the

packet series (size, direction and inter arrival time), the authors

propose to sample values based on different policies (e.g., selecting

one packet every N from a random starting point); hence, from

one flow they obtain multiple “subflows” which semantically corre-

spond to a coarser-grained “view” of the original flow. The authors

use UCDAVIS19 and ISCX-VPN with a two-step learning process:

first, they pre-train a model in an unsupervised manner, target-

ing a 24-way regression problem from the generated subflows, i.e.,

they create a model that, given a subflow as input, can provide

24 metrics extracted from the flow; then such model is fine-tuned

to obtain the target classifier using up to 20 labeled samples per

class. In other words, [32] uses the two-step training approach of

the Ref-Paper but does not adopt contrastive learning. Another

recent study about data augmentation is [17] where the authors use

a GAN-based approach that learns to augment packet time series

during training. Conversely, in the Ref-Paper the augmentations

are designed based on domain knowledge. Overall, while we believe

that a broader and more systematic (i.e., across multiple datasets

and inputs) comparison of data augmentation techniques in the TC

field should be of community-wide interest, in our study we use

the same point of view of the Ref-Paper.

2.4 Contrastive learning

Basic principles. Contrastive learning is particularly relevant

and among the main reasons for our selection of the Ref-Paper.

However, to understand this we first need to review some basic

principles of DL model training.

At a high level, a supervised DL classifier is typically a composi-

tion of a feature extractor and a linear classifier. During training,

the feature extractor learns how to project the input data into a

latent space to group samples of the same class and distance them

from other classes samples. Relying on such geometrical separa-

tions, a simple linear classifier suffices to identify classes but it

is important to underline that such geometrical properties in the

latent space are implicitly learned, i.e., the traditional training loss

has no knowledge of the latent space as it observes points after the

final linear layer, not in the latent space.

Conversely, contrastive learning is a special type of self-supervision

which aims to explicitly enforce geometrical properties in the latent

space by means of data augmentations. Figure 2 sketches the prin-

ciples behind the technique. Input samples are transformed into

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Alessandro Finamore et al.

View

View

+

_ _
_

+

_

Original input Transformed Views Latent space geometry

Embed

Augmentations

Augmentations

Latent space
projection

Figure 2: Contrastive learning principles.

“views” using augmentation functions. Then views are compared

using a “contrastive game”: a given view (an anchor) is compared

in the latent space against other views of the same original im-

age (positive samples) and all other views (negative samples). The

contrastive loss function (namely InfoNCE for SimCLR) aims at

pushing an anchor closer to its positives and distancing it from

negatives. This training is unsupervised and a given anchor is forced

to be similar to other views of the same image—in a sense, views

of the same image form “their own class” even if negative samples

can be of the same underlying class of the anchor. Hence, this is a

harder problem than when using supervision and it is intentionally

designed to push the learning of the representation. Figure 2 de-

picts one specific configuration of (anchor, positive, negatives) but

during training all possible permutations are computed. The figure

also shows the setting defined by SimCLR, but other variations

are possible (e.g., the anchor can be the original image, and some

contrastive learning algorithms do not use negative samples [11]).

Once the feature extractor (a.k.a., the representation) is pre-trained,

it can be extended by fine tuning a linear layer and obtaining the

final classifier. Overall, the more powerful the representation, the

lower the number of samples required for fine-tuning.

Target work. Contrastive learning’s appeal comes from (1) the

ability to pre-train a feature extractor in an unsupervised man-

ner and (2) the possibility of fine-tuning with just a few labeled

samples. Specifically, Horowicz et al. pre-train using 100 unlabeled

samples transformed based on packet time series transformations

(Change RTT and Time shift)
3
using SimCLR and fine-tune using

only up to 10 labeled samples. Results show that, in some scenarios,

classification performance is almost on-par with fully supervised

training.

Related work. The closest related work to the Ref-Paper is [35],
where the authors applied another off-the-shelf contrastive learn-

ing method (Bootstrap Your Own Latent - BYOL [11] which, unlike

SimCLR, does not rely on negative samples) by pre-training on

augmented data and fine-tuning on a few samples. The authors

relied on the same dataset as in the Ref-Paper but adopted packet

time series as their input (rather than flowpics), leveraging the

data transformations proposed by [32] and a ResNet18 architec-

ture. Overall, [35] shows comparable performance with respect to

the Ref-Paper. A few more recent studies investigated contrastive

learning on raw packet bytes as input [25, 37] and compared it

3
The augmentations used in [16] are inspired by the ones used in [32].

against transfer learning and meta-learning [13], highlighting its

recent relevance.

3 METHODOLOGY

3.1 Experimental goals

As previously stated, this work aims (i) to reproduce the main results

of the Ref-Paper, employing the same methodologies and data, as

well as (ii) to replicate the Ref-Paper’s results by considering three

other datasets to confirm the validity of its findings. In more detail,

our specific goals are:

(G0) Provide a baseline analysis of the TC problem using classic

Machine Learning (ML) models.

(G1) Reproduce the benchmarking of the proposed data augmen-

tation techniques for flowpics as a preliminary selection step

for their use in contrastive learning. We aim for a quanti-

tative reproduction (G1.1) and a qualitative reproduction

(G1.2) of the augmentations ranks.

(G2) Reproduce the SimCLR-related results with special atten-

tion to their internal details (e.g., use of dropout, projection

layer size, training set size and impact of the combination of

augmentations used).

(G3) Replicate the benchmarking of data augmentation techniques

on another set of public datasets.

By addressing G0 we aim to quantify the classification task’s de-

gree of difficulty using ML methods and to assess if the use of more

sophisticated modeling techniques is justified. Additionally, since

the Ref-Paper does not provide confidence intervals nor perform

any kind of statistical analysis of their results, G1 and G2 aim to

not only merely reproduce the original results but, also, to add a

layer of statistical significance to them. Finally, with G3 we assess

whether (statistically relevant) findings can be extended to other

datasets.

3.2 Experimental protocol

We closely followed the configurations and scenarios from the

Ref-Paper which we complemented with ablation studies and mod-

eling campaigns. In this section we provide a summary of the main

aspects of [16]. Details are deferred to the related evaluation sec-

tions where quote blocks as

example quote block

highlight details from the Ref-Paper that require discussion.

DL architectures. We adopted the same CNN-based networks

of the Ref-Paper, namely a LeNet5 [22] (i.e., a mini-flowpic) and

a larger version of it (i.e., a full-flowpic).
4
We also explored the

impact of dropout layers and the size of SimCRL projection layers

(see 4.4.2). In addition to our code artifacts, the printout of the

networks is reported in App. C.

Data augmentation. Next to applying no augmentation, we

adopted the 6 augmentations used in the Ref-Paper—3 packet time

series transformations (Change RTT, Time Shift and Packet Loss)

4
The terminology in the Ref-Paper is overloaded as mini- and full-flowpic also

refer to the resolution of the flowpic created.

Replication: Contrastive Learning and Data Augmentation
in Traffic Classification Using a Flowpic Input Representation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Table 1: Outline of the Ref-Paper contributions, their points of improvement and our contributions.

Ref-Paper contributions Points of improvement Our contribution

Test on 7 data augmentations on UCDAVIS19 and ISCX Issues with ISCX; no statistical analysis of classif. perf. Extra 3 datasets; added statistical analysis

Evaluate SimCLR and its sensitivity to fine-tuning dataset size Lower performance with respect to the Ref-Paper Expansion of training set size

Performance comparison on fine-tuning with alternative inputs Analysis expansion to other parameters Fine-tuning sensitivity to dropout and augmentation

and 3 image transformations (Rotation, Horizontal Flip, and Color

jitter)—with the same hyper-parameters (see [16] for details).

Training steps. As in the Ref-Paper, we compared twoDLmod-

eling techniques: fully supervised training and SimCLR + fewshot

fine-tune training. For the former, samples are augmented before

starting the training. For the latter, given a labeled dataset and a

selected augmentation function, each sample is processed to create

2 views of it using the Change RTT and Time shift transforma-

tions. Both views are created when forming the mini batches used

during training. First, a representation of the dataset is learned by

pre-training a model via SimCLR, contrasting pairs of augmented

“views” of a sample. Then, a newmodel is formed by freezing the pre-

trained representation and combining it with a classifier layer which

is fine-tuned based on a few labeled samples. As in the Ref-Paper,

we use Change RTT and Time Shift as data augmentation functions,

yet we complement the analysis testing other augmentation pairs

too. Augmentations are used only during pre-training.

Comparing contributions. To compare our study with [16],

we provide a summary of the Ref-Paper contributions in Table 1,

highlighting the points of improvement we identified (some of them

described in the coming sections) and the actions we took to ex-

pand on them, apart from the basic reproducibility and replicability

efforts described above. We remark that this table does not cover

every contribution in this paper (e.g., it does not mention the added

ML baseline), but rather contrasts what the original paper covered

and how we increased the scope of the original contributions.

3.3 System and Artifacts

We performed 13 modeling campaigns, each consisting of the ap-

plication of a target configuration across multiple random seeds

and data splits (see Sec. 4 for details) for a total of 2,760 individual

experiments. This entailed the implementation of a modeling frame-

work able to properly track hyper-parameters, performance metrics

and other configurations as well as output artifacts (e.g., models,

summary report, logs). For this tracking we relied on AimStack5

which we complemented based on our needs (e.g., the framework

has only minimal support for tracking output files). Both our mod-

eling framework and the whole modeling campaign outputs are

provided as artifacts (see App. B).

All experiments were run on Linux servers equipped with multi-

ple nVIDIA Tesla V100. Individual modeling experiment duration

span from a few minutes to hours and the overall set of campaigns

takes multiple weeks to run even in a distributed setting.

3.4 Datasets

To address our goals we used the four datasets summarized in Ta-

ble 2. UCDAVIS19 is used in the Ref-Paper while we selected the

5
https://github.com/aimhubio/aim

Table 2: Summary of datasets properties.

Name Partition Filter Classes
Flows Pkts

all min max 𝜌 mean

[32] UCDAVIS19
pretraining

none 5

6,439 592 1,915 3.2 6,653

human 83 15 20 1.3 7,666

script 150 30 30 1.0 7,131

[1] MIRAGE-19 n.a.
none

20
(∗) 122,007 1,986 11,737 5.9 23

>10pkts 64,172 1,013 7,505 7.4 17

[12] MIRAGE-22 n.a.

none

9

59,071 2,252 18,882 8.4 3,068

>10pkts 26,773 970 4,437 4.6 6,598

>1,000pkts 4,569 190 2,220 11.7 38,321

[15] UTMOBILENET21 4-into-1
none 17 34,378 159 5,591 35.2 664

>10pkts 10 9,460 130 2,496 19.2 2,366

𝜌 : ratio between max and min number of flows—the larger the value, the higher the

class imbalance; (*) Despite being advertised of having traffic from 40 apps, the public

version of the dataset only contains 20 apps.

others because of their interesting and complementary properties

with respect to UCDAVIS19: (𝑖) they are collected in similar setups—

research projects related to mobile traffic monitoring— (𝑖𝑖) they

cover a larger number of classes and users behavior—MIRAGE-19
and UTMOBILENET21 are gathered from volunteering students in-

teracting with instrumented phones while MIRAGE-22 focuses on
video meeting services—and (𝑖𝑖𝑖) they are imbalanced—the 𝜌 values

in the table reflect the ratio between the number of samples of the

largest and smallest class in a dataset; notice the larger imbalance

of the three datasets compared to UCDAVIS19, which is an expected

property of network traffic. More importantly, all these datasets

provide per-packet time series for the whole flows duration, which

is a key requirement for composing flowpic representations. For

instance, we cannot use the larger AppClassNet [36] and CESNET-
TLS [24] datasets because they only provide the packet time series

for the first 20-30 packets of each flow.

Data curation. Each dataset is a collection of files (in either

CSV or JSON format) which we reprocessed into “monolithic” par-

quet files (a well known serialization format used in data science)

encoding packet time series as numpy arrays.

As detailed in the table, UCDAVIS19 is pre-partitioned (and pre-

filtered) by the authors of the dataset to create a large set of samples

for unsupervised training (namely pretraining) and two smaller

testing set partitions, namely script and human.6 As such, we

found no need to alter the dataset beside the mere conversion to

parquet.

Conversely, for the other three datasets we filtered out flowswith

less than 10 packets and removed classes with less than 100 samples.

To replicate the setting provided in UCDAVIS19, for MIRAGE-19 and

6
According to [32], both pretraining and script correspond to automated collection

of data, while human is gathered monitoring traffic when real users were interacting

with the selected 5 services.

https://github.com/aimhubio/aim

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Alessandro Finamore et al.

MIRAGE-22 we also first removed TCP ACK packets from time series

and then discarded flows related to background traffic.
7
We also

highlight that UTMOBILENET21 authors split the dataset into 4 parti-
tions (“Action-Specific”, “Deterministic Automated“, “Randomized

Automated” and “Wild Test”) but we collated them into one.

The right-most column of the table details the average number

of packets in a flow. Notice how UCDAVIS19 has very long flows

while MIRAGE-19 is the dataset with shortest ones. To further focus

on very long flows, we also created a version of MIRAGE-22 with
flows having more than 1,000 packets.

Lastly, through our curation we also created reference train/test

splits for the datasets. Specifically, since in the Ref-Paper the train-

ing dataset needs to have 100 samples, for UCDAVIS19 we create 5
folds (the smallest class in the dataset has 592 flows) of 100 sam-

ples per-class each. However, for the other datasets we opted for

having 5 random splits each having a random selection of 80% of

samples for training (and the rest for testing). To ease replicability,

we contribute the code used for our curation (which can be applied

directly on original version of each dataset) as well as our curated

parquet files (see App. B).

Reproducibility. Beside UCDAVIS19, the Ref-Paper also consid-
ers the ISCX-VPN and ISCX-Tor datasets, but we discarded them

after some preliminary investigations. In fact, as acknowledged by

Horowicz et al. and as well known in the literature, these datasets

(even when combined) contain only tens of viable flows for the

analysis. Hence, to use them, one would need to create multiple

15s windows from the same flow to reach the 100 samples required

for training, which seems artificious. More important, a recent

work [19] carefully exposes fallacies for these datasets which are

rooted in some form of data bias.
8
While underlining these issues,

we do not want to discredit the datasets but rather to justify our

choice of discarding them from our study.

Replicability. Quantitatively reproducing research results on a

dataset is a necessary starting point but not be the ultimate goal.

As we argued earlier, datasets age quickly in the TC field and new

applications regularly emerge. Thus, replication on novel datasets

is equally important. Qualitative agreement on a larger span of

datasets brings the additional value of extending the validity of the

findings. For these reasons, we employ MIRAGE-19, MIRAGE-22 and
UTMOBILENET21 to replicate insights related to the comparison of

data augmentation functions in the supervised setting.

4 EVALUATION

Unless differently stated, the results reported in this section are

collected using the UCDAVIS19 dataset (training on the pretrain-

ing partition and testing of the two predefined human and script
partitions).

7
Traffic is collected on mobile phones with labeling ground-truth provided by

netstat. One measurement experiment generates traffic logs for a specific tar-

get app. We processed such logs so that traffic of apps and services different from

the target app (e.g., netd deamon, SSDP, Android gms) is removed as it represents

“background” traffic.

8
To be fair, the fallacies concern more the way the data bias can be unknowingly

exploited to produced biased models. See [19] for more details.

Table 3: (G0) Baseline ML performance without augmenta-

tions in a supervised setting.

Input (size) Model Origin Accuracy ± 95%CI

script human

flowpic (32 × 32) CNN LeNet5 [16] 98.67 92.40

flowpic (32 × 32) XGBoost ours 96.80±0.37 73.65±2.14
time series (3 × 10) XGBoost ours 94.53±0.56 66.91±1.40

Each ours is an aggregations of 15 experiments (5 splits × 3 seeds).

4.1 Providing a simple ML baseline (G0)

4.1.1 Approach. We start with an ML baseline to assess to what

extent DL techniques are justified—which would be the case if we

observe a large discrepancy between ML and DL performance.

We used a classic XGBoost as our ML model, with default hyper-

parameter values (100 estimators, max depth 6). As input, we com-

pared a mini-flowpic (a 32×32 image flattened into a 1,024 values

array) against the time series of the packet size, direction and inter-

time of the the first 10 packets of a flow (i.e., 3 features of 10 values

each all concatenated into 30 elements arrays). We repeated the

experiments 15 times and computed the 95% confidence intervals

using a t distribution. Table 3 compares our results against those

reported in the Ref-Paper for a LeNet5 CNNmodel trained without

data augmentation (but no confidence intervals are available).

4.1.2 Results. The trained forests have very short trees (an average
depth of 1.7 for time series and 1.3 for flowpic input). While trivial to

execute, this analysis conveys interesting messages. For the script
partition, (𝑖) when using a flowpic representation, DL models have

a slight advantage (about +2%) over ML models; (𝑖𝑖) the advantage

of flowpic over a simple time series is more noticeable (about +4%),

which could be expected since the amount of information in an

early time series (a few packets) is significantly smaller than what

encoded in a flowpic (multiple seconds of traffic).

Instead, a different interpretation arises when considering the

human partition: (𝑖) the results of ML are consistent with the ob-

servations in the script partition, i.e., using time series as input

yields a score just a few percentage points lower than results using

a flowpic input (6.74% difference on average); however, (𝑖𝑖) the gap

between DL and ML models when using flowpic is unexpectedly

large (18.75% on average).

Takeaway. Based on the Ref-Paper results, our expectations were
to have models offering similar performance on both testing partitions.

Yet, we observed a large discrepancy for humanwhich calls for a deeper
analysis that we carry out in the following sections.

4.2 Reproducing quantitative results of data

augmentation (G1.1)

We continue by reproducing results related to Tables 1–2 of [16],

which contrast different augmentations applied in a supervised

setting.

4.2.1 Approach. Given the unexpected results of the ML baseline,

we adopted a very careful approach, that we detail in what follows.

Horowicz et al. wrote:

Replication: Contrastive Learning and Data Augmentation
in Traffic Classification Using a Flowpic Input Representation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Table 4: Comparing data augmentation functions in a supervised training. Values marked as “ours” correspond to the average

accuracy across 15 modeling experiments and the related 95-th confidence intervals.

Test on script Test on human Test on leftover †

from [16] ours from [16] ours ours

flowpic res 32 64 1500 32 64 1500 32 64 1500 32 64 1500 32 64 1500

No augmentation 98.67 99.10 96.22 95.64±0.37 95.87±0.29 94.93±0.72 92.40 85.60 73.30 68.84±1.45 69.08±1.35 69.32±1.63 95.78±0.29 96.09±0.38 95.79±0.51
Rotate 98.60 98.87 94.89 96.31±0.44 96.93±0.46 95.69±0.39 93.73 87.07 77.30 71.65±1.98 71.08±1.51 68.19±0.97 96.74±0.35 97.00±0.38 95.79±0.31
Horizontal flip 98.93 99.27 97.33 95.47±0.45 96.00±0.59 94.89±0.79 94.67 79.33 87.90 69.40±1.63 70.52±2.03 73.90±1.06 95.68±0.40 96.32±0.59 95.97±0.80
Color jitter 96.73 96.40 94.00 97.56±0.55 97.16±0.62 94.93±0.68 82.93 74.93 68.00 68.43±2.82 70.20±1.99 69.08±1.72 96.93±0.56 96.46±0.46 95.47±0.49
Packet loss 98.73 99.60 96.22 96.89±0.52 96.84±0.63 95.96±0.51 90.93 85.60 84.00 70.68±1.35 71.33±1.45 71.08±1.13 96.99±0.39 97.25±0.39 96.84±0.49
Time shift 99.13 99.53 97.56 96.71±0.60 97.16±0.49 96.89±0.27 92.80 87.33 77.30 70.36±1.63 71.89±1.59 71.08±1.33 97.02±0.50 97.51±0.46 97.67±0.29
Change RTT 99.40 100.00 98.44 97.29±0.35 97.02±0.46 96.93±0.31 96.40 88.60 90.70 70.76±1.99 71.49±1.59 71.97±1.08 98.38±0.18 97.97±0.39 98.19±0.22

mean diff
‡

-2.05 -2.26 -0.63 -21.96 -13.27 -9.13

Each of our result is an aggregation of 15 experiments (5 splits × 3 seeds).

†We named “leftover” the samples from the pretraining partition not belonging to the 100 samples of a given split. Traditionally this would correspond to the test set.

‡ mean diff corresponds to the difference between our assessment and the expected value averaged across augmentations for each given flowpic resolution.

For all experiments, for training set we use only 100 “triggered by script” flows per

class, and for test set we follow the experiments by [16] randomly choosing 30 flows

for each class for a “triggered by script” test set and 15 flows per class for "triggered

by human" test set. [...] For all experiments, we apply each of the augmentations 10

times on the 100 samples per class training set, which increase the training set to 1000

images per class. We also train without any augmentation as baseline experiments

and term it "no aug". For all experiments we allocated 20% of the images for validation,

and early stopped the training when the validation loss stopped improving

First of all, recall that UCDAVIS19 is composed of three partitions

explicitly named to express the intention of separating a portion of

the data used for pre-training from another reserved for testing and

fine-tuning (see Table 2). Although the authors use “triggered by

script” twice, we interpreted that 100 flows are selected for training

from the large pretraining partition, while using the remaining two

partitions (script and human)9 for testing and fine-tuning.
10

Secondly, we did not find explicit mentions of how many ex-

periments were performed to gather the results, nor do the tables

report confidence intervals. Yet, we assume that several runs were

carried out, as it is common practice when performing modeling

campaigns to assess the performance across different dataset splits

and models initialization.
11

Since the original experiments were

done by training with 100 samples per-class (and the classes are

imbalanced) doing a traditional k-folds cross validation is not possi-

ble. Thus, as from Sec. 3.4, we created 𝑘 splits by sampling without

replacement groups of 100 samples for each class from the pretrain-

ing partition. Then, a given set of 100 samples is split randomly

𝑠 times, with each split corresponding to a 80/20 train/validation

split for training. Using these data, we performed a campaign to

test the 7 augmentations across k=5 splits each having s=3 train/-

validation splits for a total of 105 experiments. This is repeated

for the three flowpic resolutions with the same training settings

as in the Ref-Paper: static learning rate at 0.001, early stopping

on validation loss after 5 steps in which the loss does not improve

by more than 0.001, batch size of 32, performance measured via

accuracy, flowpic created from the first 15s of a flow.

9
While script is perfectly balanced with 30 flows per class, human has three classes

with 15 samples, and the remaining two have 18 and 20 samples respectively. Given

the very small imbalance we considered irrelevant to resample the partitions to have

exactly 15 samples per classes. Thus, we use script and human as is.

10
Authors later clarified that they combined pretraining and script. However this

minor difference does not affect the results of our investigation.

11
Authors did not provide us more details on this aspect.

4.2.2 Results. Table 4 summarizes our results reporting the mean

accuracy and related 95% CI for each scenario. To ease their com-

parison, we copy the reference results from the Ref-Paper and

summarize in the last row the differences across scenarios with

a simple arithmetic mean. We complement the evaluation of the

Ref-Paper by reporting a new test set corresponding to all pretrain-

ing samples not belonging to a selected 100 samples split (i.e., what

would be called a test set in a traditional evaluation). As, to the best

of our understanding, these samples have been discarded in the

Ref-Paper, we refer to this test set as leftover.
Overall, we obtained lower performance than what was previ-

ously reported.While differences aremodest on script, we observe
a reduction of over 20% on human—this is coherent with what we

observed for the ML baseline. Notice that no gap appears when

comparing script with leftover.
The gap is (slightly) reduced when using a higher resolution

flowpic but the lower performance on human (and the larger confi-

dence intervals with respect to script and leftover) suggests the
presence of a hidden problem with this predefined test set. Under-

standing the reason of this gap is important to verify the validity

of our study. However, we defer a significant portion of our study

of the performance gap to App. D.1–D.3 and we report only the

salient aspects of our investigation in the following sections.

We highlight that, while for 32×32 and 64×64 experiments run

in about 1 min, it takes about 30min to run one experiment on

1500×1500. Given this computational cost, motivated by the mar-

ginal performance gap across resolutions and as done by Horow-

icz et al., in the remainder of the paper we focus only on the 32×32
resolution.

4.2.3 Root cause of performance gap. We reiterate that we do not

apply any pre-processing (e.g., filtering, reshaping) to the UCDAVIS19
dataset beside consolidating the original CSV files (one for each

flow) into a monolithic parquet file. Thus, we conjectured that the

root case of the performance problem might be rooted in the data

itself.

To start verifying this assumption, the heatmaps in Fig. 3 break

down the results in Table 4 by showing the average per-class accu-

racy across the 105 runs for the 32x32 flowpic resolution. Specifi-

cally, we summed all the confusion matrices for script and human

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Alessandro Finamore et al.

Figure 3: Average confusion matrixes for the 32×32 resolu-

tion across all experiments in Table 4.

and we normalized them by row. For human we observe multiple

sources of confusion with Google doc and Google search having the

most evident clash. Conversely, no specific issues can be detected

for script.
To drill down, Fig. 4 collects an average flowpic per class across

the original dataset partitions and one training split. Recall that the

horizontal axis of a flowpic corresponds to time (time zero on the

left) while the vertical axis corresponds to packet sizes (zero length

on the top).

The first row in Fig. 4 corresponds to all flows available in the

pretraining partition, while the second one corresponds to a training

split, i.e., an aggregation of 100 samples per class. We can clearly

see that the reduction of samples has a visual impact, but overall

the first two rows are visually very similar. The third and the fourth

rows correspond to the script and human partition respectively,

i.e., they have 30 and ≈15 samples per class. When comparing the

last two rows with the first two, we can clearly see differences

which we further annotate with rectangles. Notice how Google

search is expected to have two vertical groups of pixels around the

left-axis and the center of the picture. Surprisingly, for human these

groups are “shifted” to the right (rectangle A). Moreover, notice how

all splits but human saturate the maximum packet size for Google

search—there is a distinctive horizontal line (around pixels on row

28) for human (rectangle B) while in the other cases there are distinct
dark lines at row 32. Interestingly, Fig. 4 also highlights macroscopic

differences for Google music—vertical “stripes” of pixels are visible

in all splits but human (rectangle C). Yet, according to Fig. 3, this

seems less of a problem. We conjecture that this might be due to the

stark difference between Google music and the other services. In

other words, despite the different behavior between the partitions,

Google music is still very different from the other 4 classes (thus it

might be easier to classify).

The analysis of the average flowpics supports the idea of a data

shift, of which we provide further evidence in the Appendix. Specif-

ically, we support this statement by (𝑖) adding more evaluations

on UCDAVIS19 (App. D.1), (𝑖𝑖) resorting to content from [32] which

introduced the UCDAVIS19 dataset (App. D.2), and (𝑖𝑖𝑖) verifying

code artifacts from [32] to help us rule out possible mistakes in

our approach (App. D.3). Summarizing this extensive material, the

existence of a data shift is pointed out by both (𝑖) and (𝑖𝑖) and we

confirm (𝑖𝑖𝑖) as our verification yields expected results.

Figure 4: Average 32×32 flowpic for each class across dataset

partitions.

Takeaway. Given the strong evidence provided by our analysis,

we concluded that the human test split is affected by a data-shift. Yet,

we cannot comment on the reason why this was not detected in the

Ref-Paper.
12

4.3 Reproducing qualitative ranking of data

augmentation (G1.2)

4.3.1 Approach. The original key question behind benchmarking

the different augmentations was to understand if, and by howmuch,

they were beneficial with respect to not performing any augmenta-

tion. Horowicz et al. wrote

In all the nine experiments changing the RTT was the best performing augmentation.

The improvement varies from 1% for the QUIC script dataset (where the "no aug"

accuracy was already 98.7%) up to 17.4% improvement for the most challenging

dataset, the QUIC human.

Without more details on the Ref-Paper it is very difficult to com-

pare against the reported results. We opted instead for performing

a statistical analysis of our modeling campaign to understand if

Change RTT and Time shift were the best performing augmenta-

tions as reported in the Ref-Paper.

The CI values in Table 4 show clear overlaps between different

augmentations. To investigate our results, we treat each augmen-

tation as a different classifier and compare them according to the

procedures presented in [8]. First, accuracy results are turned into

rankings (e.g., if augmentations A, B and C yield an accuracy of

0.9, 0.7 and 0.8, their associated rankings would be 1, 3, and 2) with

ties being assigned with the average ranking of the group (e.g., if

augmentations A, B and C yield 0.9, 0.9 and 0.8, their associated

rankings would be 1.5, 1.5 and 3). This process is repeated across

all tested datasets and splits. Then, an average ranking value is

extracted per augmentation. These values are compared pairwise

using a post-hoc Nemenyi test, which compares these average rank-

ings to decide if the performance difference between augmentations

is significant. This decision is made using a Critical Distance (CD)

in ranking equal to 𝐶𝐷 = 𝑞𝛼

√︃
𝑘 (𝑘+1)
6𝑁

, where 𝑞𝛼 is based on the

12
Authors did not provide us comments about this aspect.

Replication: Contrastive Learning and Data Augmentation
in Traffic Classification Using a Flowpic Input Representation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Figure 5: Critical distance plot of the accuracy obtained with

each augmentation for the 32×32 and 64×64 resolutions. Aug-
mentations joined by a horizontal line are not statistically

different. The lower the ranking (closer to 1, the right side of

the plot) the better the performance. Transformations high-

lighted in bold are selected as the best performing one in the

Ref-Paper.

Studentized range statistic divided by

√
2, 𝑘 is equal to the num-

ber of augmentations compared and 𝑁 is equal to the number of

samples used.

4.3.2 Results. Figure 5 displays the results of these comparisons.

We combined the 32×32 and 64×64 resolutions as we did not find

statistically significant differences between them (see App. F). In

our case, with 𝛼 = 0.05, 𝑘 = 7 and 𝑁 = 30 and 𝑞0.05 = 2.949 the

critical distance is 𝐶𝐷 = 1.644. The closer an augmentation is to

the right side of the plot (a higher average rank), the better the

performance.

From our analysis for the script partition, we cannot conclude

significant differences within three groups, which we sort by in-

creasing performance: {No augmentation and Horizontal flip}; {Hor-

izontal flip and Rotate}; {Rotate, Packet loss, Time shift, Change RTT

and Color jitter}. Similar groups exist also for the human partition.
As annotated in Fig. 5, Horowicz et al. selected Change RTT and

Time shift as the best augmentations: whereas these augmenta-

tions are in the best performing group both for script and human,
it is easy to gather that other transformations consistently appear

in the same (statistically relevant) group.

Takeaway. On the one hand, the Time shift and Change RTT

transformations are in the best performing group, a finding aligned

with the ones in the Ref-Paper. On the other hand, from a statistical

viewpoint, they are not distinguishable from other options, like Color

jitter (for script) or Rotate (for human) or Packet Loss (for both).

4.4 Reproducing constrastive learning results

(G2)

4.4.1 Approach. The second goal of our reproducibility study con-

cerns the use of contrastive learning and fine-tuning. A few ob-

servations are needed to contextualize the modeling campaign to

perform.

Augmentations for SimCLR. First of all, we need to select

augmentations for SimCLR. Horowicz et al. wrote:

we selected to use ’Change RTT’ by 𝛼 ∼ 𝑈 [0.5, 1.5] together with Time Shift by

𝑏 ∼ 𝑈 [-1,1]. In each training step, a double batch of 32 unlabeled images (taken

from the pool of 100 unlabelled samples per class) is loaded after applying the two

augmentations above.

This confirms the traditional SimCLR approach where two views

are obtained from each sample in a training mini-batch. However,

precisely how the transformations are applied is open to interpre-

tation, e.g., one after the other? If so, in which order? A separate

transformation for each view? These are design choices likely de-

pending on the task at hand. For instance, the original SimCLR

paper [6] shows that both which transformations are selected and

the order in which they are chained are relevant decisions. Since a

full ablation study on this aspect is well beyond our scope, we opted

for applying the two transformations in random order for every image

in a mini-batch. Yet, given our ranking analysis showed equivalence

among multiple top performing transformations, we also perform

a small-scale ablation study considering three other pairs beside

the pair selected in the Ref-Paper.
13

Networks for SimCLR. Even more subtle design choices relate

to the application of dropout and the projection layer size used in

SimCLR. Horowicz et al. wrote:

As depicted in Figures 6 and 7, our architectures comprise seven layers, the ReLU

activation function is applied to the output of every convectional and fully-connected

layer and dropout with probabilities of 0.25 and 0.5 are used in order to reduce

overfitting. [...]

The figures mentioned refer to the “mini” (for 32×32 and 64×64)
and “full” (for 1500×1500) architectures. We underline that the

mini architecture is identical to the original LeNet5 [22]. However,

from the quote we identify a number of layers miscount, as the

full version has one layer less than the mini version. In fact, the

“flatten” layer is reported only in the full diagram but is actually

needed in both versions, and the diagram clearly shows that the

full version has one less fully connected layer than the mini version

(see Fig. 6-7 in [16]). Moreover, based on the quote it is not clear if

dropout was applied to both architectures or just the full version

(as the original LeNet5 does not rely on dropout). Given the lower

resolution, dropout might be not needed for 32×32.
Regarding the SimCLR projection, Horowicz et al. wrote:

For the representation extractor 𝑓 (·) we employed the 5 first layers of the CNN

architectures described in A.1 and replaced the last 2 layers with 2 linear layers

sized 120 and 30. Thus, resulting with a 120 dimensional representation vector

ℎ = 𝑓 (𝑓 𝑙𝑜𝑤𝑝𝑖𝑐) and 𝑧 = 𝑔 (ℎ) dimensional similarity vector.

13
Horowicz et al. clarified with us that the two transformation were chained and to

check their repository [9]. Yet, we reiterate that such repository cannot be used to

reproduce the results of the Ref-Paper (see App D).

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Alessandro Finamore et al.

Table 5: Impact of dropout and SimCLR projection layer di-

mension on fine-tuning (32×32 only, with 10 samples for

fine-tuning training).

test on script test on human

Proj. dim w/ dropout w/o dropout w/ dropout w/o dropout

30 91.81±0.38† 92.18±0.31 72.12±1.37‡ 74.69±1.13
84 92.02±0.36 92.54±0.33 73.31±1.04 74.35±1.38

Each value is an aggr. of 125 exp. (5 splits × 5 SimCRL seeds × 5 fine-tune seeds).

The reference value for † from [16] reports in the text (94.5% for 10 samples); for ‡ no

specific values are reported but should be ≈80% based on Fig. 4 of [16].

This refers to what is known as the projection layer of the feature

extractor. In a nutshell, and based on our interpretation of the quote,

after the convolutional blocks, the network have a 120-120-30 series

of linear layers. However, since the supervised network was using

a latent space of size 84, we investigated networks considering both

30 and 84 as final projection layer dimension.

An assessment of these lower level details can be key to obtain a

fair comparison against the performance reported in the Ref-Paper.

For reference, we report the listing of the architecture used in

App. C.

4.4.2 Results. As before, we follow the parameters described in

the Ref-Paper, namely batch size of 32, patience of 3 on the top-5

accuracy when training with SimCLR (temperature=0.07, learning

rate=0.001) and patience of 5 on train (min delta=0.001) during

fine-tuning (learning rate=0.01).

Table 5 details the results of our ablation campaign to understand

the impact of dropout and the projection layer.
14

Each value in the

table corresponds to the mean and related 95-th percentiles CI

across 125 experiments and fine-tuning using 10 training samples.

As we expected, we observe poorer performance when testing on

human, while performance on script is just a few points lower than

for supervised training. When considering a projection layer of 30

units, we can observe that dropout does not provide a significant

difference for script; conversely, removing dropout makes a stark

difference when testing on human. Increasing the projection layer

dimension does not provide a significant gain. We conclude than

that we can rely on a network without dropout (differently from

the Ref-Paper) but we confirm the original choice of a projection

layer of 30 units.

In Table 5, we also annotate the configuration that (we believe)

was used in the Ref-Paper. Specifically, the study reported results

(only as figures) characterising performance improvement when

increasing the number of samples for fine-tune training, and con-

cluded that the best performance was achieved when using 10

training samples, i.e., the scenario we selected for our evaluation.

Yet, while for script Horowicz et al. wrote:

Our method achieves 93.4% accuracy with only 3 samples, and 94.5% with 10

samples

no specific values are reported for human. However, Figure 4 of the
paper clearly shows an accuracy of about 80%.

14
We did also an ablation of dropout before running results for Table 4. Details are

reported in Appendix E. The takeaway is that even for 1500×1500 resolution there are

minimal differences introduced by dropout. Yet, results in Table 4 reflect the use of

dropout as intended in the original study.

Table 6: Comparing the fine-tuning performance when us-

ing different pairs of augmentations for pretraining (32×32
resolution, fine-tuning on 10 samples only).

1st augment. Change RTT
∗

Packet loss Change RTT Color Jitter

2nd augment. Time shift
∗

Color jitter Rotate Color Jitter Rotate Rotate

test on script 92.18±0.31 90.17±0.41 91.94±0.30 91.72±0.36 92.38±0.32 91.79±0.34
test on human 74.69±1.13 73.67±1.24 71.22±1.20 75.56±1.23 74.33±1.26 71.64±1.23

Each value is an aggreg. of 125 exp. (5 splits × 5 SimCLR seeds × 5 fine-tune seeds).

(*) pair of augmentations used in [16].

Table 7: Accuracy on 32×32 flowpic when enlarging training

set (without dropout).

script human

S
u
p
e
r
v
i
s
e
d

No augmentation 98.37±0.19 72.95±0.96
Rotate 98.47±0.25 73.73±1.09

Horizontal flip 98.20±0.15 74.58±1.16
Color jitter 98.63±0.21 72.47±1.02
Packet loss 98.63±0.19 73.43±1.25
Time shift 98.60±0.22 73.25±1.17

Change RTT 98.33±0.16 72.47±1.04

SimCLR + fine-tuning 93.90±0.74 80.45±2.37
Each value is an aggregation of 20 experiments (20 different seeds)

While performance are basically on par for script, our results
for human are significantly lower than the previous evaluation. We

additionally observe that, for contrastive learning with fine-tuning,

a drop of performance from script to human is also reported in

the Ref-Paper—unlike for supervised training as discussed earlier.

While the training methodologies are fundamentally different, the

underlying dataset and testing methodology are the same (training

with the pretraining partition and testing on script and human).
Thus, the consistency between our ML, supervised and contrastive

learning campaigns is to be expected, but we cannot comment on

why Horowicz et al. observed the script-vs-human gap only for the
contrastive learning experiments.

15

Takeaway. On the one hand, results are consistent and quan-

titatively aligned for script, which confirms the interest for few

shot contrastive learning and data augmentation. On the other hand,

results for human are only qualitatively in agreement, which calls

for agreeing on a community-wide standard benchmark including

multiple datasets.

4.4.3 Extra results. We conclude our analysis by reporting two

complementary analysis with respect to the Ref-Paper. First, we

investigated to which extent alternative pairs of augmentations

affect the fine-tuning performance. Namely, we considered Time

shift and Change RTT next to Rotate and Color jitter, selected be-

cause they achieved good positions in our ranking analysis. Then

we formed groups by either pairing time series with image transfor-

mations or pairing the image transformations. Results collected in

Table 6 show that, despite the punctual differences between pairs,

our observation on Table 4 and the ranking analysis (Sec 4.3) still

holds—all pairs are qualitatively equivalent.

15
Authors did not provide more comments to us about this aspect.

Replication: Contrastive Learning and Data Augmentation
in Traffic Classification Using a Flowpic Input Representation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Table 8: (G3) Data augmentation in supervised setting on

other datasets. The top two transformation strategies for

each datasets are in bold for visual purposes (not to imply

statistically relevant conclusions).

MIRAGE-22 MIRAGE-22 UTMOBILENET21 MIRAGE-19
Augmentation (≥10pkts) (≥1000pkts) (>10pkts) (>10pkts)

No augmentation 90.97 ±1.15 83.35 ±3.13 79.82 ±1.53 69.91 ±1.57
Rotate 88.25 ±1.20 87.32 ±2.24 79.45 ±1.28 60.35 ±1.17

Horizontal flip 91.90 ±0.84 83.82 ±2.26 80.03 ±1.33 69.78 ±1.28
Color jitter 89.77 ±1.16 81.40 ±3.62 78.68 ±2.14 67.00 ±1.11
Packet loss 92.34 ±1.10 87.19 ±2.52 72.07 ±1.73 67.55 ±1.46
Time shift 92.80 ±1.21 86.73 ±3.88 81.91 ±2.12 70.33 ±1.26

Change RTT 93.75 ±0.83 91.48 ±2.12 81.32 ±1.54 74.28 ±1.22

Each value is aggregation of 15 experiments (5 splits × 3 seeds).

Second, we expand the methodology used so far by quantify-

ing the effect of using a (pre)training set larger than 100 samples.

Specifically, we created 5 random 80/20 train/validation split using

the full pretraining partition, i.e., the dataset result imbalanced with

up to 1,532 training samples for the largest class and 473 for the

smallest. Table 7 reports the results of the modeling campaign in

both a supervised and contrastive learning settings. As expected,

compared to Table 4 and Table 5, enlarging the dataset is effective

in improving performance in both settings. In particular, for con-

trastive learning the gain is smaller for script (+1.72% on average)

than for human (+5.76% on average)—the latent space created via

contrastive learning is better at mitigating the data shift.

Takeaway. The transformations selected in the Ref-Paper consti-

tute a good enough choice, although image transformations cannot be

fully ruled out based on our assessment. This confirms that identifying

the most suitable transformations is tied to the input representation

and datasets used, which remains an open problem. Moreover, while

a very limited number of samples can be enough for training models,

the same scenarios can benefit from more data—the selected augmen-

tations alone are not a final replacement for real input samples.

4.5 Replicating data augmentation on other

datasets (G3)

4.5.1 Approach. Given that we observed only small performance

differences among the augmentations, we extended the Ref-Paper

by replicating the analysis using other three datasets, namely MIRAGE-19,
MIRAGE-22 and UTMOBILENET21. Based on the results displayed in

Table 7, we opted for a traditional 80/10/10 train/validation/test

using all samples available for each class, i.e., we removed the

constraint of using 100 samples per class as in Table 4. This is

a compromise dictated by the differences among the datasets. In

particular, as shown in Table 2, the filtering significantly reduces

the number of samples per class, especially for the smallest class.

Hence, rather than removing the very small classes, we preferred

to use a split preserving the original imbalance of the data. We

argue that this is reasonable considering that the question we were

targeting was about the importance of the augmentation functions

which is per-se to be decoupled from datasets samples count. More-

over, we restricted our analysis to the supervised scenario only. It

Figure 6: Critical distance plot of the accuracy obtained with

each augmentation across the four tested datasets.

Figure 7: Average rank obtained per augmentation and

dataset. Ranks closer to 1 indicate a better performance.

follows that our analysis can be considered as an upper bound of

what can be achieved when considering less training data and/or

via contrastive learning. Since the training and testing datasets are

imbalanced in this scenario, we measure performance via an F1

score (rather than using accuracy as done before).

4.5.2 Results. For each dataset we used the architectures and set-

tings as in Sec. 3.2. Table 8 and Figures 6-7 collect our results.

Extending the analysis to more datasets allows us to better appreci-

ate differences between the impact of each augmentation. First of

all, while the maximum gap between augmentations in Table 4 is

(on average) 3.22%, this is now 13.93% (occurring for MIRAGE-19).
Despite the larger differences, the analysis confirms Change RTT

and Time shift as the best performing augmentations across all

datasets. Differently from the previous analysis, Fig. 6-7 highlight

how the two functions are significantly better than the others, yet

still not statistically different from each other.

Takeaway. Our results confirm the benefit of data augmentations

and validate the selection of Change RTT and Time shift as in the

Ref-Paper.

5 CONCLUSIONS

In this paper we reproduced and replicated the methodology of

[16] which investigated noteworthy DL methodologies (few-shot

learning, self-supervision via contrastive learning and data aug-

mentation) on TC. These methods are particularly appealing as

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Alessandro Finamore et al.

they allow for learning from a few samples and transferring models

across datasets.

Summarizing our analysis, we have been able to qualitatively

reproduce most of the original results, so we confirm the interest

in few-shot contrastive learning and data augmentation. At the

same time, our modeling campaigns found unexpected quantitative

discrepancies that we rooted in data shifts in the UCDAVIS19 dataset
(undetected in the Ref-Paper).

Another remarkable consideration can be gathered by contrast-

ing our reproducibility vs replicability results. Indeed, the repro-

ducibility results on UCDAVIS19 show little statistical significance in

the differences among the proposed data augmentation techniques—

just by reproducing the study on UCDAVIS19 alone would therefore

have not allowed us to validateHorowicz et al.’s choices. Conversely,

by replicating the methodology on three additional datasets, we

gathered evidence that finally validated Change RTT and Time

Shift as more beneficial than other augmentations for the flowpic

input representation.

We also acknowledge some limitations in our replication. For

instance, while we studied augmentations in a supervised setting,

we leave as future work their assessment in a contrastive learning

setting pairedwith few shot fine-tuning. Indeed, such a study should

consider the variety of contrastive learning approaches including

supervised contrastive learning methods such as SupCon [20].

Lastly, in the context of network ML studies, we underline the

need to agree on a broader set of benchmarks as other communities

(e.g., CV and NLP) are doing more systematically, which can only

improve the quality of the gathered knowledge. To support this

future direction, we make available multiple artifacts in the form

of code (besides our modeling framework, we contribute scripts re-

lated to the modeling campaign and all post-processing to generate

reports and figures inhere contained) and data (both trained models

and related logs, as well as the dataset splits used for training and

testing). As described in App. B, artifacts are also complemented

by a website providing documentation (e.g., guides on how to run

the experiments, stats about the datasets). We believe that TC is

in need of a reference framework binding datasets with modeling

tools. We hope the research community can take advantage of our

work and/or be inspired toward improving current practices.

REFERENCES

[1] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, Valerio Persico, and

Antonio Pescapè. 2019. MIRAGE: Mobile-app Traffic Capture and Ground-truth

Creation. In IEEE 4th International Conference on Computing, Communication and

Security (ICCCS 2019).

[2] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapè.

2019. MIMETIC: Mobile encrypted traffic classification using multimodal deep

learning. Computer Networks 165 (2019), 106944.

[3] Iman Akbari, Mohammad A. Salahuddin, Leni Ven, Noura Limam, Raouf Boutaba,

Bertrand Mathieu, Stephanie Moteau, and Stephane Tuffin. 2021. A Look Behind

the Curtain: Traffic Classification in an Increasingly Encrypted Web. Proc. ACM

Meas. Anal. Comput. Syst. 5, 1, Article 04 (feb 2021), 26 pages.

[4] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule, and Kave

Salamatian. 2006. Traffic classification on the fly. ACM SIGCOMM Computer

Communication Review 36, 2 (2006), 23–26.

[5] Jonathan B Buckheit and David L Donoho. 1995. Wavelab and reproducible

research. Springer.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A

Simple Framework for Contrastive Learning of Visual Representations. arXiv

preprint arXiv:2002.05709 (2020).

[7] Manuel Crotti, Maurizio Dusi, Francesco Gringoli, and Luca Salgarelli. 2007.

Traffic classification through simple statistical fingerprinting. ACM SIGCOMM

Computer Communication Review 37, 1 (2007), 5–16.

[8] Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets.

The Journal of Machine learning research 7 (2006), 1–30.

[9] eyalho. 2022. mini-flowpic-traffic-classification. https://github.com/eyalho/mini-

flowpic-traffic-classification?.

[10] Association for Computing Machinery (ACM). 2023. Artifact Review and Badg-

ing Version 1.1. https://www.acm.org/publications/policies/artifact-review-and-

badging-current.

[11] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre

Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan

Guo, Mohammad Gheshlaghi Azar, Bilal Piot, koray kavukcuoglu, Remi Munos,

and Michal Valko. 2020. Bootstrap Your Own Latent - A New Approach to

Self-Supervised Learning. In Advances in Neural Information Processing Systems,

H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33.

Curran Associates, Inc., 21271–21284.

[12] Idio Guarino, Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, Valerio

Persico, and Antonio Pescape
´
. 2021. Classification of Communication and Col-

laboration Apps via Advanced Deep-Learning Approaches. In 2021 IEEE 26th

International Workshop on Computer Aided Modeling and Design of Communica-

tion Links and Networks (CAMAD). 1–6.

[13] Idio Guarino, Chao Wang, Alessandro Finamore, Antonio Pescape
´
, and Dario

Rossi. 2023. Many or Few Samples? Comparing Transfer, Contrastive and Meta-

Learning in Encrypted Traffic Classification. In Traffic Measurement and Analysis

(TMA).

[14] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick

McKeown. 2012. Reproducible network experiments using container-based

emulation. In Proceedings of the 8th ACM International Conference on Emerging

networking experiments and technologies (CoNEXT). 253–264.

[15] Yuqiang Heng, Vikram Chandrasekhar, and Jeffrey G. Andrews. 2021. UTMo-

bileNetTraffic2021: A Labeled Public Network Traffic Dataset. IEEE Networking

Letters 3, 3 (2021), 156–160.

[16] Eyal Horowicz, Tal Shapira, and Yuval Shavitt. 2022. A Few Shots Traffic Classifi-

cation with Mini-FlowPic Augmentations. In Proceedings of the 22nd ACM Internet

Measurement Conference (Nice, France) (IMC ’22). Association for Computing

Machinery, New York, NY, USA, 647–654.

[17] Auwal Sani Iliyasu and Huifang Deng. 2020. Semi-Supervised Encrypted Traffic

Classification With Deep Convolutional Generative Adversarial Networks. IEEE

Access 8 (2020), 118–126.

[18] Peter Ivie and Douglas Thain. 2018. Reproducibility in Scientific Computing.

ACM Comput. Surv., Article 63 (jul 2018), 36 pages.

[19] Arthur S Jacobs, Roman Beltiukov, Walter Willinger, Ronaldo A Ferreira, Arpit

Gupta, and Lisandro Z Granville. 2022. AI/ML for Network Security: The Emperor

has no Clothes. In Proceedings of the ACM SIGSAC Conference on Computer and

Communications Security (CCS). 1537–1551.

[20] Prannay Khosla, Piotr Teterwak, ChenWang, Aaron Sarna, Yonglong Tian, Phillip

Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised Contrastive

Learning. In Advances in neural information processing systems (NeurIPS).

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information

processing systems (NeurIPS).

[22] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning

applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

[23] Jan Luxemburk, Karel Hynek, Tomáš Čejka, Andrej Lukačovič, and Pavel Šiška.

2023. CESNET-QUIC22: A large one-month QUIC network traffic dataset from

backbone lines. Data in Brief 46 (2023), 108888.

[24] Jan Luxemburk and Tomáš Čejka. 2023. Fine-grained TLS services classification

with reject option. Computer Networks 220 (2023), 109467.

[25] XuyingMeng, YequanWang, RunxinMa, Haitong Luo, Xiang Li, and Yujun Zhang.

2022. Packet Representation Learning for Traffic Classification. In Proceedings

of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(Washington DC, USA) (KDD ’22). 3546–3554.

[26] Andrew W Moore and Konstantina Papagiannaki. 2005. Toward the accurate

identification of network applications. In Passive and Active NetworkMeasurement:

6th International Workshop, PAM 2005, Boston, MA, USA, March 31-April 1, 2005.

Proceedings 6. Springer, 41–54.

[27] Andrew W Moore and Denis Zuev. 2005. Internet traffic classification using

bayesian analysis techniques. In Proceedings of the ACM International Conference

on Measurement and Modeling of Computer Systems (SIGMETRICS). 50–60.

[28] Thuy T.T. Nguyen and Grenville Armitage. 2008. A survey of techniques for

internet traffic classification using machine learning. IEEE Communications

Surveys & Tutorials 10, 4 (2008), 56–76.

[29] University of New Brunswick. 2016. VPN-nonVPN dataset (ISCXVPN2016).

https://www.unb.ca/cic/datasets/vpn.html

[30] Fannia Pacheco, Ernesto Exposito, Mathieu Gineste, Cedric Baudoin, and Jose

Aguilar. 2018. Towards the deployment of machine learning solutions in net-

work traffic classification: A systematic survey. IEEE Communications Surveys &

Tutorials 21, 2 (2018), 1988–2014.

https://github.com/eyalho/mini-flowpic-traffic-classification?
https://github.com/eyalho/mini-flowpic-traffic-classification?
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.unb.ca/cic/datasets/vpn.html

Replication: Contrastive Learning and Data Augmentation
in Traffic Classification Using a Flowpic Input Representation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

[31] Raymond Queneau. 1947. Exercices de style.

[32] Shahbaz Rezaei and Xin Liu. 2019. How to Achieve High Classification Accuracy

with Just a Few Labels: A Semi-supervised Approach Using Sampled Packets.

In Industrial Conference Advances in Data Mining - Applications and Theoretical

Aspects (ICDM).

[33] Tal Shapira and Yuval Shavitt. 2019. FlowPic: Encrypted Internet Traffic Classifi-

cation is as Easy as Image Recognition. In IEEE INFOCOM 2019 - IEEE Conference

on Computer Communications Workshops (INFOCOM WKSHPS). 680–687.

[34] ACM SIGCOMM. 2017. Reproducibility Workshop. https://conferences.sigcomm.

org/sigcomm/2017/workshop-reproducibility.html

[35] Md. Shamim Towhid and Nashid Shahriar. 2022. Encrypted Network Traffic

Classification using Self-supervised Learning. In 2022 IEEE 8th International

Conference on Network Softwarization (NetSoft). 366–374.

[36] Chao Wang, Alessandro Finamore, Lixuan Yang, Kevin Fauvel, and Dario Rossi.

2022. AppClassNet: A Commercial-Grade Dataset for Application Identification

Research. 52, 3 (sep 2022), 19–27.

[37] Ziyi Zhao, Yingya Guo, Jessie Hui Wang, Haibo Wang, Chengyuan Zhang, and

Changqing An. 2022. CL-ETC: A Contrastive Learning Method for Encrypted

Traffic Classification. In 2022 IFIP Networking Conference (IFIP Networking). 1–9.

A ETHICS

This work makes use of only publicly available data. Although

experiments might have included end users, no individuals were

monitored in the measurement campaigns. Thus, no ethical con-

cerns are associated with this study.

B ARTIFACTS

All the material created for this paper is made available to the re-

search community. This includes our modeling framework, namely

tcbench, all data created in our modeling campaigns (the models

themselves and all related logs) and the curated datasets described

in Sec. 3.4. For more details on the artifacts, how to run our model-

ing campaigns, notebooks for recreating tables and figures in this

paper, data curation, etc., please visit https://tcbenchstack.github.

io/tcbench/.

C LAYOUT OF DL NETWORK

ARCHITECTURES

We list here our implementation of the network architectures for

the 32×32 flowpic resolution (see also Fig.7 in [16]). The Listings 1-5
at the end of this appendix are obtained via the torchsummary
python package. For code flexibility, our architectures are designed

to use Pytorch nn.Identity() modules to mask out layers that

are not needed from a given architecture. When this masking is ap-

plied, our training framework takes care of recreating the network

optimizers to reflect the architecture modifications.

D INVESTIGATING ROOT CAUSE OF G1

DISCREPANCIES

We were clearly surprised by the ≈20% classification accuracy per-

formance gap for the human test split. In fact, in the Ref-Paper the

two testing partitions have almost on par performance. As men-

tioned before, when reaching out to Horowicz et al. we received

delayed and short/partial answers so we based our analysis mostly

on the content of the paper. By browsing the web, we also found a

git repository [9] that later on was confirmed to have been created

by the first author of the Ref-Paper. Unfortunately, this repository

only contains code related to the contrastive learning part of the

paper (i.e., it only pre-trains a model to later investigate its latent

space using a t-SNE projection in two dimensions). Moreover, the

network architecture used significantly differs from the one de-

scribed in the Ref-Paper (e.g., different activation functions, no

dropout is used) and also adopts a cosine annealing learning rate

scheduler (not mentioned in the original publication). Lastly, the

data loading policies are blending flows between the three parti-

tions of the UCDAVIS19 dataset (hence breaching the evaluation

protocol defined in the paper) and we found also some of the flows

in the test set to be included in the training set. In a nutshell, the

repository was of no use to address our questions.

We therefore performed more analysis of the UCDAVIS19 paying
particular attention to details reported in [32] which introduces the

UCDAVIS19 dataset.

D.1 Our analysis of the UCDAVIS19 dataset
Next to Fig 4, Fig. 8 provides a more compelling argument about the

presence of the data shift by showing the Kernel Density Estimation

(KDE) of the per-class packet size distribution across all samples

in the three partitions of UCDAVIS19. While script is perfectly

overlapped with the pretraining split, Google search for human has

an evident shift, which indeed matches the previous observations

in Fig. 4.

D.2 UCDAVIS19 dataset analysis from [32]

We next looked at other sources of information which could help us

to exclude problems from our analysis. To the best of our knowledge,

the only study that investigates both script and human splits with

a reference per-class breakdown is [32], i.e., the same study that

introduces the UCDAVIS19 dataset. The authors wrote:

To study whether automatically generated data with script represents human inter-

action, we capture 15 flows for each class from interactions of real humans in those

5 Google services. We only use this dataset to test the same model described above.

Fig. 3(b) illustrates the performance metrics. Interestingly, accuracy of the Google

search and Google document have not changed significantly. However, the accuracy

of Google drive, Youtube, and Google music drop up to 7%. This depends on how

much human interactions can change the traffic pattern, which is class-dependent.

Moreover, there are some actions, such as renaming a file or moving files in Google

drive, that our scripts do not perform. So, these patterns are not available during

re-training. This shows the limitations of datasets and studies [14, 8, 3] that only use

scripts to capture data.

Interestingly, they reported no problem with Google doc and

Google search, yet they acknowledged the presence of data-shift

due to the way the dataset was collected. However this information

alone cannot help us explaining the discrepancies we observe with

respect to the Ref-Paper. In fact, [32] relies on packet time series

augmented via sampling; in contrast, a flowpic is a “summary”

which aggregates patterns over time and does not consider traffic

direction—the two studies have intrinsically different input.

Also [35] uses the UCDAVIS19 dataset but authors combine all

partitions together, i.e., they do not follow the training/testing

protocol of [16, 32].

D.3 Reproduction of [32] on UCDAVIS19
Finally, to rule out errors in our execution, we leveraged [32] code

artifacts.
16

To ensure that the UCDAVIS19 dataset we used was in-

tact and correct and to analyze the impact of data shift between

script and human partitions, we reproduced some the results of

16
https://github.com/shrezaei/Semi-supervised-Learning-QUIC-

https://conferences.sigcomm.org/sigcomm/2017/workshop-reproducibility.html
https://conferences.sigcomm.org/sigcomm/2017/workshop-reproducibility.html
https://tcbenchstack.github.io/tcbench/
https://tcbenchstack.github.io/tcbench/
https://github.com/shrezaei/Semi-supervised-Learning-QUIC-

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Alessandro Finamore et al.

Figure 8: Kernel density estimation of the per-class packet size distributions. Notice the distribution shift for Google search.

Table 9: Macro-average accuracy with different re-training

dataset and different sampling methods.

from [32] Fig. 9 ours

finetune Sampling
†

Sampling

on Fixed Rand Incre Fixed Rand Incre

script 92.28 (b) 92.28 (c) 95.59 (a) 87.11 ±0.05 94.63 ±0.01 96.22 ±0.04
human - - - 82.60 ±0.02 87.29±0.02 92.56 ±0.01

† “Fixed”:

Fixed step sampling; “Rand”: Random sampling; “Incre”: Incremental sampling.

Figure 9: Accuracy on script with different sampling

methods[32].

[32] using the available repository, yet using our curated version of

the UCDAVIS19 dataset (which we reiterate was just reworking the

original CSV files into amonolithic parquet format). In [32], for each

flow, 3 different sampling methods (i.e., random sampling, fixed

step sampling, and incremental sampling) are applied respectively

up to 100 times to generate multiple short “subflow” time-series,

thus augmenting the data set. For self-supervised pre-training on

the entire pre-training partition, the authors used a statistical fea-

tures regression task. For supervised fine-tuning, 3 linear layers are

stacked as classifier for the classification task and they are trained

with up to 20 labeled flows. While the fine-grained details of the

training differ compared to our study and the Ref-Paper, at a high

level these three studies share the same aim, i.e., the first pre-train

(on the pretraining partition) and then fine-tune (on the two test

partitions).

(a) from [32] (b) ours

Figure 10: Replicating per-class accuracy on human.

Table 9 reports the performance when fine-tuning with 10 sam-

ples. In [32] the performance is only measured on script and is

only reported as a figure without numeric annotation (see (a), (b),

(c) in Fig. 9, based on which we inferred the values reported on the

left side of Table 9). On the right side we reported the results from

our modeling campaign using the reference git repository. Overall

the accuracy on script has differences in the range 0.68-5.17%

(much smaller than the ≈20% accuracy gap under investigation),

and we can also confirm their results, i.e., incremental sampling is

the best strategy for the method reported in [32]. For human instead

we detect a 3.66 − 7.34% drop with respect to script. A similar

drop is reported in [32] for incremental sampling when fine-tuned

on 20 script flows and tested on human (i.e., in a transfer learn-

ing setting) which we were also able to replicate in Fig. 10. Their

reasoning for such differences is quoted in App. D.2. Overall, this

evaluation is in line with the results of [32] and shows that our

preprocessing of UCDAVIS19 is not responsible for the data shift we
observed.

E IMPACT OF DROPOUT IN A SUPERVISED

SETTING

To assess the impact of dropout in a supervised setting, we per-

formed an ablation study using different test sets, resolutions, and

augmentations for 32×32 and 1500×1500 resolutions with the same

campaign settings described in Sec. 3.2 (i.e., 15 experiments in each

configuration). Fig. 11 shows the results as boxplots (with whiskers

Replication: Contrastive Learning and Data Augmentation
in Traffic Classification Using a Flowpic Input Representation IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Figure 11: Boxplots of the accuracy difference between mod-

els with dropout and without dropout in supervised learning

across different augmentations.

at the 95-th percentile) of the difference between the accuracy when

using dropout with respect to when not using dropout. In other

words, dropout would be justified if the boxplots would fall on

the positive size of the y-axis. Conversely, across all scenarios, the

boxplots are centered around zero with no evident patterns across

augmentations. Overall, we concluded that of dropout does not play

a role and its adoption (as required by the Ref-Paper) is weakly

motivated.

F COMPARISON OF AUGMENTATIONS

PERFORMANCE ACROSS FLOWPIC SIZES

In order to perform the analysis found in section 4.3, three sets of

experiments were available, corresponding to the different flowpic

resolutions used: 32×32, 64×64 and 1500×1500. If possible, it would
be desirable to group the three sets into a single analysis, as that

increases the 𝑁 in the Critical Distance calculation, which reduces

the CD’s width and allows us to better differentiate between aug-

mentations. However, first we had to ensure that the augmentations

performance across sets are similar. To do so, we treated each flow-

pic resolution as a classifier and compared their paired performance

distributions using a posthoc Tukey test, which calculates whether

each resolution’s performance can be assumed to be significantly

different from each other or not. This test’s results are shown on

Table 10 with the p-values for each comparison. We used a sig-

nificance level of 0.05, i.e., we can assume significant differences

between resolutions if their p-value is smaller than 0.05. There are

two populations for which augmentations perform in a similar way:

32×32 and 64×64, with 1500×1500 being clearly different from the

other two. Based on these results, we joined the 32×32 and 64×64
populations for our analysis in section 4.3.

Table 10: Performance comparison across augmentations for

different flowpic sizes. P-values extracted from Tukey’s post-

hoc test at a 0.05 significance level.

Flowpic resolution Flowpic resolution p-value Is Different?

32×32 64×64 0.57 No

32×32 1500×1500 1.93 × 10
−6

Yes

64×64 1500×1500 1.04 × 10
−8

Yes

Listing 1: Supervised network (with dropout).

flowpic_dim: 32
num_classes: 5
with_dropout: True
--

Layer (type) Output Shape Param #
==

Conv2d-1 [-1, 6, 28, 28] 156
ReLU-2 [-1, 6, 28, 28] 0

MaxPool2d-3 [-1, 6, 14, 14] 0
Conv2d-4 [-1, 16, 10, 10] 2,416

ReLU-5 [-1, 16, 10, 10] 0
Dropout2d-6 [-1, 16, 10, 10] 0
MaxPool2d-7 [-1, 16, 5, 5] 0

Flatten-8 [-1, 400] 0
Linear-9 [-1, 120] 48,120
ReLU-10 [-1, 120] 0

Linear-11 [-1, 84] 10,164
ReLU-12 [-1, 84] 0

Dropout1d-13 [-1, 84] 0
Linear-14 [-1, 5] 425

==
Total params: 61,281
Trainable params: 61,281
Non-trainable params: 0
--
Input size (MB): 0.00
Forward/backward pass size (MB): 0.13
Params size (MB): 0.23
Estimated Total Size (MB): 0.36
--

Listing 2: Supervised network (without dropout).

flowpic_dim: 32
num_classes: 5
with_dropout: False

Layer (type) Output Shape Param #

===
Conv2d-1 [-1, 6, 28, 28] 156
ReLU-2 [-1, 6, 28, 28] 0

MaxPool2d-3 [-1, 6, 14, 14] 0
Conv2d-4 [-1, 16, 10, 10] 2,416

ReLU-5 [-1, 16, 10, 10] 0
Identity-6 [-1, 16, 10, 10] 0 <-- masked

MaxPool2d-7 [-1, 16, 5, 5] 0
Flatten-8 [-1, 400] 0
Linear-9 [-1, 120] 48,120
ReLU-10 [-1, 120] 0

Linear-11 [-1, 84] 10,164
ReLU-12 [-1, 84] 0

Identity-13 [-1, 84] 0 <-- masked
Linear-14 [-1, 5] 425

===
Total params: 61,281
Trainable params: 61,281
Non-trainable params: 0

Input size (MB): 0.00
Forward/backward pass size (MB): 0.13
Params size (MB): 0.23
Estimated Total Size (MB): 0.36

Listing 3: SimCLR pre-train (small projection layer).

flowpic_dim: 32
num_classes: 5,
projection_layer_dim: 30
with_dropout: False

Layer (type) Output Shape Param #
===

Conv2d-1 [-1, 6, 28, 28] 156
ReLU-2 [-1, 6, 28, 28] 0

MaxPool2d-3 [-1, 6, 14, 14] 0
Conv2d-4 [-1, 16, 10, 10] 2,416

ReLU-5 [-1, 16, 10, 10] 0
Identity-6 [-1, 16, 10, 10] 0

MaxPool2d-7 [-1, 16, 5, 5] 0
Flatten-8 [-1, 400] 0
Linear-9 [-1, 120] 48,120
ReLU-10 [-1, 120] 0

Linear-11 [-1, 120] 14,520 <- proj layer 1
ReLU-12 [-1, 120] 0

Identity-13 [-1, 120] 0
Linear-14 [-1, 30] 3,630 <- smaller proj layer

===
Total params: 68,842
Trainable params: 68,842
Non-trainable params: 0

Input size (MB): 0.00
Forward/backward pass size (MB): 0.13
Params size (MB): 0.26
Estimated Total Size (MB): 0.39

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Alessandro Finamore et al.

Listing 4: SimCLR pre-train (large projection layer).

flowpic_dim: 32
num_classes: 5,
projection_layer_dim: 84
with_dropout: False

Layer (type) Output Shape Param #

===
Conv2d-1 [-1, 6, 28, 28] 156
ReLU-2 [-1, 6, 28, 28] 0

MaxPool2d-3 [-1, 6, 14, 14] 0
Conv2d-4 [-1, 16, 10, 10] 2,416
ReLU-5 [-1, 16, 10, 10] 0

Identity-6 [-1, 16, 10, 10] 0
MaxPool2d-7 [-1, 16, 5, 5] 0

Flatten-8 [-1, 400] 0
Linear-9 [-1, 120] 48,120
ReLU-10 [-1, 120] 0

Linear-11 [-1, 120] 14,520 <- proj layer 1
ReLU-12 [-1, 120] 0

Identity-13 [-1, 120] 0
Linear-14 [-1, 84] 10,164 <- larger proj layer

===
Total params: 75,376
Trainable params: 75,376
Non-trainable params: 0

Input size (MB): 0.00
Forward/backward pass size (MB): 0.13
Params size (MB): 0.29
Estimated Total Size (MB): 0.42

Listing 5: Fine-tune network.

flowpic_dim: 32
num_classes: 5,
projection_layer_dim: 30
with_dropout: False

Layer (type) Output Shape Param #

===
Conv2d-1 [-1, 6, 28, 28] 156
ReLU-2 [-1, 6, 28, 28] 0

MaxPool2d-3 [-1, 6, 14, 14] 0
Conv2d-4 [-1, 16, 10, 10] 2,416

ReLU-5 [-1, 16, 10, 10] 0
Identity-6 [-1, 16, 10, 10] 0

MaxPool2d-7 [-1, 16, 5, 5] 0
Flatten-8 [-1, 400] 0
Linear-9 [-1, 120] 48,120
ReLU-10 [-1, 120] 0

Identity-11 [-1, 120] 0 <- masked
Identity-12 [-1, 120] 0 <- masked
Identity-13 [-1, 120] 0 <- masked
Linear-14 [-1, 5] 605 <- final classifier

===
Total params: 51,297
Trainable params: 51,297
Non-trainable params: 0

Input size (MB): 0.00
Forward/backward pass size (MB): 0.13
Params size (MB): 0.20
Estimated Total Size (MB): 0.33

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Target paper
	2.2 Input data representation
	2.3 Label scarcity and data augmentation
	2.4 Contrastive learning

	3 Methodology
	3.1 Experimental goals
	3.2 Experimental protocol
	3.3 System and Artifacts
	3.4 Datasets

	4 Evaluation
	4.1 Providing a simple ML baseline (G0)
	4.2 Reproducing quantitative results of data augmentation (G1.1)
	4.3 Reproducing qualitative ranking of data augmentation (G1.2)
	4.4 Reproducing constrastive learning results (G2)
	4.5 Replicating data augmentation on other datasets (G3)

	5 Conclusions
	References
	A Ethics
	B Artifacts
	C Layout of DL Network Architectures
	D Investigating root cause of G1 discrepancies
	D.1 Our analysis of the UCDAVIS19 dataset
	D.2 UCDAVIS19 dataset analysis from rezaei2019ICDM-ucdavis
	D.3 Reproduction of rezaei2019ICDM-ucdavis on UCDAVIS19

	E Impact of dropout in a supervised setting
	F Comparison of augmentations performance across flowpic sizes

