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Abstract—We study the problem of characterizing and comput-
ing the Gaussian nonanticipative rate distortion function (NRDF)
of partially observable multivariate Gauss-Markov processes
with mean squared error (MSE) distortion constraints. First,
we extend Witsenhausen’s “tensorization” approach originally
used for single-letter random variables to causal processes, to
obtain a new modified representation of the NRDF for the
specific problem. For time-varying vector processes, we prove
conditions so that the new modified NRDF is achieved and
study its implications when it is not achievable. For both
cases (which correspond to different bounds), we derive the
characterization and the optimal realization, whereas we give
the optimal numerical solution using semidefinite programming
(SDP) algorithm. Interestingly, the realization (for both bounds)
is shown to be a linear functional of the current time sufficient
statistic of the past and current observations signals. For the
infinite time horizon, we give conditions to ensure existence of
a time-invariant characterization from the finite-time horizon
problems and a numerical solution using the SDP algorithm. For
the time-invariant characterization, we also give strong structural
properties that enable an optimal and an approximate solution
via a reverse-waterfilling algorithm implemented via an iterative
scheme which executes much faster than the SDP algorithm. For
both finite and infinite time horizons, we study the special case
of scalar processes. Our results are corroborated with various
simulation studies and are also compared with existing results in
the literature.

Index Terms—indirect NRDF, partially observable Gaussian
process, sufficient statistic, optimization, algorithmic analysis

I. INTRODUCTION

Nonanticipatory ϵ−entropy was introduced in [1], [2] mo-
tivated by applications where real-time communication with
minimal encoding and decoding delays is essential. This entity
is shown to be a tight lower bound on causal codes for scalar
processes [3] whereas for vector processes it provides a tight
lower bound at high rates on causal codes and on the average
length of all causal prefix free codes [4] (also termed zero-
delay coding).

Inspired by the usefulness of nonanticipatory-ϵ entropy in
real-time communication, Tatikonda et al. in [5] reinvented
the same information measure under the name sequential rate

P. A. Stavrou was partially supported by a Huawei France-EURECOM
Chair on Future Wireless Networks and by the KAW Foundation and the
Swedish Foundation for Strategic Research. M. Skoglund received funding
from the KAW Foundation and the Swedish Foundation for Strategic Re-
search.

P. A. Stavrou is with the Communication Systems Department, EURECOM,
Sophia-Antipolis, France email: fotios.stavrou@eurecom.fr

M. Skoglund is with the Division of Information Science and Engineering,
KTH Royal Institute of Technology, Sweden email: skoglund@kth.se.

distortion function (RDF)1 to study a linear fully observable
Gaussian closed-loop control system over a memoryless com-
munication channel subject to rate constraints. In particular,
[5] used the sequential RDF subject to a pointwise MSE
distortion constraint to describe a lower bound on the mini-
mum cost of control for scalar-valued Gaussian processes and
a suboptimal lower bound for the multivariate case obtained
by means of a reverse-waterfilling algorithm [7, 10.3.3].2

Tanaka et al. in [10] revisited the estimation/communication
part of the problem introduced by Tatikonda et al. and showed
that the specific description of the sequential RDF is semidef-
inite representable. Around the same time, Stavrou et al. in
[11] solved the general KKT conditions that correspond to
the rate distortion characterization of the optimal estimation
problem in [5] and proposed an adaptive reverse-waterfilling
characterization (for both pointwise and total MSE distortions)
that computes optimally the KKT conditions as long as all
dimensions of the multidimensional setup are active, which is
the case at high rates regime. In addition, in [11] they found the
optimal linear coding policies (by means of a linear forward
test-channel realization) that achieve the specific rate distortion
characterization thus filling a gap created in [1, Theorem 5].
Recently, the optimal realization therein was used in [12] to
derive bounds on a zero delay multiple description source
coding problem with feedback for scalar Gaussian processes.

Kostina and Hassibi in [8] revisited the framework of [5]
and derived bounds on the optimal rate-cost tradeoffs in
control for time-invariant fully observable multivariate Markov
processes under the assumption of uniform cost (or distortion)
allocation. Recently, Charalambous et al. in [13] used a
state augmentation technique to extend the characterization
of the Gaussian nonanticipatory ϵ−entropy derived in [2] to
nonstationary multivariate Gaussian autoregressive models of
any finite order (see also [14] for a similar result).

The extension of the framework of [5] to stochastic linear
partially observable Gaussian control systems under noisy
or noiseless communication channels was initially studied
in [15] whereas a variation of the uncontrolled problem is
studied in [16]. Particularly, Tanaka in [16] considered the
estimation/communication part of the problem and derived
performance limitations by minimizing a sequential RDF with
soft weighted pointwise MSE distortion constraints. To deal

1In the literature this information measure is also encountered as nonantic-
ipative RDF (NRDF) [6].

2The suboptimality of the lower bound obtained in [5] for multivariate
Gaussian processes was recently identified in [8], [9].
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with this problem, he first reduced the time-varying partially
observable Gaussian system into a fully observable one by
employing a pre-Kalman filtering (pre-KF) algorithm. Then,
he assumed á priori a structural result on its observations
process to claim causal invertibility of the pre-KF algorithm
and hence to guarantee that the á posteriori state estimate
between the state process and the observations process com-
puted by the pre-KF is an information lossless operation of
the true observations process at each instant of time. Armed
with this result and a modified MSE distortion constraint he
then claimed that the resulting problem can be equivalently
reformulated as fully observable multi-letter optimization for
which a cascade realization was proposed via the connection
of a pre-KF, a covariance scheduling SDP algorithm, an
additive white Gaussian noise (AWGN) channel and a post-
KF algorithm. The stationary case of the specific optimization
problem is also briefly discussed.

Despite the interesting analysis of [15], [16], there are
several important open questions still unanswered even for
the estimation/communication problem. For instance, in [16]
(see mutatis mutandis [15]) it is not clear if the proposed
lower bound (obtained by means of a sequential RDF) is
tight for the proposed physical system model, or what is the
characterization that needs to be solved similar to what is
already known for example when the input data are modeled
via a linear fully-observable multidimensional system driven
by additive white Gaussian noise (see, e.g., [11, Eq. (5.22)]).
Moreover, the (minimum) realization of the optimal test-
channel distribution including the identification of the reverse-
waterfilling parameters that achieve the specific characteriza-
tion is also missing. Another important question has to do
with the conditions that are needed to ensure (strict) feasibility
of the optimization problem in both finite and infinite time
horizons. Equally important questions include the derivation
of optimal or suboptimal (numerical or analytical) solutions
for this problem for both scalar or beyond scalar processes
as well as the analysis of the problem for high dimensional
systems that necessitates scalable optimization algorithms (an
issue already known from the analysis of [17]).

Kostina and Hassibi in [8] considered some of the pre-
vious questions and derived analytical bounds on the exact
solutions of the estimation and control problems for time-
invariant multivariate jointly Gaussian processes again under
the assumption of uniform distortion allocation. Hence, a
natural open question related to the bounds in [8] is their
tightness for multidimensional systems. This question is also
related to the fact that no insightful examples appeared in
the literature so far to compute optimally partially observable
multivariate Gauss-Markov processes and compare with any
of the closed form bounds proposed in [8].

A. Contributions

In this work, we study the problem of characterizing and
computing a lower bound (using a modified version of NRDF)
on a zero-delay source coding problem when a partially
observable multivariate Gauss-Markov process is quantized
and transmitted subject to a hard MSE distortion constraint in

both finite and infinite time horizons. We obtain the following
results.
(R1) A new modified version of the NRDF (also called indirect
or remote NRDF) which is a lower bound on the optimal rates
of our system model depicted in Fig. 1. The bound is obtained
by extending Witsenhausen’s “tensorization” approach [18] to
causal processes with memory (see Section III, (22)).
(R2) Necessary and sufficient structural conditions that guar-
antee the tightness of the proposed indirect NRDF (see Propo-
sition 1, Lemma 3) for jointly Gaussian processes.
(R3) For the finite time horizon, we derive the characteriza-
tion and the optimal test-channel realization of the Gaussian
indirect NRDF. Remarkably, the optimal realization is shown
to be a linear functional of the current sufficient statistic of
the past and present observation signals (see Theorem 1).
(R4) For the infinite time horizon, we identify necessary and
sufficient conditions (i.e., detectability and stabilizability of
appropriate pair of matrices) to ensure a steady state solution
of the error covariance matrices of the sufficient statistic
process (see Lemma 5) and give conditions that allow for
a time-invariant characterization in the asymptotic limit (see
Theorem 4).
(R5) For both finite and infinite time horizons, we give the
numerical solutions of the proposed lower bound characteri-
zations (assuming the solution is finite) by showing that they
are semidefinite representable (see Theorem 2, Corollary 2).
For time-varying scalar processes with average total MSE
distortion constraints, we derive the optimal closed form
solution via a dynamic reverse-waterfilling algorithm (see
Theorem 3) that we implement in Algorithm 1 whereas for
pointwise MSE distortion constraints we derive the optimal
closed form solution (see Corollary 1). Under certain strong
structural properties on the time-invariant characterization of
the problem (see Proposition 5) we derive an optimal scalable
reverse-waterfilling solution (see Theorem 5) with its algorith-
mic embodiment (see Algorithm 2).
(R6) We supplement our major results with numerical valida-
tions including connections with [8] (see Section VI).

B. Comparison to prior art

The derivation of the modified NRDF in (R1) is new and
possess similar properties to the classical NRDF [1], [19], i.e.,
convexity, lower-semicontinuity etc. Based on the structural
properties derived in (R2), we claim that the corresponding
structural conditions assumed á priori in the system model
of [16, Equations (1a), (1b)] are not sufficient to ensure the
tightness of the proposed lower bound but instead, these corre-
spond to a conservative lower bound compared to the original
lower bound that we prove in this paper. The implications
of this conservative lower bound are also studied in our paper
(see Propositions 2-6). The characterizations obtained in (R3),
(R4), are different compared to [16] because they are obtained
with hard average total MSE distortion constraints (and global
Lagrange multipliers) instead of soft pointwise MSE distortion
constraints (and given á priori multiple Lagrange multipliers)
that are assumed in [16]. The structural simplification of the
multi-letter optimization problem of Definition 2 obtained via
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[11, Theorem 4.1] is also new (see Equation (37)). The com-
putational complexity of the algorithmic approaches derived
in (R5) compared to the prior research studies is discussed in
Remarks 4, 6, 9. Note that Theorem 5 and its implementation
in Algorithm 2 are extremely important for two reasons; first,
we can gain better insights of the problem in the infinite time
horizon (for instance it paves the way to derive optimal closed
form solutions beyond scalar processes, hence generalizing the
results obtained for the fully observable time-invariant mul-
tivariate Gauss-Markov processes, see e.g., [17, Section IV])
and, second, Algorithm 2 as Table I suggests can operate much
faster than the SDP algorithm in high dimensional systems
(it is scalable). Our numerical simulation in Example 2, apart
from verifying numerically that both Corollary 2 and Theorem
5 coincide under certain structural properties, it also shows
that the corresponding analytical lower bound obtained for
partially observable time-invariant multidimensional Gauss-
Markov processes via [8, Corollary 1, Theorem 9] is not tight
in general but a fairly tight performance (not exact) can be
observed at a very low distortion. Consequently, its utility to
controlled processes in [8, Theorem 5] should be seen under
this consideration. Example 3, shows the utility of Algorithm 1
when we restrict our system to time-invariant scalar processes,
namely, it recovers the steady-state closed form solution of
Corollary 3 (or [20, eq. (103)]). Finally, for every result in
this paper we recover or explain how to recover as a special
case known results in the literature.

Notation. We let R = (−∞,∞), Z={. . . ,−1, 0, 1, . . .},
N0 = {0, 1, . . .}, Nn

0 = {0, 1, . . . , n}, n ∈ N0. Let X be a
finite dimensional Euclidean space and B(X ) the Borel σ-field
of X . A random variable (RV) defined on some probability
space (Ω,F ,P) is a map x : Ω 7−→ X , where (X ,B(X ))
is a measurable space. We denote a sequence of RVs by
xt
r ≜ (xr,xr+1, . . . ,xt), (r, t) ∈ Z × Z, t ≥ r, and their

realizations by xt
r ∈ X t

r ≜ ×t
k=rXk, for simplicity. If r = −∞

and t = −1, we use the notation x−1
−∞ = x−1, and if r = 0,

we use the notation xt
0 = xt. The distribution of the RV x

on X is denoted by P(dx). The conditional distribution of a
RV y given x = x is denoted by P(dy|x). The transpose
and covariance of a random vector x are denoted by xT

and Σx. We denote the determinant, trace, rank, diagonal,
diagonal elements, and the eigenvalues of a square matrix
S ∈ Rp×p by |S|, trace(S), rank(S), diag(S), [·]ii and
{µS,i}pi=1. We denote the transpose of a real (rectangular)
matrix F ∈ Ri×j by F T. The notation Σ ≻ 0 (resp. Σ ⪰ 0)
denotes a positive definite (resp. positive semi-definite) matrix.
The notation A ≻ B (resp. A ⪰ B) means A−B ≻ 0 (resp.
A−B ⪰ 0). We denote a p×p identity matrix by Ip. RG(D)
denotes the Gaussian version of the RDF. The expectation
operator is denoted by E{·}; || · || denotes Euclidean norm;
[·]+ ≜ max{0, ·}. We denote by abs(| · |) the absolute value
of a determinant.

II. PROBLEM STATEMENT

We consider the causal zero-delay source coding setup
of Fig. 1. In this setting, the “hidden” Rp-valued source is

modeled by a discrete-time time-varying partially observable
Gauss-Markov process as follows

xt+1 = Atxt +wt, x0 = x̄, (1)
zt = Ctxt + nt, t ∈ N0, (2)

where At ∈ Rp×p is a square non-random matrix, Ct ∈ Rm×p

is a possibly rectangular non-random fat matrix (m ≤ p),
x0 ∈ Rp ∼ (0; Σx0), Σx0 ≻ 0 is the initial state, wt ∈
Rp ∼ N (0; Σwt), Σwt ≻ 0 is an independent sequence,
nt ∈ Rm ∼ N (0; Σnt

), Σnt
⪰ 0, is an independent sequence,

independent of {wt : t ∈ N0}, whereas x0 is independent of
{(wt,nt) : t ∈ N0}.

System’s operation: At every time instant, the encoder
(E) observes the impaired measurement zt (provided zt−1 are
already observed) and generates the data packet mt ∈ Mt ⊂
{0, 1}ℓt of instantaneous expected rate Rt = E|ℓt|, where |ℓt|
denotes the binary sequence of ℓt. At time t, mt is transmitted
across a noiseless channel with rate Rt. Upon receiving mt,
a minimum MSE (MMSE) decoder (D) immediately produces
an estimate yt of the source sample xt, under the assumption
that yt−1 are already reproduced. We assume that at time
t = 0 there is no prior information whereas the clocks of
the encoder and the decoder are synchronized. Formally, the
(ED) pair is specified by the sequence of measurable functions
{(ft, gt) : t ∈ N0} with ft : Mt−1 × Zt 7→ Mt and
gt : Mt 7→ Yt, t ∈ N0, such that

(E) : mt = ft(m
t−1, zt), m−1 = ∅, z−1 = ∅,

(D) : yt = gt(m
t).

(3)

Distortion Constraint. The distortion constraint is described

(E) (D)

System Model

A x x wt t tt+1
C z x nt t t t

tz ty{ }Î 0,1 tmt


Fig. 1: System model.

by the average total MSE distortion constraint given by

1

n+ 1

n∑
t=0

E
{
||xt − yt||2

}
≤ D, (4)

and its asymptotic (upper) limit by

lim sup
n−→∞

1

n+ 1

n∑
t=0

E
{
||xt − yt||2

}
≤ D. (5)

Performance. The performance of the multidimensional system
in Fig. 1 for some finite n can be cast as follows

Rc
[0,n],in(D) ≜ inf

eq. (3), t ∈ Nn
0

eq. (4)

1

n+ 1

n∑
t=0

Rt. (6)

The asymptotic limit of (6) is given as follows

Rc
in(D) ≜ inf

eq. (3), t ∈ N0,

eq. (5)

lim sup
n−→∞

1

n+ 1

n∑
t=0

Rt. (7)
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III. LOWER BOUNDS

In this section, we first prove a lower bound that corresponds
to the operational rates given in (6), (7).

From data processing properties of the system in Fig. 1, we
have that the joint distribution induced by the joint process
{(zt,mt,yt) : t ∈ Nn

0} admits the following decomposition:

P(dyn, dmn, dzn) = ⊗n
t=0P(dyt, dmt, dzt|yt−1,mt−1, zt−1)

= ⊗n
t=0P(dyt|yt−1, zt,mt)⊗P(dmt|mt−1, zt, yt−1)

⊗P(dzt|zt−1, yt−1,mt−1)

(a)
= ⊗n

t=0P(dyt|yt−1,mt)⊗P(dmt|mt−1, zt, yt−1)

⊗P(dzt|zt−1), (8)

where (a) stems from the fact that we assume in our system
the following natural conditional independence constraints

P(dzt|zt−1, yt−1,mt−1) = P(dzt|zt−1), (9)

P(dyt|yt−1, zt,mt) = P(dyt|yt−1,mt). (10)

Based on the setup of Fig. 1, in (8) we assume that the joint
distribution P(dz−1, dm−1, dy−1) generates zero information.
The following data processing result, provides the appropriate
information measure that can be used to compute a lower
bound on (6).
Lemma 1. (Data processing inequalities) Under the decompo-
sition of the joint distribution in (8), the communication system
in Fig. 1 admits the following data processing inequalities

I(zn;yn)
(ii)

≤ I(zn;mn||yn−1)
(i)

≤
n∑

t=0

Rt, (11)

where I(zn;yn) =
∑n

t=0 I(z
t;yt|yt−1), and

I(zn;mn||yn−1) =
∑n

t=0 I(z
t;mt|mt−1,yt−1), assuming

I(zt;yt|yt−1) <∞, I(zt;mt|mt−1,yt−1) <∞, ∀t.

Proof: The proof is similar to [21, Theorem 1] thus we
omit it.

Next, we show how to formally construct the information
measure I(zn;yn).
Observations Process. The observations process {zt : t ∈
Nn

0} induces the sequence of conditional distributions
P(dzt|zt−1), t ∈ Nn

0 . At t = 0 we assume that P(dz0|z−1) =
P(dz0) and by Bayes’ rule we obtain

P(dzn) = ⊗n
t=0P(dzt|zt−1). (12)

It should be noted that for the system model (1), (2), at each
instant of time, the conditional distribution of P(dzt|zt−1)
depends on the distribution of the hidden data xt given all the
past observation symbols zt−1 via

P(dzt|zt−1) =

∫
Xt

P(dzt|xt)P(dxt|zt−1). (13)

Reproduction or “test-channel”. The reproduction process
yt parametrized by Yt−1×Zt induces the sequence of condi-
tional distributions or as test-channels P(dyt|yt−1, zt), t ∈
Nn

0 . At t = 0, no initial information is assumed, hence
P(dy0|y−1, z0) = P(dy0|z0). The sequence of conditional
distributions {P(dyt|yt−1, zt) : t ∈ N0} uniquely defines

the family of conditional distributions on Yn parametrized by
zn ∈ Zn, given by

Q(dyn|zn) ≜ ⊗n
t=0P(dyt|yt−1, zt), (14)

and vice-versa. From (12) and (14), we can uniquely define
the joint distribution of {(zt,yt) : t ∈ Nn

0} by

P(dyn, dzn) = P(dzn)⊗Q(dyn|zn). (15)

In addition, from (15), we can define the Yn−marginal distri-
bution P(dyn) ≜ ⊗n

t=0P(dyt|yt−1), where

P(dyt|yt−1) =

∫
Zt

P(dyt|yt−1, zt)⊗P(dzt|yt−1). (16)

Given the above construction of distributions we obtain the
following variant of directed information [22]

I(zn;yn)
(a)
=

n∑
t=0

E
{
log

(
dP(·|yt−1, zt)

dP(·|yt−1)
(yt)

)}
(b)

≜
n∑

t=0

I(zt;yt|yt−1), (17)

where (a) is due to chain rule of relative entropy using the
Radon-Nykodym derivative [23]; (b) follows by definition.

Definition 1. (Lower bounds on (6), (7)) For a given processes
{zt : t ∈ Nn

0} that induces the conditional distribution (13),
a lower bound on (6), hereinafter called remote or indirect
NRDF, subject to (4) is defined as follows

R[0,n],in(D) ≜ inf
P(dyt|yt−1,zt): t∈Nn

0

eq. (4)

I(zn;yn). (18)

Moreover, its asymptotic (upper) limit expression that corre-
sponds to a lower bound on (7) is given by

Rin(D) ≜ inf
P(dyt|yt−1,zt): t∈N0

eq. (5)

lim sup
n−→∞

1

n+ 1
I(zn;yn). (19)

Next, we further analyze (18) and discuss some of its most
important properties. Before we do it, we remark that the
name indirect or remote NRDF is adopted because (18) can be
seen as an extension to causal processes (with memory) of the
remote or indirect RDF defined for i.i.d. memoryless processes
{(xt, zt,yt) : t ∈ Nn

0} or RVs (x, z,y) in the context of
non-causal coding see, e.g., [24], [25], [26, Chapters 3.5, 4.5].
In the sequel, we generalize Witsenhausen’s “tensorization”
approach (see e.g., [18]) to time-varying causal processes to
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prove an equivalent expression to (18) with a modified MSE
distortion.

n∑
t=0

E{||xt − yt||2} =
n∑

t=0

∫
X t×Yt

||xt − yt||2P(dxt, dyt)

=

n∑
t=0

∫
X t×Zt×Yt

||xt − yt||2P(dxt, dzt, dyt)

(⋆)
=

n∑
t=0

∫
Zt×Yt

P(dzt, dyt)

∫
X t

||xt − yt||2P(dxt|zt)

(⋆⋆)
=

n∑
t=0

∫
Zt×Yt

P(dzt, dyt)

∫
Xt

||xt − yt||2P(dxt|zt)

(⋆⋆⋆)
=

n∑
t=0

E{d̂(zt,yt)}, (20)

where (⋆) follows due to the conditional independence con-
straint P(dyt|zt, xt) = P(dyt|zt), for any t = 0, 1, . . . , n;
(⋆⋆) follows because the integration concerning xt ∈ X t

in (⋆), due to the squared-error distortion, affects only the
current realization xt in the posterior distribution, which in
turn admits the following recursion

P(dxt|zt) =
P(dzt|xt)P(dxt|zt−1)∫
Xt

P(dzt|xt)P(dxt|zt−1)
, (21)

(⋆ ⋆ ⋆) follows if we define d̂(zt,yt) ≜
∫
Xt
||xt −

yt||2P(dxt|zt). Hence, (18) can be equivalently reformulated
as follows

R[0,n],in(D) ≜ inf
P(dyt|yt−1,zt): t∈Nn

0
1

n+1

∑n
t=0 E{d̂(zt,yt)}≤D

I(zn;yn), (22)

which corresponds precisely to a “modified” direct NRDF.
Further, it is easy to show that (22) is convex with respect
to the minimizer {P(dyt|yt−1, zt) : t ∈ Nn

0} following
for instance [19]. In addition, R[0,n],in(D) is monotonically
non-increasing, convex with respect to D, continuous in D ∈
(Dmin,∞) and if R[0,n],in(D

min) <∞, then, it is continuous
in D ∈ [Dmin,∞). It is also well known that, R[0,n],in(D)
achieves smaller rates if in addition to {(xt, zt) : t ∈ Nn

0}
being a jointly Gaussian process with the linear evolution of
(1), (2), the joint process {(xt, zt,yt) : t ∈ Nn

0} is also
Gaussian because then I(zn;yn) ≥ IG(zn;yn) (that is, the
Gaussian version of I(zn;yn)) which in turn implies that
R[0,n],in(D) ≥ RG

[0,n],in(D) (see, e.g., [27, Theorem 1.8.6]).

IV. FINITE TIME HORIZON PROBLEMS

In this section, we assume that the end-to-end system in
Fig. 1 is jointly Gaussian and we study, in finite time, the
characterization, the realization and computation of (22).

To characterize the problem we use a two-step approach
comprised of a pre-KF step followed by two structural results.

Lemma 2. (Classical KF) For the jointly Gaussian system
model of (1), (2), define the á priori and á posteriori state

estimates as x̂t|t−1 ≜ E{xt|zt−1} and x̂t|t ≜ E{xt|zt}, re-
spectively, and their corresponding error covariance matrices
by3

Σx
t|t−1 ≜ E{(xt − x̂t|t−1)(xt − x̂t|t−1)

T} (23)

Σx
t|t ≜ E{(xt − x̂t|t)(xt − x̂t|t)

T}. (24)

Then, the optimal values of {(x̂t|t−1, x̂t|t,Σ
x
t|t−1,Σ

x
t|t) : t ∈

Nn
0} are computed recursively forward in time as follows

x̂t|t = x̂t|t−1 + kz
t I

z
t , x̂0|−1 = x̄0,

x̂t|t−1 = At−1x̂t−1|t−1,

Σx
t|t−1 = At−1Σ

x
t−1|t−1A

T
t−1 +Σwt−1 , Σx

0|−1 = Σx0 ,

Izt = zt − E{zt|zt−1} = Ct(xt − x̂t|t−1) + nt,

ΣIzt
= CtΣ

x
t|t−1C

T
t +Σnt

kz
t = Σx

t|t−1C
T
tΣ

−1
Izt

(Kalman Gain),

Σx
t|t = Σx

t|t−1 − Σx
t|t−1C

T
tΣ

−1
Izt

CtΣ
x
t|t−1,

(25)

where Izt is the innovations process that is independent of
(x̂t|t−1,x

t−1, zt−1,yt−1) and Σx
t|t ⪰ 0 and Σx

t|t−1 ≻ 0.

Proof: The proof is known, see e.g., [28]–[31].
Next, we prove a proposition where we extend [7, Theorem

2.8.1] to causal processes with memory.

Proposition 1. (Data processing inequality) Suppose that for
the joint process {(xt, zt,yt) : t ∈ Nn

0} we have that
P(dyt|yt−1, ξt, zt) = P(dyt|yt−1, zt), ∀t ∈ Nn

0 . Moreover,
let the statistic ξt = ft(z

t),∀t ∈ Nn
0 . Then,

n∑
t=0

I(ξt;yt|yt−1) ≤
n∑

t=0

I(zt;yt|yt−1), (26)

for any n, assuming I(ξt;yt|yt−1) < ∞, I(zt;yt|yt−1) <
∞,∀t. Additionally, (26) holds with equality if and only if
(iff)

P(dyt|yt−1, ξt, zt) = P(dyt|yt−1, ξt), ∀t ∈ Nn
0 . (27)

Proof: By the chain rule, we can expand conditional
mutual information in two different ways, i.e.,

n∑
t=0

I(zt, ξt;yt|yt−1)

=

n∑
t=0

I(zt;yt|yt−1) + I(ξt;yt|yt−1, zt)︸ ︷︷ ︸
=0

 (28)

=

n∑
t=0

[
I(ξt;yt|yt−1) + I(zt;yt|yt−1, ξt)

]
(29)

≥
n∑

t=0

I(ξt;yt|yt−1), (30)

where in (28) I(ξt;yt|yt−1, zt) = 0,∀t because of the natural
conditional independence constraint of the proposition and
(30) holds because I(zt;yt|yt−1, ξt) ≥ 0,∀t. From (28) and
(30) we obtain (26). Clearly, the inequality holds with equality

3For jointly Gaussian systems, the conditional covariance is equal to its
unconditional version [28].
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iff I(zt;yt|yt−1, ξt) = 0,∀t, i.e., when (27) holds. This
completes the proof.

If (27) holds, then, we say that the statistic ξt is suffi-
cient because it contains all the information of zt about yt

parametrized by Yt−1 at each instant of time.
The following lemma is a main result of this paper. It derives

a sufficient condition such that (27) in Proposition 1 holds
with equality, hence ensuring that (26) holds with equality for
jointly Gaussian multivariate processes.

Lemma 3. (Structural conditions for equality of (26)) Sup-
pose that {(xt, zt,yt) : t ∈ Nn

0} is a jointly Gaussian
multivariate process with a source model given by (1), (2).
Moreover, let the optimal estimator in Lemma 2 be denoted
by ξt = E{xt|zt}. Then, the conditional independence (27)
holds if in Lemma 2, kz

t ∈ Rp×m is square (p = m) and
invertible at each t.

Proof: The idea follows similar (but not identical) argu-
ments to [32]. Observe that the following hold

P(dyt|yt−1, zt)
(a)
= P(dyt|yt−1, zt, ξt)

(b)
= P(dyt|yt−1, Izt, ξt)

(c)
= P(dyt|yt−1, ξt), (31)

where (a) follows from Proposition 1 by setting ξt =
E{xt|zt}; (b) follows from Lemma 2 because from the
innovations process we have zt = Izt + E{zt|zt−1} =
CtAt−1ξt−1+Izt ; (c) follows by ensuring that the estimator ξt
and the innovations Izt generate the same information at each
t (a standard argument to ensure an optimal KF algorithm
[28]). Indeed, (c) can be guaranteed as follows. From Lemma
2 and the expression ξt = At−1ξt−1 + kz

t I
z
t we can let

T (ξt, ξt−1) = ξt −At−1ξt−1 for specified ξt−1, and observe
that the information between (ξt, I

z
t ) at each t is preserved

if the solution of both linear equations T (ξt, ξt−1) = kz
t I

z
t

and Izt = k̂z
tT (ξt, ξt−1) for some matrix k̂z

t , is concurrently
unique (forming a bijective linear transformation), which is
the case if kz

t is invertible, i.e., |kz
t | ̸= 0 and k̂z

t = (kz
t )

−1.

To put it simply, Lemma 3 claims that for the system
model (1), (2) and jointly Gaussian processes, the information
between ξt and zt is preserved if we can uniquely obtain ξt

from zt and vice versa, for any t. Based on this observation,
we state the following remark.

Remark 1. (On Lemma 3 and connections to [16]) From prop-
erties of the rank of a matrix (see e.g., [33, Corollary 8.3.3]),
the structural condition in Lemma 3 holds iff Ct ∈ Rm×p in
(2) is square (i.e., m = p) and full rank at each t. It should
be emphasized that the structural condition derived in Lemma
3 is not the same as the one considered in [16, Lemma 2]
which claims a different structural property of matrix kz

t (i.e.,
kz
t is full column rank as a result of matrix Ct being full

row rank throughout that paper). Indeed, therein the author
claimed that the KF algorithm which corresponds exactly to
our Lemma 2, forms a causally invertible operation for any t,
if it is possible to recover zt from ξt. Provided that causally
invertible operation means invertible (or bijective) operation

for each time instant t, the result of [16, Lemma 2] should
be seen with caution, because it does not guarantee a unique
reconstruction of zt as a function of ξt and vice versa. Indeed,
one can easily verify our claim by taking as an example the
initial time instant of the á posteriori conditional mean in
(25) (for ξt = x̂t|t, take t = 0 with ξ−1 = 0) and check
the conditions for invertibility of the resulting linear matrix
equation, i.e., ξ0 = kz

0z0. This implies that the statement
of [16, Lemma 2] does not suffice, in general, to ensure
the conditional independence (27), hence under the specific
structural condition, the inequality in (26) is strict for all t,
and as a result (22) is not achievable. In the sequel, we will
also discuss the implications of Ct ∈ Rm×p being a full row
rank with m < p.

Next, we study the structure of the amended distortion
constraint in the convex optimization problem of (22) obtained
for jointly Gaussian processes. Specifically, following [25] and
using the fact that ξt = E{xt|zt} we obtain

d̂(zt, yt) =Ext|zt=zt{||xt − yt||2}
=Ext|zt=zt{||xt − ξt + ξt − yt||2}
(i)
=Ext|zt=zt{||xt − ξt||2}+ ||ξt − yt||2
(ii)
= trace(Σx

t|t) + ||ξt − yt||2, (32)

where (i) follows because for jointly Gaussian processes ξt is
the optimal MMSE estimator of xt given zt and from the
orthogonality principle; (ii) follows by definition of the á
posteriori error covariance of the optimal MMSE obtained
from the KF recursions in Lemma 2. Finally, the amended
distortion constraint in (22) is obtained by taking the expec-
tation concerning the joint distribution of {(zt,yt) : t ∈ Nn

0}
in (32) and then the summation which will give

n∑
t=0

trace(Σx
t|t) +

n∑
t=0

E{||ξt − yt||2}. (33)

Putting all the pieces together, we can reformulate (22) (and
its asymptotic (upper) limit) as follows.

Definition 2. (Indirect Gaussian NRDF) Suppose that the
process {(xt, zt,yt) : t ∈ Nn

0} is jointly Gaussian and
Ct ∈ Rm×p in (2) is square and full rank, i.e., m = p. Then,
(18) and (19), respectively, can be reformulated as follows

RG
[0,n],in(D −Dmin

[0,n])

= inf
P(dyt|yt−1,ξt):t∈Nn

0
1

n+1

∑n
t=0 E{||ξt−yt||2}≤D−Dmin

[0,n]

n∑
t=0

I(ξt;yt|yt−1), (34)

RG
in(D −Dmin

[0,∞])

= inf
P(dyt|yt−1,ξt):t=0,1,...,∞

lim supn−→∞
1

n+1

∑n
t=0 E{||ξt−yt||2}≤D−Dmin

[0,∞]

R̄, (35)

where in (34) (D − Dmin
[0,n]) ∈ [0,∞], Dmin

[0,n] =
1

n+1

∑n
t=0 trace(Σ

x
t|t), in (35) Dmin

[0,∞] = lim supn−→∞ Dmin
[0,n]

and R̄ ≜ lim supn−→∞
1

n+1

∑n
t=0 I(ξ

t;yt|yt−1).
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Clearly, if in Definition 2 we assume that Ct ∈ Rm×p is
full row rank (m < p), then, a consequence of Lemma 3 is
that (18) > (34) and (19) > (35).

Next, we remark some technical comments on Definition 2.

Remark 2. (On Definition 2) (1) The information measure
(34) has a finite solution if we ensure that D−Dmin

[0,n] ∈ (0,∞]

with Dmin
[0,n] < ∞; (2) One can take the more stringent

pointwise MSE distortion constraint in (34) in which case the
problem particularizes to

RG
[0,n],in({Dt −Dmin

t }nt=0)

= inf
P(dyt|yt−1,ξt): t∈Nn

0

E{||ξt−yt||2}≤Dt−Dmin
t , ∀t

n∑
t=0

I(ξt;yt|yt−1), (36)

where Dmin
t = trace(Σx

t|t), and Dt − Dmin
t ∈ (0,∞] with

Dmin
t <∞, for any t. (3) The lower bound (34) shows an in-

teresting resemblance to the classical remote RDF obtained for
i.i.d. memoryless Gaussian processes or RVs using non-causal
coding [25]. In particular, similar to that case, the distortion
constraint in (34) consists of two parts of which only one
affects the rates. As a result the other part can be essentially
subtracted from the given distortion level. (4) Definition 2
corresponds to a different optimization problem compared to
[16, Eq. (16)]. That paper deals with a lower bound with a soft
pointwise MSE distortion constraint and multiple “Lagrange
multipliers” (denoted therein by {αt : t = 0, . . . , n}) that are
chosen á priori, whereas we consider a lower bound subject
to a hard average total MSE distortion constraint for which
we look for a global Lagrange multiplier. (5) To the best of
the authors’ knowledge, [8] has never proved the information
measure in Definition 2 for jointly Gaussian processes either
in finite time or in the asymptotic limit.

Since the process {ξt : t ∈ Nn
0} admits the Markov

realization obtained from the KF recursions of (25), then,
one can leverage the implicit recursions of [11, Theorem 4.1]
(obtained via dynamic programming [34]) to simplify (34) to

RG
[0,n],in(D −Dmin

[0,n])

= inf
P(dyt|yt−1,ξt):t∈Nn

0
1

n+1

∑n
t=0 E{||ξt−yt||2}≤D−Dmin

[0,n]

n∑
t=0

I(ξt;yt|yt−1). (37)

Next we use (37) to provide for the first time, the optimal
characterization in finite time of the indirect Gaussian NRDF
obtained in (22). To do it, we need a lemma which is an
extension of [11] to partially observable Gaussian processes.

Lemma 4. (Realization of {P∗(dyt|yt−1, ξt) : t ∈ Nn
0}) For

the system model in (1), (2), suppose that the joint process
{(xt, yt, zt) : t ∈ Nn

0} is jointly Gaussian and Ct ∈ Rm×p

in (2) is square and full rank. Then, the following statements
hold.
(1) Any {P∗(dyt|yt−1, ξt) : t ∈ Nn

0} is realized by

yt =Ht

(
ξt − ξ̂t|t−1

)
+ ξ̂t|t−1 + vt, t ∈ Nn

0 , (38)

where ξ̂t|t−1 ≜ E{ξt|yt−1}, {vt ∈ Rp ∼ N (0; Σvt
) : t ∈

Nn
0} is an independent Gaussian process independent of

{(wt, nt) : t ∈ Nn
0} and x0, and {Ht ∈ Rp×p : t ∈ Nn

0}
are time-varying deterministic matrices (to be designed).
Moreover, the innovations process {Iξt ∈ Rp : t ∈ Nn

0} of
(38) is the orthogonal process given by

Iξt = yt − E{yt|yt−1} = Ht

(
ξt − ξ̂t|t−1

)
+ vt, (39)

where Iξt ∼ N (0; ΣIξt
), ΣIξt

= HtΣ
ξ
t|t−1H

T
t + Σvt

≻ 0,

with Σξ
t|t−1 ≜ E

{
(ξt − ξ̂t|t−1)(ξt − ξ̂t|t−1)

T

}
.

(2) Let ξ̂t|t ≜ E{ξt|yt}, Σξ
t|t ≜ E{(ξt − ξ̂t|t)(ξt − ξ̂t|t)

T}.
Then, {(ξ̂t|t−1, Σξ

t|t−1, ξ̂t|t, Σξ
t|t) : t ∈ Nn

0} satisfy the
following generalized discrete-time forward KF recursions:

ξ̂t|t = ξ̂t|t−1 + kξ
t I

ξ
t ,

ξ̂t|t−1 = At−1ξ̂t−1|t−1, ξ̂0|−1 = ξ̄0

Σξ
t|t−1 = At−1Σ

ξ
t−1|t−1A

T
t−1 + kz

tΣIzt
kz
t

T,

kξ
t = Σξ

t|t−1H
T
tΣ

−1

Iξt
(Kalman Gain),

Σξ
t|t = Σξ

t|t−1 − Σξ
t|t−1H

T
tΣ

−1

Iξt
HtΣ

ξ
t|t−1,

(40)

where Σξ
0|−1 = Σkz

0ΣIz0
kz
0

T , Σξ
t|t ⪰ 0 and Σξ

t|t−1 ⪰ 0.
(3) The characterization of RG

[0,n],in(D − Dmin
[0,n],in) achieved

by (38) is given by

RG
[0,n],in(D −Dmin

[0,n]) =

inf
Ht∈Rp×p, Σvt⪰0

Σξ
t|t⪰0, Σξ

t|t−1
⪰0

1
n+1

∑n
t=0 trace(G)≤D−Dmin

[0,n]

1

2

n∑
t=0

[
log
|Σξ

t|t−1|

|Σξ
t|t|

]+
, (41)

where G = (Ip −Ht)Σ
ξ
t|t−1(Ip −Ht)

T +Σvt
, for some (D−

Dmin
[0,n]) ∈ [0,∞].

Proof: (1) Since the joint process {(xt, zt,yt) : t ∈
Nn

0} is assumed to be jointly Gaussian, then,
{P∗(dyt|yt−1, ξt) : t ∈ Nn

0} is conditionally Gaussian,
and we can obtain the orthogonal realization

yt = Htξt +Rt(y
t−1) + vt, t ∈ Nn

0 , (42)

where Rt(y
t−1) ≜ Γt−1y

t−1, P∗(·|yt−1, ξt) ∼ N (Htξt +
Γt−1y

t−1; Σvt), with {(Ht,Γt−1) : t ∈ Nn
0} being determin-

istic matrices of appropriate dimensions. For such realization,
I(ξt;yt|yt−1) does not depend on Rt(·), ∀t ∈ Nn

0 . Moreover,

E
{
||ξt − yt||2

}
= E

{
||(Ip −Ht)ξt −Rt(y

t−1)||2
}

+ trace (Σvt
)

(⋆)

≥ E
{
||(Ip −Ht)ξt −R∗

t (y
t−1)||2

}
+ trace (Σvt

) ,

where (⋆) holds with equality if Rt(·) = R∗
t (·) = (Ip −

Ht)ξ̂t|t−1, ∀t ∈ Nn
0 . (2) This follows from the discrete-

time KF equations. (3) The characterization that achieves (38)
is obtained from (1), (2) and the definition of conditional
mutual information I(ξt;yt|yt−1) at each time instant t. This
completes the proof.

It should be noted that the characterization in (41) is general
and at this point we did not give conditions to ensure existence



8

of a finite solution neither we specify the design of the decision
variables (Ht,Σvt). Moreover, if in the system model (1), (2)
we set Ct = Ip and nt = 0,∀t, then, in Lemma 4 we obtain
ξt = xt, ∀t, {P∗(dyt|yt−1, ξt) ≡ P∗(dyt|yt−1, xt) : t ∈
Nn

0} and ξ̂t|t−1 = E{xt|yt−1}. The analysis will recover as a
special case [11, Lemma 5.2].

Proposition 2. (Full row rank matrix Ct) If in Lemma 4 we
assume that Ct ∈ Rm×p is full row rank with m < p and
ΣIξt
≻ 0, then, the KF recursions will hold for kz

tΣIzt
kz
t

T ⪰ 0.
Moreover, (22) > (41).

Proof: This is a consequence of Lemma 3.
The next theorem achieves the minimum of (37)

parametrized by (Ht,Σvt).

Theorem 1. (Characterization of (37)) (1) The optimal min-
imizer {P∗(dyt|yt−1, ξt) : t ∈ Nn

0} that achieves (37) is
induced by the parametric realization (38) such that (Ht,Σvt)
are given by

Ht ≜ Σξ
t|t−1 − Σξ

t|tΣ
ξ−1

t|t−1, Σvt ≜ Σξ
t|tH

T
t ⪰ 0. (43)

The choice of (Ht,Σvt
) if ΣIξt

≻ 0, implies that the optimal
minimizer {P∗(dyt|yt−1, ξt) : t ∈ Nn

0} is realized by

yt = Htξt + (Ip −Ht)Ayt−1 + vt, t ∈ Nn
0 , (44)

where yt ∈ Rp, with y−1 = 0.
(2) Moreover, RG

[0,n],in(D − Dmin
[0,n]) in (37) parametrized by

(Ht,Σvt) is achieved by the following optimization problem

RG
[0,n],in(D −Dmin

[0,n]) =

min
0⪯Σξ

t|t⪯Σξ
t|t−1

1
n+1

∑n
t=0 trace

(
Σξ

t|t

)
≤D−Dmin

[0,n]

1

2

n∑
t=0

[
log
|Σξ

t|t−1|

|Σξ
t|t|

]+
, (45)

for some D −Dmin
[0,n] ∈ [Dmin, Dmax] ⊂ [0, Dmax].

Proof: From MSE estimation theory we know
that the MSE inequality

∑n
t=0 E

{
||ξt − yt||2

}
≥∑n

t=0 E
{
||ξt − ξ̂t|t||2

}
holds for all (Ht, Σvt

), t ∈ Nn
0 , and

it is achieved if ξ̂t|t = yt. The choice of (43) for Σξ
I ≻ 0

ensures in (40) that kξ
t = Ip and x̂t|t−1 = Ayt−1 and

hence via (38) we obtain (44). This means that if in (41) we
substitute the scalings in (43), we obtain (45) making sure
that the distortion obtained from the optimal MSE estimator
can be achieved for the specific rate (objective function).

If the choice of (Ht,Σvt
) in Theorem 1 generates ΣIξt

⪰ 0

with rank(ΣIξt
) = l < p, then, (45) will still be achieved by

the linear Gaussian “test channel” (44) with reduced dimension
yt ∈ Rl (l < p). This is because by finding the decision
variable {Σξ

t|t : t ∈ Nn
0} one can further compute the

rank deficient matrices (Ht,Σvt
) and then discard the (p− l)

“inactive” dimensions using singular value decomposition.

Remark 3. (Existence of solution in Theorem 1) An optimal
solution with finite value in (45) exists if (i) Dmin

[0,n] < ∞ for
any finite n; (ii) D −Dmin

[0,n] > 0 (non-zero distortion) which
implies the strict linear matrix inequality (LMI) constraint 0 ≺
Σξ

t|t ⪯ Σξ
t|t−1, ∀t.

One can easily verify via Lemma 2 that if in (2) we set
Ct = Ip and nt = 0,∀t, then, Dmin

[0,n] = 0 and Theorem
1 recovers as a special case the optimization problem of
the classical NRDF for time-varying fully observable Gauss-
Markov processes with hard average total MSE distortion, see
e.g., [11].

Proposition 3. (Characterization for full row rank Ct) Sup-
pose that the conditions of Proposition 2 hold and At ∈ Rp×p

in (1) is full rank for any t. Then, the statements of Theorem
1 hold with (22) > (45).

Proof: This is immediate from Proposition 2.
Next, we state the optimal solution of the characterization

in Theorem 1 under the conditions of Remark 3.

Theorem 2. (Optimal numerical solution of (45)) Compute
forward in time via (25) {(Σx

t|t,Σ
x
t|t−1) : t ∈ Nn

0} such
that the conditions of Remark 3 hold. Moreover, introduce the
decision variable Γt ≻ 0. Then, the optimal solution of (45)
for D > Dmin

[0,n] is semidefinite representable as follows

RG
[0,n],in(D −Dmin

[0,n]) =

min
{Σξ

t|t≻0,Γt≻0}n
t=0

0≺Σξ
0|0⪯Σξ

0|−1

0≺Σξ
t+1|t+1

⪯Σξ
t+1|t, t∈Nn−1

0

Σξ
n|n=Γn

1

2

n∑
t=0

log |Γt|−1 + c, (46)

s. t.
1

n+ 1

n∑
t=0

trace
(
Σξ

t|t

)
≤ D −Dmin

[0,n][
Σξ

t|t − Γt Σξ
t|tA

T
t

AtΣ
ξ
t|t Σξ

t+1|t

]
⪰ 0, t ∈ Nn−1

0 (47)

where c = 1
2 log |Σ

ξ
0|−1|+

1
2

∑n−1
t=0 log |kz

t+1ΣIzt+1
kzT
t+1|, with

kz
t+1ΣIzt+1

kzT
t+1 ≻ 0, ∀t.

Proof: The derivation is similar to [10, Theorem 1].
Next, we stress some technical comments on Theorem 2.

Remark 4. (On Theorem 2) (1) To compute the optimal
numerical solutions in Theorem 2 is computationally very
expensive. First we need to compute {(Σx

t|t−1,Σ
x
t|t) : t ∈ Nn

0}
of Lemma 2 both of dimension p×p, which correspond to ap-
proximately O(p2.376) operations for each time instant t, then,
to engage SDP algorithm of which the most computationally
expensive step is the Cholesky factorization that requires, in
general, approximately O(p3) operations at each time instant
t. Some additional analysis on the arithmetic complexity of
the SDP algorithm is provided in [10, Sec. IV-C]. In fact
as we demonstrate in the sequel (see Table I) even for the
single stage case at high dimensional problems, the SDP
algorithm operates extremely slow. Hence finding alternative
optimal or near-optimal algorithmic approaches with reason-
able computational complexity aligned with the state of the
art large scale networks that operate using computationally
limited resources remains an intriguing open problem. (2)
Theorem 2 continues to hold with appropriate changes if
we consider the stronger pointwise distortion constraint, i.e.,
trace

(
Σξ

t|t

)
≤ Dt −Dmin

t , Dt > Dmin
t , Dmin

t <∞, ∀t.
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Proposition 4. (Computation of (45) via Proposition 3) Com-
pute forward in time via (25) {(Σx

t|t,Σ
x
t|t−1) : t ∈ Nn

0} such
that the conditions of Remark 3 hold. Moreover, introduce
the decision variable Γ1

t ≻ 0 and let the factorization of
the singular matrix kz

t+1ΣIzt+1
kzT

t+1 ≜ Bt+1B
T
t+1. Then, the

optimal solution of (45) for D > Dmin
[0,n] is semidefinite

representable as follows

RG
[0,n],in(D −Dmin

[0,n]) =

min
{Σξ

t|t≻0,Γ1
t≻0}n

t=0

0≺Σξ
0|0⪯Σξ

0|−1

0≺Σξ
t+1|t+1

⪯Σξ
t+1|t, t∈Nn−1

0

Σξ
n|n=Γ1

n

1

2

n∑
t=0

log |Γ1
t |−1 + c1, (48)

s. t.
1

n+ 1

n∑
t=0

trace
(
Σξ

t|t

)
≤ D −Dmin

[0,n][
Ip − Γ1

t BT
t+1

Bt+1 Σξ
t+1|t

]
⪰ 0, t ∈ Nn−1

0

where c1 = 1
2 log |Σ

ξ
0|−1|+

∑n−1
t=0 log abs (|At|).

Proof: The steps of the proof are known, but the proof
for the finite time horizon has not appeared elsewhere, hence
we give it for completeness in [35, Appendix B].

Closed-form solutions for scalar time-varying processes:
To gain further insights into the solution to this problem,
we also study time-varying scalar processes. Specifically,
we propose a solution (via a dynamic reverse waterfilling
algorithm) under an average total MSE distortion constraint
and a closed-form solution under a pointwise MSE distortion.
Consider the scalar-valued system model of (1), (2) of the
form

xt+1 = αtxt +wt, x0 = x̄,

zt = ctxt + nt, t ∈ Nn
0 ,

(49)

where αt ∈ R and ct ∈ R \ {0} are non-random, x0 ∈ R ∼
N (0;σ2

x0
) is the initial state, wt ∈ R ∼ N (0;σ2

wt
), σ2

wt
> 0

is an independent sequence, nt ∈ R ∼ N (0;σ2
nt
), σ2

nt
≥ 0,

is an independent sequence, independent of {wt : t ∈ Nn
0},

whereas x0 is independent of {(wt,nt) : t ∈ Nn
0}. Before

we proceed, we denote Σx
t|t ≡ σ2

xt|t
, Σx

t|t−1 ≡ σ2
xt|t−1

, Σξ
t|t ≡

σ2
ξt|t

, Σξ
t|t−1 ≡ σ2

ξt|t−1
, kz

tΣIzt
kz
t

T =
c2tσ

4
xt|t−1

c2tσ
2
xt|t−1

+σ2
nt

≡ σ2
υt
, for

any t ∈ Nn
0 . Additionally, we simplify the characterization of

Theorem 1 for scalar processes under the assumption that the
total rates yield a finite solution, i.e.,

RG
[0,n],in(D −Dmin

[0,n]) =

inf
0<σ2

ξt|t
≤σ2

ξt|t−1

1
n+1

∑n
t=0

(
σ2
ξt|t

)
≤D−Dmin

[0,n]

1

2

n∑
t=0

log

(
σ2
ξt|t−1

σ2
ξt|t

)
, (50)

where D − Dmin
[0,n] > 0, Dmin

[0,n] = 1
n+1

∑n
t=0 σ

2
xt|t

< ∞. In
the next theorem, we give the optimal solution of (50) via a
dynamic reverse-waterfilling algorithm.

Theorem 3. (Optimal solution of (50)) The optimal paramet-
ric solution of (50) can be computed as follows:

RG
[0,n],in(D −Dmin

[0,n]) =
1

2

n∑
t=0

log

(
σ2
ξt|t−1

σ2
ξt|t

)
, (51)

such that σ2
ξt|t

> 0 is computed at each time instant as follows:

σ2
ξt|t

=

{
σ2,∗
ξt|t

if σ2,∗
ξt|t

< σ2
ξt|t−1

σ2
ξt|t−1

if σ2,∗
ξt|t
≥ σ2

ξt|t−1

, ∀t, (52)

with
∑n

t=0 σ
2
ξt|t

= (n+ 1)(D −Dmin
[0,n]) and

σ2,∗
ξt|t

=

 1
βt,t+1

(√
1 +

βt,t+1

θ∗ − 1

)
, ∀t ∈ Nn−1

0

1
2θ∗ , t = n,

, (53)

where θ∗ > 0, βt,t+1 ≜ 2α2
t

σ2
υt+1

, and D > Dmin
[0,n] with Dmin

[0,n] <
∞.

Proof: The proof is based on KKT conditions [36, Chap-
ter 5.5.3] and can be obtained following [17, Theorem 2].

Remark 5. (On Theorem 3) Suppose that in (49) we set ct = 1
and nt = 0, ∀t. Then, using Lemma 2 it can be easily shown
that σ2

υt
= σ2

wt−1
, βt,t+1 =

2α2
t

σ2
wt

and Dmin
[0,n] = 0, ∀t, and we

recover [37, Theorem 1].

In Algorithm 1, we implement the optimal solution of
Theorem 3.

Remark 6. (On Algorithm 1) Algorithm 1 ensures linear
convergence in finite time via a bisection method for a given
error tolerance ϵ by picking as starting points appropriate
nominal range of values for θ (i.e., θmin and θmax). The
convergence of bisection method implies that θ converges,
hence 1

n+1

∑n
t=0 σ

2
ξt|t
−→ (D − Dmin

[0,n]) within the error
tolerance ϵ. We note that the nominal values of θmin and
θmax vary depending on the system model (49). The most
computationally expensive operation in Algorithm 1 is the for
loop and the bisection method that yield a time complexity
of approximately O(n log(n)) (linearithmic time complexity).
In Fig. 2 we illustrate a numerical simulation of the average
running time needed for Algorithm 1 to execute (vs) the time
horizon n when the error tolerance is ϵ = 10−9. We consider
that each n is the mean of 10000 time instants.

Next we give the analytical expression of (50) under point-
wise MSE distortion constraints.

Corollary 1. (Analytical solution) Find forward in time
{(σ2

xt|t
, σ2

xt|t−1
) : t ∈ Nn

0} via (25) and let Dt > Dmin
t =

σ2
xt|t

, ∀t. Then, the closed form solution of (50) under a
pointwise MSE distortion constraint is given as follows

RG
[0,n],in({Dt −Dmin

t }nt=0) =
1

2

n∑
t=0

[
log

(
σ2
ξt|t−1

Dt −Dmin
t

)]+
,

where σ2
ξt|t−1

= α2
t−1(Dt−1 −Dmin

t−1) + σ2
υt

.

Proof: The proof is similar to Theorem 2 by employing
KKT conditions hence it is omitted.
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Algorithm 1 Implementation of Theorem 3

Initialize: number of time-steps n; error tolerance ϵ; nomi-
nal minimum and maximum value of θ, denoted by θmin

and θmax; initial variance σ2
x0|−1

= σ2
x0

; set values for
{(αt, σ

2
wt

, ct, σ
2
nt
) : t ∈ Nn

0} of (49).
for t = 0 : n do

Compute (σ2
xt|t

, σ2
xt|t−1

) via (25).
end for
Compute Dmin

[0,n] =
1

n+1

∑n
t=0 σ

2
xt|t

<∞; set the distortion
level D > Dmin

[0,n]; Pick some θ ∈ [θmin, θmax]; flag = 0.
while flag = 0 do

for t = 0 : n do
Compute σ2,∗

ξt|t
according to (53).

Compute σ2
ξt|t

according to (52).
if t < n then

Compute σ2
ξt+1|t

according to σ2
ξt+1|t

≜ α2
tσ

2
ξt|t

+

σ2
υt+1

.
end if

end for
if 1

n+1

∑n
t=0 σ

2
ξt|t
− (D −Dmin

[0,n]) ≥ ϵ then
Set θmin = θ.

else
Set θmax = θ.

end if
if θmax − θmin ≥ ϵ

n+1 then
Compute θ = (θmin+θmax)

2 .
else

flag← 1
end if

end while
Output: {σ2

ξt|t
: t ∈ Nn

0}, {σ2
ξt|t−1

: t ∈ Nn
0}, for a given

distortion level D −Dmin
[0,n].

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
n (time horizon)

0

0.02

0.04

0.06

0.08

0.1

0.12

tim
e 

(s
ec

)

Fig. 2: Demonstration of the average running time needed for
Algorithm 1 to execute for 10000 instances. Simulations were
performed in MATLAB and tested on a single CPU with an
Intel Core i7 processor at 2.6 GHz and 16 GB RAM.

For the special case of time-varying fully-observable Gauss-
Markov processes it can be easily seen following precisely
Remark 5 that we can recover [38, Corollary 2].

V. INFINITE TIME HORIZON PROBLEMS

In this section, we analyze the asymptotic limit of (37). To
do it, we restrict our system model (1), (2) to time-invariant

processes, i.e., At = A, Σwt
= Σw, Ct = C, Σnt

= Σn, ∀t.
We apply known results for the convergence of the discrete
time Riccati equation (DRE) of Lemma 2. These results can
be found for instance in [30, Chapter 7.3], [29, Appendix E]
or [31]. Before we state a lemma, we note that in the sequel,
we adopt for simplicity the following notation

Σt = Σx
t|t, and Σ = lim

t−→∞
Σt

Πt = Σx
t|t−1, and Π = lim

t−→∞
Πt

Σ̄t = kz
tΣIzt

kz
t

T, and Σ̄ = lim
t−→∞

Σ̄t.

(54)

Lemma 5. [29], [30] (Necessary and sufficient conditions
for convergence of the time-invariant DRE of Lemma 2 to
a unique stabilizing solution) Let (A,Σw, C,Σn) ∈ Rp×p ×
Rp×p × Rm×p × Rm×m. Then, the DRE that corresponds to
Lemma 2 is the following

Πt =AΠt−1A
T −AΠt−1C

T(CΠt−1C
T +Σn)

−1CΠt−1A
T

+Σw, t ∈ N0, (55)

where Π0 ≻ 0 (always positive definite). Moreover, the corre-
sponding discrete time algebraic Riccati equation (DARE) is
as follows

Π = AΠAT −AΠCT(CΠCT +Σn)
−1CΠAT +Σw. (56)

Then, the following statement holds. Let the pair (A,C) to
be detectable and the pair (A,Σ

1
2
w) to be stabilizable (or

controllable on and outside the unit circle). Then, any solution
of (55), i.e, {Πt : t ∈ N0}, is such that limt−→∞ Πt = Π,
Π ⪰ 0 for any Π0 ⪰ 0 which corresponds to the maximal
unique stabilizing solution of (56). This further means that
the steady-state KF, i.e., the limiting expression of x̂t|t ≡ ξt
in (25) is asymptotically stable.

Next, we provide an example applied to scalar processes,
to illustrate the concept of Lemma 5.

Example 1. (Solution of DARE for scalar processes) Consider
the time-invariant version of the system model in (49), i.e.,
αt = α ∈ R, σ2

wt
= σ2

w > 0, ct = c ∈ R \ {0}, σ2
nt

= σ2
n ≥

0, ∀t. Then, the time-invariant scalar-valued DRE of (55) is

Πt = α2Πt−1 + σ2
w −

α2c2Π2
t−1

c2Πt−1 + σ2
n

, t ∈ N0, (57)

where Π0 > 0. The corresponding scalar-valued DARE of
(56) is as follows

Π = α2Π+ σ2
w −

α2c2Π2

c2Π+ σ2
n

. (58)

Moreover, introduce the pairs (a, c) and (α, (σ2
w)

1
2 ). Then, by

definition, the pair (α, c) is always detectable and the pair
(α, (σ2

w)
1
2 ) is always stabilizable (because σ2

w > 0). Hence,
from Lemma 5 any solution of (57) is such that limt−→∞ Πt =
Π, with Π ≥ 0 that corresponds to the unique stabilizing
solution of (58). In what follows, we compute the closed form
solution of Π ≥ 0. Note that (58) can be reformulated to
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the quadratic equation c2Π2 + γΠ − σ2
wσ2

n = 0, where γ ≜
((1− α)2σ2

n − c2σ2
w), that gives the following two solutions

Π =


√

γ2+4c2σ2
wσ2

n−γ

2c2 > 0
−
√

γ2+4c2σ2
wσ2

n−γ

2c2 < 0.
(59)

Clearly, by conditions the negative solution of Π is rejected.
Hence from (59) we have that the unique stabilizing solution
is not only non-negative but also positive. This is because from
by definition of our system model (Π0 > 0 because σ2

w > 0).
Special cases: (i) Suppose that in (57) we let σ2

n = 0.
Then, from (58) we obtain Π = σ2

w > 0. (ii) Suppose that in
(57) we let α = 0. Then, from (58) we obtain Π = σ2

w > 0.
(iii) Suppose that in (57) we let α = 0, σ2

n = 0. Then, from
(57) we obtain Π = σ2

w > 0.

Remark 7. (On Lemma 5) In Lemma 5 we gave necessary
and sufficient conditions for the DARE of the á priori error
covariance in Lemma 2 to converge to its steady state. We
observed via Example 1 that this value is always positive for
scalar processes. Clearly, what we observe for scalar pro-
cesses holds for multidimensional processes because Σw ≻ 0
with Πt ≻ 0, ∀t (from Lemma 2). Moreover, the steady
state of the á priori error covariance in Lemma 2 implies
the convergence of the á posteriori error covariance as well.
That case however is slightly different because we can allow
an initial condition Σ0 ⪰ 0 (see Lemma 2). In fact if in our
time-invariant system model we assume Σn = 0 and C = Ip,
then Σx

t|t = 0, ∀t, and as a result Σ = limt−→∞ Σt = 0.

Next, we derive necessary and sufficient conditions for the
pre-KF algorithm to converge to its steady-state values and
sufficient conditions to ensure a time-invariant solution of the
characterization in (45).

Theorem 4. (Asymptotic characterization of (45)) Suppose
that the system (1), (2) is restricted to time-invariant pro-
cesses with the pair (A,C) detectable and the pair (A,Σ

1
2
w)

stabilizable. Moreover restrict the test-channel distribution
P(dyt|yt−1, ξt) to be time-invariant and the output distribu-
tion P(dyt|yt−1) to be time-invariant with a unique invari-
ant distribution. Then, if RG

[0,∞],in(D − Dmin
[0,∞]) < ∞, for

D −Dmin
[0,∞] ∈ (0,∞], this is given by

RG
[0,∞],in(D −Dmin

[0,∞]) = inf
0≺Σξ⪯Πξ

trace(Σξ)≤D−Dmin
[0,∞]

1

2
log
|Πξ|
|Σξ|

,

(60)

where Σξ ≻ 0 and Πξ ≻ 0 are the time-invariant values of
Σξ

t|t, and Σξ
t|t−1, respectively. Moreover,

Πξ = AΣξAT + Σ̄ (61)

Dmin
[0,∞] = trace(Σ). (62)

Finally, (60) is achieved by a time-invariant linear Gaussian
“test channel” P∗(dyt|yt−1, ξt) of the form

yt = Hξt + (Ip −H)Ayt−1 + vt, (63)

where H = Ip − Σξ(Πξ)−1 and vt ∼ N (0; Σv), Σv =
ΣξHT ⪰ 0.

Proof: See Appendix A.

Remark 8. (On Theorem 4) (1) If in the time-variant version
of the system model (1), (2) we let C = Ip and Σn = 0, then
Theorem 4 we can easily recover the known result obtained for
the infinite time horizon of the time-invariant fully observable
Gauss-Markov processes (see, for instance [10, Eq. (27)], [4,
Theorem 3]) because Σ̄ = Σw ≻ 0 and Dmin

[0,∞] = 0. (2)
Clearly, Theorem 4 continues to hold if Propositions 2-4 hold.

In what follows, we give the optimal numerical solution of
the problem in Theorem 4.

Corollary 2. (Optimal numerical solution of (60)) The opti-
mal numerical solution of (60) is semidefinite representable
as follows. Introduce the decision variable Γ ≻ 0 with Σξ ≻ 0
and Σ̄ ≻ 0. Then, for D > Dmin

[0,∞] we obtain

RG
[0,∞],in(D −Dmin

[0,∞]) = min
Γ≻0

0≺Σξ⪯Πξ

1

2
log |Γ|−1 +

1

2
log |Σ̄|,

s. t. trace
(
Σξ
)
≤ D −Dmin

[0,∞][
Σξ − Γ ΣξAT

AΣξ Πξ

]
⪰ 0.

(64)

Proof: The proof is a special case of Theorem 2 hence
we omit it.

We note that the numerical solution of (60) under the
structural conditions of Proposition 2 can be derived as a
special case of Proposition 4. We will not include this SDP
representation as it follows similar to Corollary 2.

In the sequel, we derive strong structural properties on (60)
that allow for a simplified optimization problem that can be
optimally solved via a reverse-waterfilling algorithm.

Proposition 5. (Strong structural properties on (60)) Suppose
that in the characterization of (60) one of the following
structures between (A, Σ̄) hold.

(i) Suppose that A = αIp (scalar matrix) and Σ̄ ⪰ 0;
(ii) Suppose that A is real symmetric and Σ̄ = σ2

Σ̄
Ip (scalar

matrix);
(iii) Suppose that A = Σ̄ ≻ 0;

Then (A,Σξ, Σ̄) commute by pairs4 and consequently
(Σξ,Πξ) commute.

Proof: The proof is similar to [17, Proposition 1] thus we
omit it.

Theorem 5. (Optimal numerical solution of (60)) Suppose
that in the time-invariant version of (2), C is full rank (m =
p). Then, if any of the structural conditions of Proposition 5
is satisfied, the following reverse-waterfilling solution holds

RG
[0,∞],in(D −Dmin

[0,∞]) =

min
0<µ

Σξ,i
≤µ

Πξ,i∑p
i=1 µ

Σξ,i
≤D−Dmin

[0,∞]

1

2

p∑
i=1

log

(
µΠξ,i

µΣξ,i

)
. (65)

4Details on this concept can be found in e.g., [33, Theorem 21.13.1].
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Moreover, the optimal parametric solution of (65) can be
computed for µΣξ,i > 0, and any i as follows:

µΣξ,i =

{
µ∗
Σξ,i if µ∗

Σξ,i < µΠξ,i

µΠξ,i if µ∗
Σξ,i ≥ µΠξ,i

, ∀i, (66)

with
∑p

i=1 µΣξ,i = (D −Dmin
[0,∞]) and

µ∗
Σξ,i =

{
1

µΥ,i

(√
1 +

µΥ,i

θ∗ − 1
)
, µΥ,i > 0 for some i

1
2θ∗ , µΥ,i = 0

,

(67)

where θ∗ > 0, µΥ,i ≜
2µA2,i

µΣ̄,i
> 0 and D > Dmin

[0,∞] .

Proof: The proof follows similar steps to the derivation
of [17, Theorem 2] hence we omit it.

Proposition 6. (The case of full row rank matrix C) Suppose
that in the time-invariant version of (2), C ∈ Rm×p is
full row rank with m < p. Then, under Proposition 5, (i),
an approximate reverse-waterfilling solution is obtained via
Theorem 5 with Σ̄ replaced by Σ̄ϵ = Σ̄ + ϵIp.

Proof: If C is full row rank with m < p, we have Σ̄ ⪰ 0.
Moreover, if Proposition 5, (i), holds, then, we use a standard
continuity argument, that is, there exists a δ > 0 such that
Σ̄ϵ = Σ̄ + ϵIp is nonsingular for all ϵ ∈ (0, δ) (see, e.g., [39,
Theorem 2.9]). In other words, we create a Σ̄ϵ ≻ 0, and follow
similar steps to the derivation of [17, Theorem 2]. Then, by
taking in the computations that limϵ−→0+ Σ̄ϵ the result follows.
This completes the proof.

An implementation of the reverse-waterfilling solution of
Theorem 5 (or Proposition 6) is provided in Algorithm 2.

Algorithm 2 Implementation of Theorem 5

Initialize: error tolerance ϵ; nominal minimum and max-
imum value of θ, i.e., θmin and θmax; set values for
(A,Σw, C,Σn) of (49) so that the par (A,C) is detectable
and the pair (A,Σ

1
2
w) is stabilizable.

Find the unique stabilizing solution Π and the steady-state
value of Σ via (56) and compute Dmin

[0,∞] = trace(Σ) <
∞; choose distortion level D > trace(Σ); Pick θ ∈
[θmin, θmax]; find the eigenvalues of (A, Σ̄), i.e., {µA,i : i ∈
Np

1}, {µΣ̄,i : i ∈ Np
1} (in decreasing order); flag = 0.

while flag = 0 do
Compute µΣξ,i, ∀i, as follows:
for i = 1 : p do

Compute µ∗
Σξ,i according to (67).

Compute µΣξ,i according to (66).
end for
if θmax − θmin ≥ ϵ then

Compute θ = (θmin+θmax)
2 .

else
flag← 1

end if
end while
Output: {µΣξ,i : i ∈ Np

1}, {µΠξ,i : i ∈ Np
1}, for a given

distortion level D − trace(Σ).

Remark 9. (Complexity of Algorithm 2) The convergence
of Algorithm 2 is guaranteed for finite dimensional matrices
due to the bisection method, similar to Algorithm 1. The
most computationally expensive parts in Algorithm 2 are the
matrix multiplications in the computation of the DARE of
the steady-state pre-KF recursions which can have a time
complexity of approximately O(p3) followed by the for loop
and the bisection method with approximately linearithmic time
complexity similar to Algorithm 1, i.e., O(p log(p)). Hence the
overall time complexity is approximately O(p3 + p log(p)).
Nevertheless, if we optimize matrix multiplication using for
example the current state of the art computing approaches that
allow time complexity of around O(p2.37286)) [40] the com-
plexity can further reduce to O(p2.37286 + p log(p)). In Table
I we compare the general optimal solution obtained via SDP
in Corollary 2 with the structural optimal solution obtained in
Theorem 5 and implemented in Algorithm 2 for the same input
data and distortion level. For low dimensional vector systems
(i.e., p = 10) we compute the average computational time
needed for 1000 instances using both computational methods
for an error tolerance of ϵ = 10−9. We see that Algorithm
2 is approximately 550 times faster than SDP. For medium
size vector systems (i.e., p = 100) we perform the same
experiment for 100 instances with ϵ = 10−7. The results
show that Algorithm 2 is approximately 17500 times faster
than SDP. We note that to obtain a result from SDP for 1000
instances would require days therefore we did not attempt with
the specific computer such experiment. In addition, it is likely
that the result for both SDP and Algorithm 2 would not change
much. For high dimensional vector systems (i.e., p = 500) the
result is not-conclusive because SDP would take many days to
give a relatively fair result even for 100 instances. In contrast
Algorithm 2 operates fine as illustrated in Table I. The results
clearly demonstrate that Algorithm 2 is much more appealing
choice to use when solving problems with certain structure or
systems with computationally limited resources as opposed to
the SDP algorithm.

Solver (Numb. dimens. p = 10) Mean (sec) Numb. inst.
SDP (by default ϵ = 10−9) 0.7134 1000
Algorithm 2 (ϵ = 10−9) 0.0013 1000
Solver (Numb. dimens. p = 100) Mean (sec) Numb. inst.
SDP (by default ϵ = 10−7) 725.0770 100
Algorithm 2 (ϵ = 10−7) 0.0412 100
Solver (Numb. dimens. p = 500) Mean (sec) Numb. inst.
SDP non-conclusive insufficient
Algorithm 2 (ϵ = 10−9) 6.8997 1000

TABLE I: Comparison of the computational time needed
between SDP in Corollary 2 and Algorithm 2. Simulations
were performed in MATLAB and tested on a single CPU with
an Intel Core i7 processor at 2.6 GHz and 16 GB RAM.

We conclude this section, by finding the closed-form solu-
tion of the time-invariant system model of (49).

Corollary 3. (Closed form solution: time-invariant scalar
processes) Consider the characterization of Theorem 4 re-
stricted to time-invariant scalar Gaussian processes. Then for
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D > Dmin
[0,∞] = Σ, the closed form solution of RG

in(D − Σ) is
as follows

RG
in(D − Σ) =

1

2
log

(
α2 +

Σ̄

D − Σ

)
(68)

where

Σ̄ =
c2Π2

c2Π+ σ2
n

, (69)

with Π > 0 given by the unique stabilizing solution of (58)
whereas Σ ≥ 0 is given by the non-negative solution of the
quadratic equation

α2c2Σ2 + γ̄Σ− σ2
wσ2

n = 0, (70)

where γ̄ = (1− α2)σ2
n + c2σ2

w.

Proof: For scalar processes, the characterization in The-
orem 4 simplifies to

RG
in(D −Dmin

[0,∞]) = min
0<Σξ≤Πξ

Σξ≤D−Dmin
[0,∞]

1

2
log

(
Πξ

Σξ

)
. (71)

where Πξ = α2Σξ + Σ̄, Σ̄ is given by (69) and Dmin
[0,∞] =

Σ ≥ 0, i.e., the unique stabilizing solution obtained for
scalar processes given by (70). The problem in (71) is convex
concerning Σξ and the optimal solution follows by employing
KKT conditions similar to Theorem 3, and Theorem 5. It easy
to see that the solution ensures Σξ = D −Dmin

[0,∞] = D − Σ.
Substituting the latter in Πξ and then substituting both Σξ and
Πξ in (71) we obtain (68) and the result follows.

Equivalent expressions and special cases for scalar pro-
cesses: (i) We note that our closed form expression (68) coin-
cides with the closed-form solution obtained via [8, Corollary
1, Theorem 9] (see also [20, eq. (103)]) because the steady-
state counterpart of the á posteriori error variance equation
(25) implies the equality Σ̄ = Π − Σ > 0; (ii) Consider in
Corollary 3 c = 1, σ2

n = 0. Then, using Example 1 we obtain
from (58) that Π = σ2

w > 0, from (70) the steady state solution
is Σ = 0 and from (69) Σ̄ = σ2

w > 0. By substituting these in
(68) we recover the known result obtained for time-invariant or
stationary fully observable Gauss-Markov processes, see e.g.,
[5, eq. (14)], [2, eq. (1.43)].

VI. NUMERICAL SIMULATIONS

In this section, we provide two examples with numerical
simulations to illustrate some of the major results of this paper.
Example 2. (Optimal numerical solutions and comparison
with [8]) Consider the time-invariant version of (1), (2) with

A = diag(1.2, 1.2, 1.2), C =

0.8147 0.9134 0.2785
0.9058 0.6324 0.5469
0.1270 0.0975 0.9575

 ,

Σw =

0.8895 1.1744 0.2309
1.1744 1.8616 0.2953
0.2309 0.2953 0.0614

 , Σn = diag(1, 1, 0).

(72)

Clearly, from Lemma 5, the pair (A,C) is detectable and the
pair (A,Σ

1
2
w) is stabilizable. Hence the filter ξt is asymptoti-

cally stable, with

Σ̄ =

 2.6928 −0.7211 0.1847
−0.7211 4.0349 0.3254
0.1847 0.3254 0.0645

 , (73)

and from (56) we obtain Π ≻ 0 which further implies the
steady-state solution of Σ ⪰ 0 both given as follows

Π =

 6.7910 −5.0291 0.0798
−5.0291 8.9742 0.3939
0.0798 0.3939 0.0714

 , (74)

Σ =

 4.0983 −4.3080 −0.1049
−4.3080 4.9393 0.0684
−0.1049 0.0684 0.0069

 . (75)

We recall using [8, Corollary 1, Theorem 9], that the closed
form solution of the sum-rate therein under the assumption of
uniform rate-distortion allocation is given by

RG,KH
[0,∞],in(D − trace(Σ)) =

p

2
log

(
ā2 +

|Σ̄|
1
p p

D − trace(Σ)

)
,

(76)

where ā ≜ abs(|A|)
1
p , Σ̄ = Π − Σ, with D > trace(Σ). In

Fig. 3, we give the optimal numerical solution obtained via
Corollary 2, (2) using the CVX platform [41] and the reverse-
waterfilling solution of Theorem 5 using Algorithm 2 (because
the input data in (72) satisfy the strong structural properties
of Proposition 5, (i)). We compare the optimal sum-rate with
the closed-form solution of (76). We observe that the latter
is in general highly suboptimal with respect to the optimal
numerical solution with the maximum rate-loss (RL), which
for this example is approximately 1.05 bits/vector source, to
be observed at moderate to low rates. A good performance of
(76) in the sense that it almost coincides with the exact optimal
solution can be observed at very high rates. This means that
Corollary 2 and Theorem 5 that allow non-uniform distortion
allocation may achieve significant performance gains com-
pared to (76) that only allows uniform distortion allocation.

Fig. 3: Comparison of the optimal sum-rates obtained via
Corollary 2 and Theorem 5 with the analytical expression of
(76).

Example 3. (Convergence to steady-state solution) Consider
the time-invariant version of (49) with (α, c, σ2

w, σ2
n) =
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(1.1, 0.5, 1, 1), ∀t. Clearly, from Example 1, the pair (α, c)
is detectable and the pair (α, (σ2

w)
1
2 ) is stabilizable. Hence

the filter ξt = E{xt|zt} is asymptotically stable and from
(58) we obtain Π = 3.1215 > 0 whereas from (70) the non-
negative solution is Σ = 1.7532. For a given distortion level
D = 2.7532 > Σ we obtain via (68) RG

in(D − Σ) = 0.6832
(bits/source sample). Using Algorithm 1, we compute (51)
(normalized over the time horizon (n + 1)) for sufficiently
large time horizon, i.e., n −→ 105. In Fig. 4, we illustrate the
asymptotic behavior of Algorithm 1 versus (vs) the steady-state
solution (68) in a semi-logarithmic scale. The two lines are
met really fast but do not coincide. In fact, depending on the
precision error of Algorithm 1 (a reasonable error tolerance
is ϵ = 10−9) one can also infer about the discrepancy of the
two lines. We note that Algorithm 1 also gives Dmin

[0,n] ≈ Σ

and limt−→105 σ
2
xt|t−1

≈ Π. Moreover, the starting point of
the plot obtained from Algorithm 1 depends on σ2
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Fig. 4: Comparison of Theorem 3 vs the steady-state solution
of Corollary 3 for time-invariant scalar-valued processes.

VII. CONCLUSIONS AND ONGOING RESEARCH

In this paper we revisited the problem of characterizing
and computing the indirect NRDF for partially observable
multivariate Gauss-Markov processes with hard MSE distor-
tion constraints. Our major results include a new formulation
of the indirect NRDF, structural conditions that allow this
formulation to be achieved, as well as the characterization and
the corresponding optimal test channel realization for jointly
Gaussian processes in both finite and infinite time horizon.
Moreover, we obtained optimal numerical and closed form
solutions for vector and scalar systems under either average
total or pointwise MSE distortion constraints.

The results and observations of this paper can pave the
way to many new problems concerning communication for
(Gaussian) controlled systems see, for instance, [42]. One
particular question that we do not directly address herein but
can be answered from our results, is the relaxation of the
Gaussian noise process that drives the state of the system
model in (1), (2) to positive semidefinite covariance matrices.
Another important question is the extension of Theorem 5 to
time-varying processes which will require strong time-varying
structural properties in the spirit of Proposition 5. Finally, the
extension of this problem to controlled processes is also of
major importance.

APPENDIX A
PROOF OF THEOREM 4

First note that under the conditions of the theorem, we have
the unique stabilizing solution limt−→∞ Πt = Π ≻ 0 and
consequently limt−→∞ Σt = Σ ⪰ 0. This in turn implies via
(25) of Lemma 2 that limt−→∞ Σ̄t = Σ̄. The specific steady
state solution corresponds to an asymptotically stable filter.
Then, the objective function in (60) is obtained as follows

lim sup
n−→∞

1

n+ 1

n∑
t=0

log
|Σξ

t|t−1|

|Σξ
t|t|

(a)
= lim sup

n−→∞

1

n+ 1

n∑
t=0

log
|AΣξ

t−1|t−1A
T + Σ̄t|

|Σξ
t|t|

(b)
= (60),

where (a) follows because Σξ
t|t−1 = AΣξ

t−1|t−1A
T + Σ̄t;

(b) follows because we restrict the numerator and denomi-
nator in (a) to be have a time invariant value (because we
impose the optimal minimizer to be time invariant and the
corresponding output distribution to be time-invariant with a
unique invariant distribution). Note that Πξ is given by (61)
and {Σ̄n : n ∈ N0} is a convergent sequence (by the
conditions of the theorem) and its steady-state (time invariant)
solution is Σ̄ = limn−→∞ Σn. The constraint set in (60) is
obtained because via Remark 3 we ensure a finite solution
to the optimization problem if we impose the strict LMI
0 ≺ Σξ ⪯ Πξ which implies that Σξ ≻ 0 and Πξ ≻ 0. From
the conditions of the theorem, we have a convergent sequence
{Σn : n ∈ N0}, i.e., limn−→∞ Σn = Σ which further means
that {trace(Σn) : n ∈ N0} is also convergent. This in turn
implies that 1

n+1

∑n
t=0 trace(Σt) = trace(Σ) as n −→ ∞

which is precisely (62). This completes the characterization
of (60). The optimal time-invariant test channel realization
(63) follows easily from the conditions of the theorem. This
completes the derivation.
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