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Abstract—In this paper, we propose an information geome-
try approach (IGA) for signal detection (SD) in ultra-massive
multiple-input multiple-output (MIMO) systems. We formulate
the signal detection as obtaining the marginals of the a posteriori
probability distribution of the transmitted symbol vector. Then,
a maximization of the a posteriori marginals (MPM) for signal
detection can be performed. With the information geometry
theory, we calculate the approximations of the a posteriori
marginals. It is formulated as an iterative m-projection process
between submanifolds with different constraints. We then apply
the central-limit-theorem (CLT) to simplify the calculation of
the m-projection since the direct calculation of the m-projection
is of exponential-complexity. With the CLT, we obtain an ap-
proximate solution of the m-projection, which is asymptotically
accurate. Simulation results demonstrate that the proposed IGA-
SD emerges as a promising and efficient method to implement
the signal detector in ultra-massive MIMO systems.

Index Terms—Ultra-massive MIMO, signal detection, Bayesian
inference, information geometry.

I. Introduction

As one of the critical technologies for 5G, massive multiple-
input multiple-output (MIMO) can provide significant gains
in both spectral efficiency and energy efficiency for com-
munication systems [1], [2]. In future 6G communications,
an ultra-massive MIMO system will employ an ultra-large
array with hundreds or thousands of antennas, serving tens
or even hundreds of users simultaneously, which is able to
achieve higher spectral efficiency and energy efficiency, and
wider and more flexible network coverage than ever [3]–[6].
For the realization of the substantial benefits of ultra-massive
MIMO, signal detection is of great importance. Based on
a received signal, the task of the detector is to determine
the transmitted symbol. The optimal detector based on the
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maximum a posteriori (MAP) criterion or the maximum-
likelihood (ML) criterion performs an exhaustive search and
examines all possible symbols, which is shown as non-
deterministic polynomial-time hard (NP-hard). Consequently,
the computational complexity of the MAP or ML detector
rapidly becomes unaffordable as the number of decision sym-
bols increases. On the other hand, the linear detectors, e.g.,
the linear minimum-mean-squared error (LMMSE) detector,
are widely adopted due to the polynomial-time complexity.
Nonetheless, the estimates of the transmitted symbols of the
LMMSE detector are biased [7], and the performance of the
LMMSE detector degrades severely in massive MIMO systems
with high-order constellations [8].

In the past few decades, many works have been devoted
to the massive MIMO signal detection [8]–[13], of which
Bayesian inference approaches, e.g., belief propagation (BP),
expectation propagation (EP), etc., are of significant interest
due to the relatively low computational complexity and higher
performance than linear detection. These methods aim to
calculate an approximation of the a posteriori probability
distribution (or its marginals) of the transmitted symbols. A
hard-decision based on the a posteriori mean or a soft-decision
based on the a posteriori marginals is then performed. In
[8], EP is first introduced into the massive MIMO signal
detection with high-order modulation. [11] proposes a beam
domain detector based on the layered BP for massive MIMO
systems. A variant EP detector is proposed in [12] based
on decentralized processing. [13] proposes a MIMO detector
for high-order QAM modulation based on the Gaussian tree
approximation.

Information geometry, which is introduced by Rao [14], and
then formally developed by Amari [15] and Cencov [16], has
found a wide range of applications. For Bayesian inference, the
space defined by the parameters of the a posteriori probability
distribution is regarded as a differentiable manifold with a Rie-
mannian structure, and the definitions and tools of differential
geometry are well applied by Amari et al. [17], [18]. Amari et
al. also show the intrinsic geometric insight of some classical
Bayesian inference methods, e.g, the belief propagation (BP)
[19]. Meanwhile, some optimization methods, such as the
concave-convex procedure (CCCP) [20], are also applied to
calculate the marginals of the a posteriori distribution. On
Bayesian inference in communications, [21] analyzes the
turbo and low-density parity-check (LDPC) codes from the
perspective of information geometry, and an improvement of
turbo and LDPC codes is proposed from the geometrical
view. The information geometry is extended to complex signal



processing and an information geometry approach is proposed
for massive MIMO channel estimation in [22], [23].

In addition to the unique insight that the geometric perspec-
tive offers, information geometry also provides us with a uni-
fied framework where various sets of probability distributions
are considered to be endowed with the structure of differential
geometry. Hence, we are able to construct a Fisher information
matrix (FIM) based distance between two parametrized distri-
butions. Amari [15] also shows that this distance is invariant
to non-singular transformation of the parameters. As a result,
information geometry is closely related to estimation theory.
Due to these advantages, information geometry has recently
been applied to many other problems such as the complex
network construction [24], the target detection [25], and the
clustering [26].

In this paper, we propose an information geometry ap-
proach for signal detection (IGA-SD) for ultra-massive MIMO
systems. We formulate the signal detection as obtaining the
marginls of the a posteriori probability distribution of the
transmitted symbols. Then, a component-wise decision can
be performed based on the a posteriori marginals. With the
information geometry theory, we calculate the approximations
of the a posteriori marginals. More precisely, by treating the
sets of the probability distributions of discrete random vectors
with different constraints as several different (sub)manifolds,
the calculation of the marginals is converted into an iterative
m-projection process. Furthermore, since the calculation of the
m-projection in signal detection is of exponential-complexity,
we apply the central-limit-theorem (CLT) to simplify its cal-
culation. With the CLT, we are able to find an approximate
solution of the m-projection, which is asymptotically accurate.
At last, a soft-decision is performed based on the approxima-
tion of the a posteriori marginls.

The rest of the paper proceeds as follows. The system
configuration and problem statement are presented in Section
II. Preliminaries of information geometry is introduced in
Section III. The Information geometry approach for ultra-
massive MIMO signal detection is proposed in Section IV.
Simulation results are provided in Section V. The conclusion
is drawn in Section VI.

Notations: The following notations are adopted in this paper.
Upper (lower) case boldface letters denote matrices (column
vectors). R (·) and I (·) denote the real and imaginary parts of
a complex number (matrix), respectively. The superscripts (·)∗,
(·)T and (·)H denote the conjugate, transpose and conjugate-
transpose operator, respectively. Diag {x} denotes the diag-
onal matrix with x along its main diagonal and diag {X}
denotes a vector consisting of the diagonal elements of X.
Bdiag {X1,X2, . . .} denotes a block diagonal matrix with
matrices Xi located along the main diagonal. We use ai,j
to denote the (i, j)-th element of the matrix A, where the
element indices start with 1. ⊙ and ⊗ denote the Hadamard
product and Kronecker product, respectively. Define ZN ≜
{0, 1, . . . , N} and Z+

N ≜ {1, 2, . . . , N}. \ denotes the set
subtraction operation. To avoid confusion, p (·) and f (·)
denote the probability distribution of discrete random variables
and the probability density function (PDF) of continuous
random variables, respectively. fCG (x;µ,Σ) denotes the PDF

of a complex Gaussian distribution CN (µ,Σ) for vector x of
complex random variables. fG (x;µ,Σ) denotes the PDF of a
real Gaussian distribution N (µ,Σ) for vector x of complex
random variables.

II. System Model and Problem Statement

A. System Configuration

Consider an uplink ultra-massive MIMO system where one
base station (BS) equipped with an ultra-massive antenna
array serves K single-antenna users, and the BS has Nr

antennas. Denote the transmitted symbol vector of all users
as s̃ ≜ [s̃1, s̃2, . . . , s̃K ]

T ∈ S̃K where s̃k ∈ S̃, k ∈ Z+
K ,

is the transmitted symbol of the user k. S̃ is the signal
constellation and let us assume S̃ =

{
s̃(0), s̃(1), . . . , s̃(L̃−1)

}
,

where
{
s̃(ℓ)
}L̃−1

ℓ=0
are the constellation points, and L̃ is the

modulation order (or constellation size). In this paper, we
focus on the uncoded systems and the symmetric L̃-QAM
modulation. We assume that each user chooses symbols from
S̃ uniformly at random, and all users use the same alphabet,
although the proposed IGA-SD can be readily extended to
arbitrary modulations with different distributions as long as the
transmitted symbols of the users are statistically independent
and the real and imaginary parts of each user’s symbol are
statistically independent as well. We also assume that the
average power of s̃k is normalized to unit, i.e., E

{
|s̃k|2

}
= 1,

k ∈ Z+
K . The symbol vector s̃ is then transmitted over a flat-

fading complex channel, and the received signal ỹ ∈ CNr at
the BS can be modeled as

ỹ = G̃s̃+ z̃, (1)

where G̃ ∈ CNr×K is the channel matrix, z̃ is an additive
white circular-symmetric complex Gaussian noise vector, z̃ ∼
CN

(
0, σ̃2

zI
)

and σ̃2
z is the noise variance. In this work, we

assume that the BS has perfect channel state information. As
a note, the reason why, in the above notations, the tildes are
added on the tops of the math symbols is that we will later
formulate and analyze their real counterparts without the tildes
for notational simplicity.

B. Problem Statement

Assuming that the transmitted symbol vector s̃ and the noise
vector z̃ are independent with each other and the symbols
transmitted by different users are independent with each other
as well. Then, with the received signal model (1), the a
posteriori probability distribution of the transmitted symbol
vector s̃ can be expressed as

p (s̃|ỹ) ∝ pc
pr (s̃) f (ỹ|s̃)

=
K∏

k=1

pc
pr,k (s̃k) fCG

(
ỹ; G̃s̃, σ2

zI
)
,

(2)

where pc
pr (s̃) is the a priori probability distribution of the

complex transmitted symbol vector s̃, f (ỹ|s̃) is the PDF
of the received signal ỹ given s̃, pc

pr,k (s̃k) is the a priori
probability of the complex symbol transmitted by user k,
pc

pr,k (s̃k)
∣∣
s̃k=s̃(ℓ)

= 1/L̃, k ∈ Z+
K , ℓ ∈ ZL̃−1. Given the a



posteriori probability distribution p (s̃|ỹ), the MAP detector
(or the ML detector in this case) is given by

s̃MAP = argmax
s̃∈S̃K

p (s̃|ỹ) , (3)

which minimizes the error probability that s̃MAP does not coin-
cide with the true one. The calculation of the MAP detector is
unaffordable for practical ultra-massive MIMO systems since
the number of candidates of s̃ increases exponentially w.r.t. K
and (3) is NP-hard.

Before proceeding, we reformulate the complex-valued re-
ceived signal model (1) into a real-valued one, which is
necessary for developing IGA-SD in this paper. Define real
vectors

y ≜

[
R{ỹ}
I {ỹ}

]
, z ≜

[
R{z̃}
I {z̃}

]
∈ R2Nr (4a)

s ≜

[
R{s̃}
I {s̃}

]
∈ R2K , (4b)

and a real matrix

G ≜

 R
{
G̃
}
, −I

{
G̃
}

I
{
G̃
}
, R

{
G̃
}  ∈ R2Nr×2K . (5)

Then, we can obtain the real-valued received signal model as

y = Gs+ z, (6)

where s = [s1, s2, . . . , s2K ]
T ∈ S2K , sk ∈ S, k ∈ Z+

2K ,
S =

{
s(0), s(1), . . . , s(L−1)

}
is the alphabet for the real and

imaginary components of a symmetric L̃-QAM modulation
where the index starts from 0 is for the representation con-
venience of the likelihood ratio detection later, L =

√
L̃,

z ∼ N
(
0, σ2

zI
)

is the noise vector, and σ2
z = σ̃2

z/2. Given
the received signal model (6), the a posteriori distribution of
s can be expressed as

p (s|y) ∝
2K∏
k=1

ppr,k (sk)

2Nr∏
n=1

f (yn|s)

∝
2K∏
k=1

ppr,k (sk)

2Nr∏
n=1

exp

{
−
(
yn − eTnGs

)2
2σ2

z

}
,

(7)

where ppr,k (sk)
∣∣
sk=s(ℓ)

= 1
L , k ∈ Z+

2K , ℓ ∈ ZL−1, is the a
priori probability of sk, yn is the n-th element of y, f (yn|s)
is the PDF of yn, n ∈ Z+

2Nr
, given s, and en ∈ C2Nr is

the n-th column of the 2Nr dimensional identity matrix. In
this work, we propose an information geometry approach for
signal detection which aims to obtain the approximations of
the marginals, i.e., pk (sk|y) , k ∈ Z+

2K , of the a posteriori
distribution p (s|y), which can be used for the maximization of
the a posteriori marginals (MPM) detector, i.e., for k ∈ Z+

2K ,

sk,MPM = argmax
sk∈S

pk (sk|y) . (8)

III. Preliminaries of Information Geometry

In this section, we briefly introduce the information ge-
ometry approach (IGA), where more details can be found
in [17], [18], [21], [22]. We begin with the exponential
family. Consider a discrete random vector x ∈ X with finite
dimension, where each scalar random variable in x takes finite
values and X is a finite set. The probability distribution of x is
said to belong to the exponential family if it can be expressed
as

p (x;θ) = exp
{
θT t− ψ (θ)

}
, (9)

where t is a sufficient statistic of random vector x, θ is
the natural parameter (NP) of p (x;θ), and ψ (θ) is the free
energy, which makes p (x;θ) a probability distribution, i.e.,∑

x p (x;θ) = 1. We then introduce the e-flat manifold that
is needed for m-projections later [17], [18], [21]. Consider a
manifold U , which is defined as a set of probability distribu-
tions of x, e.g., U = {p (x)}, where each element in U , i.e.,
p (x), is a particular probability distribution of x. U is said to
be e-flat if for all 0 ≤ d ≤ 1, pi (x) , pj (x) ∈ U , the following
q (x; d) belongs to U ,

q (x; d) = (1− d) ln pi (x) + d ln pj (x) + cna (d) , (10)

where cna (d) is a normalization constant makes q (x; d) a
probability distribution. From the definition, any exponential
family is e-flat. Suppose V = {q (x)} ⊆ U is an e-flat sub-
manifold. Given p (x) ∈ U , the point (probability distribution)
in V that minimizes the Kullback-Leibler (K-L) divergence
from p (x) to V , i.e.,

q⋆ (x) = argmin
q(x)∈V

DKL {p (x) : q (x)} , (11)

is called the m-projection of p (x) onto V , where the K-L
divergence is defined by

DKL {p (x) : q (x)} =
∑
x∈X

p (x) ln

(
p (x)

q (x)

)
. (12)

We now give the preliminaries of IGA in Bayesian infer-
ence. Let xh ∈ RNh and yo ∈ RNo be hidden and observed
random vectors, respectively. Denote the a posteriori distribu-
tion as p (xh|yo). Our goal is to calculate the approximations
of the a posteriori marginals, i.e., p (xh,i|yo), where xh,i is the
i-th component of xh and i ∈ Z+

Nh
. In this paper, we focus on

the following case: all the components of xh are independent
and all the components of yo given xh are independent as
well. The a posteriori distribution can be then expressed as

p (xh|yo) ∝ p (xh) p (yo|xh) =

Nh∏
i=1

pi (xh,i)

No∏
n=1

pn (yo,n|xh) ,

(13)
where pi (xh,i) and pn (yo,n|xh) are the marginals of p (xh)
and p (yo|xh), respectively, and yo,n is the n-th component of
yo. Suppose that the a priori marginals {pi (xh,i)}Nh

i=1 belong
to an exponential family, and each of them can be expressed
as

pi (xh,i) = pi (xh,i;dh,i) = exp
{
dT

h,ith,i − ψ (dh,i)
}
, (14)



where dh,i ∈ RNi is the NP of pi (xh,i;dh,i), th,i ∈ RNi is a
sufficient statistic of the single random variable xh,i, e.g., xh,i
and x2h,i, and ψ (dh,i) is the free energy. As we shall see later
in this section, the probability distributions of discrete random
vectors belong to the exponential family. Meanwhile, suppose
that the marginals of the conditional probability distribution
can be expressed as

pn (yo,n|xh) = exp {cn (xh, yo,n)− ψn} , n ∈ Z+
No
, (15)

where cn (xh, yo,n) is a polynomial of xh which is parameter-
ized by the variables including yo,n, and ψn is the normaliza-
tion factor. cn (xh, yo,n) above often contains the interactions
between the random variables of xh, e.g., the cross-terms
xh,ixh,j , i ≠ j. A more detailed cn (xh, yo,n) will occur in
the next section. In this case, the a posteriori probability
distribution can be expressed as

p (xh|yo) = exp

{
dT

h th +

No∑
n=1

cn (xh, yo,n)− ψq

}
, (16)

where dh =
[
dT

h,1,d
T
h,2, . . . ,d

T
h,Nh

]T ∈ RNa , th =[
tTh,1, t

T
h,2, . . . , t

T
h,Nh

]T ∈ RNa , Na =
∑Nh

i=1Ni, and ψq is the
normalization factor. In (16), th only contains the separated
random variables (i.e., no cross-terms of them), and all the
interactions (cross-terms) between the random variables are
included in cn (xh, yo,n) , n ∈ Z+

No
. IGA aims to approximate∑No

n=1 cn (xh, yo,n) as θT
0 th, where θ0 ∈ RNa , i.e., IGA aims

to approximate the summation of all the cross-terms into a
summation of non-cross-terms of the random variables, when
Na is large. In this case, we have

p (xh|yo) ≈ p0 (xh;θ0) = exp
{
(dh + θ0)

T
th − ψ0 (θ0)

}
,

(17)
where ψ0 (θ0) is the normalization factor. The marginals of
p0 (xh;θ0), i.e., p0 (xh,i;θ0) , i ∈ Z+

Nh
, can be calculated

easily since p0 (xh;θ0) contains no interactions between the
random variables {xh,i}Nh

i=1. To obtain θ0, we construct two
types of manifolds and compute the approximation for each
cn (xh, yo,n) in an iterative manner, which is denoted as ξTn th.
At last, θ0 is calculated as θ0 =

∑No
n=1 ξn. The two types of

manifolds are the objective manifold (OBM) and the auxiliary
manifold (AM). The OBM M0 is defined as the set of
probability distributions of random vector xh, of which all
the components are independent with each other, i.e,

M0 =
{
p0 (xh;θ0) |θ0 ∈ RNa

}
, (18a)

p0 (xh;θ0) =

Nh∏
i=1

p0,i (xh,i;θ0,i)

= exp
{
(dh + θ0)

T
th − ψ0 (θ0)

}
,

(18b)

p0,i (xh,i;θ0,i)=exp
{
(dh,i + θ0,i)

T
th,i − ψ0 (θ0,i)

}
,

(18c)
where θ0 =

[
θT
0,1,θ

T
0,2, . . . ,θ

T
0,Nh

]T ∈ RNa , θ0,i ∈ RNi ,
p0,i (xh,i;θ0,i) is the marginal distribution of p0 (xh;θ0),
ψ0 (θ0) =

∑Nh
i=1 ψ0 (θ0,i) is the free energy (normaliza-

tion factor) of p0 (xh;θ0), and ψ0 (θ0,i) is the free energy

of p0,i (xh,i;θ0,i). θ0 above is referred as to the e-affine
coordinate system or the natural parameter of p0 (xh;θ0).
And θ0,i is referred as to the e-affine coordinate system or
the natural parameter of p0,i (xh,i;θ0,i). To avoid confusion
with the natural parameter of the exponential family, we
refer to θ0 as the e-affine coordinate system (abbreviated as
EACS) of p0 (xh;θ0) in this paper (similar with θ0,i and
p0,i (xh,i;θ0,i)). Then, No AMs are defined, where the n-th
of them is expressed as

Mn =
{
pn (xh;θn) |θn ∈ RNa

}
, (19a)

pn (xh;θn)=exp
{
(dh+θn)

T
th+cn (xh, yo,n)−ψn (θn)

}
,

(19b)
where θn is referred as to the EACS of pn (xh;θn) and
ψn (θn) is the free energy. It can be readily checked that the
OBM and the AMs are all e-flat. Only one interaction term
cn (xh, yo,n) is remained in pn (xh;θn), and all the others,
i.e.,

∑
n′ ̸=n cn′ (xh, yo,n′) are replaced as θT

n th. Assume that
the EACS θn of pn (xh;θn) , n ∈ Z+

No
, is given, we calculate

the approximation of cn (xh, yo,n) from the m-projection of
pn (xh;θn) onto the OBM M0. Denote the m-projection of
pn (xh;θn) onto M0 as p0 (xh;θ0n), where θ0n ∈ RNa , and

θ0n = argmin
θ0∈RNa

DKL {pn (xh;θn) : p0 (xh;θ0)} . (20)

We shall see a more specific example about the calculation of
the m-projection in the next section. After θ0n is obtained,
we express the m-projection p0 (xh;θ0n) as

p0 (xh;θ0n) = exp
{
(dh + θ0n)

T
th − ψ0 (θ0n)

}
= exp

{
(dh + θn + ξn)

T
th − ψ0 (θ0n)

}
,

(21)

where the EACS θ0n of p0 (xh;θ0n) is regarded as the sum
of the EACS θn of pn (xh;θn) and an extra item ξn. If we
compare the last equation of (21) and pn (xh;θn) in (19b),
it can be found that in the m-projection p0 (xh;θ0n), the
interaction item cn (xh, yo,n) is replaced by ξtnth. Hence, ξTn th
is regarded as the approximation of cn (xh, yo,n), and we
calculate the approximation item ξn as

ξn = θ0n − θn, n ∈ Z+
No
. (22)

Then, p0 (xh;θ0) with θ0 =
∑No

n=1 ξn is considered as the
approximation of the a posteriori distribution p (xh|yo). Mean-
while, note that the whole process is proceeded in an iterative
manner since the EACSs {θn}No

n=1 are not known at first. To be
specific, we first initialize the EACSs as {θn (0)}No

n=0. Given
the EACS θ0 (t) of p0 (xh;θ0 (t)) and the EACS θn (t) of
pn (xh;θn (t)) , n ∈ Z+

No
, at the t-th time, we calculate θ0n (t)

and ξn (t) , n ∈ Z+
No

, as (20) and (22), respectively. We then
update the EACS of pn (xh;θn (t)) , n ∈ Z+

No
, as

θn (t+ 1) =

No∑
n′=1,n′ ̸=n

ξn′ (t) , (23)

since θT
n (t+ 1) th replaces

∑
n′ ̸=n cn′ (xh, yo,n) in

pn (xh;θn (t+ 1)) and each interaction term cn (xh, yo,n)
is approximated as ξTn (t) th at the t-th time. The EACS of



p0 (xh;θ0 (t)) is updated as θ0 (t+ 1) =
∑No

n=1 ξn (t) as
mentioned above. Then, repeat the m-projection, calculate
the approximation terms {ξn}No

n=1 and the updates until
convergence. We now discuss about the damped updating. In
practice, to improve the convergence of the IGA, the EACSs
{θn}No

n=0 are usually updated in a damped way, i.e.,

θn (t+ 1) = α

No∑
n′=1,n′ ̸=n

ξn′ (t) + (1− α)θn (t) , n ∈ Z+
No
,

(24a)

θ0 (t+ 1) = α

No∑
n=1

ξn (t) + (1− α)θ0 (t) , (24b)

where 0 < α ≤ 1 is the damping.
At the end of this section, we formulate a probability dis-

tribution of discrete random vectors as one in the exponential
family. Consider an N dimensional discrete random vector
x ∈ X, where each component of x takes only finite values,
X =

{
x(0),x(1), . . . ,x(Nx−1)

}
, and Nx ≥ 2 is the number of

all possible vectors of x. Denote the probability distribution
of x as p (x) and the probability of x taking the value x(i)

as p (x)
∣∣
x=x(i) = pi > 0, i ∈ ZNx−1. Denote the set of

probability distributions of x as

X =

{
p (x)

∣∣∣p (x) > 0,x ∈ X,
∑
x∈X

p (x) = 1

}
. (25)

For the discrete probability distributions, let

tx,i = δ
(
x− x(i)

)
=

{
1, when x = x(i),

0, otherwise,
(26)

where i ∈ ZNx−1 . Then, the probability distribution of x can
be rewritten as

p (x) =
∑
x∈X

p (x)
∣∣
x=x(i)δ

(
x− x(i)

)
=

Nx−1∑
i=0

pitx,i, (27)

where {pi}Nx−1
i=0 are positive values and constrained by∑Nx−1

i=0 pi = 1. Hence, X has Nx−1 degrees of freedom and is
a Nx−1 dimensional manifold [21]. Since the dimension of X
is Nx − 1, we define an Nx − 1 dimensional parameter vector
as θx = [θx,1, θx,2, . . . , θx,Nx−1]

T , where each component is
given by

θx,i = ln

(
pi
p0

)
, i ∈ Z+

Nx−1. (28)

Then,

p (x) = exp
{
θT

x tx − ψ (θx)
}
, (29)

where tx = [tx,1, tx,2, . . . , tx,Nx−1]
T is a random vector of

Nx − 1 dimension, and

ψ (θx) = − ln p0. (30)

The above expresses X is expressed in terms of an exponential
family, and θx is the NP of p (x).

Algorithm 1: IGA-SD

Input: The a priori probability ppr,k (sk) , k ∈ Z+
2K ,

the received signal y, the channel matrix G,
the alphabet S =

{
s(0), s(1), . . . , s(L−1)

}
for

the components of s, the noise power σ2
z and

the maximal iteration number tmax.
Initialization: set t = 0, set damping α, where
0 < α ≤ 1, initialize the EACSs θn, n ∈ Z2Nr , which
are defined in (36) and (42), zeros are sufficient for
their initializations in general, calculate the NP
dk,ℓ, k ∈ Z+

2K , ℓ ∈ Z+
L−1, as (31);

repeat
1. Calculate ξn(t), n ∈ Z+

2Nr
, as (70) and (71);

2. Update the EACSs as (72);
3. t = t+ 1;

until Convergence or t > tmax;
Output: The probability of the approximate marginal,

pk (sk|y), is given by the probability of
p0,k (sk;θ0,k), k ∈ Z+

2K , which is given by
(39). Then, the MPM detection is given by
(8).

IV. Information Geometry Approach for Signal
Detection

As discussed in Sec. III, ppr,k (sk) , k ∈ Z+
2K , belong

to the exponential family. Define a sufficient statistic as
tk ≜ [tk,1, tk,2, . . . , tk,L−1]

T ∈ R(L−1), where tk,ℓ ≜
δ
(
sk − s(ℓ)

)
, k ∈ Z+

2K , ℓ ∈ Z+
L−1. Define the NP as

dk ≜ [dk,1, dk,2, . . . , dk,L−1]
T ∈ R(L−1), k ∈ Z+

2K , and

dk,ℓ = ln
ppr,k (sk)

∣∣
sk=s(ℓ)

ppr,k (sk)
∣∣
sk=s(0)

, ℓ ∈ Z+
L−1. (31)

Then, ppr,k (sk) , k ∈ Z+
2K , can be expressed as

ppr,k (sk) = exp
{
dT
k tk − ψ (dk)

}
, (32)

where ψ (dk) = − ln
(
ppr,k (sk)

∣∣
sk=s(0)

)
is the free energy.

Combining with (32), the a posteriori distribution p (s|y) can
be expressed as

p (s|y) = exp

{
2K∑
k=1

dT
k tk +

2Nr∑
n=1

cn (s, yn)− ψq

}

= exp

{
dT t+

2Nr∑
n=1

cn (s, yn)− ψq

}
, (33)

where d =
[
dT
1 ,d

T
2 , . . . ,d

T
2K ,

]T ∈ R2K(L−1), t =[
tT1 , t

T
2 , . . . , t

T
2K

]T ∈ R2K(L−1), ψq is the normalization
factor, and

cn (s, yn) = − 1

2σ2
z

(
yn − eTnGs

)2
, (34a)

ψq = ln

( ∑
s∈S2K

exp

{
dT t+

2Nr∑
n=1

cn (s, yn)

})
. (34b)



According to (33), we can immediately define the OBM and
the AMs as in the previous section. The OBM is defined as

M0 =
{
p0 (s;θ0)

∣∣∣θ0 ∈ R2K(L−1)
}
, (35a)

p0 (s;θ0) =
2K∏
k=1

p0,k (sk;θ0,k)

= exp
{
dT t+ θT

0 t− ψ0 (θ0)
}
,

(35b)

p0,k (sk;θ0,k) = exp
{
dT
k tk + θT

0,ktk − ψ0 (θ0,k)
}

= exp

{
L−1∑
ℓ=1

(dk,ℓ + θ0,k,ℓ) δ
(
sk − s(ℓ)

)}
× exp {−ψ0 (θ0,k)} , (35c)

where

θ0 =
[
θT
0,1,θ

T
0,2, . . . ,θ

T
0,2K

]T ∈ R2K(L−1) (36)

is the EACS of p0 (s;θ0),

θ0,k = [θ0,k,1, θ0,k,2, . . . , θ0,k,L−1]
T ∈ R(L−1) (37)

is the EACS of p0,k (sk;θ0,k), p0,k (sk;θ0,k) is the marginal
distribution of sk, the free energies ψ0 (θ0) and ψ0 (θ0,k) are
given by

ψ0 (θ0) =
K∑

k=1

ψ0 (θ0,k)

= ln

( ∑
s∈S2K

exp
{
dT t+ θT

0 t
})

,

(38a)

ψ0 (θ0,k) = ln

(∑
sk∈S

exp
{
dT
k tk + θT

0,ktk
})

= ln

(
1 +

L−1∑
ℓ=1

exp {dk,ℓ + θ0,k,ℓ}

)
.

(38b)

Given p0 (s;θ0) and its marginals p0,k (sk;θ0,k), the probabil-
ity of signal sk, k ∈ Z+

2K , can be expressed in a more explicit
way as

p0,k (sk;θ0,k)
∣∣∣
sk=s(0)

(a)
=

1

1 +
∑L−1

ℓ=1 exp {dk,ℓ + θ0,k,ℓ}
,

(39a)

p0,k (sk;θ0,k)
∣∣∣
sk=s(ℓ)

(b)
=

exp {dk,ℓ + θ0,k,ℓ}
1 +

∑L−1
ℓ=1 exp {dk,ℓ + θ0,k,ℓ}

,

(39b)
where ℓ ∈ Z+

L−1 in (39b), and (a) and (b) come from (35c)
and (38b). The probability of p0 (s;θ0) can be then expressed
more explicitly by using (35b). Also, from (39), we can
conversely use the marginal probability of sk to express the
EACS θ0,k of p0,k (sk;θ0,k) , k ∈ Z+

2K , i.e.,

θ0,k,ℓ = ln
p0,k (sk;θ0,k)

∣∣∣
sk=s(ℓ)

p0,k (sk;θ0,k)
∣∣∣
sk=s(0)

− dk,ℓ, ℓ ∈ Z+
L−1. (40)

Then, the EACS θ0 of p0 (s;θ0) can be also obtained. This
relationship will be used later in this section. 2Nr AMs are
defined, where the n-th of them is given by

Mn =
{
pn (s;θn)

∣∣∣θn ∈ R2K(L−1)
}
, (41a)

pn (s;θn) = exp
{
dT t+ θT

n t+ cn (s, yn)− ψn (θn)
}
,

(41b)
where

θn =
[
θT
n,1,θ

T
n,2, . . . ,θ

T
n,2K

]T ∈ R2K(L−1) (42)

is the EACS of pn (s;θn),

θn,k = [θn,k,1, θn,k,2, . . . , θn,k,L−1]
T ∈ R(L−1), (43)

and the free energy ψn is given by

ψn (θn) = ln

( ∑
s∈S2K

exp
{
dT t+ θT

n t+ cn (s, yn)
})

.

(44)
From the definitions, it is not difficult to check that the OBM
and the AMs are all e-flat.

Before proceeding, we further define a manifold called the
original manifold (OM), and then show that the OBM and
the AMs are its submanifolds. Define the OM as the set
of probability distributions of the 2K dimensional discrete
random vector s as

S =

{
p (s)

∣∣∣p (s) > 0, s ∈ S2K ,
∑

s∈S2K
p (s) = 1

}
. (45)

S is then a L2K − 1 dimensional manifold and forms an
exponential family. Then, it can be readily checked that the
a posteriori distribution p (s|y) belongs to S since p (s|y) is
a particular probability distribution of s. Similarly, it can be
obtained that the OBM and the AMs are the submanifolds
of the OM, i.e., M0 ⊆ S , Mn ⊆ S, n ∈ Z+

2Nr
, since

the distributions in the OBM and the AMs are all particular
probability distributions of s when the EACSs of them are
given.

We now present the properties of the m-projection of
any p (s) ∈ S, onto the OBM M0, which inspires us to
approximate the m-projection of pn (s;θn) onto the OBM
M0. According to the Section III, given p (s) ∈ S and the
OBM M0, which is an e-flat submanifold of S, the m-
projection of p (s) onto M0 is obtained by the following
minimization problem,

θ⋆
0 = argmin

θ0

DKL {p (s) : p0 (s;θ0)} , (46)

where the K-L divergence is given by

DKL {p (s) : p0 (s;θ0)} = Ep(s)

{
ln

p (s)

p0 (s;θ0)

}
= Cp −

∑
s∈S2K

p (s) ln (p0 (s;θ0)) , (47)

where Cp =
∑

s∈S2K p (s) ln p (s) is a constant independent
of θ0. We then have the following theorem.

Theorem 1. Given p (s) ∈ S, and the e-flat M0 ⊆ S, the m-
projection of p (s) onto M0 is unique. Moreover, p0 (s;θ⋆

0) is



the m-projection of p (s) onto M0 if and only if the following
relationship holds,

η = η0 (θ
⋆
0) , (48)

where η,η0 (θ
⋆
0) ∈ R2K(L−1) are the expectations of t w.r.t.

p (s) and p0 (s;θ⋆
0), respectively, i.e.,

η = Ep(s) {t} =
∑

s∈S2K
tp (s) , (49a)

η0 (θ
⋆
0) = Ep0(s;θ⋆

0)
{t} =

∑
s∈S2K

tp0 (s;θ
⋆
0) . (49b)

Proof. See Appendix A.

Define 2K discrete random vectors of 2K − 1 dimensions,
where the k-th of them, denoted as s\k, is obtained by remov-
ing the k-th element, i.e., sk, of s, k ∈ Z+

2K . Then, we can
obtain s\k ∈ S2K−1, k ∈ Z+

2K , and the marginal probability
distribution of sk given the joint probability distribution p (s)
is

pk (sk) ≜
∑

s\k∈S2K−1

p (s)

=
∑
s1∈S

· · ·
∑

sk−1∈S

∑
sk+1∈S

· · ·
∑

s2K∈S
p (s) , k ∈ Z+

2K .

(50)

From the definition of p0 (s;θ0) in (35b), we denote the
marginals of p0 (s;θ⋆

0) in Theorem 1 as p0,k
(
sk;θ

⋆
0,k

)
, k ∈

Z+
2K , where θ⋆

0,k =
[
θ⋆0,k,1, θ

⋆
0,k,2, . . . , θ

⋆
0,k,L−1

]T
∈ R(L−1)

and θ⋆
0 =

[(
θ⋆
0,1

)T
,
(
θ⋆
0,2

)T
, . . . ,

(
θ⋆
0,2K

)T ]T
. Combining

Theorem 1, we have the following corollary.

Corollary 1. Given p (s) ∈ S, and the e-flat M0 ⊆ S,
p0 (s;θ

⋆
0) is the m-projection of p (s) onto M0 if and only

if the marginals of p (s) and the marginals of p0 (s;θ⋆
0) are

equal, i.e.,

pk (sk) = p0,k
(
sk;θ

⋆
0,k

)
, sk ∈ S, k ∈ Z+

2K . (51)

Meanwhile, the EACS of the m-projection is given by

θ⋆
0 =

[(
θ⋆
0,1

)T
,
(
θ⋆
0,2

)T
, . . . ,

(
θ⋆
0,2K

)T ]T
, where θ⋆

0,k =[
θ⋆0,k,1, θ

⋆
0,k,2, . . . , θ

⋆
0,k,L−1

]T
, k ∈ Z+

2K , and

θ⋆0,k,ℓ = ln
pk (sk)

∣∣
sk=s(ℓ)

pk (sk)
∣∣
sk=s(0)

− dk,ℓ, ℓ ∈ Z+
L−1. (52)

Proof. See Appendix B.

Given pn (s;θn) ∈ Mn, n ∈ Z+
2Nr

, from Theo-
rem 1 we can obtain that its m-projection onto M0 is
unique since pn (s;θn) ∈ S. Denote the m-projection
of pn (s;θn) onto M0 as p0 (s;θ0n) , n ∈ Z+

2Nr
, where

θ0n =
[
θT
0n,1,θ

T
0n,2, . . . ,θ

T
0n,2K

]T ∈ R2K(L−1) and θ0n,k =

[θ0n,k,1, θ0n,k,2, . . . , θ0n,k,L−1]
T ∈ R(L−1), k ∈ Z+

2K .
From Corollary 1, for any n ∈ Z+

2Nr
, the m-projection

p0 (s;θ0n) is determined by the marginal probability distri-
bution pn,k (sk;θn) , k ∈ Z+

2K , where

pn,k (sk;θn) ≜
∑

s\k∈S2K−1

pn (s;θn) . (53)

And we have

θ0n,k,ℓ = ln
pn,k (sk;θn)

∣∣
sk=s(ℓ)

pn,k (sk;θn)
∣∣
sk=s(0)

− dk,ℓ, (54)

where n ∈ Z+
2Nr

, k ∈ Z+
2K and ℓ ∈ Z+

L−1. Nevertheless,
it is relatively difficult to obtain the closed-form solution
of the marginal probability distribution pn,k (sk;θn) since
the calculation is of exponential-complexity. In this work,
we solve this problem by calculating the approximations of
the marginals pn,k (sk;θn) , k ∈ Z+

2K , n ∈ Z+
2Nr

, using the
central-limit-theorem (CLT).

From the definition of pn (s;θn) in (41b), its marginals can
be expressed as

pn,k (sk;θn) =
∑

s\k∈S2K−1

exp
{
(d+ θn)

T
t+ cn (s, yn)− ψn

}
(a)
∝ exp

{
(dk + θn,k)

T
tk

}
q (yn, sk) , (55)

where n ∈ Z+
2Nr

, k ∈ Z+
2K , sk ∈ S, (a) is obtained by

removing the constants that do not vary with the value of
sk, q (yn, sk) is a function of yn and sk, and

q (yn, sk) (56)

=
∑

s\k∈S2K−1

exp
{ 2K∑

k′=1,k′ ̸=k

(dk′ + θn,k′)
T
tk′ + cn (s, yn)

}
.

Note that the proportions in the second line of (55) and
the third line of (57) next will not affect the calculation
of pn,k (sk;θn) since the constants corresponding to these
proportions do not vary with the value of sk, and thus
we can finally normalize pn,k (sk;θn). We will not repeat
this property when a similar situation arises in the rest
of this paper. In the last line of (55), the calculation of
exp

{
(dk + θn,k)

T
tk

}
is simple, if we can obtain the ap-

proximate value of q (sk, yn) , sk ∈ S, we then can obtain
the approximate value of pn,k (sk;θn) , sk ∈ S. Hence, our
goal now is converted to obtain the approximate value of
q (yn, sk) , sk ∈ S. From (56), we can obtain

q (yn, sk)

=
∑

s\k∈S2K−1

( 2K∏
k′=1,k′ ̸=k

exp
{
(dk′ + θn,k′)

T
tk′

}
× exp

{
− 1

2σ2
z

(
yn − eTnGs

)2})
(57)

(a)
∝

∑
s\k∈S2K−1

( 2K∏
k′=1,k′ ̸=k

p0,k′ (sk′ ;θn,k′) fG
(
yn; e

T
nGs, σ2

z

) )
,

where G is defined in (5), (a) is obtained by adding the
constant independent with sk and yn, p0,k′ (sk′ ;θn,k′) is
defined by (35c), and fG

(
x;µ, σ2

)
denotes the PDF of a real



Gaussian distribution N
(
µ, σ2

)
for a real random variable

x. Inspired by the last line of (57), we consider 2Nr × 2K
hybrid random variables Yn,k, n ∈ Z+

2Nr
, k ∈ Z+

2K , where the
(n, k)-th of them is defined by: for a given sk,

Yn,k = eTnGs+ w = gn,ksk +
2K∑

k′=1,k′≠k

gn,k′sk′ + w

=
2K∑

k′=1,k′≠k

gn,k′sk′ + w′
n,k,

(58)

where sk is considered as a determinate (also known/given)
constant, gn,k is the (n, k)-th component of G, gn,k is also
considered as a determinate and known constant, {sk′}k′ ̸=k

are considered as the independent discrete random variables,
the probability distribution of sk′ , k′ ̸= k, is given by
p0,k′ (sk′ ;θn,k′), the joint probability distribution of {sk′}k′ ̸=k

is then given by p
(
s\k
)

=
∏

k′ ̸=k p0,k′ (sk′ ;θn,k′), w ∼
N
(
0, σ2

z

)
is a real Gaussian random variable independent with

{sk′}k′ ̸=k, and w′
n,k = w + gn,ksk ∼ N

(
gn,ksk, σ

2
z

)
is also

independent with {sk′}k′ ̸=k. Briefly, for Yn,k the subscript
n determines which row of G is multiplied by s, and the
subscript k determines which component of s is considered
deterministic. In this case, it is not difficult to obtain that the
PDF of Yn,k is given by [27, Sec. 6.1.2]

f (Yn,k)

=
∑

s\k∈S2K−1

p (s\k) fG

Yn,k−∑
k′≠k

gn,k′sk′ ; gn,ksk, σ
2
z


=

∑
s\k∈S2K−1

(
p
(
s\k
)
fG
(
Yn,k; e

T
nGs, σ2

z

))
, (59)

which will be equal to the last line of (57) after we set the
value of Yn,k as Yn,k = yn. Since although the terms in the
summation in (58) are independent each other, they do not
have the same distribution. Thus, the conventional CLT may
not apply directly. We next apply Lyapunov CLT to impose a
condition on the values of gn,k in matrix G and the variances
of the random variables in (58) so that Yn,k converges in
distribution to a real Gaussian random variable. To do so, let
us first see Lyapunov CLT.

Lemma 1 (Lyapunov central-limit-theorem [28]). Suppose
{Xn}Nn=1 are independent real random variables, each with
finite expected value µn and variance σ2

n. Denote the random
variable S =

∑N
n=1Xn and its expected value and variance

as µ̃ =
∑N

n=1 µn and σ̃2 =
∑N

n=1 σ
2
n, respectively. Suppose

for some positive δ, Lyapunov’s condition

lim
N→∞

1

σ̃2+δ

N∑
n=1

E
{
|Xn − µn|2+δ

}
= 0 (60)

holds. Then, S converges in distribution to a real Gaussian
random variable S̃, as N tends to infinity, and

S
d→ S̃ ∼ N

(
µ̃, σ̃2

)
. (61)

Given the probability distribution p0,k′ (sk′ ;θn,k′) of
sk′ , k′ ∈ Z+

2K \ {k}, in (58), by using (39) the expected value
and the variance of sk′ are given by

µn,k′ =
∑
sk′∈S

sk′p0,k′ (sk′ ;θn,k′)

=
s(0) +

∑L−1
ℓ=1 s

(ℓ) exp {dk′,ℓ + θn,k′,ℓ}
1 +

∑L−1
ℓ=1 exp {dk′,ℓ + θn,k′,ℓ}

,

(62a)

vn,k′ =
∑
sk′∈S

s2k′p0,k′ (sk′ ;θn,k′)− µ2
n,k′

=

(
s(0)
)2

+
∑L−1

ℓ=1

(
s(ℓ)
)2

exp {dk′,ℓ + θn,k′,ℓ}
1 +

∑L−1
ℓ=1 exp {dk′,ℓ + θn,k′,ℓ}

−µ2
n,k′ .

(62b)

Meanwhile, since {sk′}k′ ̸=k and w′
n,k are independent in (58),

the expected value and variance of Yn,k, n ∈ Z+
2Nr

, k ∈ Z+
2K ,

can be readily expressed as

E {Yn,k} =

2K∑
k′=1,k′ ̸=k

gn,k′µn,k′ + gn,ksk, (63a)

V {Yn,k} =

2K∑
k′=1,k′ ̸=k

g2n,k′vn,k′ + σ2
z , (63b)

We then have the following theorem.

Theorem 2. If the following condition

lim
K→∞

1

2K

2K∑
k′=1,k′ ̸=k

g2n,k′vn,k′ = ζ > 0 (64)

holds for a positive constant ζ, then Yn,k converges in distri-
bution to a real Gaussian random variable Ỹn,k, as 2K goes
to infinity, and

Yn,k
d→ Ỹn,k ∼ N (E {Yn,k} ,V {Yn,k}) . (65)

Proof. See Appendix C.

Intuitively, the condition (64) means that as K (or, equiva-
lently, 2K − 1) tends to infinity, the variance of the random
variable s̃n,k′ ≜ gn,k′sk′ , k′ ∈ Z+

2K \ {k}, in (58) does not
tends to zero, where gn,k′ is the (n, k′)-th component of G
defined in (5), or s̃n,k′ does not tend to be a deterministic
value. This guarantees that the CLT holds. When 2K is large,
from Theorem 2, q (yn, sk) is approximately proportional
to fG

(
Ỹn,k;E {Yn,k} ,V {Yn,k}

) ∣∣
Ỹn,k=yn

, and thus we can
obtain

pn,k (sk;θn)

(a)
∝ exp

{
(dk + θn,k)

T
tk − (yn − E {Yn,k})2

2V {Yn,k}

}

= exp

{
(dk + θn,k)

T
tk − (gn,ksk − µ̃n,k)

2

2V {Yn,k}

}
,

(66)

where sk ∈ S, k ∈ Z+
2K , n ∈ Z+

2Nr
, (a) is obtained

by removing the constant independent with sk and yn, and
µ̃n,k, n ∈ Z+

2Nr
, k ∈ Z+

2K , is defined as

µ̃n,k ≜ yn −
∑2K

k′=1,k′ ̸=k
gn,k′µn,k′ , (67)



As a summary, when 2K is large we approximately have

pn,k (sk;θn)
∣∣
sk=s(0)

= Cn,k exp

{
−
(
gn,ks

(0) − µ̃n,k

)2
2V {Yn,k}

}
,

(68a)
pn,k (sk;θn)

∣∣
sk=s(ℓ)

=Cn,k exp

{
dk,ℓ + θn,k,ℓ −

(
gn,ks

(ℓ) − µ̃n,k

)2
2V {Yn,k}

}
,

(68b)

where Cn,k is the normalization factor, and ℓ ∈ Z+
L−1 in (68b).

Combining (54), we can immediately obtain that

θ0n,k,ℓ =
gn,k

(
s(0) − s(ℓ)

) [
gn,k

(
s(0) + s(ℓ)

)
− 2µ̃n,k

]
2V {Yn,k}

+ θn,k,ℓ,
(69)

where ℓ ∈ Z+
L−1, k ∈ Z+

2K , and n ∈ Z+
2Nr

. Hence, we obtain
an approximate solution of the m-projection p0 (s;θ0n) , n ∈
Z+

2Nr
. From Theorem 2, it is not difficult to check that when

the condition (64) holds, (69) is asymptotically accurate as K
goes infinity. From (22), the approximation term ξn = θ0n −
θn can be then expressed as

ξn =
[
ξTn,1, ξ

T
n,2, . . . , ξ

T
n,2K

]T
(70a)

ξn,k = [ξn,k,1, ξn,k,2, . . . , ξn,k,L−1]
T
, (70b)

ξn,k,ℓ =
gn,k

(
s(0) − s(ℓ)

) [
gn,k

(
s(0) + s(ℓ)

)
− 2µ̃n,k

]
2V {Yn,k}

,

(70c)
where n ∈ Z+

2Nr
, k ∈ Z+

2K , and ℓ ∈ Z+
L−1. We give the

detailed expression of ξn,k,ℓ in (71), where gn,k is the (n, k)-
th component of the real-valued channel matrix G in (6),{
s(ℓ)
}L−1

ℓ=0
defined below (6) are the constellation points for

the components of s, yn is the n-th component of the received
signal y in (6), dk,ℓ is the NP defined by (31), and σ2

z is the
noise variance of z in (6).

After the approximate ξn is obtained, we update the EACSs
of pn (s;θn) , n ∈ Z2Nr , as

θn (t+ 1) = α

2Nr∑
n′=1,n′ ̸=n

ξn′ (t) + (1− α)θn (t) , n ∈ Z+
2Nr

,

(72a)

θ0 (t+ 1) = α

2Nr∑
n=1

ξn (t) + (1− α)θ0 (t) , (72b)

where 0 < α ≤ 1 is the damping, and repeat the m-
projections, calculating ξn and updating until convergence. We
summarize the IGA-SD in Algorithm 1. The computational
complexity (the number of real-valued multiplications) of the
IGA-SD is O (16NrK (L+ 1)) (the number of real-valued
multiplications) per iteration, where Nr is the number of
antennas at the BS , K is the number of users, L =

√
L̃,

and L̃ is the modulation order.

V. Simulation Results

In this section, we provide simulation results to illustrate
the performance of the proposed IGA-SD. The uncoded bit
error rate (BER) is adopted as the performance metric. In our
simulations, the BS comprises a uniform planar array (UPA)
of Nr = Nr,v × Nr,h antennas, and Nr,v and Nr,h are the
numbers of the antennas at each vertical column and horizontal
row, respectively. We average our results for 1000 realizations
of the channel matrix G, which is generated by the widely
adopted QuaDRiGa [29]. We set the simulation scenario to
"3GPP_38.901_UMa_NLOS", and the main parameters for the
simulations are summarized in Table I. The BS is located at

TABLE I
Parameter Settings of the Simulation

Parameter Value
Number of BS antennas Nr,v ×Nr,h 16× 64

UT number K 240
Center frequency fc 4.8GHz
Modulation Mode QAM

Modulation Order L̃ 4, 16, and 64

(0, 0, 25). The users are randomly generated in a 120◦ sector
with radius r = 200m around (0, 0, 1.5). The channel matrix
is normalized as E

{
∥G∥2F

}
= NrK. The average power of

the transmitted symbol of each user is normalized to 1, and the
SNR is set as SNR = K

σ̃2
z

. Based on the received signal model
(6), we compare the proposed IGA-SD with the following
detectors.
LMMSE: The linear minimum-mean-squared error (LMMSE)
detector with hard-decision. The LMMSE detector is given by

sMMSE =
(
GTG+ σ2

zI
)−1

GTy. (73)

Then, a component-wise hard-decision is performed as

sk,MMSE = argmin
sk∈S

|sk − [sMMSE]k|
2
, k ∈ Z+

2K . (74)

EP: The expectation propagation detector proposed in [8],
where the hard-decision is also performed.
AMP: Approximate message passing algorithm proposed in
[30]. AMP can obtain the approximations of the marginals of
the a posteriori distribution p (s|y). Thus, AMP is used as an
MPM detector ((8)).

The computational complexity of the LMMSE detector
is O

(
8
(
2NrK

2 +K3
))

[8]. The computational complexity
of the EP detector and AMP are O

(
8
(
NrK

2 +K3
))

and
O (8 (NrK)) per iteration, respectively [8], [30]. The com-
plexity of EP detector is the highest among all algorithms.
When the number of iterations is low (e.g., tens), the com-
plexity of IGA-SD is lower than that of LMMSE detection.
The computational complexity of AMP is the lowest.

We first consider 4-QAM modulation. Fig. 1 shows the BER
performance of the IGA-SD compared with LMMSE, EP and
AMP. The iteration numbers of IGA-SD, EP and AMP are set
as 10, 10 and 30, and 10 and 30, respectively. Meanwhile, the
convergence performance of the iterative algorithms at SNR =
5dB is shown in Fig. 2. From Fig. 1, we can find that all the
iterative algorithms outperform the LMMSE detector within



ξn,k,ℓ =

gn,k
(
s(0) − s(ℓ)

)gn,k (s(0) + s(ℓ)
)
− 2

yn −
2K∑

k′=1,k′ ̸=k

gn,k′

 s(0)+
L−1∑
ℓ=1

s(ℓ) exp{dk′,ℓ+θn,k′,ℓ}

1+
L−1∑
ℓ=1

exp{dk′,ℓ+θn,k′,ℓ}


2V {Yn,k}

(71a)

V {Yn,k} =
2K∑

k′=1,k′ ̸=k

g2n,k′


(
s(0)
)2

+
L−1∑
ℓ=1

(
s(ℓ)
)2

exp {dk′,ℓ + θn,k′,ℓ}

1 +
L−1∑
ℓ=1

exp {dk′,ℓ + θn,k′,ℓ}
−


s(0) +

L−1∑
ℓ=1

s(ℓ) exp {dk′,ℓ + θn,k′,ℓ}

1 +
L−1∑
ℓ=1

exp {dk′,ℓ + θn,k′,ℓ}


2+ σ2

z

(71b)
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Fig. 1. BER performance of IGA compared with AMP, EP and
LMMSE under 4-QAM.
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Fig. 2. Convergence performance of IGA compared with EP and AMP
at SNR = 5 dB under 4-QAM.

limited iteration numbers. For BER = 10−3, the SNR gains of
the IGA-SD with 10 iterations compared to the AMP with 10
and 30 iterations are around 0.7dB and 0.3dB, respectively.
Meanwhile, IGA-SD with 10 iterations can improve the EP
performance with 10 and 30 iterations in 1dB and 0.7dB
for BER = 10−3, respectively. From Fig. 2, it can be found
that in the case with 4-QAM and SNR = 5dB, the IGA-SD
requires around 10 iterations to converge and achieves the
lowest BER performance. AMP and EP require about 25 and
45 iterations to converge, respectively. The decrease in BER

is minor after 30 iterations for EP. Moreover, we can find that
the BER performance of EP with one iteration is equal to
that of LMMSE detector. This can be attributed to that the
EP detector with one iteration is equivalent to the LMMSE
detector [8].
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Fig. 3. BER performance of IGA compared with AMP, EP and
LMMSE under 16-QAM.
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Fig. 4. BER performance of IGA compared with AMP, EP and
LMMSE under 64-QAM.

Fig. 3 and and 4 show the BER performance for 16-QAM
and 64-QAM, respectively. From Fig. 3, we can find that
the BER performance of LMMSE outperforms that of the
AMP with 20 iterations. Meanwhile, we can find that the
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Fig. 5. Convergence performance of IGA compared with EP and AMP
at SNR = 14 dB under 16-QAM.
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Fig. 6. Convergence performance of IGA compared with EP and AMP
at SNR = 19 dB under 64-QAM.

gap between IGA-SD and the other algorithms is increasing.
For BER = 10−3, the SNR gains of the IGA-SD with 15
iterations compared to the EP with 20 and 90 are about 1.2dB
and 0.9dB, respectively. The SNR gain for the the IGA-SD
with 40 iterations increases by about 0.2dB each over the two
gains above. For 64-QAM, from Fig. 4, we can find that the
BER performance of the LMMSE detector exceeds that of the
AMP after convergence. The gap between IGA-SD and the
other algorithms is still increasing. For BER = 10−2, IGA-SD
with 20 iterations has improved the EP performance with 5
and 20 iterations in 2.1dB and 1.6dB, respectively. The SNR
gain for the the IGA-SD with 40 iterations increases by about
0.7dB each over the two gains above.

We then show the convergence performances for the cases
with 16-QAM and 64-QAM in Fig. 5 and 6, respectively. From
Fig. 5, it can be found that in the case with 16-QAM and SNR
= 14dB, the IGA-SD requires around 30 iterations to converge
and achieves the best BER performance. Both AMP and EP
require about 90 iterations to converge. From Fig. 6, we can
find that in the case with 64-QAM and SNR = 19dB, the IGA-
SD requires around 30 iterations to converge and achieves the
best BER performance. AMP and EP require about 80 and

20 iterations to converge, respectively. We can also find that
compared to 16-QAM, AMP and EP require fewer iterations
to converge at 64-QAM modulation. This could be attributed
to the fact that compared to 16-QAM, the converged BER
performances of both AMP and EP have severely degraded in
the case with 64-QAM.

VI. Conclusion

We have proposed an information geometry approach for
ultra-MIMO signal detection in this paper. The signal detection
is formulated as an MPM detection problem based on the
approximation of the a posteriori marginals of the transmitted
symbols of all users. To obtain the approximation of the
a posteriori marginals, the information geometry theory is
introduced. Specifically, we convert the calculation of the
approximation of the a posteriori marginals into an iterative
m-projection process. Then, the Lyapunov CLT is applied to
have an approximate solution of the m-projection between a
probability distribution of the AM and the OBM. Simulation
results verify that the IGA-SD can obtain the lowest BER per-
formance within a limited number of iterations compared with
the existing approaches, which demonstrates the superiority of
the proposed IGA-SD for ultra-massive MIMO systems.

Appendix A
Proof of Theorem 1

We prove this theorem by showing that problem (46) is
strictly convex w.r.t. θ0. More precisely, we show that the
Hessian of the objective function defined by the K-L diver-
gence (47) is a positive definite matrix. Before proceeding, we
first introduce the expectation parameter (EP) and the Fisher
information matrices (FIM) of p0 (s;θ0) and pn (s;θn) , n ∈
Z+

2Nr
in (35b) and (41b), respectively. {pn (s;θn)}2Nr

n=0 can be
expressed as

pn (s;θn) = exp
{
θT
n t+mn (s)− ψn (θn)

}
, (75)

where n ∈ Z2Nr
and mn (s) is a function independent of

θn. Specifically, we have m0 (s) ≜ dT t for p0 (s;θ0), and
mn (s) = dT t + cn (s, yn) for pn (s;θn) , n ∈ Z+

2Nr
. Since

the free energy ψn (θn) is constrained by the normalization
condition, we have

1 =
∑

s∈S2K
exp

{
θT
n t+mn (s)− ψn (θn)

}
, n ∈ Z2Nr

, (76)

from which we can obtain

ψn (θn) = ln

( ∑
s∈S2K

exp
{
θT
n t+mn (s)

})
, n ∈ Z2Nr

.

(77)
Then, from (77), the partial derivative of ψn (θn) is

∂ψn (θn)

∂θn

=
1∑

s∈S2K exp {θT
n t+mn (s)}

∑
s∈S2K

exp
{
θT
n t+mn (s)

}
t

(a)
= exp {−ψn (θn)}

∑
s∈S2K

exp
{
θT
n t+mn (s)

}
t



=
∑

s∈S2K
pn (s;θn) t = Epn(s;θn) {t} = ηn (θn) , (78)

where (a) comes from (76). ηn (θn) ∈ R2K(L−1) above is
referred as to the EP of pn (θn) , n ∈ Z2Nr . Then, the Hessian
of ψn (θn) is

In (θn) ≜
∂2ψn (θn)

∂θn∂θT
n

=
∂ηn (θn)

∂θT
n

=
∑

s∈S2K
t
∂pn (s;θn)

∂θT
n

=
∑

s∈S2K
tpn (s;θn)

(
tT − ∂ψn (θn)

∂θT
n

)
=
∑

s∈S2K
tpn (s;θn) (t− ηn (θn))

T (79)

=
∑

s∈S2K
pn (s;θn) (t− ηn (θn)) (t− ηn (θn))

T

= Epn(s;θn)

{
(t− ηn (θn)) (t− ηn (θn))

T
}
,

where n ∈ Z2Nr
. In (θn) ∈ R2K(L−1)×2K(L−1) above is

referred as to the FIM of pn (s;θn) , n ∈ Z2Nr
. From the

definition, we can readily show that In (θn) , n ∈ Z2Nr
,

is positive semi-definite. Particularly, the FIM of p0 (s;θ0)
in (35b) is positive definite. The reason is as follows. Since
{sk}2Kk=1 are independent with each other given the joint proba-
bility distribution p0 (s;θ0), we can readily obtain p0 (s;θ0) =∏2K

k=1 p0,k (sk;θ0,k) , where p0,k (sk;θ0,k) defined by (35c) is
the probability distribution of sk, k ∈ Z+

2K . Then, η0 (θ0) ∈
R2K(L−1) can be expressed as

η0 (θ0) =
[
ηT
0,1 (θ0,1) ,η

T
0,2 (θ0,2) , . . . ,η

T
0,2K (θ0,2K)

]T
,

(80)
where η0,k (θ0,k) ∈ R(L−1) is given by,

η0,k (θ0,k) = Ep0(s;θ0) {tk} = Ep0,k(sk;θ0,k) {tk} . (81)

From the last equation in (81), we refer to η0,k (θ0,k) as
the EP of p0,k (sk;θ0,k). Denote the ℓ-th component in
η0,k (θ0,k) as η0,k,ℓ (θ0,k) , ℓ ∈ Z+

L−1, k ∈ Z+
2K . From

tk = [tk,1, tk,2, . . . , tk,L−1]
T
, k ∈ Z+

2K , and tk,ℓ =
δ
(
sk − s(ℓ)

)
, ℓ ∈ Z+

L−1, we can obtain

η0,k,ℓ (θ0,k) = Ep0,k(sk;θ0,k)

{
δ
(
sk − s(ℓ)

)}
= p0,k (sk;θ0,k)

∣∣∣
sk=s(ℓ)

> 0. (82)

We then define (L− 1) × (L− 1) dimensional covariance
matrices C (tk, tk′) as

C (tk, tk′) ≜

Ep0(s;θ0)

{
(tk − η0,k (θ0,k)) (tk′ − η0,k′ (θ0,k′))

T
}
, (83)

where k, k′ ∈ Z+
2K . Since {sk}2Kk=1 are independent with each

other given p0 (s;θ0), we can obtain

C (tk, tk′) (84)

=

{
R (tk)− η0,k (θ0,k)η

T
0,k (θ0,k) , when k = k′,

0, otherwise,

where 0 ∈ R(L−1)×(L−1) is the zero matrix, R (tk) ∈
R(L−1)×(L−1) is given by

R (tk) = Ep0(s;θ0)

{
tkt

T
k

}
= Ep0,k(sk;θ0,k)

{
tkt

T
k

}
. (85)

From the definition of tk, the (i, j)-th element in R (tk) can
be expressed as

[R (tk)]i,j = Ep0,k(sk;θ0,k)

{
δ
(
sk − s(i)

)
δ
(
sk − s(j)

)}
=

p0,k (sk;θ0,k)
∣∣∣
sk=s(i)

= η0,k,i (θ0,k) , when i = j,

0, otherwise,
(86)

where i, j ∈ Z+
L−1. Hence, we can obtain R (tk) =

Diag {η0,k (θ0,k)} , k ∈ Z+
2K . From (82), we can readily

check that R (tk) is positive definite. Also, we refer to
C (tk, tk) as the FIM of p0,k (sk;θ0,k) , k ∈ Z+

2K , and we
denote I0,k (θ0,k) ≜ C (tk, tk). The FIM of p0 (s;θ0) can be
then expressed as

I0 (θ0) =
I0,1 (θ0,1) C (t1, t2) · · · C (t1, t2K)
C (t2, t1) I0,2 (θ0,2) · · · C (t2, t2K)

... · · ·
. . .

...
C (t2K , t1) · · · · · · I0,2K (θ0,2K)

 . (87)

From (84), we can obtain that the FIM I0 (θ0) of p0 (s;θ0) is
a block diagonal matrix with the FIMs of {p0,k (sk;θ0,k)}2Kk=1
located along its main diagonal, i.e.,

I0 (θ0) (88)
= Bdiag {I0,1 (θ0,1) ,I0,2 (θ0,2) , . . . ,I0,2K (θ0,2K)} .

We then show that each FIM I0,k (θ0,k) , k ∈ Z+
2K , is positive

definite. From the definition, we have

I0,k (θ0,k) = R (tk)− η0,k (θ0,k)η
T
0,k (θ0,k)

=Diag {η0,k (θ0,k)} − η0,k (θ0,k)η
T
0,k (θ0,k) . (89)

Given a non-zero vector a = [a1, a2, . . . , aL−1] ∈ R(L−1), we
have (abbreviate η0,k,ℓ (θ0,k) to η0,k,ℓ starting from the second
equation)

aTI0,k (θ0,k)a

=
L−1∑
ℓ=1

η0,k,ℓ (θ0,k) a
2
ℓ −

(
L−1∑
ℓ=1

η0,k,ℓ (θ0,k) aℓ

)2

=
L−1∑
ℓ=1

η0,k,ℓa
2
ℓ −

(
L−1∑
ℓ=1

√
η0,k,ℓ

√
η0,k,ℓa2ℓ

)2

≥
L−1∑
ℓ=1

η0,k,ℓa
2
ℓ −

(
L−1∑
ℓ=1

η0,k,ℓ

)(
L−1∑
ℓ=1

η0,k,ℓa
2
ℓ

)

=

(
1−

L−1∑
ℓ=1

η0,k,ℓ

)
L−1∑
ℓ=1

η0,k,ℓa
2
ℓ

(a)
= p0,k (sk;θ0,k)

∣∣∣
sk=s(0)

× aTR (tk)a
(b)
> 0, (90)



where (a) comes from that from (82) we have
η0,k,ℓ (θ0,k) = p0,k (sk;θ0,k)

∣∣∣
sk=s(ℓ)

, ℓ ∈ Z+
L−1, and∑L−1

ℓ=0 p0,k (sk;θ0,k)
∣∣∣
sk=s(ℓ)

= 1, and (b) comes from that

p0,k (sk;θ0,k)
∣∣∣
sk=s(0)

> 0, and R (tk) is positive definite.

Hence, I0,k (θ0,k) , k ∈ Z+
2K , is positive definite. From (88),

we can readily obtain that I0 (θ0) is also positive definite.
Also, we can obtain that ψ0 (θ0) is a strictly convex function
of θ0.

We now show that the problem in (46) has a minimum and
the solution of it is unique, which satisfies (48). From (47),
the partial derivative of DKL {p (s) : p0 (s;θ0)} is

∂DKL

∂θ0
= −

∑
s∈SK

p (s)
∂ ln p0 (s;θ0)

∂θ0

= −
∑
s∈SK

p (s)
∂
(
θT
0 t− ψ0 (θ0)

)
∂θ0

= −
∑
s∈SK

p (s) (t− η0 (θ0)) = −η + η0 (θ0) . (91)

The Hessian of DKL {p (s) : p0 (s;θ0)} is

∂2DKL

∂θ0∂θT
0

=
∂ (−η + η0 (θ0))

∂θT
0

= I0 (θ0) . (92)

Since the FIM I0 (θ0) is positive definite,
DKL {p (s) : p0 (s;θ0)} is a strictly convex function of
θ0 and (46) has a unique solution θ⋆

0 , which satisfies the the
first order sufficient condition, i.e.,

η0 (θ
⋆
0) = η. (93)

This completes the proof.

Appendix B
Proof of Corollary 1

Denote η as η ≜
[
ηT
1 ,η

T
2 , . . . ,η

T
2K

]T ∈ R2K(L−1), where
ηk ≜ Ep(s) {tk} ∈ R(L−1). Denote the ℓ-th element in
ηk as ηk,ℓ, where k ∈ Z+

2K and ℓ ∈ Z+
L−1. Then, from

tk = [tk,1, tk,2, . . . , tk,L−1]
T and tk,ℓ = δ

(
sk − s(ℓ)

)
, we can

obtain

ηk,ℓ = Ep(s)

{
δ
(
sk − s(ℓ)

)}
=
∑

s∈S2K
p (s) δ

(
sk − s(ℓ)

)
=

∑
s\k∈S2K−1

p (s)
∣∣∣
sk=s(ℓ)

(a)
= pk (sk)

∣∣∣
sk=s(ℓ)

,

where k ∈ Z+
2K , ℓ ∈ Z+

L−1, (a) comes from (50), and pk (sk)
is the marginal distribution of sk given p (s). Similar with the
process in Appendix A, η0 (θ

⋆
0) can be expressed as η0 (θ

⋆
0) ≜[

ηT
0,1

(
θ⋆
0,1

)
,ηT

0,2

(
θ⋆
0,2

)
, . . . ,ηT

0,2K

(
θ⋆
0,2K

)]T ∈ R2K(L−1),
where η0,k (θ

⋆
0) ≜ Ep0,k(sk;θ⋆

0,k)
{tk} ∈ R(L−1). Denote the

ℓ-th element in η0,k (θ
⋆
0) as η0,k,ℓ (θ⋆

0). We can obtain

η0,k,ℓ (θ
⋆
0) = p0,k

(
sk;θ

⋆
0,k

) ∣∣∣
sk=s(ℓ)

, (94)

through a process the same as that of (82), where
p0,k

(
sk;θ

⋆
0,k

)
is the (marginal) probability distribution of

sk given the joint probability distribution p0 (s;θ
⋆
0). Thus,

η = η0 (θ
⋆
0) is equivalent to

pk (sk) = p0,k
(
sk;θ

⋆
0,k

)
, sk ∈ S, k ∈ Z+

2K . (95)

From Theorem 1, η = η0 (θ
⋆
0) is a necessary and sufficient

condition for p0 (s;θ⋆
0) being the m-projection of p (s) onto

M0. Thus, (95) is also a necessary and sufficient condition
for p0 (s;θ⋆

0) being the m-projection of p (s) onto M0. Then,
combining (40) and (51), we can immediately obtain (52) This
completes the proof.

Appendix C
Proof of Theorem 2

From the last equation of (58) we have

Yn,k =
2K∑

k′=1,k′ ̸=k

gn,k′sk′ + w′
n,k (96)

Given n and k, let {Xk′}2Kk′=1 be a sequence of random
variables, of which each element is defined as{

Xk′ = w′
n,k, k′ = k,

Xk′ = gn,k′sk′ , otherwise.
(97)

Then, Yn,k is the sum of the sequence {Xk′}2Kk′=1. From the
probability distribution of sk′ and w′

n,k in (58) (also in (96))
we have

E {Xk′} =

{
gn,ksk, k′ = k,

gn,k′µn,k′ , otherwise,
(98a)

V {Xk′} =

{
σ2
z , k′ = k,

g2n,k′vn,k′ , otherwise.
(98b)

Next, we show that when (64) holds, the sequence {Xk′}2Kk′=1

satisfies the Lyapunov’s condition (60), where δ = 1. When
k′ = k, Xk′ is a real Gaussian random variable, and its third
central absolute moment is given by [31]

E
{
|Xk′ − E {Xk′}|3

}
= 2σ3

z

√
2

π
= 2σz

√
2

π
V {Xk′} ,

(99)
which is bounded. When k′ ̸= k, we have Xk′ = gn,k′sk′ .
Since sk′ ∈ S and µn,k′ = E {sk′} are bounded, we can obtain
that Xk′ , E {Xk′} and (Xk′ − E {Xk′}) are also bounded
when gn,k′ is bounded. Suppose that |Xk′ − E {Xk′}| ≤ ϵ,
we can readily obtain that

E
{
|Xk′ − E {Xk′}|3

}
≤ ϵV {Xk′} . (100)

Let ε = max
(
ϵ, 2σz

√
2/π

)
, then for k′ ∈ Z+

2K we can obtain

E
{
|Xk′ − E {Xk′}|3

}
≤ εV {Xk′} . (101)

Let δ = 1, the Lyapunov’s condition for Yn,k =
∑2K

k′=1Xk′

can be expressed as

0 ≤ 1

(V {Yn,k})
3
2

2K∑
k′=1

E
{
|Xk′ − E {Xk′}|3

}



≤ ε

(V {Yn,k})
3
2

2K∑
k′=1

V {Xk′} (a)
=

ε√
V {Yn,k}

, (102)

where (a) comes from (63b) and (98b). Meanwhile, from (63b)
and (64) we can obtain

lim
K→∞

V {Yn,k} = lim
K→∞

2ζK + σ2
z → ∞. (103)

Thus,

lim
2K→∞

1

(V {Yn,k})
3
2

2K∑
k′=1

E
{
|Xk′ − E {Xk′}|3

}
= 0. (104)

Hence, {Xk′}2Kk′=1 satisfies the Lyapunov’s condition. This
completes the proof.
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