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Abstract: We propose and experimentally validate a novel accurate digital-twin-based span-level 

insertion losses estimator. This enables detection and localization of anomalous insertion losses; 

when combined with equalization, 1.3dB SNR margin improvement is demonstrated despite 

inaccurate physical layer knowledge. © 2024 The Author(s)  

 

1. Introduction 

Accurate estimation of insertion losses is essential for identifying and localizing anomalies caused e.g. by dirty or 

aged connectors in real networks. Moreover, knowledge of insertion losses, which influence Kerr and Stimulated 

Raman Scattering (SRS) effects, is crucial for: accurate Signal to Noise Ratio (SNR) estimation of existing services 

[1,2]; accurate SNR prediction when loading new services; and network physical-layer optimization, i.e., launch 

power re-optimization [3] and optimized setting of amplifiers’ gains/tilts [4], that increase network capacity and 

robustness to unforeseen events [5].   

In this paper, we propose a novel parameter-refinement tool termed “Active Inputs Refinement” (AIR) that actively 

probes the network through amplifier-gain adjustment, resulting in accurate insertion-losses estimation at each span. 

This improves previous work on “inputs refinement” [6], where the overall amount of insertion losses was correctly 

estimated at link (Optical Multiplex Section, OMS) level, but was incorrect at the span level (i.e., the value of insertion 

loss per span was not precisely estimated, hence, localizing anomalous losses to specific spans and localizing the 

anomaly before vs. after the fiber are challenging). AIR is applicable to both single- and multi-band networks, i.e., C 

or C+L networks and beyond. The method relies on detecting channel power variation induced by the SRS variation 

resulting from (actively) changing each amplifier’s nominal gain, hence altering power entering each fiber span. We 

experimentally validate the proposed AIR technique on a transmission line based on commercial equipment with 4 

heterogeneous OMSs, utilizing solely real-network monitoring information. We demonstrate accurate insertion-loss 

estimation for each of the 15 spans, enabling anomalous loss detection and localization; then, we demonstrate how 

accurate insertion-loss estimation enables the optimization of services’ launch power and amplifiers’ gains/tilts setting. 

Note that, even though the SNR of existing services may be adversely impacted during the execution of our AIR 

technique, the AIR is meant to be run at commissioning or after a network repair, when connectors are more likely to 

get dirty due to human-interference repair. Nonetheless, we can show that the impact of AIR is both small and 

predictable, such that AIR is also suitable for live networks.  

2. Setup, notations, and assumptions 

Without loss of generality, we focus on a single-

band OMS of N spans, as in Fig. 1. Nominal gain 

Gn and tilt Tn are set and known for each 

amplifier n. Noise figure 𝐹𝑛  is obtained from a 

look-up table, while the total input (‘in’)/output 

(‘out’) power 𝑃{𝑖𝑛,𝑜𝑢𝑡},𝑛
𝑡𝑜𝑡

 are monitored by 

photodiodes for each amplifier n. Output power 

spectrum 𝑷𝒏
𝒎  is monitored only at the first and 

last amplifiers by an optical spectrum analyzer 

(OSA). Fiber characteristics, such as attenuation 

coefficient 𝛂 and fiber length L, are known from 

design. However, insertion losses before (resp., 

after) the nth fiber span, 𝛿𝑛
𝑖𝑛 , resp. 𝛿𝑛

𝑜𝑢𝑡, need to be estimated. The system is assumed to be fully ASE-noise loaded to 

stabilize the amplifiers and emulate end-of-life conditions. Inline amplifier gain spectra are not known, however, the 

calibrated spectrum 𝑮𝒏
𝒄𝒂𝒍(𝐺𝑛) for several nominal gains 𝐺𝑛 is known from factory calibration. Parameters in bold are 

vectors i.e. 𝑮𝒏
𝒄𝒂𝒍 , 𝑷𝒏

𝒎 . Parameters with “m/e” notation, i.e. 𝑷𝒏
𝒎 , 𝑷𝒏

𝒆  correspond to parameters that are 

“monitored/estimated”. Parameters with a prime notation, i.e. 𝐺𝑛
′ , 𝑷𝒏

𝒆′ , 𝑷𝒏
𝒎′

 correspond to parameters following 

adjustments of amplifier gain during AIR. Δ𝐺 is an algorithm parameter (see below). 

Fig. 1. Generic N-span single band system, with 7-step AIR method for per-span 
insertion loss estimation.  
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3. Methods description 

In this paper, we compare 3 different methods for insertion losses estimation (to be used for SNR prediction): Active 

Inputs Refinement (AIR), All monitoring Information (All_Info), and a Baseline (Baseline). 

Baseline: We consider previous work on inputs refinement, without the active part, as the baseline [6].  

All_Info: 𝛿𝑛
𝑖𝑛, 𝛿𝑛

𝑜𝑢𝑡 (implemented in our lab using VOAs to emulate and control insertion losses), input and output 

power spectra at each amplifier are known. This is an ideal scenario as, in the field, there is no OSA on each amplifier 

for power spectra monitoring and connector losses are unknown.  

AIR (outline): The proposed AIR algorithm consists of 7 iterated steps, see Fig. 1; for each amplifier n=N to 1:  

Step 1: Monitor the OMS output power spectrum 𝑷𝑵+𝟏
𝒎  ;  

Step 2: Set 𝐺𝑛
′

 =𝐺𝑛 − Δ𝐺 and 𝐺𝑛+1 = 𝐺𝑛+1 + Δ𝐺 , then monitor the OMS output power spectrum 𝑷𝑵+𝟏
𝒎′ ;  

Step 3: Set amplifiers n and n+1 back to their nominal gains;  

For each 𝛿 in a predefined list of values between 0 and 𝛿𝑛
𝑡𝑜𝑡(=𝛿𝑛

𝑖𝑛 + 𝛿𝑛
𝑜𝑢𝑡 = span loss - fiber loss), iterate steps 4-7: 

Step 4: Estimate spectrum 𝑷𝒏
𝒆  at amplifier n assuming insertion loss 𝛿𝑛

𝑖𝑛 = 𝛿 by back-propagation of 𝑷𝑵+𝟏
𝒎′ ;  

Step 5: Estimate spectrum 𝑷𝒏
𝒆′ using 𝑷𝒏

𝒆′ = 𝑷𝒏
𝒆 + 𝑮𝒏

𝒄𝒂𝒍(𝐺𝑛) − 𝑮𝒏
𝒄𝒂𝒍(𝐺′

𝑛);  
Step 6: Estimate spectrum 𝑷𝑵+𝟏

𝒆′  at end of OMS assuming 𝛿𝑛
𝑖𝑛 = 𝛿 by forward propagation of 𝑷𝒏

𝒆′;  

Step 7: Compute the error function 𝐸𝑟𝑟𝑜𝑟(𝛿)=√|𝑷𝑵+𝟏
𝒎′ − 𝑷𝑵+𝟏

𝒆′ |2.  

We then retain the refined insertion loss 𝛿𝑛
𝑖𝑛 at nth span that minimizes 𝐸𝑟𝑟𝑜𝑟(𝛿), then 𝛿𝑛

𝑜𝑢𝑡 is calculated by 𝛿𝑛
𝑡𝑜𝑡 −

𝛿𝑛
𝑖𝑛. The refined insertion losses 𝛿𝑛

𝑖𝑛 and 𝛿𝑛
𝑜𝑢𝑡 are then utilized for the insertion loss estimation of the remaining spans 

on the OMS. After refining insertion losses of all the spans on each OMS, gain spectra of amplifiers of the OMS are 

then refined by the gain refinement technique in [6]. 

4. Experimental testbed 

We experimentally validate our proposed AIR technique on a tandem network of 4 heterogeneous OMSs (OMS1-2-

3-4), encompassing a total of 15 spans, each with varying fiber lengths (60, 80, 100km) and types (SMF, PSCF, TW, 

LEAF), as depicted in Fig. 2. At each span, VOAs are set before and/or after fiber to emulate insertion losses, as 

indicated in Fig. 2 above each VOA. The values of attenuation of the VOA located before the fiber range from 0 to 

5 dB, while the VOA values after the fiber range from 3 to 11.6 dB including a 3dB coupler for power monitoring 

access (only used in All_Info). 80 point-to-point services are loaded in the network, traversing all 4 OMSs. These 

services are emulated using an ASE source with 75GHz channel spacing. The bit error rate (BER) and SNR of 7 

services uniformly spread across 6 THz C-band are monitored using a real-time 200 Gb/s QPSK commercial 

transponder. In the initial network state, the launch power spectrum is set to be flat at fiber input, with the total power 

calculated by LOGO [1], assuming a 50/50% distribution of total insertion loss as insertion loss before and after each 

span; the nominal gain of amplifiers is set to compensate for span loss, and amplifier tilt is set to compensate for SRS 

tilt at each span. In this study, the nominal gain change ΔG ranges from 2 to 3 dB for each amplifier, depending on 

the available tuning margin at each span in the network.  

5. Insertion loss estimation and insertion loss anomaly localization 

Fig. 3(a) presents the estimated insertion losses before each of the 15 spans 𝛿𝑛
𝑖𝑛  (𝛿𝑛

𝑜𝑢𝑡  is calculated based on the 

estimated 𝛿𝑛
𝑖𝑛) using both the AIR (orange circles) and the baseline (blue diamonds). To test the localization ability of 

large anomaly losses with AIR, we set 2.9 dB and 5 dB at the VOAs before the third/first span on OMS2/OMS4 

(Fig. 2, red rectangles). The corresponding estimated losses are marked with solid orange circles. The inset table shows 

the maximum absolute error (MAE) and root-mean-square error (RMSE) of loss estimation obtained with AIR and 

baseline. AIR demonstrates a substantial improvement compared to the baseline, reducing the MAE from 4.3 to 1.6 dB 

and the RMSE from 1.1 to 0.3 dB. Moreover, AIR can effectively identify and localize large 2.9 dB and 5 dB anomaly 

insertion losses at the corresponding spans and before the fiber, indicated in the red dashed circle.  

Fig. 2. Tandem network testbed with 80 point-to-point services crossing 4 heterogeneous OMSs. 



6. Impact of insertion loss estimation on QoT optimization 

Fig. 3(b) shows the SNR optimization results based on a digital twin (DT) that estimates insertion losses using three 

different methods: baseline (blue), AIR (orange), All_Info (green). The optimization process consists of both amplifier 

gain/tilt optimization, and launch power spectrum optimization. We apply the amplifier gain/tilt optimization method 

proposed in [7] based on LOGO algorithm, then the output power spectrum at first amplifier of each OMS is optimized 

to flatten generalized SNR (GSNR), which considers both the ASE noise and the Kerr nonlinearity at the end of each 

OMS. Both optimization methods require accurate knowledge of insertion losses. Axis x shows the monitored SNR 

at the initial network state, while axis y shows the design (predicted by DT) SNR and monitored SNR after 

optimization implementation. Markers “+” show the design SNRs with different methods (“Pred_X” for each method 

X). After pushing the design parameters to the network, monitored optimized SNRs are also shown in Fig. 3(b) 

(“Mon_X”). The top inset table shows the SNR margin improvement, which corresponds to the SNR improvement of 

the worst service. AIR improves network margin by a further 0.4 dB compared to baseline, achieving the same 

performance as All_Info thanks to better design with accurate insertion loss estimation per span. Notably, incorrect 

inputs from the baseline method can result in prediction errors of up to 1.1 dB, whereas AIR significantly enhances 

prediction accuracy, achieving a MAE of 0.3 dB and an RMSE of 0.1 dB to the same accurate level as All_Info. Thus, 

AIR enhances the accuracy of the digital twin and bolsters the reliability of network optimization implementations. 

7. Discussion on SNR penalty during AIR 

During the AIR process, each amplifier nominal gain is changed by up to 3 dB to induce SRS variation. This can cause 

undesirable SNR variation of existing services. Fig. 3(c) shows the SNR variation that occurs during the change of 

amplifier nominal gain required by AIR for each amplifier; no more than 0.5 dB SNR degradation is observed during 

the gain change across all 15 amplifiers (main plot). The inset plot provides a prediction of SNR variation before 

implementing AIR using the baseline [6]; the degradation can be precisely predicted with a 0.1 dB RMSE (inset plot). 

Thus, it is safe to implement AIR while ensuring the SNR margin remains acceptable in a network with live traffic.  

8. Conclusion 

In this paper, we proposed a novel method for accurate insertion loss estimation at the span level. The insertion loss 

estimation accuracy is validated experimentally in a 4-OMS tandem network, where 2.9 dB and 5 dB large anomaly 

losses are detected and localized. We also demonstrate that such accurate insertion losses knowledge enables power 

re-equalization: the SNR of the worst service is improved by 1.3 dB, a 0.4 dB further improvement compared to our 

previous work. The QoT prediction accuracy (maximum error) is also improved to 0.3 dB with the refined insertion 

losses, which is the same accuracy level as knowing all information that is difficult to be acquired in the field. Finally, 

the technique has a small and predictable impact on existing traffic.  
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Fig. 3. (a) Insertion loss estimation and insertion loss anomalies localization; (b) SNR optimization with predicted SNR and monitored SNR; (c) 

Monitored and predicted varied SNR after each single amplifier gain change during AIR process. 


