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Abstract

Multi-modal data is ubiquitous, and models to learn a joint representation of all
modalities have flourished. However, existing approaches suffer from a coherence-
quality tradeoff, where generation quality comes at the expenses of generative
coherence across modalities, and vice versa. To overcome these limitations, we
propose a novel method that uses a set of independently trained, uni-modal, deter-
ministic autoencoders. Individual latent variables are concatenated and fed to a
masked diffusion model to enable generative modeling. We also introduce a new
multi-time training method to learn the conditional score network for multi-modal
diffusion. Empirically, our methodology substantially outperforms competitors in
both generation quality and coherence.

1 Introduction

Multi-modal generative modelling is a crucial area of research in machine learning that aims to
generate data according to multiple modalities, such as images, text, audio, and more. Indeed,
real-world observations are often captured in various forms, and combining multiple modalities
describing the same information can be an invaluable asset. For instance, images and text can provide
complementary information in describing an object, audio and video can capture different aspects of
a scene. Multi-modal generative models can also help in tasks such as data augmentation [9, 3, 28],
missing modality imputation [2, 6, 46, 40], and conditional generation [14, 19].

Multi-modal models have flourished over the past years and have seen a tremendous interest from
academia and industry, especially in the content creation sector. Whereas most recent approaches
focus on specialization, by considering text as primary input to be associated mainly to images
[26, 27, 25, 38, 44, 22, 5] and videos [4, 13, 31], in this work we target an established literature
whose scope is more general, and in which all modalities are considered equally important. A large
body of work rely on extensions of the VAE [18] to the multi-modal domain: initially interested in
learning joint latent representation of multi-modal data, such works have mostly focused on generative
modeling. Multi-modal generative models aim at high-quality data generation, as well as generative
coherence across all modalities. These objectives apply to both joint generation of new data, and to
conditional generation of missing modalities, given a disjoint set of available modalities.

In short, multi-modal Variational Autoencoders (VAEs) rely on combinations of uni-modal VAEs,
and the design space consists mainly in the way the uni-modal latent variables are combined, to
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construct the joint posterior distribution. Early work such as [45] adopt a product of experts approach,
whereas others [29] consider a mixture of expert approach. Product-based models achieve high
generative quality, but suffer in terms of both joint and conditional coherence. This was found to be
due to experts mis-calibration issues [29, 37]. On the other hand, mixture-based models produce
coherent but qualitatively poor samples. A first attempt to address the so called coherence-quality
tradeoff [7] is represented by the mixture of product of experts approach [37]. However recent
comparative studies [7] show that none of the existing approaches fulfill both the generative quality
and coherence criteria. A variety of techniques aim at finding a better operating point, such as
contrastive learning techniques [30], hierarchical schemes [42], total correlation based calibration of
single modality encoders [15], or different training objectives [36]. More recently, [24] considers
explicitly separated shared and private latent spaces to overcome the aforementioned limitations. In
this work, we propose a new method for multi-modal generative modeling that, by design, does not
suffer from the aforementioned limitations, as supported by an extensive experimental campaign.

2 Our Method

Consider the random variable X = {X1, . . . , XM} ∼ pD(x
1, . . . , xM ), consisting in the set of

M of modalities sampled from the (unknown) multi-modal data distribution pD. We indicate the
marginal distribution of a single modality by Xi ∼ piD(x

i) and the collection of a generic subset of
modalities by XA ∼ pAD(x

A), with XA def
= {Xi}i∈A, where A ⊂ {1, . . . ,M} is a set of indexes.

We use deterministic uni-modal autoencoders, whereby each modality Xi is encoded through its
encoder eiψi , into the modality specific latent variable Zi and decoded into the corresponding

X̂i = diθi(Z
i). Since the mapping from input to latent is deterministic, there is no loss of information

between X and Z.1 Moreover, this choice avoids any form of interference in the back-propagated
gradients corresponding to the uni-modal reconstruction losses. Consequently gradient conflicts
issues [16], where stronger modalities pollute weaker ones, are avoided.

To enable such a simple design to become a generative model, we follow a two-stage approach
[20, 39], where samples from the lower dimensional qψ(z) are obtained through an appropriate
generative model. We consider score-based diffusion models in latent space [26, 41] to solve this task,
and call our approach Multi-modal Latent Diffusion (MLD) (see A for a schematic representation).

2.1 Multi-modal latent diffusion

In the first stage, the deterministic encoders project the input modalities Xi into the corresponding
latent spaces Zi. This transformation induces a distribution qψ(z) for the latent variable Z =
[Z1, . . . , ZM ], resulting from the concatenation of uni-modal latent variables.

Joint generation. To generate a new sample for all modalities we use a simple score-based diffusion
model in latent space [32, 35, 41, 20, 39]. This requires reversing a stochastic noising process,
starting from a simple, Gaussian distribution. Formally, the noising process is defined by a Stochastic
Differential Equation (SDE) of the form:

dRt = α(t)Rtdt+ g(t)dWt, R0 ∼ q(r, 0), (1)

where α(t)Rt and g(t) are the drift and diffusion terms, respectively, and Wt is a Wiener process. The
time-varying probability density q(r, t) of the stochastic process at time t ∈ [0, T ], where T is finite,
satisfies the Fokker-Planck equation [23], with initial conditions q(r, 0). We assume uniqueness and
existence of a stationary distribution ρ(r) for the process Eq. (1).2 The forward diffusion dynamics
depend on the initial conditions R0 ∼ q(r, 0). We consider R0 = Z to be the initial condition for the
diffusion process, which is equivalent to q(r, 0) = qψ(r). Under loose conditions [1], a time-reversed
stochastic process exists, with a new SDE of the form:

dRt =
(
−α(T − t)Rt + g2(T − t)∇ log(q(Rt, T − t))

)
dt+ g(T − t)dWt, R0 ∼ q(r, T ), (2)

indicating that, in principle, simulation of Eq. (2) allows to generate samples from the desired
distribution q(r, 0). In practice, we use a parametric score network sχ(r, t) to approximate the true

1Since the measures are not absolutely continuous w.r.t the Lebesgue measure, mutual information is +∞.
2This is not necessary for the validity of the method [34]
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score function, and we approximate q(r, T ) with the stationary distribution ρ(r). The joint generation
of all modalities is achieved through the simulation of the reverse-time SDE in Eq. (2) to obtain
Z ∼ qψ(z) which can be decoded into samples using the deterministic decoders.

Conditional generation. Given a generic partition of all modalities into non overlapping sets A1∪A2,
where A2 = ({1, . . . ,M} \A1), conditional generation requires samples from the conditional
distribution qψ(z

A1 | zA2), which are based on masked forward and backward diffusion processes.
Given conditioning latent modalities zA2 , we consider a modified forward diffusion process with
initial conditions R0 = C(RA1

0 , RA2
0 ), with RA1

0 ∼ qψ(r
A1 | zA2), RA2

0 = zA2 . The composition
operation C(·) concatenates generated (RA1) and conditioning latents (zA2). More formally, we
define the masked forward diffusion SDE:

dRt = m(A1)⊙ [α(t)Rtdt+ g(t)dWt] , q(r, 0) = qψ(r
A1 | zA2)δ(rA2 − zA2). (3)

The mask m(A1) contains M vectors ui, one per modality, and with the corresponding cardinality.
If modality j ∈ A1, then uj = 1, otherwise uj = 0. Then, the effect of masking is to “freeze”
throughout the diffusion process the part of the random variable Rt corresponding to the conditioning
latent modalities zA2 . To sample from qψ(z

A1 | zA2), we derive the reverse-time dynamics of Eq. (3)
as follows:

dRt = m(A1)⊙
[(
−α(T − t)Rt + g2(T − t)∇ log

(
q(Rt, T − t | zA2)

))
dt+ g(T − t)dWt

]
,
(4)

with initial conditions R0 = C(RA1
0 , zA2) and RA1

0 ∼ q(rA1 , T | zA2). Then, we approximate
q(rA1 , T | zA2) by its corresponding steady state distribution ρ(rA1), and the true (conditional) score
function ∇ log

(
q(r, t | zA2)

)
by a conditional score network sχ(r

A1 , t | zA2). A naı̈ve approach
would be to rely on the unconditional score network sχ(r, t), by casting it as an in-painting objective.
In the context of multi-modal data, the assumptions underlying in-painting are difficult to satisfy,
because every modality exhibits different dynamics when perturbed by noise. Then, we propose a
mechanism to learn the conditional score for any subset of conditioning and generated modalities.

2.2 Multi-time Diffusion

Instead of training a separate score network for each possible combination of conditional modalities,
which is computationally infeasible, we use a single architecture that accepts all modalities as inputs
and a multi-time vector τ = [t1, . . . , tM ]. The multi-time vector serves two purposes: it is both a
conditioning signal and the time at which we observe the diffusion process.

Training: learning the conditional score network relies on randomization. As discussed in § 2.1,
we consider an arbitrary partitioning of all modalities in two disjoint sets, A1 and A2. The set A2

contains randomly selected conditioning modalities, while the remaining modalities belong to set A1.
Then, during training, the parametric score network estimates ∇ log

(
q(r, t | zA2)

)
, whereby the set

A2 is randomly chosen at every step. This is achieved by the masked diffusion process from Eq. (3),
which only diffuses modalities in A1. More formally, the score network input is Rt = C(RA1

t , ZA2),
along with a multi-time vector τ(A1, t) = t [1(1 ∈ A1), . . . ,1(M ∈ A1)].

Conditional generation: any valid numerical integration scheme for Eq. (4) can be used for
conditional sampling (see A for Euler-Maruyama integrator pseudo-code). First, conditioning
modalities in the set A2 are encoded into the corresponding latent variables zA2 = {ej(xj)}j∈A2

.
Then, numerical integration is performed with step-size ∆t = T/N , starting from the initial conditions
R0 = C(RA1

0 , zA2), with RA1
0 ∼ ρ(rA1). At each integration step, the score network sχ is fed the

current state of the process and the multi-time vector τ(A1, ·). Before updating the state, the masking
is applied. Finally, the generated modalities are obtained thanks to the decoders.

3 Experiments

We compare our method MLD to MVAE [45], MMVAE [29], MOPOE [37], NEXUS [42] and
MVTCAE [15], re-implementing competitors in the same code base as our method, and selecting
their best hyper-parameters (as indicated by the authors). For fair comparison, we use the same
encoder/decoder architecture for all the models (see C for more details ). For MLD, the score network
is implemented using a simple stacked MLP with skip connections (see A for more details).
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Results. Overall, MLD largely outperforms alternatives from the literature, both in terms of coherence
and generative quality. VAE-based models suffer from a coherence-quality trad-off and modality
collapse for highly heterogeneous data-sets.

The first data-set we consider is MNIST-SVHN ([29]), where the two modalities differ in complexity.
High variability, noise and ambiguity makes attaining good coherence for the SVHN modality a
challenging task. Overall, MLD outperforms all VAE-based alternatives in terms of coherency,
especially in terms of joint generation and conditional generation of MNIST given SVHN, see Table 1.
Mixture models (MMVAE, MOPOE) suffer from modality collapse (poor SVHN generation), whereas
product of experts (MVAE, MVTCAE) generate better quality samples at the expense of SVHN to
MNIST conditional coherence. Joint generation is poor for all VAE models. MLD achieves the best
performance also in terms of generation quality, as confirmed also by qualitative results (Figure 1)
showing for example how MLD conditionally generates multiple SVHN digits within one sample,
given the input MNIST image, whereas other methods fail to do so.

Table 1: Generation coherence and quality for MNIST-SVHN ( M :MNIST, S: SVHN). Quality is measured
in terms of FMD for MNIST and FID for SVHN. Coherence is measured as in [29, 37, 24], using pre-trained
classifiers. Full details on the metrics are included in Appendix B. All results are averaged over 5 seeds.

Models Coherence (%↑) Quality (↓)

Joint M → S S → M Joint(M) Joint(S) M → S S → M

MVAE 38.19 48.21 28.57 13.34 68.9 68.0 13.66
MMVAE 37.82 11.72 67.55 25.89 146.82 393.33 53.37
MOPOE 39.93 12.27 68.82 20.11 129.2 373.73 43.34
NEXUS 40.0 16.68 70.67 13.84 98.13 281.28 53.41

MVTCAE 48.78 81.97 49.78 12.98 52.92 69.48 13.55

MLD 85.22 83.79 79.13 3.93 56.36 57.2 3.67

MVAE MMVAE MOPOE NEXUS MVTCAE MLD (ours)

Figure 1: Qualitative results for MNIST-SVHN. For each model we report: MNIST to SVHN conditional
generation in the left, SVHN to MNIST conditional generation in the right.

Finally, we explore the Caltech Birds CUB [29] data-set, following the same experimentation
protocol in [7] by using real bird images (instead of ResNet-features as in [29]). Figure 2 presents
qualitative results for caption to image conditional generation. MLD is the only model capable of
generating bird images with convincing coherence. Clearly, none of the VAE-based methods is
able to achieve sufficient caption to image conditional generation quality using the same simple
autoencoder architecture. Note that an image autoencoder with larger capacity improves considerably
MLD generative performance, suggesting that careful engineering applied to modality specific
autoencoders is a promising avenue for future work.

MVAE MOPOE MVTCAE MLD (ours) MLD* (ours)

Figure 2: Qualitative results on CUB data-set. Caption used as condition to generate images. MLD* denotes
the version of our method using a more powerful image autoencoder for image modality.
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4 Conclusion and Limitations

We have addressed the challenge of multi-modal generative modeling by proposing a novel method,
Multi-modal Latent Diffusion (MLD). Our approach overcomes the coherence-quality tradeoff that
is inherent in existing multi-modal VAE-based model. MLD, uses a set of independently trained,
uni-modal, deterministic autoencoders. Generative properties of our model stem from a multi-time
masked diffusion process that operates on latent variables and allows joint and conditonal generation.
An extensive experimental campaign provided compelling evidence on the effectiveness of MLD for
multi-modal generative modeling.
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A Appendix

Multi-modal Latent Diffusion — Supplementary material

A Diffusion in the multimodal latent space

In this section, we provide additional technical details of Multi-modal Latent Diffusion (MLD).

A.1 Modalities Auto-Encoders

Each deterministic autoencoders used in the first stage of MLD uses a vector latent space with no size
constraints. Instead, VAE-based models, generally require the latent space of each individual VAE to
be exactly of the same size, to allow the definition of a joint latent space.

In our approach, before concatenation, the modality-specific latent spaces are normalized by element-
wise mean and standard deviation. In practice, we use the statistics retrieved from the first training
batch, which we found sufficient to gain sufficient statistical confidence. This operation allows the
harmonization of different modality-specific latent spaces and, therefore, facilitate the learning of a
joint score network.

X1

XM

X̂1

X̂M

eψ1

Z

eψM

dθ1

dθMZM

Z1

Forward SDE

Eq. (3)

R0
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0

R1
0

RT ∼ ρ(r)
RM

T

R1
T

Reverse SDE

Eq. (4)

R0 ∼ ρ(r)
RM

0

R1
0

RT

RM
T

R1
T

Figure 3: Multi-modal Latent Diffusion. Two-stage model involving: Top: deterministic, modality-specific
encoder/decoders, Bottom: score-based diffusion model on the concatenated latent spaces.

A.2 Multi-modal latent diffusion

In § 2.1, we presented our multi-modal latent diffusion process allowing multi-modal joint and
conditional generation. The role of the SDE is to gradually add noise to the data, perturbing its
structure until attaining a noise distribution. In this work, we consider Variance preserving SDE
(VPSDE) [35]. In this framework we have : ρ(r) ∼ N (0; I), α(t) = − 1

2β(t) and g(t) =
√
β(t),

where β(t) = βmin + t(βmax − βmin). Following [12, 35], we set βmin = 0.1 and βmax = 20.
With this configuration and by substitution of Eq. (1), we obtain the following forward SDE:

dRt = −
1

2
β(t)Rtdt+

√
β(t)dWt, t ∈ [0, T ]. (5)

The corresponding perturbation kernel is given by :

q(r|z, t) = N (r; e−
1
4 t

2(βmax−βmin)− 1
2 tβminz, (1− e−

1
2 t

2(βmax−βmin)−tβmin)I). (6)
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The marginal score∇ log q(Rt, t) is approximated by a score network sχ(Rt, t) whose parameters χ
can be optimized by minimizing the following evidence lower bound (ELBO):

KL[qψ(r) | | q(r, 0)] ≤
1

2

T∫
0

g2(t)E[∥sχ(Rt, t)−∇ log q(Rt, t)∥2]dt+KL[q(r, T )||ρ(r)], (7)

where the first term on the r.h.s is referred to as score-matching objective, and is the loss over which
the score network is optimized, and the second is a vanishing term for T →∞. We found that using
the same re-scaling as in [35] is more stable.

The reverse process is described by a different SDE (Eq. (2)). When using a variance-preserving SDE,
Eq. (2) specializes in:

dRt =

[
1

2
β(T − t)Rt + β(T − t)∇ log q(Rt, T − t)

]
dt+

√
β(T − t)dWt, (8)

With R0 ∼ ρ(r) as initial condition and time t flows from t = 0 to t = T .

Once the parametric score network is optimized, trough the simulation of Eq. (8), sampling RT ∼
qψ(r) is possible allowing joint generation. A numerical SDE solver can be used to sample RT
which can be fed to the modality specific decoders to jointly sample a set of X̂ = {diθ(RiT )}Mi=0.

A.3 Multi-time Diffusion

To learn the score network capable of both conditional and joint generation, we proposed in § 2 a
multi-time masked diffusion process. Algorithm 1 presents a pseudo-code for the multi time masked
training. The masked diffusion process is applied following a randomization with probably d.

At each step, a set of conditioning modalities A2 is sampled from a predefined distribution ν, where
ν(∅) def

= Pr(A2 = ∅) = d, and ν(U)
def
= Pr(A2 = U) = (1−d)/(2M−1) with U ∈ P({1, . . . ,M}) \ ∅,

where P({1, . . . ,M}) is the powerset of all modalities. The remaining set of modalities A1 is
selected to be the diffused modalities. The time t is sampled uniformly from [0, T ] and the portion of
the latent space corresponding to the subset A1 is diffused accordingly. Using the masking as shown
in Algorithm 1, the portion of the latent space corresponding to the subset A2 is not diffused and
forced to be equal to RA2

0 = zA2 . The multi-time vector τ is constructed. Lastly, the score network
is optimized by minimizing a masked loss corresponding to the diffused part of the latent space. With
probability (1− d), A2 = ∅ and all the modalities are diffused at the same time. In order to calibrate
the loss, given that the randomization of A1 and A2 can result in diffusing different sizes of the latent
space, we re-weight the loss according to the cardinality of the diffused and freezed portions of the
latent space:

Ω(A1, A2) = 1 +
dim(A2)

dim(A1)
(9)

Where dim(.) is the sum of each latent space cardinality of a given subset of modalities with
dim(∅) = 0 .

The optimized score network can approximate both the conditional and unconditional true score:

sχ(Rt, τ(A1, t)) ∼ ∇ log q(Rt, t | zA2)). (10)

The joint generation is a special case of the latter with A2 = ∅:

sχ(Rt, τ(A1, t)) ∼ ∇ log q(Rt, t) , A1 = {1, ...,M} (11)

Algorithm 2 describes the reverse conditional generation pseudo-code. One can generate a set of
modalities A1 conditioned on the available set of modalities A2. First, the available modalities are
encoded into their respective latent space zA2 , the initial missing part is sampled from the stationary
distribution RA1

0 ∼ ρ(rA1), using an SDE solver (e.g. Euler-Maruyama), the reverse diffusion SDE
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Algorithm 1: MLD Masked Multi-time diffusion training step

Data: X = {xi}Mi=1
Param: d
Z ← {eϕi

(xi)}Mi=0 // Encode the modalities X into their latent space

A2 ∼ ν // ν depends on the parameter d
A1 ← {1, . . . ,M} \A2

t ∼ U [0, T ]
R ∼ q(r|Z, t) // Diffuse the available portion of the latent space(Eq. (6))

R← m(A1)⊙R+ (1−m(A1))⊙ Z // Masked diffusion

τ(A1, t)← [1(1 ∈ A1)t, . . . ,1(M ∈ A1)t] // Construct the multi time vector

Return ∇χ
{
Ω(A1, A2)

∥∥m(A1)⊙
[
sχ(R, τ(A1, t))−∇ log q(R, t|zA2)

]∥∥2
2

}

(in Eq. (8)) is discretized using a finite time steps ∆t = T/N, starting from t = 0 and iterating
until t ≈ T . At each iteration , the score network sχ is fed the current state of the process and
the multi-time vector τ(A1, ·). Lastly, the reverse diffusion update is applied only on the missing
modality latent space . This process is repeated until obtaining RA1

T = ẐA1 which can be decoded to
recover x̂A1 .

Algorithm 2: MLD conditional generation.

Data: xA2 ← {xi}i∈A2

zA2 ← {eϕi
(xi)}i∈A2

// Encode the available modalities X into their latent

space

A1 ← {1, . . . ,M} \A2 // The set of modalities to be generated

R0 ← C(RA1
0 , zA2), RA1

0 ∼ ρ(rA1) // Compose the initial latent space

R← R0

∆t← T/N
for n = 0 to N − 1 do

t′ ← T − n∆t
τ(A1, t

′)← [1(1 ∈ A1)t
′, . . . ,1(M ∈ A1)t

′] // Construct the multi-time vector

ϵ ∼ N (0; I) if n < N else ϵ = 0

∆R← ∆t
[
1
2β(t

′)R+ β(t′)sχ(R, τ(A1, t
′))

]
+

√
β(t′)∆tϵ

R← R+∆R // The Euler-Maruyama update step

R← m(A1)⊙R+ (1−m(A1))⊙R0 // Update the portion corresponding to

the unavailable modalities

end
ẑA1 = RA1

Return X̂A1 = {diθ(ẑi)}i∈A1

A.4 Technical details

Sampling schedule: We use the sampling schedule proposed in [21], which has shown to improve
the coherence of the conditional and joint generation. We use the best parameters suggested by
the authors: N = 250 time-steps, applied r = 10 re-sampling times with jump size j = 10. For
readability in Algorithm 2, we present pseudo code with a linear sampling schedule which can be
easily adapted to any other schedule.

Training the score network: Inspired by the architecture from [8], we use simple Residual
multilayer perceptron (MLP) blocks with skip connections as our score network (see Figure 4). We fix
the width and number of blocks proportionally to the number of the modalities and the latent space
size. As in [33], we use Exponential moving average (EMA) of model parameters with a momentum
parameter m = 0.999.
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Figure 4: Score network sχ architecture used in our MLD implementation. Residual MLP block architecture is
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B Datasets and evaluation protocol

B.1 Datasets description

MNIST-SVHN [29] is constructed using pairs of MNIST and SVHN, sharing the same digit class
(See Figure 6a). Each instance of a digit class (in either dataset) is randomly paired with 20 instances
of the same digit class from the other data-set. SVHN modality samples are obtained from house
numbers in Google Street View images, characterized by a variety of colors, shapes and angles. A
high number of SVHN samples are noisy and can contain different digits within the same sample due
to the imperfect cropping of the original full house number image. One challenge of this data-set for
multi-modal generative models is to learn to extract digit number and reconstruct a coherent MNIST
modality.

CUB [29] is comprised of bird images and their associated text captions. The work in [29] used
a simplified version based on pre-computed ResNet-features. We follow [7] and conduct all our
experiments on the real image data instead. Each image from the 11,788 photos of birds from
Caltech-Birds [43] are resized to 3× 64× 64 image size and coupled with 10 textual descriptions of
the respective bird (See Figure 6b).
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Figure 6: Illustrative example of the Datasets used for the evaluation

B.2 Evaluation metrics

Multimodal generative models are evaluated in terms of generative coherence and quality.

B.2.1 Generation Coherence

We measure coherence by verifying that generated data (both for joint and conditional generations)
share the same information across modalities. Following [29, 37, 15, 42, 7], we consider the class
label of the modalities as the shared information and use pre-trained classifiers to extract the label
information form the generated samples and compare it across modalities.

For MNIST-SVHN, the shared semantic information is the digit class number. Single modality
classifiers are trained to classify the digit number of a given modality sample. To compute the
conditional generation of modality m with a subset of modalities A, we feed the modality specific
pre-trained classifier Cm with the conditional generated sample X̂m. The predicted label class is
compared to the ground truth label yXA which is the label of modalities of the subset XA. For N
samples, the matching rate average establishes the coherence. For all the experiments, N is equal to
the length of the test-set.

Coherence(X̂m|XA) =
1

N

N∑
1

1{Cm(X̂m)=yXA} (12)

The joint generation coherence is measured by feeding the generated samples of each modality to
their specific trained classifier. The rate with which all classifiers output the same predicted digit
label for N generations is considered as the joint generation coherence.

Due to the unavailability of labels in the CUB data-set, we use CLIP-Score (CLIP-S) [10] a state of
the art metric for image captioning evaluation.

B.2.2 Generation Quality

For each modality, we consider the following metrics:

• RGB Images: Fréchet Inception Distance (FID) [11] is the state-of-the-art standard metric
to evaluate image generation quality of generative models.

• Other modalities For other modality types, we derive Fréchet Modality Distance (FMD)
(Fréchet Modality Distance), a similar metric to FID. We compute the Fréchet distance
between the statistics retrieved from the activations of the modality specific pre-trained
classifiers used for coherence evaluation. FMD is used to evaluate the generative quality of
MNIST modality in MNIST-SVHN

For conditional generation, we compute the quality metric (FID,Fréchet Audio Distance (FAD) or
FMD) using the conditionally generated modality and the real data. For joint generation, we use the
randomly generated modality and randomly selected same number of samples from the real data.

For CUB, we use 10000 samples to evaluate the generation quality in terms of FID. In the remaining
experiments, we use 5000 samples to evaluate the performance in terms of FID, FAD or FMD.

13



C Implementation details

We report in this section the implementation details for each benchmark. We used the same unified
code-base for all the baselines, using the PyTorch framework. The VAE implementation is adapted
from the official code whenever it’s available (Product of Experts (MVAE), Mixture of Expert
(MMVAE) and Mixture of Product of Experts (MOPOE) as in 3, Multi-view Total Correlation
Autoencoder (MVTCAE) 4 and Hierarchical Genertive Model (NEXUS)5 ). For fairness, MLD and
all the VAE-based models use the same autoencoder architecture. We use the best hyper-parameters
suggested by the authors. Across all the data-sets, we use the Adam optimizer [17] for training.

C.1 MLD

MLD uses the same autoencoders architecture used for VAE-based models, except that these are
deterministic autoencoders. The autoencoders are trained using the same reconstruction loss term
as for the VAE-based models. Table 2 and Table 3 summarize the hyper-parameters used during
the two phases of MLD training. Note that for the image modality in the CUB dataset, to overcome
over-fitting in training the deterministic autoencoder, data augmentation was necessary (we used
TrivialAugmentWide from the Torchvision library).

Table 2: MLD: The deterministic autoencoders hyper-parameters

Dataset Modality Latent space Batch size Lr Epochs Weight decay

MNIST-SVHN MNIST 16 128 1e-3 150
SVHN 64

CUB Caption 32 128 1e-3 500
Image 64 1e-4 300 1e-6

Table 3: MLD: The score network hyper-parameters

Dataset d Blocks Width Time embed Batch size Lr Epochs

MNIST-SVHN 0.5 2 512 256 128 1e-4 150
CUB 0.7 2 1024 512 64 3000

C.2 VAE-based models

For MNIST-SVHN, we follow [37, 29] and use the same autoencoder architecture and pre-trained
classifier.The latent space size is set to 20, β = 5.0. For MVTCAE α = 5

6 . For both modalities, the
likelihood is estimated using Laplace distribution. For NEXUS, we use the same modalities latent
space sizes as in MLD, the joint NEXUS latent space is set to 20, βi = 1.0 and βc = 5.0. We train all
the VAE-models for 150 epochs with 256 batch size and learning rate of 1e− 3.

For CUB, we use the same autoencoders architecture and implementation settings as in [7]. Laplace
and one-hot categorical distributions are used to estimate likelihoods of the image and caption
modalities respectively. The latent space size is set to 64, β = 9.0 for MVAE, MVTCAE and MOPOE
and β = 1 for MMVAE. We set α = 5

6 for MVTCAE. For NEXUS, we use the same modalities latent
space sizes as in MLD, the joint NEXUS latent space is set to 64, βi = 1.0 and βc = 1. We train all
the models for 150 epochs with 64 batch size, with learning rate of 5e− 4 for MVAE, MVTCAE and
MOPOE and 1e− 3 for the remaining models.

Finally, note that in the official implementation of [37] and [15], for the MNIST-SVHN data-sets, the
classifiers were used for evaluation using dropout. In our implementation, we make sure to deactivate
dropout during evaluation step.

3https://github.com/thomassutter/MoPoE
4https://github.com/gr8joo/MVTCAE
5https://github.com/miguelsvasco/nexus_pytorch
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C.3 MLD with powerfull autoencoder

Here we provide more detail about the CUB experiment using more powerful autoencoder denoted
MLD* in Figure 2. We use an architecture similar to [26] adapted to (64X64) resolution images. We
modified the autoencoder architecture to be deterministic and train the model with a simple Mean
square error loss. We kept the same configuration of the CUB experiment described in the previous
experiment on the same dataset including the text autoencoder, score network and hyper-parameters.

C.4 Computation Resources

In our experiments, we used 4 A100 GPUs, for a total of roughly 4 months of experiments.
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D Additional results

In this section, we report detailed results for all of our experiments, including standard deviation and
additional qualitative samples, for all the data-sets and all the methods we compared in our work.

D.1 MNIST-SVHN

Table 4: Generative Coherence for MNIST-SVHN. We report the detailed version of Table 1 with standard
deviation for 5 independent runs with different seeds.

Models Coherence (%↑) Quality (↓)
Joint M→ S S→M Joint(M) Joint(S) M→ S S→M

MVAE 38.19±2.27 48.21±2.56 28.57±1.46 13.34±0.93 68.0±0.99 68.9±1.84 13.66±0.95

MMVAE 37.82±1.19 11.72±0.33 67.55±9.22 25.89±0.46 146.82±4.76 393.33±4.86 53.37±1.87

MOPOE 39.93±1.54 12.27±0.68 68.82±0.39 20.11±0.96 129.2±6.33 373.73±26.42 43.34±1.72

NEXUS 40.0±2.74 16.68±5.93 70.67±0.77 13.84±1.41 98.13±5.9 281.28±16.07 53.41±1.54

MVTCAE 48.78±1 81.97±0.32 49.78±0.88 12.98±0.68 52.92±1.39 69.48±1.64 13.55±0.8

MLD 85.22±0.5 83.79±0.62 79.13±0.38 3.93±0.12 56.36±1.63 57.2±1.47 3.67±0.14

MVAE MMVAE

MOPOE NEXUS

MVTCAE MLD (ours)

Figure 7: Additional qualitative results for MNIST-SVHN. For each model we report: MNIST to SVHN
conditional generation in the left, SVHN to MNIST conditional generation in the right.
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MVTCAE MLD (ours)

Figure 8: Qualitative results for MNIST-SVHN joint generation.

D.2 CUB

Models Coherence ( ↑ ) Quality ( ↓ )

Joint Image → Caption Caption → Image Joint → Image Caption → Image

MVAE 0.66 0.70 0.64 158.91 158.88
MMVAE 0.66 0.69 0.62 277.8 212.57
MOPOE 0.64 0.68 0.55 279.78 179.04
NEXUS 0.65 0.69 0.59 147.96 262.9

MVTCAE 0.65 0.70 0.65 155.75 168.17

MLD 0.69 0.69 0.69 63.47 62.62

MLD* 0.70 0.69 0.69 22.19 22.50

Table 5: Generation Coherence (CLIP-S : Higher is better ) and Quality (FID ↓ Lower is better ) for CUB
dataset. MLD* denotes the version of our method using a more powerful image autoencoder.
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MVAE MMVAE

MOPOE NEXUS

MVTCAE MLD (ours)

Figure 9: Qualitative results for joint generation on CUB.

(a) Conditional generation. (b) Joint generation.

Figure 10: Qualitative results of MLD* on CUB data-set with powerful image autoencoder.
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