

m & Société numérique

GRADUATE SCHOOL AND RESEARCH CENTER IN DIGITAL SCIENCE

3GPP RAN#102 Edinburgh, UK December 11th – 15th, 2023 RP-233676

EURECOM

Agenda Item: 9.1.1.4

The Rel-18 report on Ambient IoT TR 38.848 (V18.0.0) recommends the following to RAN:

- RAN is recommended to down-select further starting from
 - Deployment scenario 1 with Topology 1
 - Deployment scenario 2 with Topology 1
 - Deployment scenario 2 with Topology 2
 - Deployment scenario 4 with Topology 1
 - Deployment scenario 4 with Topology 3
- FR1 licensed spectrum is recommended
 - Note: selection or prioritization between FDD and FDD/TDD is to be decided
- RAN is recommended to down-select to one or more of:
 - Spectrum in-band to NR, in guard-band to LTE/NR, and in standalone band(s)

Deployment Scenarios and Topology

- "Simple" topologies 1 and 2 require the BS or the intermediate node to simultaneously generate a carrier wave (CW) for backscattering and to receive the backscattered signal (Devices A&B)
- This will require some HW modifications, e.g. isolated TX and RX antennas to recover the faint back-scattered signal from the strong CW
- Technologies to achieve that exist (e.g. in RFID Readers) and are easier to implement than topologies requiring complex backhaul procedures (Topology 3 & 4)

Proposal: Focus on Topologies 1 & 2 and associated deployment scenarios

- Devices A and B require back-scattering transmission for UL communication
- Back-scattering requires a time-continuous carrier wave
- Thus, TDD is not able to support back-scattering without the device knowing the exact UL/DL pattern
- In addition, device A needs to extract power from the DL transmission to operate its circuitry and decode the DL data
- Without continuous DL transmission, device A cannot operate
- Low carrier frequencies can achieve better coverage (especially important for devices A & B)
- Unlicensed operation requires additional procedures (LBT) and can be considered in the future

Proposal: Focus on sub-GHz spectrum and licensed FDD (in-band, guard-band or standalone bands)

Three Very Different Device Types...

Property	Device A (passive)	Device B (semi-passive)	Device C (active)
Complexity	Ultra-low	Low	Low/Medium
Energy storage	None	E1	E2 (E2>E1)
Reception	 Low-complexity Energy from incoming signal required for powering circuitry 	 Increased receiver sensitivity Independent power from ambient sources 	 Full low-complexity receiver Independent power from ambient sources
Independent Tx	No (back-scattering)	No (back-scattering)	Yes (but limited TX power)
Power consumption	<[1-10]µW	Hundreds of μW	<[1-10] <i>mW</i>
Link Budget and Range (see next slide)	DL-limited ~5-10m	Balanced link possible ~100m	UL-limited ~depends on tx power

- Different characteristics require **specific physical layer design** for each device type
- Study needs to evaluate if and how the different devices can co-exist

Example Link Budget

Device A (Passive)

- ~10-30 µW IC power consumption to read tag
- ~30% rectifier efficiency \rightarrow 100 μ W = -10dB at tag
- -63dBm at reader
- → Forward-link (DL) limited

Free Space Pathloss @ 700MHz, PL (dB) = $29.35 + 20\log(d)$ Near Field @ 700MHz, until 2*lambda ~ $0.86m \rightarrow 28dB$

Device B (Semi-Passive)

- · Rx power only large enough to decode data
- Rx sensitivity ~ -30 to -40 dBm
- → Range of ~100m, high quality reader required
- Adding LNA at tag requires even more RX sensitivity at reader
- → Balanced link possible but usually UL-limited

Device C (Active)

- Rx sensitivity of (cheap) radio ~90dBm
- · Able to read tag from ~85km ! LOS conditions
- Limited by TX power of tag, e.g. 10dBm (10mW)
- → Unbalanced link (read the tag but not hear it)

Directional antennas can improve link budget

Proposals

- Study UL/DL PHY design for all three Ambient IoT device types A,B,C
 - DL (A): Received signal needs to power receiver circuitry
 - UL (A/B/(C)): Back-scattering transmission design
 - UL (C): UL waveform enabling power-efficient transmitter design
 - DL (B/C): For in-band operation, WUS design can be starting point
 → Different device types require different waveforms/coding in UL and DL
 - If prioritization among device types required \rightarrow focus on A & B

Study PHY procedures

- Multiple access schemes (TX/RX of multiple devices of different type)
- Co-existence of all three device types (unified design to support all three device types)
- Potential measurements performed by devices
- Include energy harvesting in the evaluation methodology (communication uncertainty, does device have enough energy to receive/transmit)
- Given amount of novelty in the air interface \rightarrow SI only in Rel-19

