Coding efficiency of multi-ring and single-ring
differential chain coding for telewriting application
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Abstract: The recent availability of small personal digital assistants (PDAs) with a touchscreen
and communication capabilities has been an influential factor in the renewed interest in
telewriting, a technique for the exchange of handwritten information through telecommunications
means. In this context, differential chain coding algorithms for compression of the handwritten ink
are revisited. In particular, it is shown that the coding efficiency of multi-ring differential chain
coding (MRDCC) is not always better when compared to single ring differential chain coding
(DCCQ), as previously suggested. These algorithms were tested on over 300 handwritten messages
using a relative compactness criterion and a per-length distortion measure. The probabilities of
relative vectors in MRDCC and DCC are related, an expression for relative compactness in the
MRDCC case is introduced, and the application of Freeman’s criteria for the selection of the
appropriate code for a family of curves is illustrated.

1 Introduction

The recent availability of small keyboardless personal
digital assistants (PDAs) and Internet appliances (IAs)
with a touchscreen and communication capabilities has
been an influential factor in the renewed interest in tele-
writing [1], a method originally proposed for real-time
encoding, transmission, and reproduction of handwritten
data generated by dynamically tracing the movements of an
electronic pen. The pen trajectory, or electronic ‘ink’, is
usually given as a time-ordered sequence of x, y coordi-
nates. Two-way transmission of electronic ink, possibly
wireless, offers PDA/IA users a compelling new way to
communicate. Users can draw or write with a stylus on the
device’s screen to compose a note in their own hand-
writing. Such an ink note can then be addressed and
delivered to other PDA/IA users, Internet email users, or
fax machines. The recipient views the message as the
sender composed it, including text in any mix of languages
and drawings. With this application in mind, we revisit
differential chain coding algorithms for compression of the
electronic ink.

Chain coding is a well known quantisation technique for
line drawings, where the curve trajectory is represented by
recording only transitions between successive points in a
regular lattice, not absolute coordinates [2]. The quantised
ink is thus represented by a sequence {d;} of vector
displacements. Differential chain coding (DCC) [3], or
chain difference coding [4], is an encoding technique
based on Huffman encoding of the sequence of differences
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{0;=d; — d;_;}. That is, DCC exploits the fact that in a
smooth curve, {d;} does not change a great deal from one
sample to the next. This means that the dynamic range and
the variance of the sequence of differences {6;} are
significantly smaller than those of the {d;} sequence.

1t is also well known that with standard chain coding, the
shape and the dimension of the quantisation lattice, or
quantisation ring, define to a large extent the accuracy and
the efficiency of the representation [5]. In handwritten text
and sketches it is common to find regions of largely
varying speed of writing and scale, and thus differences
in radius of curvature. Therefore, it is expected that the
efficiency of the representation can be increased by adapt-
ing the dimension of the quantisation ring to the pen-speed
and/or radius of curvature. This idea led to the develop-
ment of the generalised chain codes (GCC), where a set of
concentric quantisation rings is used. The minimum ring
size can be selected to conform to the minimum expected
radius of curvature to be preserved by the representation,
and the selection of the other rings depends on the
distribution of the radii of curvature [6].

GCC quantisation can also be combined with any
differential encoding technique to achieve high compres-
sion efficiency. One such combination is termed multi-ring
differential chain coding (MRDCC) {7]. Under MRDCC,
the quantised ink is represented with a sequence of
‘relative’ and ‘absolute’ vectors. A relative vector corre-
sponds to a two-bit encoding of a small difference 9;, e.g.
|9;1 < 1. An absolute vector is a fixed-word encoding of a
vector displacement d; in all other cases. MRDCC thus
avoids variable-wordlength encoding, the motivation being
algorithmic simplicity and resilience to transmission
errors. These design characteristics make MRDCC attrac-
tive for our intended application.

Johannessen et al. [8] analysed the performance of
MRDCC using a theoretical model, which allowed them
to conclude that the use of multiple rings always resulted in
the highest coding efficiency. We evaluated this result on a
database of over 300 ink images corresponding to different
message scenarios. We found that a single ring code can
sometimes outperform a multiple ring code. We identified

241



an invalid assumption in their model about the relationship
between relative vector probabilities in MRDCC and DCC.

Other extensions of DCC are reported in the literature.
Two such extensions are termed enhanced differential
chain coding (EDCC) [9], and conditional differential
chain coding (CDCC) [10]. EDCC suggests increasing
the accuracy of a DCC code, at the expense of some
efficiency, by increasing the number of discretisation
points in the ring. CDCC suggests increasing the efficiency
of a DCC code, at the expense of added complexity, by
modelling second-order directional changes.

2 Overview of GCC quantisation

The generalised chain code, introduced by Freeman and
Saghri [4, 6], is a multi-ring quantisation procedure
intended to reproduce curving lines with higher smooth-
ness and precision than with single ring codes, at the
expense of some additional complexity.

A particular GCC quantiser is defined by specifying the
number of rings, the nodes along each ring, and the link
gate sets (LGS). More precisely:

Rings. Given positive integers m, Ny, N,..., Ny, with
Ny <N, <---<N,, the (Ny,...,N,)-chain code uses m
concentric square rings. N; is the ‘order’ of the ith ring.
Nodes. In a standard ring of order N, there are 8NV nodes
uniformly placed around the boundary of a square lattice
with sides of length 8N7, where 7 is the grid size (in
pixels). In a non-standard configuration a subset of these
nodes can be non-uniformly arranged.

LGS. A vector directed from the centre of a ring to to any of
its nodes is called a ‘link’. A link gate set is a decision
region which provides means for selecting the links that
best approximate the curve. Two different kinds of decision
region have been proposed: triangular [6], and parallel
[8, 11]. For a given node Q) on the N,,-ring, let O, ) and
O, (m) be its left and right neighbour points along the ring at
distance 7/2. Then:

e triangular tolerance band: lines are drawn from the
centre of the rings to the midpoints Q; (. and O, .
These lines form a ‘cone’ that contains the link ending at
Oy~ The intersection of these two lines with all the rings
up to N,, define a set of parallel segments, which constitute
the LGS for the link ending at O, (see Fig. la).

e parallel tolerance band: the decision cone from the
center to midpoints Oy, and O, is replaced by a
decision ‘tube’, with sides that are parallel to the link
ending at O, and pass through Q; ., and Q, ), respec-
tively (see Fig. 1b). Intuitively, a parallel quantiser uses
higher order rings more often than a triangular quantiser
because the segments lying on the lower order rings are
bigger. Accordingly, a parallel quantiser will result in a
smaller number of links to be encoded, but will also result
in a higher quantisation error.

Q(m)
Qim) U Qrm)

a b
Fig. 1 Link gate set associated with a node Q

a Using triangular tolerance band
b Using parallel tolerance band
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The quantisation procedure is then as follows: the pen
trajectory is first broken into a sequence of ‘traces’ (i.e., a
complete pen-down movement bounded by two pen-up
movements); the first point of each trace is kept. For all
others, the concentric rings are centred on the previous
quantised point. For each ring, starting from the highest
order one, we check if there is a LGS completely inter-
sected by the trajectory curve. If not, we examine the next
lower order ring. Otherwise, the link associated with the
LGS defines the next quantisation point. To regenerate the
quantised curve, one just has to draw straight lines between
successive quantised points.

2.1 MRDCC encoding

After the quantisation step, each trace of the pen trajectory
is represented as: po+ (d, da,...), where d; is a numeric
label associated with the ith link. A common labelling
convention is to number the links in a counter-clockwise
manner from 0 to 37—, 8N, — 1. Therefore, with fixed-
wordlength encoding, [log,(D 7'~ 8N,)] bits are needed to
represent each link. However, this requirement easily
proves unnecessarily high for smooth curves when differ-
ential techniques are used.

One differential chain coding approach, the so-called
DCC proposed by Arnbak and colleagues at Delft Univer-
sity [12—14], avoids variable-wordlength encoding with the
following scheme: if the difference §; =d; — d;_, between
two consecutive links is equal to +1, 0, or —1, a two-bit
codeword is produced (relative encoding); otherwise a
(2 + [logx(8N)1)-bits codeword is used (absolute encod-
ing; the first two bits are a prefix distinguishing from
relative mode).

MRDCC is an extension of DCC to the multi-ring case
[7, 8]: if two successive links have been quantised by the
same ring, and if the difference equals +1, 0, or —1, then a
two-bit relative codeword is used. Otherwise, an absolute
code word of length (2 + [logx(3 %=1 8N,)1) bits is used.
Although MRDCC is not necessarily optimal from an
information-theoretical point of view, it is attractive for
transmission of ink messages in terms of data syntax,
decoding, and transmission error control.

To completely characterise the encoding procedure, one
must also specify how to identify the start and/or end of
each trace of ink. One solution is to define a ‘pen-up’
codeword (with length dependent on the particular chain
code used); another is to encode the number of links within
the trace. In any case, the first point of each trace has to be
encoded using its absolute coordinates. In the following,
we will consider the number of bits required to encode this
aspect of the ink-structure as a constant, whatever the chain
code is, and our numerical results will not refiect it.

3 Evaluation method

The MRDCC algorithm was tested on three sets of ink
images from eighty-two different writers. In the first set,
Chinese writers were presented with open-ended scenarios
that required composing a message. These messages were
collected on a Fujitsu Stylistic tablet computer in a window
of dimensions 160 x 240 pixels. Two examples of the
scenarios are:

e “Your friend just got a big promotion at work. Write a
message to acknowledge his/her accomplishment.’

e ‘Send a couple of ideas/sketches of new product logos to
your boss.’
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Fig. 2 Sample images of short ink messages containing handwritten text and graphics

« Chinese messages composed in a 160 x 240 pixel window
b English messages composed in a 160 x 100 pixel window

AW&MW%% a
tho it ffimilics fockictioms,

The righito volt over He pfits
DA oW awe whtan i 15 S g &
new O 1S Bught, e opmencass
wost chneyvisvad-tax breades, had
hoen veplaced e lduny

Fig. 3 Sample images of long ink messages containing English handwritten text only

Messages were composed inside a 500 x 250 pixel window

In the second set, English writers were presented with
the same scenarios to elicit the messages using a window of
160 x 100 pixels. These window sizes were motivated by
the form factor of actual PDA devices at our lab. Sample
images from these two sets are shown in Fig. 2. These
images were collected at screen resolution.

In the third set of images, writers were asked to
transcribe a short paragraph from different news stories
using a Wacom LCD tablet. Sample images from this set
are shown in Fig. 3. These images were collected at tablet
resolution, which is typically several times higher than
screen resolution.

The details of our three datasets are summarised in
Table 1.

3.1 Evaluation results

In this Section, we report on the evaluation of MRDCC in
terms of coding efficiency and quantisation distortion. To
compare the efficiency of different codes, we used actual
relative compactness [6]. This is simply the ratio of the
number of bits needed to encode some ink using a given
multi-ring code and the number of bits needed when using
a single ring only. Three MRDCC codes were evaluated:
(1, 2)-MRDCC, (1, 3)-MRDCC and (1, 2, 3)-MRDCC. As
described in Section 2, an (Ny,...,N,,)-MRDCC code
uses m concentric square rings in the quantisation stage
and multi-ring DCC for encoding. Table 2 shows the actual
relative compactness we obtained using these codes aver-
aged over all images in each dataset. Also shown are the

Table 1: Datasets of ink messages used for evaluation of MRDCC algorithm

Data set name Total Total Graphics Window Ink
images writers and text size resolution
Chinese short messages (CSM) 120 both 160 x 240 low
English short messages (ESM) 115 both 160 x 100 low
English long messages (ELM) 84 text only 500 x 250 high

Table 2: Comparison of MRDCC and DCC codes in terms of actual relative
compactness when using parallel tolerance band quantisation

Data set (1)-DCC (1, 2)-MRDCC (1, 3)-MRDCC (1, 2, 3}-MRDCC
CsSM 1 1.06 (0.80, 1.31) 0.96 (0.58, 1.13) 1.14 (0.76, 1.36)
ESM 1 1.09 (0.76, 1.25) 1.00 (0.65, 1.15) 1.20 (0.82, 1.37)
ELM 1 1.01 (0.82, 1.16) 0.91 (0.70, 1.04) 1.02 (0.77, 1.16)

Maximum and minimum relative compactness values are also given in parentheses.

Globally, (1, 3)-MRDCC is most efficient code

IEE Proc.-Vis. Image Signal Process., Vol. 148, No. 4, August 2001
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minimum and maximum actual relative compactness
values. In all cases, the parallel tolerance band criteria
was employed during quantisation.

For the majority of images in our three datasets, (1, 2)-
MRDCC and (1, 2, 3)-MRDCC are less efficient than
DCC. Specifically, in 83% of the CSM images, 88% of
the ESM images and 61% of the ELM images, DCC is
more efficient. These results contradict the geometrical
analysis developed by Johannessen et al. [7, 8], where it
was suggested that MRDCC always offers the highest
coding efficiency. Moreover, we found that in over 76%
of all images (I, 2, 3)-MRDCC does not improve over
(1, 2)-MRDCC, also in contradiction to their theoretical
results.

Although Johannessen’s analysis is based on parallel
tolerance band quantisation only, we also computed
relative compactness for the triangular tolerance band
case (see Table 3). We observe that in the three datasets,
a single ring code almost always outperforms multi-ring
codes (1, 2)-MRDCC and (1, 2, 3)-MRDCC. Compared to
(1, 3)-MRDCC, DCC was better in over 94% of the
images.

_In order to compare the codes in terms of quantisation
error, we used a per-length distortion measure given by the
average value of a distortion function evaluated at each
grid point of the original ink. Our function is defined as the
Euclidean distance (measured in pixels) from the consid-
ered pixel of the curve to the closest pixel of the regener-
ated quantised curve. The per-length distortions, averaged
over all images in each dataset, together with the maximum
distortion measured on each dataset, are presented in Table
4. As expected, (1)-DCC is almost lossless. We also
observe that (1, 2, 3)-MRDCC can sometimes offer an
improvement over (1, 2)-MRDCC. Code (1, 3)-MRDCC is

less lossy than (1, 2, 3)-MRDCC because when ring-2 is
removed, sections of the curve that would have been
quantised with ring-2 are now quantised using ring-1.

4 Relative vector probabilities in MRDCC and
DCC

To state the superiority of MRDCC over DCC, Johannes-
sen et al. used a theoretical model of the MRDCC per-
length bit-rate. Their model relies strongly on two different
parameters: PR, the probability of occurrence for ring n,
and PV, the relative vector probability within ring #. The
computation of these probabilities is based upon a theory
concerning single ring differential . chain coding [15].
Johannessen’s model implicitly relies on a strong assump-
tion: whatever the chain code is, PV, remains the same as
in the DCC case. However, in our datasets, we actually
found that this assumption never holds. Instead, when
averaged over all images in each tested dataset, we
obtained PVPCC 5 pyMEPCC (see Table 5). On an image
by image analysis, this result was always true for the high-
resolution ELM dataset. It was also true in all CSM and
ESM cases when n =1, 2, in 99% of the CSM cases when
n=23, and in over 80% of the ESM cases when n=3.
We tried to characterise the relationship between
PYMRPCC and  PVPCC. Under the assumption that
MRDCC behaviour can be locally approximated by
DCC, consider a segmentation of the curve into smaller
sections where only one ring is used. Let /, be a random
variable giving the number of successive vectors in such a
curve section where only ring » is used. The number of
relative vectors in this section of the curve can then be
expressed as (I, — 1) x P¥2°C. Note that a —1 is needed

Table 3: Comparison of MRDCC and DCC codes in terms of actual relative
compactness when using triangular tolerance band quantisation

Data set (1)-DCC (1, 2)-MRDCC (1, 3-MRDCC {1, 2, 3-MRDCC
CsSM 1 1.27 (0.96, 1.46) 1.14 (0.89, 1.27) 1.38 (1.01, 1.55)
ESM 1 1.30 (1.05, 1.43) 1.17 (0.88, 1.28) 1.40 (1.04, 1.59)
ELM 1 1.32 (1.03, 1.47) 1.11 (0.86, 1.22) 1.52 (1.10, 1.73)

Maximum and minimum relative compactness values are also given in parentheses.

Table 4: Comparison of MRDCC and DCC codes in terms of per-length distor-

tion

Data set (1)-DCC {1, 2)-MRDCC (1, 3)-MRDCC (1, 2, 3)-MRDCC
CSM 0.02 (1.00) 0.10 (1.41) 0.06 (1.41) 0.09 (1.47)
ESM 0.01 (1.00) 0.12 (1.41) 0.05 (1.41) 0.09 (1.41)
ELM 0.01 (1.00) 0.08 (1.41) 0.09 (2.00) 0.09 (2.24)

Maximum distortion is also included in parentheses

Table 5: Actual relative vector probabilities (PV,,) for different codes averaged over each tested dataset

Code (1) (2) (3) (1, 2) (1, 3) (1,2,3)

Data set PV, PV, PV, PV, PV, PV, PV3 PV, PV, PV
CSM 0.87 0.76 0.63 0.06 0.63 0.31 0.51 0.06 0.07 0.51
ESM 0.80 0.62 0.43 0.07 0.52 0.34 0.38 0.08 0.05 0.38
ELM 0.99 0.97 0.94 0.06 0.78 0.22 0.64 0.05 0.03 0.64
244 IEE Proc.-Vis. Image Signal Process., Vol. 148, No. 4, August 2001



Table 6: Actual relative vector probabilities and their estimated values on ELM dataset

Chain code (1) 2) (3) (1, 2) (1,3 (1,2, 3)

Probability PV, PV, PV PV, PV, PV, PV3 PV, PV, PVs
Actual value 0.99 0.97 0.94 0.06 0.78 0.22 0.64 0.05 0.03 0.64
Estimation (using L) - - - 0.06 0.77 0.22 0.63 0.05 0.09 0.62
Error - - - 0.00 0.01 0.00 0.01 0.00 0.06 0.02
Table 7: Comparison of theoretical and actual relative compactness of MRDCC codes

Code (1, 2)-MRDCC (1, 3)-MRDCC (1, 2, 3-MRDCC

Data set pyRoce PVRee Py pRDCC PYRec Py MROCC PVRce

CSM 1.08  (0.02) 0.73 (0.33) 0.98 (0.02) 0.66 (0.30) 1.15  (0.01) 0.68 (0.46)
ESM 1.12  (0.03) 0.81 (0.28) 1.02  (0.02) 076 (0.24) 1.22  (0.02) 0.83 (0.37)
ELM 1.02  (0.01) 058 (0.43) 091 (0.00) 0.46  (0.45) 1.02  (0.00) 0.45 (0.57)

Theoretical values are computed using PVMRDCC and PVECC, Absolute deviation from actual values is shown in parentheses

because the first vector is always an absolute vector.

Therefore, we can write the following approximation to
PpyMRDCC,
o :

N L —1
PpiMRDCC _ _”E_ x PVPCC where L, = E[I,] (1)

n

This approximation is consistent with our empirical
result that globally PVYCC is greater than PVARPCC In
order to validate the accuracy of this approximation, we
computed the average value of /, for each of the multi-ring
codes we have been examining. Table 6 shows the actual
relative vector probabilities and their estimated values on
the high-resolution ELM dataset. A very small error in the

S (1,2,3)
approximation is observed overall. In the case of PV,
where the error is higher, we had very few samples to
estimate L, because the ring probability PRS* was only
0.06. When we tested our approximation on the lower-
resolution datasets, a larger overall error was observed due
to the same kind of estimation difficulties.

We now use PVARPCC to express the number of bits
required to encode one vector taken from ring-# in a (K)-
MRDCC code as

r,(IK)—MRDCC =2 x PV”(K)—MRDCC

o5

x (1 _ PV’EK)—MRDCC) (2)

and then extend to the MRDCC case the original theore-
tical formula given by Freeman [6], to estimate the relative
compactness:

(K)—~MRDCC
PR, x F;
B&K ig,:() ! i

B~
(_ %{)(i X PR;) x (2 x PVPCC +5x (1 — PV]DCC))
ie

3

where B is the number of bits needed to encode the
curve with (K) — MRDCC, and PR; is the probability of
ring i. Note that, as in the original case, this expression
includes the assumption that lengthwise using a vector
from ring 7 is equivalent to using » vectors from ring 1.
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To further underline our point that one cannot accurately
model the behaviour of MRDCC by assuming that
PVMRDCC can be replaced by PVECC, we use eqn. 3 to
estimate relative compactness with both values, and
compare the result with the actual relative compactness
reported in Table 2. The two estimates for each data set,
together with their absolute deviation from the actual
relative compactness, are shown in Table 7.

We observe in the Table that there is a significant
discrepancy between actual and estimated relative
compactness when Johannessen’s assumption is used.

5 Choosing the right code

Although eqn. 3 could be used to find the best multi-ring
chain code for each of our datasets, we thought of a more
direct approach based upon the guidelines suggested by
Freeman [6]. The procedure involves computing and
analysing the probability distribution for all rings up to a
maximum.

In Fig. 4, we present the probability distribution of the
rings up to the 10th order for the CSM and ESM datasets,
computed using a grid size of 7=1 pixel (the smallest
possible value). Because of the shape and position of the
envelope of the distribution, we can conclude that this grid
size is appropriate. Based on the peaks in the envelope, it
appears that for these two datasets rings 1 to 4 are the most
important ones.

Accordingly, we now examine the distribution limited to
rings 1, 2, 3 and 4 only (see Fig. 5). It is evident that by
removing the higher order rings, we have added that
probability mass to the lower order rings, and thus their

0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1

12345678910 12345678910
a b

Fig. 4 Ring probabilities PR;, 1 <i< 10, computed using a (1, 2, ...,

10)-GCC quantiser and a grid size of 1= 1 pixel

a CSM dataset
b ESM dataset
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1 2 3 4 5 1 2 3 4 5
a b

Fig. 5 Ring probabilities PR;, 1 <i <4, computed using a (1, 2, ..., 4)-
GCC quantiser and a grid size of 1= 1 pixel

a CSM dataset
b ESM dataset

relative vector probabilities will increase as well. Ring 3
has the lowest probability. Because low-probability rings
are mostly used for the encoding of absolute vectors, and
their inclusion in a code increases the number of bits per
absolute vector, we concluded that only (1, 2, 4)-MRDCC
and (1, 4)-MRDCC were worth testing.

For the CSM dataset, we found the best code to be
(1, 4-MRDCC, with a relative compactness of 0.93 and a
per length distortion of 0.13 pixels. For the ESM dataset,
(1, 4-MRDCC was also the best code, with a relative
compactness of 0.98 and a per length distortion of 0.12
pixels. Intuitively, a per-length distortion of 0.1 pixels
means that, on average, 1 pixel out of 10 is shifted by
one from its original position. We believe this is almost
imperceptible in a 160 x 240 image, and thus quite accep-
table in our intended application.

Choosing a chain code for the ELM dataset is a little bit
more complicated because of its high resolution. The
envelope of the probability distribution computed using
grid size t=1 is quite flat, and with the most significant
peak located far to the right (see Fig. 6a). This is a clear
indication that the grid size is too fine. Indeed, a coarser
grid size of t=20 pixels results in a more desirable
distribution envelope (see Fig. 6b). With this grid size,
however, the precision will be low.

In order to keep a higher precision, we recomputed the
distributions using t=4 (see Fig. 7). There are now two

0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1
0

12345678910

12345678910
a b

Fig. 6 Ring probabilities PR;, 1 <i < 10, for the ELM dataset computed
using a (1, 2,..., 10)-GCC quantiser

a Grid size 7= 1 pixel
b Grid size 7 =20 pixels

05 05

0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1
012345678910 0 12 3 456 78

Fig. 7 Ring probabilities for the ELM dataset computed using a grid
size of 1=4 pixels

a PR;, 1 <i <10, computed with a (1, 2,..., 10)-GCC quantiser

b PR;, 1 =i=<7, computed with a (1, 2,..., 7)-GCC quantiser
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sharp peaks, of about the same size, at the far right and far
left of the distribution. As mentioned above, the peak to the
right represents the sum of higher-order ring probabilities.
It thus seems clear that we have to choose a two-ring chain
code, i.e., (1, n)-MRDCC for some n close to 10. A good
tradeoff for choosing n is to make the expression
logx(8 x (1 + n)) equal to or slightly lower than an integer;
not too big (low ring and relative vector probabilities), and
not too small (high relative vector probability, but too
many small steps). Among integers in the interval [7, 15]
of values close to 10 that meet these criteria, 7 would seem
to be the most appropriate choice for n. Using (1, 7)-
MRDCC we obtained a relative compactness of 0.78 and a
per-length distortion of 0.84 pixels. We empirically
confirmed the superiority of this code by trying many
other ring combinations. The higher per-length distortion,
compared to the short messages dataset, has to be inter-
preted in the context of a 5000 x 2500 image size, i.e.,
500 x 250 window size at a 1000 d.p.i. tablet resolution.

6 Conclusions

Two-way transmission of electronic ink, particularly if
wireless, offers users of personal digital assistants and
Internet appliances a compelling new way to communicate.
With this application domain in mind, we evaluated the
performance of single-ring and multi-ring differential
chain coding algorithms on a large number of images.
Multi-ring differential chain coding (MRDCC) is not
necessarily optimal from an information-theoretical point
of view; however, it is attractive for transmission of ink
messages in terms of data syntax, decoding, and transmis-
sion error control. We established that the coding effi-
ciency of (1, 2)-MRDCC and (1, 2, 3)-MRDCC is not
always better when compared to (1)-DCC as previously
suggested. Specificallyy, DCC was more efficient than
(1, 2)-MRDCC and (1, 2, 3)-MRDCC in over 80% of
our low-resolution test images and in over 61% of our
high-resolution test images. We have also shown that for a
given ring, the probability of relative vectors in the multi-
ring case is almost always lower than in the single-ring
case. As a consequence of this, one cannot accurately
model the behaviour of MRDCC based on PV, estimates
from the DCC case. Another consequence is that the
improvements in efficiency that can be obtained by using
differential techniques are higher for the single-ring codes
and lower for the multi-ring ones. As our experimental
results have shown, choosing the right chain code and grid
size also depends on the resolution and geometrical proper-
ties of the images to be encoded. Fortunately, as we have
illustrated, Freeman’s guidelines involving an analysis of
the ring probability spectrum can be effectively used to
find a code that meets the constraints of the target applica-
tion. Using this method, we found (1, 4)-MRDCC to be the
most efficient code for our short messages datasets, which
were composed in a PDA-size window at screen resolution.
This multi-ring code resulted in a very small per-length
distortion and an average message size of 385 bytes for
English text and 537 bytes for Chinese text. These values
represent a 71% efficiency relative to the uncompress
average message size and an 18% efficiency relative to a
lossless scheme based on Huffman coding. To put these
compressed message sizes in context, today’s popular SMS
text messages on cellular networks are commonly
restricted to a maximum of about 640 bytes. On the
larger message dataset, collected at high resolution, the
best multi-ring code resulted in an average message size of
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13.3 kbytes, or a 79% efficiency relative to the uncom-
pressed average message size and a 36% efficiency relative
to a lossless scheme based on Huffman coding.
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