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Abstract—Affine Frequency Division Multiplexing (AFDM),
a new chirp-based multicarrier waveform for high mobility
communications, is introduced here. AFDM is based on discrete
affine Fourier transform (DAFT), a generalization of discrete
Fourier transform, which is characterized by two parameters that
can be adapted based on the Doppler spread of doubly dispersive
channels. First, we derive the explicit input-output relation in
the DAFT domain showing the effect of AFDM parameters
in the input-output relation. Second, we show how the DAFT
parameters underlying AFDM have to be set so that the resulting
DAFT domain impulse response conveys a full delay-Doppler
representation of the channel. Then, we show analytically that
AFDM can achieve the optimal diversity order in doubly disper-
sive channels, where optimal diversity order refers to the number
of multipath components separable in either the delay or the
Doppler domain, due to its full delay-Doppler representation.
Furthermore, we present a low complexity detection method
taking advantage of zero-padding. We also propose an embedded
pilot-aided channel estimation scheme for AFDM, in which both
channel estimation and data detection are performed within the
same AFDM frame. Finally, simulations corroborate the validity
of our analytical results and show the significant performance
gains of AFDM over state-of-the-art multicarrier schemes in high
mobility scenarios.

Index Terms—Affine Frequency Division Multiplexing, affine
Fourier transform, chirp modulation, linear time-varying chan-
nels, doubly dispersive channels, high mobility communications.

I. INTRODUCTION

Next generation wireless systems and standards (beyond
5G/6G) are expected to support a wide spectrum of services,
including reliable communication in high mobility scenarios
(e.g., V2X communications, flying vehicles, and high-speed
rail systems) and in extremely high-frequency (EHF) bands.
Current systems are based on Orthogonal Frequency Division
Multiplexing (OFDM), a widely used multicarrier scheme that
achieves near optimal performance in time-invariant frequency
selective channels. Nevertheless, in time-varying channels
(also referred to as doubly dispersive or doubly selective
channels), the performance of OFDM drastically decreases.
This is mainly due to large Doppler frequency shifts and the
loss of orthogonality among subcarriers, resulting in inter-
carrier interference (ICI). This calls for new modulation tech-
niques and waveforms, which are able to cope with various
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challenging requirements and show robustness in high mobility
scenarios.

One approach to compensate for fast variations in LTV
channels is to shorten the OFDM symbol duration so that
the channel variations over each symbol duration become
negligible [3]. However, due to cyclic prefix (CP), this ap-
proach significantly reduces the spectral efficiency. In theory,
the optimal approach to cope with time-varying multipath
channels is to transmit information symbols leveraging an
orthogonal eigenfunction decomposition of the channel and
then project the received signal over the same set of orthogonal
eigenfunctions at the receiver. In time-invariant (LTI) systems,
complex exponentials are known to be eigenfunctions of the
channel and can be obtained via the Fourier transform (FT).
However, finding an orthonormal basis for general LTV chan-
nels is not trivial and polynomial phase models that generalize
complex exponentials are often used as alternative bases.

Since this optimal approach presents significant challenges
both in terms of conceptual and computational complexity,
using chirps, i.e., complex exponentials with linearly varying
instantaneous frequencies, appears to be a promising alter-
native. The use of chirps for communication and sensing
purposes has a long history. S. Darlington in 1947 proposed the
chirp technique for pulsed radar systems with long-range per-
formance and high-range resolution [4]. The term “chirp” was
apparently first employed by B. M Oliver in an internal Bell
Laboratories Memorandum “Not with a bang, but a Chirp”. In
[5], an experimental communication system employing chirp
modulation in the high frequency band for air-ground commu-
nication is presented. Since chirped waveforms are of spread-
spectrum, they can also provide security and robustness in
several scenarios, including military, underwater and aerospace
communications [6], [7], [8]. Chirps are specified in the IEEE
802.15.4a standard as chirp spread spectrum (CSS) to meet
the requirement of FCC on the radiation power spectral mask
for the unlicensed UWB systems[9].

Using a frequency-varying basis for a multicarrier trans-
mission scheme over time-varying channels is first introduced
in [10]. In this work, an orthonormal basis formed by chirps
are generated using Fractional Fourier Transform (FrFT). The
scheme is presented in a continuous-time setting, whereas
the approximation used for making the continuous-time FrFT
discrete leads to imperfect orthogonality among chirp subcar-
riers and hence to performance degradation. A multicarrier
technique based on Affine Fourier Transform (AFT), which
is a generalization of the Fourier and fractional Fourier trans-
form, is proposed in [11]. The resulting multicarrier waveform
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therein is referred to as DAFT-OFDM in the sequel where
DAFT stands for Discrete AFT. It is equivalent to OFDM
with reduced ICI on doubly dispersive channels and is shown
to achieve low diversity order. Moreover, the delays and the
Doppler shifts of channel paths are required at the transmitter
in order to tune the DAFT-OFDM parameters. In [12], a
general interference analysis of the DAFT-OFDM system is
provided and the optimal parameters are obtained in closed
form, followed by the analysis of the effects of synchronization
errors and the optimal symbol period. Another scheme that is
proposed for communication over time-dispersive channels is
Orthogonal Chirp Division Multiplexing (OCDM) [13], which
is based on the discrete Fresnel transform - a special case
of DAFT. OCDM is shown to perform better than uncoded
OFDM in LTI and LTV channels [14]. However, in LTI
channels, OCDM can achieve diversity order of one for very
large signal to noise ratio (SNR), whereas in general LTV
channels, it cannot achieve the optimal diversity order since
its diversity order depends on the delay-Doppler profile of the
channel.

In addition to chirp-based modulation, several waveforms
have been proposed to provide improved performance com-
pared to OFDM in terms of carrier frequency offset (CFO) sen-
sitivity, peak to average power ratio (PAPR), and out-of-band
emissions (OOBE). Discrete Fourier transform spread OFDM
(DFT-s-OFDM), also known as Single Carrier-Frequency Di-
vision Multiple Access (SC-FDMA), has been proposed in
[15], which spreads symbol energy equally over all subcarriers
to reduce PAPR by precoding data symbols using a DFT.
Generalized Frequency Division Multiplexing (GFDM) [16],
[17] is a multicarrier modulation based on a circular pulse
shaping filter, aiming to reduce the OOBE. Nevertheless, DFT-
s-OFDM and GFDM are sensitive to CFO due to Doppler
spread. To deal with the Doppler spread, Orthogonal Time
Frequency Space (OTFS) modulation has recently been pro-
posed for high mobility communications [18], [19]. OTFS is a
two-dimensional (2D) modulation technique that spreads the
information symbols over the delay-Doppler domain. OTFS
has been shown to outperform previously proposed waveforms
in both frequency selective and doubly selective channels [20].
Therefore, in this paper, the performance of the proposed
AFDM is compared with OTFS. The results in [21] show that
the OTFS diversity order without channel coding is one and
with a phase rotation scheme using transcendental numbers
can be made equal to the optimal diversity order. The idea of
embedding pilots along with the data symbols in the delay-
Doppler domain has been proposed in [22]. Although no
separate transmission for the pilot symbols is needed, OTFS
suffers from excessive pilot overhead due to its 2D structure as
each pilot symbol should be separated from the data symbols.

In this paper, we propose a novel multicarrier scheme called
Affine Frequency Division Multiplexing (AFDM), which is a
DAFT-based waveform using multiple orthogonal information-
bearing chirp signals. The key idea is to multiplex information
symbols in the DAFT domain in such a way that all the paths
are separated from each other and each symbol experiences
all paths coefficient. This separability is a unique feature of
our scheme and cannot be achieved by other DAFT-based

schemes. DAFT plays a fundamental role in AFDM, similarly
to Fourier transform in OFDM. This work aims at establishing
that AFDM is a promising new waveform for high mobility
environments, having as well potential for communication at
high frequency bands [23]. The contributions of this paper are
summarized as follows:

• Introducing the Affine Fourier transform, we show how
its discrete version can be achieved. Then, for the pro-
posed AFDM, we analyze the DAFT domain input-output
relation under doubly dispersive channels. The input-
output relation is instrumental in giving insight on how
DAFT parameters need to be tuned to avoid that time-
domain channel paths with distinct delays or Doppler
shifts overlap in the DAFT domain.

• We derive the diversity order of AFDM under maximum
likelihood (ML) detection and we analytically show that
AFDM achieves the optimal diversity order of the LTV
channels.

• We propose a low complexity detection algorithm for
AFDM taking advantage of its inherent channel sparsity.
For that, the channel matrix is approximated as a band
matrix placing some null symbols - zero-padding the
AFDM frame - in the DAFT domain. We propose a low
complexity iterative decision feedback equalizer (DFE)
based on weighted maximal ratio combining (MRC)
of the channel impaired input symbols received from
different paths. The overall complexity of this algorithm
is linear both in the number of subcarriers and in the
number of paths. We also show that this detector has
similar performance as LMMSE detector with much less
complexity.

• For the embedded channel estimation, we arrange one pi-
lot symbol and data symbols in one AFDM frame consid-
ering zero-padded symbols as guard intervals separating
the pilot symbol and data symbols to avoid interference
between them. We propose efficient approximated ML
algorithms for channel estimation for the integer and
fractional Doppler shifts. The proposed channel estima-
tion schemes result in marginal performance degradation
compared to AFDM with perfect channel knowledge.

This paper is organized as follows. In Section II, AFT and
DAFT are introduced and the proposed AFDM is presented in
Section III. Diversity analysis of AFDM in LTV channels is
provided in Section IV. The proposed low complexity detec-
tion and channel estimation methods are presented in section V
and section VI, respectively. In Section VII, simulation results
for the AFDM performance are provided, and Section VIII
concludes this paper.

II. AFFINE FOURIER TRANSFORM

In this section, we introduce the AFT and the DAFT, which
form the basis of AFDM.

A. Continuous Affine Frequency Transform

Affine Fourier Transform, also known as Linear Canonical
Transform [24], is a four-parameter (a, b, c, d) class of linear
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integral transform defined as

Sa,b,c,d(u) =

{∫ +∞
−∞ s(t)Ka,b,c,d(t, u)dt, b ̸= 0

s(du) e
−ı cd

2
u2

√
a

, b = 0
(1)

where (a, b, c, d) forms M =

[
a b
c d

]
with unit determinant,

i.e, ad− bc = 1 and transform kernel given by

Ka,b,c,d(t, u) =
1√
2π|b|

e−ı( a
2bu

2+ 1
but+

d
2b t

2). (2)

The inverse transform can be expressed as an AFT having the

parameters M−1 =

[
d −b
−c a

]
s(t) =

∫ +∞

−∞
Sa,b,c,d(u)K

∗
a,b,c,d(t, u)du. (3)

The AFT generalizes several known mathematical transforms,
such as Fourier transform (0,1/2π,-2π,0), Laplace transform
(0,j(1/2π),j2π,0), θ-order fractional Fourier transform (cosθ,
(1/2π)sinθ,-2π sin θ,cos θ), Fresnel transform and the scaling
operations. The extra degree of freedom of AFT provides
flexibility and has been employed in many applications, in-
cluding filter design, time-frequency analysis, phase retrievals,
and multiplexing in communication. The effect of AFT can
be interpreted by the Wigner distribution function (WDF).
If Ws(u, v) and WSa,b,c,d

(u, v) are the WDF of s(t) and
Sa,b,c,d(u), respectively, then WSa,b,c,d

(u, v) = Ws(du −
bv,−cu+ av) where

Ws(u, v)
def.
=

1

2π

∫ +∞

−∞
s(u+ τ/2)s∗(u− τ/2)e−ıvτdτ. (4)

Another way to express this is to say that the physical meaning
of the LCT is to twist the time-frequency distribution of a
function. After performing the LCT, the WDF of a function
is twisted, but the area is unchanged.

B. Discrete Affine Frequency Transform

The discrete transform can generally be used either to
compute the continuous transform for spectral analysis or to
process discrete data signals. Sampling the continuous function
provides the input of the discrete transform in the former
case, while a pure discrete sequence is considered for the
input in the latter case. Therefore, discrete AFT is obtained in
two types [25], which are essentially identical with different
parameterizations. To derive the DAFT, input function s(t)
and Sa,b,c,d(u) are sampled by the interval ∆t and ∆u as

sn = s(n∆t), Sm = Sa,b,c,d(m∆u), (5)

where n = 0, ..., N − 1 and m = 0, ...,M − 1. From (5), we
can convert (1) as

Sm =
1√
2π|b|

·∆t · e−ı( a
2b

m2∆u2)
N−1∑
n=0

e−ı( 1
b
mn∆u∆t+ d

2b
n2∆t2)sn.

(6)
This equation can be written in the form of transformation

matrix

Sm =

N−1∑
n=0

Fa,b,c,d(m,n)sn, (7)

where Fa,b,c,d(m,n) = 1√
2π|b|

· ∆t ·
e−ı( a

2bm
2∆u2+ 1

bmn∆u∆t+ d
2bn

2∆t2).
In order for (7) to be reversible, the following condition

should hold [25]

∆t∆u =
2π|b|
M

. (8)

Thus, the DAFT of the first type can be written as follows:

Sm =
1√
M

e−ı a
2bm

2∆u2
N−1∑
n=0

e−ı( 2π
M mn+ d

2bn
2∆t2)sn, b > 0

(9)

Sm =
1√
M

e−ı a
2bm

2∆u2
N−1∑
n=0

e−ı(− 2π
M mn+ d

2bn
2∆t2)sn, b < 0.

(10)

The DAFT of the second type [25] can be obtained by defining
c1 = d

4πb∆t2 and c2 = a
4πb∆u2 so that Sm in (7) writes as

Sm =
∑N−1

n=0 Fc1,c2(n,m)sn, where

Fc1,c2(n,m) ≜
1√
M

e−ı2π(c2m
2+

sgn(b)
M mn+c1n

2). (11)

The condition in (8) then becomes c1c2 = ad
4M2 . Since a and

d can take any real value as long as b and c are adjusted to
satisfy ad − bc = 1, there is no constraint for c1 and c2 and
they can take any real values. Further simplification follows
from fixing sgn(b) = 1, i.e., the DAFT is defined as

Sm =
1√
M

e−ı2πc2m
2
N−1∑
n=0

e−ı2π( 1
M mn+c1n

2)sn, (12)

where M ≥ N and its inverse transform is the following

sn =
1√
M

eı2πc1n
2
M−1∑
m=0

eı2π(
1
M mn+c2m

2)Sm. (13)

Moreover, we should take into account that sampling in one
domain imposes periodicity in another domain. Considering
(12) and (13), the following periodicity can be seen

Sm+kM = e−ı2πc2(k
2M2+2kMm)Sm, (14)

sn+kN = eı2πc1(k
2N2+2kNn)sn. (15)

For our purposes, only constraint (15) matters, whose sole
practical effect is on the kind of prefix one should add
to a DAFT-based multicarrier symbol. When M = N , as
considered in this paper, the inverse transform is the same
as the forward transform with parameters −c1 and −c2 and
conjugating the Fourier transform term. In matrix represen-
tation, arranging samples sn and Sm in the period [0, N) in
vectors

s = (s0, s1, ..., sN−1), (16)

S = (S0, S1, ..., SN−1), (17)

DAFT is expressed as S = As with A = Λc2FΛc1 , F being
the DFT matrix with entries e−ı2πmn/N/

√
N and

Λc = diag(e−ı2πcn2

, n = 0, 1, . . . , N − 1). (18)

The inverse of the matrix A is given by A−1 = AH =
ΛH

c1F
HΛH

c2 . We can now show that {Fc1,c2(n,m)}m=0···M−1
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Figure 1: AFDM block diagram

with sgn(b) = 1 and M = N forms an orthonormal basis of
CN , i.e,

N−1∑
n=0

Fc1,c2(n,m1)F
∗
c1,c2(n,m2) =

1

N
e−ı2πc2(m

2
1−m2

2)

×
N−1∑
n=0

e−ı 2πN (m1−m2)n = δ(m1 −m2).

(19)

With the setting M = N , the DAFT can thus be used
to define a multi-carrier signal which i) has inter-carrier
orthogonality and ii) can be generated (respectively received)
with a transmitter (respectively receiver) whose main building
block is an IDFT (respectively DFT) module.

III. AFFINE FREQUENCY DIVISION MULTIPLEXING

In this section, we present our DAFT-based multicarrier
waveform and transceiver , coined AFDM. In this scheme,
inverse DAFT (IDAFT) is used to map data symbols into
the time domain, while DAFT is performed at the receiver
to obtain the effective discrete affine Fourier domain channel
response to the transmitted data, as shown in Fig. 1.

A. Modulation

Let x ∈ AN×1 denote the vector of information symbols in
the discrete affine Fourier domain, where A ⊂ Z[j] represents
the alphabet and Z[j] denotes the number field whose elements
have the form zr+zij, with zr and zi integers. QAM symbols
are considered in the remainder. The modulated signal can be
written as

s[n] =

N−1∑
m=0

x[m]ϕn(m), n = 0, · · · , N − 1, (20)

where ϕn(m) = 1√
N
· eı2π(c1n2+c2m

2+nm/N). In matrix form,
(20) becomes s = AHx = ΛH

c1F
HΛH

c2x.
Similarly to OFDM, the proposed scheme requires a pre-

fix to combat multipath propagation and make the channel
seemingly lie in a periodic domain. Due to different signal
periodicity, a chirp-periodic prefix (CPP) is used here instead
of an OFDM cyclic prefix (CP). For that, an Lcp-long prefix,
occupying the positions of the negative-index time-domain
samples, should be transmitted, where Lcp is any integer
greater than or equal to the value in samples of the maximum

delay spread of the channel. With the periodicity defined in
(15), the prefix is

s[n] = s[N + n]e−ı2πc1(N
2+2Nn), n = −Lcp, · · · ,−1.

(21)
Note that a CPP is simply a CP whenever 2Nc1 is an integer
value and N is even.

B. Channel

After parallel to serial conversion and transmission over the
channel, the received samples are

r[n] =

∞∑
l=0

s[n− l]gn(l) + w[n], (22)

where w[n] ∼ CN (0, N0) is an additive Gaussian noise and

gn(l) =

P∑
i=1

hie
−ı2πfinδ(l − li), (23)

is the impulse response of channel at time n and delay l,
where P ≥ 1 is the number of paths, δ(·) is the Dirac delta
function, and hi, fi and li are the complex gain, Doppler shift
(in digital frequencies), and the integer delay associated with
the i-th path, respectively. Note that this model is general
and also covers the case where each delay tap can have a
Doppler frequency spread by simply allowing for different
paths i, j ∈ {1, . . . , P} to have the same delay li = lj ,
while satisfying fi ̸= fj . We define νi ≜ Nfi = αi + ai,
where νi ∈ [−νmax, νmax] is the Doppler shift normalized
with respect to the subcarrier spacing, αi ∈ [−αmax, αmax]
is its integer part whereas ai is the fractional part satisfying
−1
2 < ai ≤ 1

2 . We assume that the maximum delay of the
channel satisfies lmax ≜ max(li) < N , and that the CPP
length is greater than lmax − 1.

After discarding the CPP, we can write (22) in the matrix
form

r = Hs+w, (24)

with w ∼ CN (0, N0I), H =
∑P

i=1 hiΓCPPi
∆fiΠ

li , and Π
is the forward cyclic-shift matrix

Π =


0 · · · 0 1
1 · · · 0 0
...

. . . . . .
...

0 · · · 1 0


N× N

, (25)
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∆fi ≜ diag(e−ı2πfin, n = 0, 1, . . . , N − 1) and ΓCPPi
is

a N ×N diagonal matrix

ΓCPPi
= diag(

{
e−ı2πc1(N

2−2N(li−n)) n < li

1 n ≥ li

, n = 0, . . . , N − 1).

(26)

From (26) we can see that whenever 2Nc1 is an integer and
N is even, ΓCPPi

= I.

C. Demodulation

At the receiver side, the DAFT domain output symbols are
obtained by

y[m] =

N−1∑
n=0

r[n]ϕ∗
n(m). (27)

In matrix representation, the output can be written as

y =Ar =

P∑
i=1

hiAΓCPPi
∆fiΠ

liAHx+Aw = Heffx+ w̃,

(28)
where Heff ≜ AHAH and w̃ = Aw. Since A is a unitary
matrix, w̃ and w have the same statistical properties.

D. Input-Output relation

From (28), we see that the received symbols are a linear
combination of the transmitted symbols. Moreover, we know
that features, such as diversity order, detection complexity,
and channel estimation, are determined by the input-output
relation, i.e, the structure of the effective channel. For example,
the OFDM effective channel is diagonal, exhibiting poor
diversity while the detection can be implemented using a 1-tap
equalizer. For that, we provide here the structure of Heff as
input-output relation and show that it has a sparse structure
and can be formed by the AFDM parameters. Considering the
definition of Heff , (28) can be rewritten as

y =

P∑
i=1

hiHix+ w̃, (29)

where Hi ≜ AΓCPPi
∆fiΠ

liAH . It can be shown that
Hi[p, q] is given by

Hi[p, q] =
1

N
eı

2π
N (Nc1l

2
i−qli+Nc2(q

2−p2))Fi(p, q), (30)

where we denote Fi(p, q) as

Fi(p, q) =

N−1∑
n=0

e−ı 2πN ((p−q+νi+2Nc1li)n)

=
e−ı2π(p−q+νi+2Nc1li)−1

e−ı 2πN (p−q+νi+2Nc1li)−1
.

(31)

As we can see, the value of Fi(p, q) depends on the Doppler
shift νi. Therefore, we have two cases, namely integer Doppler
shift and fractional Doppler shift. We first show the input-
output relation for the integer case, and we state the relation
of the general case afterwards.

1) Integer Doppler Shifts: With νi being integer valued for
all i ∈ {1, . . . , P}, i.e., ai = 0, (31) is equal to

Fi(p, q) =

{
N q = (p+ loci)N

0 otherwise
(32)

where loci ≜ (αi+2Nc1li)N , (·)N is the modulo N operation
and (30) writes as

Hi[p, q] =

{
eı

2π
N (Nc1l

2
i−qli+Nc2(q

2−p2)) q = (p+ loci)N

0 otherwise
.

(33)
Hence, there is only one non-zero element in each row of Hi

as shown in Fig. 2a, and the input-output relation for (29)
becomes

y[p] =

P∑
i=1

hie
ı 2πN (Nc1l

2
i−qli+Nc2(q

2−p2))x[q]+w̃[p], 0 ≤ p ≤ N−1,

(34)
where q = (p+ loci)N .

2) Fractional Doppler Shifts: Considering the fractional
Doppler shifts, it can be shown that for a given p, Fi(p, q) ̸= 0,
for all q. However, the magnitude of Hi[p, q] has a peak at
q = (p + loci)N and decreases as q moves away from loci.
To show this, we have

|Hi[p, q]| =
∣∣∣∣∣eı

2π
N (Nc1l

2
i−qli+Nc2(q

2−p2))

N
Fi(p, q)

∣∣∣∣∣
=

∣∣∣∣ 1N Fi(p, q)

∣∣∣∣ = ∣∣∣∣ sin(Nθ)

N sin(θ)

∣∣∣∣ ,
(35)

where θ ≜ π
N (p − q + loci + ai). Using the inequality

|sin(Nθ)| ≤ |N sin(θ)|, which is tight for small values of
θ, we can show∣∣∣∣ sin(Nθ)

N sin(θ)

∣∣∣∣ = ∣∣∣∣ sin((N−1)θ) cos(θ) + sin(θ) cos((N−1)θ)

N sin(θ)

∣∣∣∣
≤ N − 1

N
|cos(θ)|+ 1

N
.

(36)
The right-hand side (r.h.s.) of (36) has its peak at the

smallest |θp,q,i| when q = (p + loci)N . As q moves away
from (p + loci)N , |θp,q,i| increases and the r.h.s. of (36)
decreases. Moreover, the larger the value of N , the faster this
decrease is with respect to q. Therefore, we consider from
now on that |Hi(p, q)| is non-zero only for 2kν + 1 values of
q corresponding to an interval centered at q = (p + loci)N .
Here, kν is chosen as a function of N in such a way that for all
i and p the r.h.s. of (36) is smaller than a sensitivity threshold
for all |q − (p + loci)N | > kν . In formulas, this translates to
the matrix written in (37), shown at the top of the next page.
Hence, there are 2kν + 1 non-zero elements in each row of
Hi, as shown in Fig. 2b, and the input-output relation for (29)
is written as

y[p] =

P∑
i=1

1

N
hie

ı2πc1l
2
i

(p+loci+kν)N∑
q=(p+loci−kν)N

eı
2π
N (−qli+Nc2(q

2−p2))

× eı2π(p−q+ai+loci)−1

eı
2π
N (p−q+ai+loci)−1

x[q] + w̃[p], 0 ≤ p ≤ N − 1.

(38)
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Hi[p, q] =

{
eı

2π
N

(Nc1l2i−qli+Nc2(q2−p2))

N Fi(p, q) (p+ loci − kν)N ≤ q ≤ (p+ loci + kν)N

0 otherwise
. (37)

loci

(a) Integer Doppler shift

loci

2kν + 1

(b) Fractional Doppler shift

Figure 2: Structure of Hi for (a) integer and (b) fractional
Doppler shifts.

It should be noted that the range for the sum is circulant, i.e,
when it is from N−3 to 1, it is counted as N−3, N−2, N−
1, 0, 1.

E. AFDM Parameters

The performance of DAFT-based modulation schemes crit-
ically depends on the choice of parameters c1 and c2. For
instance, OCDM uses c1 = c2 = 1

2N , whereas in DAFT-
OFDM c2 = 0 and c1 are adapted to the delay-Doppler
channel profile to minimize ICI. Nevertheless, both schemes
fail to achieve the optimal diversity order in LTV channels, as
shown in Section VII. In the proposed AFDM, we find c1 and
c2 for which the DAFT domain impulse response constitutes a
full delay-Doppler representation of the channel. This allows
AFDM to achieve the optimal diversity order in LTV channels,
as shown in Section IV. For that, the non-zero entries in each
row of Hi for each path i ∈ {1, . . . , P} should not coincide

with the position of the non-zero entries of the same row
of Hj for any j ∈ {1, . . . , P} such that j ̸= i. Observing
(33) and (37), the location of each path depends on its delay-
Doppler information and AFDM parameters. For the integer
and fractional Doppler shifts, loci and loci,frac are in the
following range

−αmax + 2Nc1li ≤ loci ≤ αmax + 2Nc1li, (39)

−αmax−kν+2Nc1li ≤ loci,frac ≤ αmax+kν+2Nc1li, (40)

respectively. Therefore, for the positions of the non-zero
entries of Hi and Hj to not overlap, the intersection of the
corresponding ranges of loci and locj for the integer case and
loci,frac and locj,frac for the fractional case should be empty,
i.e,

{−αmax + 2Nc1li, ..., αmax + 2Nc1li}∩
{−αmax + 2Nc1lj , ..., αmax + 2Nc1lj} = ∅, (41)

{−αmax − kν + 2Nc1li, ..., αmax + kν + 2Nc1li}∩
{−αmax − kν + 2Nc1lj , ..., αmax + kν + 2Nc1lj} = ∅.

(42)
For the paths with different delays, assuming li < lj , satisfy-

ing (41) and (42) is equivalent to satisfying the constraints

2Nc1 >
2αmax

lj − li
, (43)

2Nc1 >
2(αmax + kν)

lj − li
. (44)

If there is sparsity in the time-domain impulse response of the
channel, for the integer case c1 is set to

c1 =
2αmax + 1

2N mini,j(lj − li)
, (45)

and for the fractional case c1 is chosen as

c1 =
2(αmax + ξν) + 1

2N mini,j(lj − li)
, (46)

for some ξν ≤ kν whose value is discussed later on. In the
case of no delay sparsity, then the minimum value of lj − li
is one, then (45) and (46) simplify to

c1 =
2αmax + 1

2N
, (47)

c1 =
2(αmax + ξν) + 1

2N
, (48)

respectively. Through ξν , there is flexibility in setting c1 and
reducing pilot overhead (see section VI) at the expense of
|Heff | no longer being strictly circulant. Moreover, the only
remaining condition for the DAFT-domain impulse response to
constitute a full delay-Doppler representation of the channel is
to ensure that the non-zero entries of any two matrices Himin

and Himax corresponding to paths imin and imax with delays
limin

≜ mini=1···P li and limax
≜ maxi=1···P li, respectively,

do not overlap due to the modular operation in (33) and (37).
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−αmax 0 αmax

l = 0

. . .

−αmax αmax

l = i

. . .

−αmax αmax

l = lmax

O

−αmax

.

.

.

O

−αmax αmax

l = 0

. . .

−αmax αmax

l = i

. . .

−αmax αmax

l = lmax

O

.

.

.

−αmax 0 αmax

. . .

−αmax αmax

l = i

. . .

−αmax αmax

l = lmax

O

−αmax 0

l = 0

Figure 3: Structure of Heff in AFDM for the integer case.

This overlapping never occurs if 2αmaxlmax+2αmax+lmax <
N for the integer case and 2(αmax+kν)lmax+2(αmax+kν)+
lmax < N for the fractional case. Since wireless channels are
usually underspread (i.e., lmax ≪ N and αmax ≪ N ), this
condition is satisfied even for moderate values of N .

With this parameter setting, channel paths with different
delay values or different Doppler frequency shifts become
separated in the DAFT domain, resulting in Heff having the
structure shown in Fig. 3 (for the fractional case, αmax should
be replaced with αmax + ξν). Thus, we get a delay-Doppler
representation of the channel in the DAFT domain since the
delay-Doppler profile can be determined from the positions
of the non-zero entries in any row of Heff . This feature can
be obtained by neither DAFT-OFDM (since by construction
the effective channel matrix is made as close to diagonal as
possible to reduce ICI), nor OCDM (since setting c1 = 1

2N ,
there may exist two paths i ̸= j such that the non-zero entries
of Hi and Hj coincide under some delay-Doppler profiles of
the channel). In the next section, we show that this unique
feature of AFDM translates into being diversity order optimal
in LTV channels. Also, this parameter setting results in the
subcarriers ϕn(m) = 1√

N
· eı2π(c1n2+c2m

2+nm/N) having a
time-frequency content that is distinct from all so-far existing
waveforms. This time-frequency content is illustrated in Fig.
4 and is compared to that of OCDM and OFDM.

IV. DIVERSITY ANALYSIS

In this section, we analyze the diversity order of AFDM.
Qualitatively speaking, the diversity order of a waveform is
the slope of its bit error rate (BER) performance curve in the
high-SNR regime. Its more precise definition is given in (53)
based on the pairwise error probability (PEP). Due to space
limitations, diversity analysis is presented only in the case of
integer Doppler shifts. However, Theorem 1 given below, also
holds for the fractional Doppler case. To this end, we rewrite
(28) as

y =

P∑
i=1

hiHix+ w̃ = Φ(x)h+ w̃, (49)

where h = [h1, h2, . . . , hP ] is a P ×1 vector and Φ(x) is the
N × P concatenated matrix

Φ(x) = [H1x | . . . | HPx]. (50)

We now express PEP. First, we normalize the elements of x
so that the average energy of x is one, thus the signal-to-noise
ratio (SNR) is given by 1

N0
. Assuming perfect channel state

information and ML detection at the receiver, the conditional
PEP between xm and xn, i.e., transmitting symbol xm and
deciding in favor of xn at the receiver, can be upper bounded
as

P (xm → xn) ≤
r∏

l=1

1

1 +
λ2
l

4PN0

(51)

where λl is the l-th singular value of the matrix Φ(δ(m,n))
and δ(m,n) = xm − xn. At high SNR, (51) becomes

P (xm → xn) ≤
1

1
N0

r

r∏
l=1

λ2
l

4P

. (52)

We can see from (52) that the exponent of the SNR term, 1
N0

,
is r, which is equal to the rank of the matrix Φ(δ(m,n)). The
overall BER is dominated by the PEP with the minimum value
of r, for all m,n,m ̸= n. Hence, the diversity order of AFDM
is given by

ρ = min
m,n m ̸=n

rank(Φ(δ(m,n))). (53)

First, we show that for DAFT-based multi-carrier schemes, a
necessary (but not sufficient) condition to achieve the optimal
diversity order, i.e., ρ = P , is

∀i, j ∈ [1, · · · , P ], loci ̸= locj . (54)

The above condition can hold for AFDM, but not for OCDM
and DAFT-OFDM. For that sake, we assume that there exist
channel paths i and j such that the locations of their cor-
responding non-zero elements in the channel matrix are the
same, i.e., loci = locj . We then show that the optimal diversity
order cannot be achieved under this assumption. Indeed, for
the optimal diversity order, the matrix in (55), shown on the
next page, composed of the columns i and j of Φ(δ) should be
of rank 2 for all possible values of δ where q0 = loci = locj .
However, when δ is such that it has a single non-zero element,
the two columns of the matrix in (55) are dependent, hence
the rank of this matrix cannot be 2. Consequently, the rank of
Φ(δ) cannot be P and the condition in (54) is thus necessary
for the optimal diversity order. Therefore, proving that AFDM
achieves the optimal diversity order is equivalent to proving
that tuning c2 can make matrix Φ(δ) to be full rank.

Theorem 1. For a linear time-varying channel with a maxi-
mum delay lmax and maximum normalized Doppler shift αmax,
AFDM with c1 satisfying (47) achieves the optimal diversity
order (ρ = P ) if

2αmax + lmax + 2αmaxlmax < N. (56)

Proof. See Appendix A.
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N∆t
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∆t

AFDM (αmax = 1)

N∆t
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N−1
N∆t

Subcarrier #0

Subcarrier #m

Subcarrier #N − 1

Figure 4: Time-frequency representation of OFDM, OCDM, and AFDM subcarriers
Hi[1, q0]δ[q0] Hj [1, q0]δ[q0]

Hi[2, (q0 + 1)N ]δ[(q0 + 1)N ] Hj [2, (q0 + 1)N ]δ[(q0 + 1)N ]
...

...
Hi[N, (q0 +N − 1)N ]δ[(q0 +N − 1)N ] Hj [N, (q0 +N − 1)N ]δ[(q0 +N − 1)N ]

 , (55)

V. LOW-COMPLEXITY WEIGHTED MRC-BASED DFE
DETECTION

Although for showing the diversity order of AFDM ML
detection is used, it is prohibitively complex to implement in
real-world communication systems. For that, in this section,
we propose a low-complexity detector. The first step is to place
some null symbols that allow approximating the truncated part
of Heff as a band matrix. This also simplifies the input-output
relation as the modular operation is no longer needed (see
Fig. 5). Note that these symbols do not entail extra overhead
as they can serve not only the proposed detection algorithms
but also embedded pilot aided channel estimation. Due to the
structure of Heff , the number of the null guard symbols should
be greater than

Q ≜ (lmax + 1)(2(αmax + ξν) + 1)− 1. (57)

Taking into account the zero padding, the vector of DAFT
domain received samples writes as

y = Heffx+ w̃, (58)

where x and Heff are the truncated parts of x and Heff ,
respectively (see Fig. 5). They can be expressed using the
matrix T = [IN ]Q−(αmax+ξν):N−(αmax+ξν)−1,: as x = Tx
and Heff = HeffT

H .
Using LMMSE equalization for (58) requires O(N3) flops,

which can be prohibitive for large N . We hence propose a
weighted MRC-based DFE exploiting the sparse representation
of the communication channel provided by AFDM.

As shown in Fig. 5, Heff has L non-zero entries per column,
where L = P for the integer Doppler shift case and L =
(2ξν + 1)P for fractional Doppler shift case, with L ≤ Q
in both cases. Each of these non-zero entries of a column of
Heff provides a copy of the data symbol corresponding to the
index of this column. We propose a detection scheme where
each data symbol is detected from a weighted MRC of its L
channel-impaired received copies. Fig. 6 depicts an instance

Q+ 1

Heff
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Figure 5: Truncated parts of x and Heff
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Figure 6: Weighted MRC operation for N = 8 with a 3-path
channel with Q = 2.

of this detector for AFDM with N = 8 and a 3-path channel
with Q = 2. The proposed detector is iterative, wherein each
iteration, the estimated inter symbol interference is canceled
in the branches selected for the combining. Considering the
structure of Heff , it can be seen that each received symbol
y[k] is given by
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y[k] =

L−1∑
i=0

Heff [k, p
i
k]x[p

i
k], (59)

where pik is the column index of the i-th path coefficient in
row k of matrix Heff . Let bik be the channel impaired input
symbol x[k] in the received samples y[qik] after canceling
the interference from other input symbols, where qik is the
row index of the i-th path coefficient in column k of ma-
trix Heff . In each iteration, assuming estimates of the input
symbols x[k] are available, either from the current iteration
(for pj

qik
< k, j = 0, ..., L − 1) or previous iteration (for

pj
qik

> k, j = 0, ..., L− 1), bik can be written as

bik = y[qik]−
∑

pj

qi
k

<k

Heff [q
i
k, p

j
qik
]x̂[pj

qik
](n)

−
∑

pj

qi
k

>k

Heff [q
i
k, p

j
qik
]x̂[pj

qik
](n−1),

(60)

where superscript (n) denotes the n-th iteration. It can be
seen that for each symbol x[k], we need to compute L scalars.
This operation has complexity order of O(L2). However, when
computing bik for all symbols k, there are some redundant
operations involved that can be avoided by instead computing
bik as follows

bik = ∆y[qik]
(n) +Heff [q

i
k, k]x̂[k]

(n−1). (61)

Here, ∆y
(n)
qk(i)

is the residual error remaining while reconstruct-
ing the received symbols and is given by

∆y[qik]
(n) = y[qik]−

∑
pj

qi
k

<k

Heff [q
i
k, p

j
qik
]x̂[pj

qik
](n)

−
∑

pj

qi
k

≥k

Heff [q
i
k, p

j
qik
]x̂[pj

qik
](n−1).

(62)

Define g
(n)
k and d as

g
(n)
k ≜

L−1∑
i=0

H∗
eff [q

i
k, k]b

i
k =

L−1∑
i=0

H∗
eff [q

i
k, k]∆y[qik]

(n) + dx[k](n−1),

(63)

d ≜
L−1∑
i=0

|Heff [q
i
k, k]|2. (64)

It should be noted that since |Heff | is a circulant matrix, the
value of d is independent of k and needs to be computed only
once. We now denote the SNR by γ. Instead of directly using
g
(n)
k /d as the estimate of xk (which would have amounted to

using the MRC criterion), we define the symbol estimate as

x̂[k](n) = c
(n)
k , (65)

c
(n)
k ≜

g
(n)
k

d+ γ−1
=

1

d+ γ−1

L−1∑
i=0

H∗
eff [q

i
k, k]∆y[qik]

(n)

+
d

d+ γ−1
x̂[k](n−1).

(66)

We later show (see Section V-2) that this weighting of g
(n)
k

while computing x̂
(n)
k guarantees that the iterative detection

algorithm converges to the LMMSE estimate of the symbols
vector x. In each iteration, after estimation of each symbol
x[k](n), the values of ∆y[qik]

(n) for i = 0, . . . , L− 1 need to
be updated using

∆y[qik]
(n) = ∆y[qik]

(n) −H∗
eff [q

i
k, k]x[k]

(n) − x[k](n−1)).
(67)

Once all symbols are estimated, they are used for interference
cancellation in the next iteration. The algorithm continues until
the maximum number of iterations (niter) is reached or the
updated input symbol vector is close enough (less than ϵ) to
the previous one, as summarized in Algorithm 1. Computing
the complexity of Algorithm 1 is straightforward as it only
involves scalar operations. Step 3 to step 8 requires 2L CMs,
3L + 1 CAs and 1 CD. Therefore, its total complexity is
niter(5L+ 1)(N −Q).

Algorithm 1: Weighted MRC-based DFE detection

Data: Heff , d, y, x̂(0) = 0, ∆y(0) = y
1 for n = 1 : niter do
2 for k = 0 : N-Q-1 do
3 g

(n)
k =

∑L−1
i=0 H∗

eff [q
i
k, k]∆y[qik]

(n)+dx[k](n−1)

4 c
(n)
k =

g
(n)
k

d+γ−1

5 x̂[k](n) = c
(n)
k

6 for i = 0 : L-1 do
7 ∆y[qik]

(n) =
∆y[qik]

(n)−H∗
eff [q

i
k, k](x[k]

(n)−x[k](n−1))
8 end
9 end

10 if ||x̂(n) − x̂(n−1)|| < ϵ then EXIT;
11 end

1) Convergence: The detector convergence is analyzed
using properties of iterative methods for linear systems. To
this end, Algorithm 1 can be expressed in the matrix form as

x̂(n) =
d

γ−1 + d
x̂(n−1)+

1

γ−1 + d
(HH

effy−Lx̂(n)−(LH+D)x̂(n−1)),

(68)
where D = dI, L and LH are the matrices containing

diagonal elements, strictly lower and upper triangular parts
of the Hermitian matrix HH

effHeff , respectively. Equation (68)
can be rewritten in the form

x̂(n) = −S−1(R− S)x̂(n−1) +M−1b, (69)

where S = (γ−1 + d)I + L, R = HH
effHeff + γ−1I and b =

HH
effy. The iteration in (69) is convergent if the spectral radius

of the matrix −S−1(R−S), denoted as ρ(−S−1(R−S)), is
strictly smaller than one [26], [27].

Theorem 2. The iteration in (69) is convergent (i.e.,
ρ(−S−1(R− S)) < 1) if R = HH

effHeff + γ−1I is a positive
definite Hermitian matrix.

Proof. See Appendix B.
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Figure 7: Symbol arrangement at the transmitter
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Figure 8: Received frame at the receiver

2) Relation to the Gauss-Seidel method: LMMSE equal-
ization is equivalent to solving the system of linear equations
(HH

effHeff + γ−1I)x = HH
effy. One way to solve it is using

the properties of the Gauss-Seidel iterative method for solving
linear equations [26]. According to this method, decomposing
HH

effHeff + γ−1I additively in its diagonal part (d + γ−1I),
its strict lower triangular part L as well as its strict upper
triangular part LH , gives x(n) as

x̂(n) = −((γ−1 + d)I+ L)
−1

LHx(n−1)

+ ((γ−1 + d)I+ L)
−1

HH
effy.

(70)

This means that the weighted MRC-based DFE converges
to the LMMSE estimate. This is confirmed in the simulation
results section.

VI. EMBEDDED CHANNEL ESTIMATION

In order to perform detection, the channel matrix Heff

should be known at the receiver side. To enable that, we
propose a channel estimation scheme based on the trans-
mission of an embedded pilot symbol xpilot in each AFDM
frame surrounded by Q null guard samples on each side
of xpilot (where Q is defined in (57)) and N − 1 − 2Q
data symbols xdata

0 , . . . , xdata
N−2−Q. The guard samples separate

the data symbols from the pilot symbol so that the channel
estimation can be done at the receiver without any interference
from the data symbols. Equivalently, data detection using the
estimated channel is performed without interference from the
pilot symbol.

We place xpilot as the first symbol in the frame as shown
in Fig. 7:

x[p] =


xpilot, p = 0

0, 1 ≤ p ≤ Q,NQ + 1 ≤ p ≤ N − 1

xdata
p−Q−1, Q+ 1 ≤ p ≤ NQ,

(71)

where NQ ≜ N − Q − 1. Considering the channel model
defined in (23), three parameters of each path, delay, Doppler
shift, and complex gain, i.e., 3P unknown parameters θ =
[h0, ..., hP−1, l0, ..., lP−1, ν0, ..., νP−1] should be estimated.
As shown in Fig. 8, the part of the received signal that
is related to the pilot symbol is considered for the channel
estimation. These symbols are expressed by the following
equation

y
E
= Heff,ExE + w̃E , (72)

where E stands for ”Estimation” phase, xE , y
E

and Heff,E

are the parts of x, y and Heff related to the channel es-
timation, respectively. They can be expressed by the ma-
trix Tt,E = [IN ]indt,E ,: and Tr,E = [IN ]indr,E ,: where
indt,E = [0 : Q NQ + 1 : N − 1] and indr,E = [0 :

αmax + ξν NQ + αmax + ξν + 1 : N − 1] as xE = Tt,Ex,
y
E

= Tr,Ey and Heff,E = Tr,EHeffT
H
t,E . Considering the

ML detector, the log-likelihood function to be minimized is
given by

l(y
E
|θ,xE) = ∥y

E
−Heff,ExE∥2. (73)

Considering (49), it can be written as

l(y
E
|θ,xE) = ∥y

E
−

P−1∑
i=0

hiHi,ExE∥2. (74)

where Hi,E = Tr,EHiT
H
t,E . Since xE has only one non-

zero element at the first entry, Hi,ExE = xpilothi,E,1 where
hi,E,1 is the first column of Hi,E and is thus dependent on
li and νi as can be seen from (33) and (37), i.e., hi,E,1 =
hi,E,1(li, νi) or equivalently hi,E,1 = hi,E,1(li, αi, ai). Thus,
the ML estimator is given by

θ̂ = arg min
θ∈CP×RP×RP

∥y
E
− xpilot

P−1∑
i=0

hihi,E,1(li, νi)∥2.

(75)
As brute force search is infeasible in a 3P -dimensional
continuous domain, we propose a low complexity solution to
(75). For given {li, νi}, the log-likelihood function in (74) is
quadratic in the complex gain hi. Therefore, solving (75) with
respect to hi leads to the linear system of equations

P−1∑
j=0

hjh
H
i,E,1(li, νi)hj,E,1(lj , νj) =

hH
i,E,1(li, νi)yE

xpilot

, i = 0, 1, · · · , P − 1.

(76)

Expanding (75) and using (76), the minimization with respect
to the {li, νi} reduces to maximizing the function

l2(yE
|θ, xpilot) =

P−1∑
i=0

|hH
i,E,1(li, νi)yE

|2

hH
i,E,1(li, νi)hi,E,1(li, νi)

−
(
∑

j ̸=i hjh
H
i,E,1(li, νi)hj,E,1(lj , νj))y

H
E
hi,E,1xpilot

hH
i,E,1(li, νi)hi,E,1(li, νi)

.

(77)
Now considering (76) and (77), we show how channel estima-
tion is performed for the integer and fractional Doppler shift
cases in the following subsections.

A. Integer Doppler Case
In this case (νi = αi), as it can be seen from (33), hi,E,1

has only one non-zero element. In addition, for different paths,
the location of these non-zero elements are different from each
other, i.e,

hH
i,E,1(li, αi)hj,E,1(lj , αj) =

{
1, i = j

0, i ̸= j
. (78)



11

Thus, (76) and (77) are rewritten as

hi =
hH
i,E,1(li, αi)yE

xpilot
, i = 0, 1, · · · , P − 1, (79)

l2(yE
|θ, xpilot) =

P−1∑
i=0

|hH
i,E,1(li, αi)yE

|2, (80)

respectively. Thus, the delays and Doppler shifts, i.e., l ≜
[l0, ..., lP−1] and α ≜ [α0, ..., αP−1] can be estimated as the
argument maximizing the r.h.s. of (80). Due to the structure
of hi,E,1(li, αi), maximizing the r.h.s. of (80) is equivalent to
finding the indices of the largest entries of y

E
. After finding

the pair of parameters {li, αi} for all the paths, the paths
complex gains can be obtained using (79).

B. Fractional Doppler Case

For the fractional case (νi = αi + ai), as it is shown in
(37), (78) cannot in theory hold. Therefore, it is impossible
to directly maximize (77) as the complex gains hi are not
known. Moreover, the second term in (77) depends on all pairs
of {li, νi} for j ̸= i. However, assuming large enough ξν ,
the value of hH

i,E,1(li, αi, ai)hj,E,1(lj , αj , aj) is very small
when i ̸= j. Thus, for the fractional case, we exploit this
approximation and assume that (78) holds to maximize (77).
With this assumption, in order to find the {li, νi} pairs that
maximize (77), first, we find the delay and integer part of the
Doppler shift, i.e, l and α. To this end, we denote all the
delays and integer Doppler shifts combinations set by L ≜
{(l,α)|0 ≤ l[i] ≤ lmax,−αmax ≤ α[i] ≤ αmax} and pick the
one that maximizes (77). In the next phase, the fractional parts
a ≜ [a0, ..., aP−1] are estimated using the obtained delay and
integer Doppler shifts as

â = argmax
a

P−1∑
i=0

|hH
i,E,1(l̂i, α̂i, ai)yE

|2

hH
i,E,1(l̂i, α̂i, ai)hi,E,1(l̂i, α̂i, ai)

, (81)

using a search on fine discretization of [−1/2, 1/2]P . Then,
the estimated Doppler shifts become ν̂ ≜ [ν̂0, ..., ν̂P−1] =
α̂+ â. The complex gains are estimated by solving the linear
system (76). It is worth noting that this algorithm has good
performance if the paths have different delays, i.e., for each
delay, there is only one Doppler shift.

VII. SIMULATION RESULTS

In this section, we provide simulation results to assess the
performance of AFDM. In all simulations, the complex gains
hi are generated as independent complex Gaussian random
variables with zero mean and 1/P variance. The carrier
frequency is 4 GHz. BER values are obtained using 106

different channel realizations.
Fig. 9a shows the simulated BER performance of AFDM

for different channels with N = 16 and BPSK using the ML
detection. We consider three different channels with different
numbers of paths, namely a 2-path, a 3-path , and a 4-path
channel. The maximum delay spread (in terms of integer taps)
is set to be 2 (lmax = 1), 3 (lmax = 2) and 4 (lmax = 3),
respectively. The duration between two successive delay taps
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NOTFS = 4 and MOTFS = 4.

Figure 9: BER performance using BPSK in LTV channels
using ML detection.

is approximately 41.6 µs. The maximum Doppler shift is
considered αmax = 1, which corresponds to a maximum
speed of 405 km/h. We observe that for each channel, AFDM
achieves the optimal diversity order of the channel. Note that
the plots of s1(SNR)−2, s2(SNR)−3 and s3(SNR)−4 are
only used to identify the slope of the curves and do not
represent an upper bound.

Before proceeding further, we recall that in OTFS the
time–frequency signal plane is sampled at intervals TOTFS

(seconds) and ∆fOTFS (Hz), respectively to obtain a grid as

ΛOTFS = {(nTOTFS,m∆fOTFS)

, n = 0, · · · , NOTFS − 1,m = 0, · · · ,MOTFS − 1},
(82)

and modulated time–frequency samples X[n,m], n =
0, ..., NOTFS − 1,m = 0, ...,MOTFS − 1 are transmitted
over an OTFS frame with duration Tf−OTFS = NOTFSTOTFS

and occupy a bandwidth BOTFS = MOTFS∆fOTFS. In
order to compare the performance of AFDM against OTFS,
we assume N = MOTFSNOTFS so that the AFDM and
OTFS frames occupy the same time-frequency resources. We
also compare the computational complexity of OTFS with
AFDM. In the symplectic finite Fourier transform (SFFT)
implementation of OTFS [28], the transmitter includes, in
addition to OFDM modulation, an FH

MOTFS
⊗ FNOTFS

step
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whose complexity is equivalent to MOTFSNOTFS-sized (N -
sized) FFT, i.e., (N/2) log2 N complex multiplications. For
AFDM, there are two additional phase rotations, which require
2 additional complex multiplications per symbol compared
to the transmitter of an OFDM system, which means the
additional complexity is 2N complex multiplications. Table
I summarizes this complexity comparison1.

Table I: Excess complexity of OTFS and AFDM transmitters
over OFDM transmitter.

Waveform Complex Multiplication

OTFS (N/2) log2 N
AFDM 2N

Fig. 9b shows the BER performance of AFDM, OFDM,
OCDM, and OTFS. For the DAFT-based schemes, we generate
the frames with N = 16. OTFS frame is generated with
NOTFS = 4 and MOTFS = 4. The maximum delay spread
is set to be lmax = 2 and the maximum Doppler shift is
αmax = 1. The delay shifts are fixed and Jakes Doppler
spectrum is considered for each channel realization, i.e, the
Doppler shifts are varying and the Doppler shift of each path
is generated using αi = αmaxcos(θi), where θi is uniformly
distributed over [−π, π]. Expectedly, OFDM has the worse
performance as it cannot separate the paths. The performance
of OCDM depends on the delay-Doppler profile of the chan-
nel. OCDM performs poorly and has the same diversity (one)
as OFDM, due to the possible destructive addition of the
two overlapping paths. The reason why OCDM has better
performance than OFDM is related to its better path separation
capabilities than OFDM. The proposed AFDM achieves the
optimal diversity order, mainly due to path separation by
tuning c1 and setting c2 to be an arbitrary irrational number
or a rational number sufficiently smaller than 1

2N . We also
observe that AFDM has the same BER performance as OTFS.
The reason AFDM and OTFS have (almost) the same BER
performance is because AFDM and OTFS both achieve a full
delay Doppler representation of the channel, i.e., of the paths
of the effective channel (in the DAFT domain for AFDM, in
the delay-Doppler domain for OTFS) each corresponds to one
delay tap-Doppler bin pair of the wireless propagation channel
and each has the same path gain under both AFDM and OTFS
(strict equality holds at least in the case of integer valued
Doppler shifts). As mentioned earlier, this feature enables
AFDM to achieve the optimal diversity order of the LTV
channels. While OTFS does not strictly speaking achieve the
diversity order of the LTV channel, the number of codeword
pairs with PEP that decays with slope 1 with respect to the
SNR is too small to have an effect on the overall PEP in the
intermediate SNR regime [21] .

In the previous figures, small N values are assumed along
with ML detection to show the diversity order of AFDM. In the
following figures, we consider a more practical configuration
with QPSK, N = 256 for the DAFT-based schemes and
NOTFS = 16, MOTFS = 16 for the OTFS. We consider a

1We compare AFDM only with SFFT-based OTFS, since the DZT-based
OTFS [29] has limitations in terms of spectral shaping and compatibility with
OFDM transceivers.
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Figure 10: BER and spectral efficiency performance of OFDM,
OCDM, OTFS and AFDM using MMSE detection.

3-path channel. The maximum Doppler shift is αmax = 2,
which corresponds to a speed of 540 km/h, and the Doppler
shift of each path is generated using Jakes Doppler spectrum.
The maximum delay spread is set to be lmax = 2. Fig. 10a
shows the BER performance of the DAFT-based schemes
and OTFS. All results are obtained with LMMSE detection
at the receiver. We observe that AFDM outperforms OFDM
and OCDM, while having identical performance with OTFS.
However, when channel estimation is taken into account, the
pilot overhead of OTFS is twice that of AFDM due to the 2D
structure of its underlying transform. Indeed, while the AFDM
embedded pilot scheme presented in Section VI occupies
2(lmax+1)(2(αmax+ξν)+1)−1 entries out of the N entries
of the AFDM symbol, its OTFS counterpart [22] requires
(4(αmax + ξν) + 1) (2lmax + 1) (for the integer Doppler shifts
ξν = 0 ). This difference as shown in Fig. 11 translates into a
significant advantage of AFDM over OTFS in terms of spectral
efficiency, as shown in Fig. 10b. The spectral efficiency values
were derived from the BER values plotted in Fig. 10a.

Fig. 12 compares the performance of AFDM and OFDM
in terms of BER using different detectors. In this figure,
integer and fractional Doppler shifts are considered. We ob-
serve that AFDM outperforms OFDM, owed to achieving the
optimal diversity order and every information symbol being
received through multiple independent non-overlapping paths.
Moreover, it shows that the weighted MRC-based DFE has
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Figure 12: BER performance comparison between AFDM and
OFDM systems using different detectors for the integer and
fractional Doppler shifts.

close performance to exact LMMSE, which validates Theorem
2. In Fig. 12a, all BER curves (i.e., of the two methods
and of low-complexity MMSE [2] based on banded matrix
approximation) coincide because the channel matrices used in
the three detection methods are all the same and are banded
without approximation. In Fig. 12b, exact LMMSE has slightly
better performance than the low-complexity methods due to
the use of the banded-matrix approximation in the latter when
Doppler frequency shifts are fractional.

We now assess the BER performance of AFDM when
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Figure 13: BER versus SNRd for the integer Doppler case
with different SNRp and ideal channel.

detection is performed based on the channel state information
given by the proposed channel estimation scheme. The pilot
symbol SNR is denoted by SNRp =

|xpilot|2
N0

and the data

symbols have the SNRd = E{|xdata|2}
N0

. Fig. 13 shows the BER
versus SNRd for AFDM considering the ideal case of perfect
channel knowledge at the receiver as well as the case where
the channel is estimated using the proposed algorithm for
integer Doppler case with different values of SNRp. As SNRp

increases, the BER decreases and the AFDM performance
improves. Moreover, we see that for SNRp = 35 dB, the
performance of AFDM with the proposed channel estimation
is very close to the ideal case.

Fig. 14a shows the BER performance of AFDM for dif-
ferent SNRp considering the fractional Doppler shift case.
Similar to the integer Doppler shift case, increasing the pilot
power improves the error performance. As we can see, with
SNRp = 40 dB, AFDM with the proposed embedded channel
estimation has similar performance with AFDM with perfect
channel knowledge at the receiver. Note that the system has
more overhead in the fractional Doppler shift case. In addition,
larger SNRp is needed to achieve the same performance. Note
that in practice, it is possible to assume larger values for SNRp

compared to SNRd since the zero guard samples surrounding
the pilot symbol allow for the transmit power of the latter
to be boosted without violating the average transmit power
constraint. Under ideal receiver-side channel knowledge, it
can be seen from Fig. 14b that increasing ξν , improves
the performance of AFDM, as less overlapping is occurring
between the matrices Hi belonging to different channel paths
in the effective channel matrix Heff . With practical channel
estimation, Fig. 14b shows that increasing ξν also improves
the channel estimation quality, since inter-path interference
when channel estimation algorithm for fractional Doppler shift
case is performed decreases for the same reason, i.e, less
overlapping between the matrices Hi.

VIII. CONCLUSION

We proposed a new waveform, coined AFDM, which em-
ploys multiple discrete-time orthogonal chirp signals generated
using the discrete affine Fourier transform. The unique features
and effects of DAFT were revealed by deriving the input-
output relation. Using the input-output relation, the AFDM
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parameters can be tuned such that the DAFT domain channel
impulse response constitutes a full representation of its delay-
Doppler profile. Then, we showed analytically that AFDM
can achieve the optimal diversity order in doubly dispersive
channel by properly tuning its pulse parameters. Inserting zero-
padding in the DAFT domain, we proposed a low complex-
ity detector and channel estimation algorithms for AFDM.
Simulation results showed that AFDM outperforms OFDM
and other DAFT-based multicarrier schemes, while having
advantages over OTFS in terms of pilot and user multiplexing
overhead. The main takeaway of this paper is that AFDM is
a promising new waveform for high mobility communications
in future wireless systems.

APPENDIX A
PROOF OF THEOREM 1

We give the proof of Theorem 1 only in the case of integer
Doppler shifts. The proof holds also for the fractional Doppler
shift with some modifications.

First, we show that when (47) and (56) hold, there exist
values of c2 such that the rank of Φ(δ) is equal to P , i.e.,
such that the P columns of Φ(δ) are linearly independent.
Therefore, considering the Φ(δ) for a P -path channel, shown
at the top of the next page, we should show that

β1H1δ + β2H2δ + · · ·+βPHP δ = 0
→ β1 = β2 = · · · = βP = 0,

(84)

which is proved by contradiction. Assume that there is at least
one βi ̸= 0 and β1H1δ+β2H2δ+· · ·+βPHP δ = 0. Without
loss of generality (wlog), we assume β1 ̸= 0. Dividing both
sides of the vector equality in (84) by β1 and considering the
first entry of the resulting vector, we have

δ[loc1] = −H[0, loc2)]

H[0, loc1]

β2

β1
δ[loc2]−· · ·−H[0, locP ]

H[0, loc1]

βP

β1
δ[locP ].

(85)
In addition, by taking to account the Heff expression, we
have
H[0, loci]

H[0, locj ]
= eı2πc2(loc

2
i−loc2j )eı

2π
N (Nc1(l

2
i−l2j )−locili+locj lj).

(86)
Now we can rewrite (85) using (86)

δ[loc1] = e−ı2πc2loc
2
1eı

2π
N (Nc1(−l21+loc1l1))

×
P∑
i=2

eı2πc2loc
2
i eı

2π
N (Nc1l

2
i−locili)β′

iδ[qi],
(87)

where β′
i = −βi

β1
. Note that δ ∈ Z[j]N×1, therefore since

δ[loc1] ∈ Z[j], then the r.h.s. of (87) should be in Z[j] to
have the equality. On the other hand, choosing an irrational
number for c2, then eı2πc2q

2
i is an irrational number and since

(87) should hold for different values of δ, the effect of c2
should be removed from this equation. This can be done by
choosing

β′
i = eı2πc2q

2
1e−ı2πc2q

2
i µi, i = 2, · · · , P (88)

where µis do not contain c2 in their phases. Now in order to
have (87) hold, at least another βi should be non-zero. Again
wlog, assume the non-zero one is β2. Dividing both sides of
the vector equality in (84) with β2 and considering the second
entry of the resulting vector we get

δ[(loc2 + 1)N ] = e−ı2πc2(loc2+1)2N eı
2π
N

(Nc1(−l22+(loc2+1)N l2))

×
P∑

i=1,i ̸=2

eı2πc2(loci+1)2N eı
2π
N

(Nc1l
2
i−(loci+1)N li)β′′

i δ[(loci + 1)N ],

(89)
where β′′

i = −βi

β2
. With the same explanation, β′′

i s are

β′′
i = eı2πc2(q2+1)2N e−ı2πc2(qi+1)2Nµ′

i, i = 1, · · · , P, i ̸= 2.
(90)

Putting (88) and (90) together shows

β′
2 =

1

β′′
1

, (91)

which leads to

eı2πc2(loc
2
2−(loc2+1)2N+loc21−(loc1+1)2N)µ2µ

′
1 = 1. (92)

On one hand, since loc1 ̸= loc2, loc22 − (loc2 + 1)2N + loc21 −
(loc1 + 1)2N cannot be zero and on the other hand, we know
that µi and µ′

i do not contain c2 in their phases. Therefore
the c2 effect in the phase cannot be removed and the l.h.s.
of (92) is an irrational number while the right one is integer.
Thus, our initial assumption does not hold and β1 = · · · =
βP = 0, which means that the P columns of Φ(δ) are linearly
independent, i.e., the rank of Φ(δ) is P .
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Φ(δ) = [H1δ | . . . | HP δ] =
Heff [0, loc1]δ[loc1] · · · Heff [0, locP ]δ[locP ]

Heff [1, (loc1 + 1)N ]δ[(loc1 + 1)N ] · · · Heff [1, (locP + 1)N ]δ(locP+1)N
...

. . .
...

Heff [N − 1, (loc1 +N − 1)N ]δ[(loc1 +N − 1)N ] · · · Heff [N − 1, (locP +N − 1)N ]δ[(locP +N − 1)N ]

, (83)

APPENDIX B
PROOF OF THEOREM 2

In order to prove the convergence, we should show that
|λ(−S−1(R − S))| < 1, where λ denotes any eigenvalue of
−S−1(R − S). For the corresponding eigenvector v, where
vHv = β > 0, we can write

−S−1(R− S)v = λ(−S−1(R− S))v. (93)

After multiplying both sides of (93) by vHS, it writes as

λ(−S−1(R− S)) =
vH(−(R− S))v

vHSv
. (94)

Considering S = (γ−1+d)I+L and R = HH
effHeff+γ−1I =

L+ LH + (d+ γ−1)I, (94) becomes

λ(−S−1(R− S)) =
−vHLHv

(γ−1 + d)vHv + vHLv
. (95)

Since R is positive definite Hermitian matrix, any non-zero
vector including v satisfies

vH(HH
effHeff + γ−1I)v = vH(L+ LH + (d+ γ−1)I)v

= β(d+ γ−1) + 2R(vHLv) > 0,
(96)

where (96) can be written as

a = R(vHLv) = R(vHLHv) >
−β(d+ γ−1)

2
, (97)

and the imaginary part is equal to

b = I(vHLv) = −I(vHLHv). (98)

Therefore, (94) can be rewritten as

|λ(−S−1(R− S))| = |a− ıb|
|β(γ−1 + d) + a− ıb| . (99)

From (97) and (99), it can be seen that |λ(−S−1(R−S))| < 1.
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