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ABSTRACT

Setting linear constraints on HMM model space appears to
be very effective for speaker adaptation. In doing so, we as-
sume that model parameters are jointly Gaussian. While this
approach has proven reasonably successful, we question it
accuracy in the case of very high dimensionality parameter
spaces.

To address this problem, we employ a hierarchical piece-
wise linear model. Gross speaker variations are mod-
eled with a linear eigenspace, subsuming the joint Gaus-
sian model, and finer residues are modeled using another
eigenspace chosen depending on the location of the first val-
ues. We perform experiments on Wall Street Journal (WSJ)
dictation task, and we observe a cumulative 1.3% WER im-
provement (11% relative) when using self-adaptation.

1. EIGENVOICES WITH MLLR MODELS

Using the eigenvoices approach in combination with MLLR
is not a new idea. In this section, we will briefly introduce
the notation and fundamental equations used in the next sec-
tions.

1.1. Gaussianity of MLLR rows

Speaker dependent models are needed to build the
eigenspace. However, for large vocabulary applications,
building these models is difficult because of data spar-
sity and memory requirements. In practice, most systems
use MLLR-adapted models [1]. MLLR transforms model
means�m by a matrixW = [w1; :::; wN ]T :
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The feature space has dimensionN . Each rowwk has di-
mensionN + 1.

We are concerned with the adaptation of mean vec-
tors, with diagonal covariance matrices. The expected log-

likelihood after E-step of the Baum-Welch algorithm is
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whereC is a constant independent of the transformation.
The indexm refers to a Gaussian distribution. Without loss
of generality, we only explore the case of a global trans-
formation matrix. By hypothesisC�1

m is a diagonal matrix
with elementsrk. The ML estimate [2] for the MLLR row
yk has precisionGk:

yk := G�1
k zk; (3)

zk =
X
t;m

m(t)rko
(t)
k �m; (4)

Gk =
X
t;m

m(t)rk�m�
T
m: (5)

Rearranging the terms of eq.(2) as in [3], we obtain:
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whereC 0 completes the quadratic form. The sum is over all
rowsk of the transformation matrix. In eq. (6) we interpret
MLLR rows as Gaussian with meanyk and precisionGk.

1.2. Eigenvoices with MLLR-adapted models

To be effective in fast speaker adaptation, we choose to
reduce the dimensionality of the problem [4]. We define
the set of speaker transformation parameters by stacking all
rows to form a supervectorw:

w =
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The dimension of the supervector isN(N + 1). We pos-
tulate that speaker supervectorsw lie in a low-dimensional
space of dimensionE < N(N+1). We stack ML estimates



of rowsyk to form the supervectory, and we approximate
it by:

w � P TPy; (8)

whereP is a projection matrix of dimensionE�N(N+1).
The matrixP is called the eigenspace and is estimated
as follows. We observe a collection ofT training speak-
ers.They form an observation matrixY = [y (1):::y(T )].
Then we chooseP to be theE first eigenvectors of the
matrix Y Y T . This will minimize the squared error of the
approximation:

P̂ = argmax
P

�
" = tr(PY Y TP T )

	
: (9)

Unfortunately, this is not guaranteed to maximize the likeli-
hood. In [5], we propose a normalization that ensures opti-
mality of the dimensionality reduction under the maximum
likelihood criterion.

1.2.1. Optimal estimators

Given this model, it is possible to find optimal estimators for
the location of a speaker transformation in eigenspace. Let
Pj be the matrix of rows ofP associated with transforma-
tion matrix rowj. Given the constraints of the eigenspace,
the ML estimate forwj is:

wj = Pj
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Similarly, the optimal eigenspace may be found by con-
sidering the location of training speakers as a hidden vari-
able. The eigen-decomposition is
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The optimal estimator is given in [1]. We obtain
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where super(�) is the supervector formed by the matrix.
Cheaper approaches are discussed in [1, 6].

2. PIECEWISE LINEAR DECOMPOSITION

We shall extend the model to linear piecewise models.
Instead of estimating MLLR parameters using a single
eigenspace, we approximate them instead using a collection
of eigenspaces, each of which are linear within a certain
range of eigenvalues.

We describe the new parametric form of model first,
and then proceed to detail its implications on maximum-
likelihood estimation of location (MLED), and eigenspace
(MLES).

2.1. The model

Because of its simplicity and the presence of closed-form
solutions, the linear assumption has proven very effective in
many pattern regression problems. However, the linearity
constraint has no legitimacy. In this section, we investigate
a simple non-linear model. Our model relies on the equation

w := P1�1 + P2(�1)�2: (13)

We have a linear model involving�1 andP1. Then, we set

P2(�1) =

�
P+
2 if �T1 v > 0;

P�

2 elsewhere.
(14)

The vectorv is called the discriminant. The residual space
is modelled by eitherP +

2 or P�

2 according to the discrim-
inant. The method is generalized to multiple discriminants
by taking all possibilities of the signs, as shown on figure 1.
For each regionRk we grow a different residual eigenspace.
Spaces are organized hierarchically. Not all dichotomies
have a a populated intersection. For our experiments, we

v1

v2

R2 R1

R3 R4

Fig. 1. Discriminants and regions

chose canonicalvk = [0Tk�1; 1; 0
T
E1�k

]T . For the particu-
lar case ofv1, it is equivalent to splitting according to the
gender. The dimensionality of�1 is E1. The vector0j is a
zero vector of lengthj. The regions are the quadrants of the
eigenspace.

2.2. Estimation of parameters

As with the standard eigenvoices, we are confronted to the
estimation of three kinds of parameters:

1. the initial eigenspaces and topology,

2. the eigenspaces in the Baum-Welch retraining,

3. the location of a speaker in the eigenspace.

The first item is the extension of PCA. The second one rep-
resents speaker adaptive training. They both have to do with
the estimation of hyperparameters. The third one is the ac-
tual adaptation process whereby SI models are altered. For
the logic of exposition, we answer these questions in reverse
order.



2.2.1. Optimal location

The MLED location is a linear programming problem. The
standard MLED formula in eq.(10) may be used. If the
best point falls out of region, then the search resumes on
the boundary region. We optimize the likelihood subject to
constraint directly:

�1; �2 = argmax
�1;�2

p(Oj�1; �2) (15)

It is possible to move the region assignment in the EM al-
gorithm. We obtain a soft-weighting comparable to a multi-
mixture eigenspace. We only consider the concatenated
vector� = [�T1 �

T
2 ]

T . For all available eigenspaces, we com-
pute �̂+ = argmax� p(Oj�) and similarly for�̂�. The re-
sulting combination is

� = �̂+p(Oj�+) + �̂�p(Oj��) (16)

The third, and fastest possibility which we have used in our
experiments, is to calculate the first part of the eigenlocation
�1, find the corresponding, eigenspace, and then� 2:

�̂1 = argmax
�1

p(Oj�1; �2 = 0); �2 = argmax p(Oj�2; �̂1)

(17)
This may be suboptimal but breaks the complexity into two
small MLED problems of eq.( 10).

2.2.2. Reestimation of eigenspace parameters

Once eigenvalues and their corresponding associated
eigenspaces are discovered, we reestimate the eigenspace
the same way we would optimize the linear eigenspace us-
ing eq.(12).

2.2.3. Discriminant functions: The Perceptron

We can also optimize the discriminative functions. The per-
ceptron algorithm [7] can be used to update the discrimi-
nant vectorsv. Suppose we want to find discriminant func-
tions for an arbitrary dichotomy of the set. For instance, in
the Wall Street Journal dictation task, the training set com-
prises data from two databases WSJ0 (or SI84), and WSJ1
(SI200), recorded in two different occasions. To fix ideas,
assume that we would like to separate the database com-
ponent explicitly. It does not appear to be associated to an
particular eigenvector. However, we premise that the im-
pact on recognition will be large. To train a sub-eigenspace
per database, consider the following problem. Let� be a
speaker base eigenvector. We would like to obtain

vT � > 0 if speaker is in WSJ0; and (18)

vT � < 0 if speaker is in WSJ1: (19)

If we switch the sign of all� corresponding to WSJ1 data,
we are left with the problem of solving the inequalities with
respect tov:

vT � > 0; 8�: (20)

If the system has a solution, it is called linearly separable.
Among all2T possible dichotomies, there are only
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which are linear separable. ForE = 20 andT = 284,
this amounts to about 17% of all possible dichotomies. The
system of inequalities is solved by defining first the opti-
mization criterion

J(v) :=
X
�2


vT �; 
 := all misclassified: (22)

By descending the gradient we obtain the notoriouspercep-
tron algorithm, which at each iterationk computes the set of
all misclassified� as
k and update the discriminant vector
vk using the learning rule:

vk+1  vk +
X
�2
k

�: (23)

If v is a solution, then we will converge in at mostK steps,

K =
maxj jj�j jj

2jjvjj2

(minj �Tj v)
2

<1: (24)

There are many extensions to this algorithm, in particular
in the case of non-separability. In last resort, we can in-
creaseE.

The perceptron approach is very effective when we would
like to specify some prior knowledge manually. It is also
useful when we need to update discriminant functions when
the eigenspaces are reestimated. Positive signs are enforced
when the discriminant maps� to the eigenspace with high-
est likelihood.

2.2.4. Regression Trees: Alternative to unsupervised clus-
tering

The power of piecewise linear models is introduced by the
dependency between eigenvalues and eigenspaces. One
possibility, especially popular in mixture modeling [8], ini-
tiates the algorithm with unsupervised clustering. This leads
to lack of genericity in cases where the amount of data is
sparse.

The use of hierarchical binary dichotomies for cluster-
ing is a proven approach with well-known efficiency. It
is called Classification and And Regression Trees (CART).
The algorithm uses a finite set of candidate discriminants. It
splits each cluster into two sub-clusters, choosing the best



discriminant according to a goodness of fit function. We
asserted gaussianty of samples and used entropy as the opti-
mization function. Unfortunately, however, since the num-
ber of speakers is rather small (T = 284), trees must be
rather small. Another limitation arises in the speaker adap-
tation task since there are only a few characteristics that are
known (age, accent, etc).

As discriminant functions, we used the quadrant func-
tions. We discarded the database discriminant since all test
data belong to WSJ0.

3. EXPERIMENTAL CONDITIONS

For our experiments we chose the Wall Street Journal
(WSJ1) Nov92 evaluation test. The training database, called
SI-284 consists of 37k sentences produced by 284 speak-
ers. The acoustic frontend uses 39 MFCC coefficients and
sentence-based cepstral mean subtraction (CMS). We train
a total of64k Gaussians with diagonal covariances, pooled
in 1500 mixtures. The language model (LM) for this task
is the standard trigram model provided by MIT. There are
about 20k words for decoding.

Our recognizer, calledEWAVES [9], is a lexical-
tree based, gender-independent, word-internal context-
dependent, one-pass trigram Viterbi decoder with bigram
LM lookahead. The systems runs at about 1.7 times real-
time each pass, with a search effort of about 9k states (on a
Pentium IV at 1.5 GHz).

There was one full MLLR regression matrix for each of
the following classes: silence, vowels, and consonants. For
all experiments, we operated in self-adaptation mode: a first
pass produces the most likely hypothesis. The second pass
exploits adapted models. Five iterations of within-word
Viterbi alignments are performed between passes.

Table 1 summarizes the results for MLLR only (MLLR).
Best results for MLED-MLLR were obtained usingE =
40. In piecewise linear functions, best results were obtained
using E1 = 15 dimensions as primary eigenspace and
E2 = 15 for residual eigenspaces. Surprisingly, only mi-
nor improvements were obtained by splitting gender (GD-
MLED). No improvements were obtained using CART over
simple discriminants.

WER
SI 10.8%
MLED - MLLR 9.8%
GD - MLED 9.7%
Piecewise MLED 9.5%

Table 1. Results

4. CONCLUSION

In this paper, we have introduced a non-linear scheme for
model space parameters. The models take the form of piece-
wise linear functions or mixture models. We assert that ty-
ing high energy coefficients of the SVD transformation al-
lows for more robust processing. Training schemes may
employa priori knowledge to train dichotomies using vari-
ants of the perceptron algorithm. CART techniques were
attempted as a clustering mechanism that aims at general-
ity. The use of hard functions allows for a faster decoding.
Training of eigenspaces use the EM algorithm and off-the-
shelf techniques developed in [1] and [8]. We have exper-
imented on the WSJ large-vocabulary dictation task. We
observe improvements over the standard gender-dependent
eigenvoices.

5. REFERENCES

[1] M. J. F. Gales, “Cluster adaptive training of hidden markov
models,” IEEE Trans. on SAP, vol. 8, pp. 417–418, 2000.

[2] C. J. Leggetter and P. C. Woodland, “Maximum likelihood
linear regression for speaker adaption of continuous density
hidden Markov models,”Computer Speech and Language,
vol. 9, pp. 171–185, 1995.

[3] M. Bacchian, “Using maximum likelihood linear regression
for segment clustering and speaker identification,” inProc.
of ICSLP, Beijing, China, Oct. 2000, vol. 4, pp. 536–539.

[4] R. Kuhn, J.-C. Junqua, P. Nguyen, and N. Niedzielski,
“Rapid Speaker Adaptation in Eigenvoice Space,”IEEE
Trans. on SAP, vol. 8, no. 6, pp. 695–707, Nov. 2000.

[5] P. Nguyen, L. Rigazio, C. Wellekens, and J.-C. Junqua,
“Construction of model space constratins,” inProc. of ASRU,
2001, p. To appear.

[6] P. Nguyen and C. Wellekens, “Maximum likelihood
Eigenspace and MLLR for speech recognition in noisy en-
vironments,” inProc. of Eurospeech, Sep. 1999, vol. 6, pp.
2519–2522.

[7] R. O. Duda and P. B. Hart,Pattern Classification and Scene
Analysis, Wiley, 1973.

[8] M. E. Tipping and C. M. Bishop, “Mixtures of Probablisitc
Principal Component Analysers,” Tech. Rep., Neural Com-
puting Research Group, Aston University, July 1998.

[9] P. Nguyen, L. Rigazio, and J.-C. Junqua, “EWAVES: an effi-
cient decoding algorithm for lexical tree based speech recog-
nition,” in Proc. of ICSLP, Beijing, China, Oct. 2000, vol. 4,
pp. 286–289.

[10] N. Wang, S. Lee, F. Seide, and L. Lee, “Rapid speaker adap-
tation usinga priori knowledge by eigenspace analysis of
MLLR parameters,” inProc. of ICASSP, 2001, vol. I, pp.
317–320.


