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Abstract—We study a pull-based communication system where
a sensing agent updates an actuation agent using a query control
policy, which is adjusted in the evolution of an observed infor-
mation source and the usefulness of each update for achieving
a specific goal. For that, a controller decides whether to pull an
update at each slot, predicting what is probably occurring at the
source and how much effective impact that update could have at
the endpoint. Thus, temporal changes in the source evolution could
modify the query arrivals so as to capture important updates.
The amount of impact is determined by a grade of effectiveness
(GoE) metric, which incorporates both freshness and usefulness
attributes of the communicated updates. Applying an iterative
algorithm, we derive query decisions that maximize the long-
term average GoE for the communicated packets, subject to cost
constraints. Our analytical and numerical results show that the
proposed query policy exhibits higher effectiveness than existing
periodic and probabilistic query policies for a wide range of query
arrival rates.

I. INTRODUCTION

The effectiveness problem in communication systems deals

with whether or not a message conveyed by a sender, leads to

a desirable impact at the receiver for achieving a specific goal.

This has been first articulated in [1], and has recently been

revived under the prism of goal-oriented semantic communica-

tion [2], [3]. In cyber-physical systems with interacting sensing

entities and actuation/monitoring agents, a message ought to

be generated and communicated if it can potentially have the

desired impact in the system. In this setting, the communication

goal determines the grade of effectiveness a message has

according to its usefulness or importance in fulfilling a set of

attributes required for achieving that goal. This approach has

the potential to enable system scalability and judicious use of

resources by avoiding the acquisition, processing, and transport

of information that turns out to be ineffective, irrelevant, or

useless.

In current networked intelligent systems, information trans-

fer, e.g., in the form of status update packets, over the network

is mainly done using a push-based communication model.

Packets are pushed toward the endpoint according to the

source’s decision, regardless of what and when the endpoint
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actually needs. On the other hand, we have the pull-based

communication framework, where the endpoint requests and

controls the type of the generated information and its arrival

time [4]–[8]. To this end, existing query policies overlook the

evolution of the source (what is probably happening on the

sensing side) and the expected importance or usefulness of the

updates at the time of pulling them. As a result, query-based

policies, even if they are aligned to the receiver’s objectives, do

not necessarily result in high system effectiveness. To address

this challenge and to bridge the pull-based with the push-based

world, we introduce a novel policy where the endpoint pulls

updates based on the statistics of the source and the previously

received updates. Thanks to this policy, the endpoint timely

adapts its query instances according to the received updates,

hence being able to capture updates (e.g., critical source events,

alarms, novelty, etc.) that have high impact for achieving the

subscribed goal. In a way, our policy can be seen as an adaptive

query policy where requests tend to align to the most useful or

important system-wise source realizations.

This paper falls within the realm of pull-based communica-

tion methods, but with a query control policy, owing to which

the query controller timely decides to pull updates following

the source changes and the updates’ expected usefulness. Our

work leverages the concept of Just-in-Time systems [9] and

extends prior work on query age of information (QAoI) [4]–

[8] into the systems where queries arrive at the right times to

request the source realizations (updates) with high usefulness

and significant effect at the endpoint. In this regard, a class

of optimal policies is derived to maximize the long-term

expected effectiveness of the update packets a sensing agent

sends to an acting agent, subject to a communication cost.

Our analytical and simulation results show that the proposed

query policy outperforms existing baseline approaches in terms

of effectiveness grade. Furthermore, we demonstrate that the

solution converges to a threshold-based query control scheme,

where the query controller can timely decide whether to pull an

update or not by merely looking up a table with the obtained

threshold boundaries for a given goal.

II. SYSTEM MODEL

We consider an end-to-end pull-based communication system

in which update packets are generated via a sensing agent

(SA) and transmitted to an actuation agent (AA) for taking

appropriate actions at the endpoint and fulfilling the subscribed



goal. The packet generation is done in the event of receiving

a query from a query controller at the AA. Here, the packets

contain status updates of a sensor observing an information

source/event or payload data from the application layer towards

the network. We assume the system operates in a slotted manner

with time slots n, for n ∈ N. At the n-th time slot, the query

arrival indicator is denoted by αn = {0, 1}, with αn = 1
indicating the arrival of a query, and αn = 0, otherwise.

Thus, the set of slots at which queries arrive is defined as

N = {n | ∀n : αn = 1}. The update and query channels are

assumed to be error-prone and error-free, respectively, and the

whole duration of receiving a query and the consequent update

acquisition and its communication is normalized into one time

slot. Also, we consider xn the update communicated at slot n,

which can be seen as some form of semantic representation.

In parallel with its acquisition, the n-th update is evaluated

based on its usefulness for satisfying the goal and is attributed

a rank of importance (value) at the source level in the form

of a meta-value vn, ∀n ∈ N [10, Section III-A]. For the sake

of generality, we assume that vn is a random variable (r.v.)

that follows a discrete-time Markov process with finite state

space V = {νi | i = 1, 2, ..., |V|} and transition matrix Pv =
[pij ]|V|×|V| with pij = Pr(vn+1 = νj | vn = νi). From an

effectiveness viewpoint, a successfully received update has a

specific impact at the receiver or decision-making side. In the

proposed model, we consider that the goal is perfectly known

at both SA and AA, thus the same framework is employed to

measure the usefulness of updates at both ends.1

A. Query Control Policies

We consider that the query controller can apply two different

types of policies to pull updates from the SA in a pull-based

system, as follows.

1) Effect-agnostic policy: Under this policy, the queries

arrive with a controlled query rate, pursuing a specific schedule

or a stochastic process, e.g., Poisson, binomial, and Markovian

[5]–[8]. Therefore, the existing effect-agnostic policies pose

aleatoric uncertainty associated with the nature of random

updates by ignoring what is probably occurring at the source

during the time of pulling those updates.

2) Effect-aware policy: With this policy, the AA tries to

infer or predict the probable state of the source and the expected

usefulness of an update at the time of the decision, hence adapt-

ing its query instances and pulling updates to the right time

slots. This can be done via building or updating a model of the

source’s process at the AA. Owing to this policy, albeit packet

generation and communication is requested by queries, what

happens at the source is also considered. Therefore, epistemic

uncertainty arises with the effect-aware policy, as decisions are

done based on probabilistic predictions, instead of accurate

knowledge. This uncertainty could be reduced or harnessed

using for instance machine learning or prediction methods. We

delve into this query control problem in Section IV.

1The analysis can be easily extended to the case where the goal is not shared,
but the AA, based on the received updates, may learn or estimate the probability
distribution of the updates’ usefulness at the endpoint.

III. GRADE OF EFFECTIVENESS METRIC

To model effectiveness, we advocate for a metric that in-

volves two system-level attributes: freshness and usefulness

of the successfully received updates. Freshness describes how

obsolete an update gets as time passes from the instant it is cor-

rectly received at the AA. This attribute is commonly quantified

via the age of information (AoI) metric or its variants. Besides,

the usefulness signifies the rank of importance, as defined in

Section II, each correctly received packet offers at the endpoint.

With the above explanation in mind, we propose the grade of

effectiveness (GoE) metric for measuring the amount of impact

an update has at the endpoint.

A. GoE Formulation

The GoE for the update packet communicated at the n-th

time slot is denoted by GoEn ∈ R
+
0 and modeled in the form

of a composite function f : R+
0 ×R

+
0 → R

+
0 of the AoI, called

∆n for the n-th time slot, and the usefulness of that update,

i.e., vn, to satisfy the subscribed goal. Thus, we can write2

GoEn = f
(
g∆(∆n), gv(vn)

)
(1)

where g∆ : R+
0 → R

+
0 is a non-increasing penalty function, and

gv : R+
0 → R

+
0 shows a non-decreasing utility function. In (1),

∆n = n −m with ∆0 = 1, and m = max
i:αi(1−ǫi)=1, i≤n

i. Also,

ǫn = gǫ(d(xn, x̂n)) depicts the update discrepancy, where x̂n

indicates the received update at the AA, gǫ : R+
0 → {0, 1} is

the mapping function to the Boolean space, and d : R → R
+
0

is a distance function. In (1), if we overlook the usefulness of

updates or their freshness, the GoE metric turns into the penalty

definition for the query AoI (QAoI), i.e., GoEn = f
(
g∆(∆n)

)
,

or the utility formulation for the value of information (VoI), i.e.,

GoEn = f
(
gv(vn)

)
, respectively.

B. The Pull-Based System’s GoE

Since the update acquisition and communication is done on

the condition of receiving queries in the pull-based system,

GoE(pull)
n becomes limited to the slots at which the queries

arrive, i.e., ∀n ∈ N . From (1), we can write

GoE(pull)
n = GoEn |αn=1×1(αn = 1) (2)

where 1(·) denotes the indicator function.

IV. QUERY CONTROL

In this section, we first formulate the query control problem

for the effect-aware policy, and we then propose a solution for

the defined decision/control problem.

A. Problem Formulation

The objective is to maximize the long-term expected GoE

via controlling the query arrivals, subject to a constraint on the

average communication cost Cmax, which cannot be surpassed.

2The GoE metric can be seen as a particular case of the Semantics of
Information (SoI) metric [2], [11] and can also be defined in various forms
based on the scenario, including that utilized for active fault detection in [12].



In this sense, a class of optimal policies, named π∗, is derived

by solving an optimization problem as follows

P1 : max
π

lim sup
N→∞

1

N
E

[ N∑

n=1

GoE(pull)
n

∣
∣GoE

(pull)
0

]

s.t. lim sup
N→∞

1

N
E

[ N∑

n=1

gc(αncn)

]

≤ Cmax (3)

where gc : R+
0 → R

+
0 is a non-decreasing function, and cn

indicates the communication cost at the n-th time slot.

We cast P1 into an infinite-horizon constrained Markov

decision process (CMDP) based on the following definitions:

I) States: The state at the n-th slot depicts the GoE and

is denoted with a tuple Sn = (∆n, vn). Without loss

of generality, we consider the AoI to be truncated by

the maximum value of ∆max, which is large enough to

represent excessive staleness and meet g∆(∆max−1) ≤
(1 + ε)g∆(∆max) with accuracy ε. Given this, Sn is a

member of the state space S = {σi | i = 1, 2, ..., |S|},
which is countable and finite with |S| = ∆max · |V|.

II) Actions: With regard to Section II, we define the action

space A with two possible outcomes: αn = 1 for pulling

an update, and αn = 0 for keeping silent.

III) Transition probabilities: The transition probability from

Sn to Sn+1 under the action αn is P (Sn, αn, Sn+1) =
Pr((∆n+1, vn+1) | (∆n, vn), αn), ∀n, where we define

• Pr((1, νj) | (∆n, νi), αn) = pijαn(1−p
(n)
ǫ ), ∀i, j,

• Pr((min{∆n+1,∆max}, νi) | (∆n, νi), αn) = αnp
(n)
ǫ +

(1−αn), ∀i.

Otherwise, we have P (Sn, αn, Sn+1) = 0. Here, νi, νj ∈

V , and p
(n)
ǫ = Pr(ǫn = 1).

IV) Rewards: The reward of going from Sn to Sn+1 in the

course of the action αn is R(Sn, αn, Sn+1) = GoE
(pull)
n+1 .

With the above definitions in mind, we give the following

proposition that states that the expected sum of GoE in (3) is

the same for all initial states, hence there exists an optimal

stationary policy for the defined problem.

Proposition 1. The modeled CMDP pursues the weak acces-

sibility (WA) condition.

Proof. We can partition the space set S into two subsets Sa =
{Sn ∈ S |Sn = (1, νn), ∀νn ∈ V} and Sb = S − Sa. The

primary subset contains all states whose ∆n = 1, hence |Sa| =
|V|. The latter subset includes the rest of the states with ∆n ≥
2, and |Sb| = (∆max−1) · |V|. In this regard, all states of Sb are

transient under any stationary policy, while every state of an

arbitrary pair of two states in Sa is accessible from the other

state. Given this and considering the WA condition as in [13,

Definition 4.2.2], the modeled CMDP is weakly accessible.

As the WA condition holds for the modeled CMDP, it can be

concluded that the optimal expected GoE remains the same for

all initial states, i.e., GoE(pull)
n , ∀n, is independent of GoE

(pull)
0

[13, Proposition 4.2.3]. Moreover, Proposition 1 confirms the

existence of an optimal stationary policy π∗ for P1. This

optimal policy is unichain [13, Proposition 4.2.6]. To solve the

problem, we first relax its constrained form via defining a dual

problem, then we proceed with proposing an algorithm.

B. Dual problem

We convert the constrained form of P1 to an unconstrained

one via writing the Lagrange function L(µ;π) as follows

L(µ;π) = lim sup
N→∞

1

N
E

[ N∑

n=1

(

GoE(pull)
n −µgc(αncn)

)]

+ µCmax (4)

where µ ≥ 0 indicates the Lagrange multiplier. Then, we can

summarize the Lagrange dual problem to be solved as

P2 : inf
µ≥0

max
π
L(µ;π)

︸ ︷︷ ︸

:=h(µ)

(5)

in the form of an unconstrained MDP, where h(µ) = L(µ;π∗
µ)

shows the Lagrange dual function. Here, π∗
µ : S → A appears

as the µ-optimal policy and is derived from the dual problem

for a given µ, as π∗
µ = argmax

π

L(µ;π).

Since S has finite states, which ensures the growth condition

as in [14], and GoEn ≥ 0, ∀n, from (1), P1 and P2 converge to

the same optimal values [14, Corollary 12.2]. Therefore, we can

find the class of optimal policies π∗ after applying an iterative

algorithm approach [15].

C. Iterative Algorithm

The iterative approach is illustrated in Algorithm 1 with two

inner and outer loops for deriving the µ-optimal policy, i.e.,

π∗
µ, and the optimal Lagrange multiplier, i.e., µ∗, respectively.

1) Computing π∗
µ: In the inner loop, with a given µ from

the outer loop, the query policy is iteratively updated taking an

optimal action which maximizes the expected utility (value)

V
(t)
πµ (s) for the state s ∈ S at the t-th, t ∈ N, iteration.

Under the form of the value iteration approach for the unichain

policy MDPs [16], the optimal value function is derived from

Bellman’s equation [17], as follows

V
(t)
π∗

µ
(s) = max

α∈A

∑

s′∈S

P (s, α, s′)
[

Rµ(s, α, s
′)+V

(t−1)
π∗

µ
(s′)

]

.

(6)

Consequently, the optimal policy for s ∈ S is updated by

π∗
µ(s) ∈ argmax

α∈A

∑

s′∈S

P (s, α, s′)
[

Rµ(s, α, s
′)+V

(t−1)
π∗

µ
(s′)

]

(7)

where Rµ(s, α, s
′) := R(s, α, s′)− µgc(αc) is the net reward.

The inner loop stops once the stopping/convergence criterion

max
s∈S

∣
∣V

(t+1)
π∗

µ
(s)−V

(t)
π∗

µ
(s)

∣
∣ ≤ εv is satisfied, where εv indicates

the convergence accuracy. As the query policies are unichain

with aperiodic transition matrices, the above convergence cri-

terion is reached for some finite iterations [16, Theorem 8.5.4].

2) Computing µ∗: In order to find the optimal Lagrange

multiplier µ(l) at the l-th, l ∈ N, step of the outer loop,

according to the updated π∗
µ from the inner loop, we apply



Algorithm 1: Solution for deriving π∗ and µ∗.

Input: Known parameters N ≫ 1, cn, ∀n, εµ, Cmax, η,

states S , and actions A. Initial values l← 1,

µ(0) ← 0, µ− ← 0, µ+ ≫ 1, π−
µ ← 0, and

π+
µ ← 0. The form of gc.

1 Initialize π∗
µ(s), ∀s ∈ S , via running Utility(µ(0)).

2 if E
[
∑N

n=1 gc(αncn)
]

≤ NCmax then goto 10.

3 while |µ+−µ−| ≥ εµ do
Step l: ⊲ Outer loop (Bisection search)

4 Update µ(l) ← µ++µ−

2 and π∗
µ ← Utility(µ(l)).

5 if E
[
∑N

n=1 gc(αncn)
]

≥ NCmax then

6 µ− ← µ(l), and π−
µ ← Utility(µ−).

7 else µ+ ← µ(l), and π+
µ ← Utility(µ+).

8 Reset l← l + 1.

9 if E
[
∑N

n=1 gc(αncn)
]

< NCmax then

π∗
µ(s)← ηπ−

µ (s) + (1−η)π+
µ (s), ∀s ∈ S .

10 return µ∗ = µ(l) and π∗(s) = π∗
µ(s), ∀s ∈ S .

Function Utility(µ):
Input: Known parameters N ≫ 1, εv , states S , and

actions A. Initial values t← 1, π∗
µ(s)← 0,

and V
(0)
π∗

µ
(s)← 0, ∀s ∈ S .

Iteration t: ⊲ Inner loop (Value iteration approach)

11 for state s ∈ S do

12 compute V
(t)
π∗

µ
(s) from (6), then update π∗

µ(s) as

in (7) with the optimal action from V
(t)
π∗

µ
(s).

13 if max
s∈S

∣
∣V

(t+1)
πµ (s)−V

(t)
πµ (s)

∣
∣ ≥ εv then

14 step up t← t+ 1, and goto 11.

15 return π∗
µ.

the so-called bisection method with the stopping criterion

|µ+−µ−| ≤ εµ and the search accuracy εµ, as depicted in

Algorithm 1. From (4) and (5), the increase of µ continu-

ously increases the dual function h(µ) while decreasing the

net reward GoE(pull)
n −µgc(αncn) and the query arrival rate.

Thus, we search for the smallest value of µ that satisfies the

communication cost Cmax. Since GoE(pull)
n is independent of

µgc(αncn), one can verify that h(µ) is a Lipschitz continuous

function of µ with the Lipschitz constant of

∣
∣
∣
∣
Cmax − lim sup

N→∞

1

N
E

[ N∑

n=1

gc(αncn)

]∣
∣
∣
∣
.

Thus, the outer loop converges to the optimal multiplier after fi-

nite iterations [18, pp. 294]. The optimal value is attained based

on a simple non-randomized stationary policy or a mix of two

non-randomized policies with a mixing probability η, which

can be obtained such that E
[∑N

n=1 gc(αncn)
]
= NCmax [19].

Algorithm 1 has at most O(2LT∆2
max|V|

2) arithmetic op-

erations, where L and T indicate the step sizes of the outer

and inner loops, respectively. The increase of the states and the

iteration size of either loop increase the algorithm’s complex-

ity. Nevertheless, this complexity is manageable in real-world

scenarios owing to the following items:

� ∆max is set to a small value since the effectiveness of an

update at the endpoint saturates to a close to zero value

past a level of staleness, making that update not useful.

� As the usefulness of the updates can be normalized,i.e.,

νi ∈ [0, 1], ∀i ∈ V , a large outcome space is not

necessarily needed for V .

� The communication cost is usually fixed, thus reducing

the bisection search interval, hence L, after some trials.

D. Threshold-Based Query Control Model

Finding the optimal policy π∗ from Algorithm 1 gives us

a threshold criterion Ωth for every CMDP’s state, following

which maximizes the GoE of the system subject to the com-

munication cost. With Ωth in hand, the query controller timely

decides to pull an update or not based on the current AoI,

i.e., ∆n, and the meta-value of the latest correctly received

update at the query time, i.e., vm for m = max
i:αi(1−ǫi)=1, i≤n

i.

In this sense, the optimal action α∗
n for the n-th time slot can

be derived according to two alternative options, as given below.

Option I: The value of ∆th is a function of vm, where

Ωth = ∆
(vm)
th , hence α∗

n = 1(∆n ≥ ∆
(vm)
th | vm). (8)

Option II: The level of vth depends on ∆n. Thus, we have

Ωth = v
(∆n)
th , hence α∗

n = 1(vm ≤ v
(∆n)
th |∆n). (9)

V. SIMULATION RESULTS

We assess the performance of the proposed effect-aware

query control policy within N = 1000 time slots and

compare it with three existing effect-agnostic query arrival

models, namely (i) periodic model, and stochastic models

following (ii) binomial and (iii) Markovian process. For the

latter model, we have a Markov chain with two states of

“pulling an update” and “keeping silent”, in which the self-

transition probability of the latter state is 0.95, while the

one for the primary state relies on the query rate. The de-

fault query rate for the effect-agnostic policies is 0.8, unless

otherwise stated. Furthermore, we equally divide the interval

[0, 1] into |V| = 10 levels and initialize the importance set

V = {0, 0.11, 0.22, 0.33, 0.44, 0.56, 0.67, 0.78, 0.89, 1}, each

indicating a normalized rank of importance with pii = pij =
1
|V| , ∀νi, νj ∈ V . The maximum acceptable AoI is ∆max = 10,

and the probability of the update discrepancy is p
(n)
ǫ = 0.2, ∀n.

Also, for Algorithm 1, we set εv = εµ = 10−3 and η = 0.5.

For performance evaluation, we define a net GoE (NGoE)

metric, which incorporates the GoE and the cost, as follows

NGoE(pull)
n = exp

(
GoE(pull)

n −gc(αncn)
)

= exp
(
−vn∆n−c0αn

)
(10)

for the n-th slot, ∀n ∈ N , where the exponential form is

arbitrarily used to guarantee positiveness. In (10), without loss
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of generality, we employ a linear form for g∆, gv , and gc, and a

multiplication form for f according to (1). Besides, we consider

uniform cost cn = c0, ∀n, and unless otherwise specified, we

initialize c0 = 0.5 and Cmax = 0.4.

Fig. 1 depicts a 50-slot snapshot of the status update system

according to the arrived queries and the updates’ NGoE,

comparing the normalized GoE of the proposed effect-aware

with the periodic effect-agnostic query control policy. The latter

policy is assumed to have 7-slot period intervals. We observe

that our effect-aware policy enables capturing updates with the

highest NGoE, of which the horizons are highlighted. However,

in some slots, the effect-aware policy does not pull usefulness

updates due to the probabilistic uncertainties of the CMDP

problem, while the periodic one can catch them by chance.

Fig. 2 presents the cumulative distribution function (CDF) of

the average NGoE provided by applying the effect-aware and

effect-agnostic policies over N = 1000 time slots. It is shown

that the effect-aware policy highly boosts the effectiveness of

the system, thanks to its prediction of the updates’ usefulness

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Effect-aware (Simulation)
Effect-aware (Analytical)

Effect-agnostic (Periodic)

Effect-agnostic (Binomial)
Effect-agnostic (Markovian)

QAoI-aware
VoI-aware

A
v
er

ag
e

N
G

o
E

Controlled query rate

(a)

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1

0.12

Effect-aware (Simulation)
Effect-aware (Analytical)

Effect-agnostic (Periodic)

Effect-agnostic (Binomial)
Effect-agnostic (Markovian)

QAoI-aware
VoI-aware

A
v
er

ag
e

N
G

o
E

Controlled query rate

(b)

Fig. 3. The interplay between average NGoE and query rate for different query
control policies and cost coefficients (a) c0 = 0.1 and (b) c0 = 0.5.

and through pulling significant updates, compared to the effect-

agnostic policies. Specifically, the effect-aware policy increases

the effectiveness by 91%, 47%, and 149% on average, as

compared to the binomial, Markovian, and periodic models,

respectively. This comes at the cost of 16% on average higher

transmission rate for the effect-aware policy than the others.

Figs. 3 (a) and 3 (b) show the interplay between average

NGoE and controlled query rate for c0 = 0.1 and c0 = 0.5,

respectively, for effect-aware and effect-agnostic policies, as

well as for two special cases relevant to QAoI and VoI within

N = 1000 time slots. In the QAoI-aware case, decision policies

are obtained so as to maximize the long-term expected QAoI

regardless of the usefulness or importance of the updates,

whereas in the VoI-aware case, decision policies depend on the

expected VoI, without taking freshness into account. We can

see that the effect-aware policy outperforms the other effect-

agnostic policies for all query rates and under both cost values.

Comparing Fig. 3 (a) with Fig. 3 (b), we infer that, for c0 = 0.1,

the special cases offer almost the same performance as the
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Fig. 4. The expected utility obtained in each iteration of Algorithm 1.

effect-aware policy considering both freshness and usefulness

attributes. This is because all policies can pull the same updates,

thus having identical performance. However, for c0 = 0.5, the

effect-aware policy outperforms both special cases for all query

rates, even using fewer resources, owing to its effect-aware

query control. Also, since ∆n ≥ 1, and 0 ≤ vn ≤ 1, ∀n,

bypassing the freshness attribute in the GoE metric leads to a

significant performance drop. Besides, the increase of the cost

decreases the offered average NGoE, and that at a faster speed

for the effect-agnostic policies. Indeed, not useful or irrelevant

transmissions under the effect-agnostic policies result in higher

waste of resources and larger gap between the achieved NGoE.

To study the convergence of the iterative approach for solving

the CMDP problem regarding to Algorithm 1, we plot Fig. 4,

which illustrates the value (expected utility) obtained in each

iteration for different cost coefficients. It can be seen that the

policy convergences to its final value after 130, 133, and 137
iterations, sequentially, for the cost coefficients c0 = 0.1, c0 =
0.5, and c0 = 1. We can also observe that the value provided

in each iteration decreases by increasing the cost, in line with

the formulation of the CMDP’s rewards in Section IV-A.

Finally, Table I demonstrates the threshold boundaries for the

threshold-based query control model discussed in Section IV-D

for cost coefficients c0 = 0.5 and c0 = 1. The term “Silent”

corresponds to αn = 0, and “Pull” indicates αn = 1. Either

Option I or Option II could be applied to find Ωth based

on ∆
(vm)
th or v

(∆n)
th , respectively. As in Table I, the query

controller pulls updates in case vm ≤ 0.44, ∀m, regardless

of the current AoI. Also, updates are always pulled if ∆n ≥ 4,

∀n, independent of the degree of usefulness. For the above

conditions, we thus have fixed ∆th = 4 and vth = 0.44
under any cost coefficient for the primary and latter options,

respectively. In order to derive the optimal action for the other

conditions (CMDP’s states), the communication cost plays a

key role, hence resulting in variable threshold metrics. As the

cost increases, the controller should pull updates merely under

more critical conditions so as to increase the system’s NGoE.

VI. CONCLUSION

We have proposed an effect-aware query control policy

for pull-based communication systems, in which the query

controller timely decides whether to pull an update, depending

on the source’s evolution and the updates’ effectiveness at the

endpoint. We have considered the problem of GoE maximiza-

TABLE I
ILLUSTRATION OF THE THRESHOLD BOUNDARIES FOR THE

THRESHOLD-BASED QUERY CONTROL MODEL

vm

0 → 0.44 0.56 0.67 0.78 0.89 1

c
0
=
0
.
5

∆
n

1 → 2 Silent

3 Silent

4 → 10

Pull
Pull

Pull

c
0
=
1

∆
n

1 → 3 Silent

4 → 10
Pull

Pull

tion based on a CMDP with finite state spaces for the AoI

and the usefulness rank and have provided an algorithm to

find the class of optimal policies. Our results have shown that

the effect-aware query policy could provide significant gains in

terms of normalized GoE compared to effect-agnostic policies

for different query rates and communication costs.
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