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Abstract
In this paper, we analyze the semiblind mutual informa-

tion (MI) between the input and output of a MIMO channel.
To that end we consider the popular block fading model.
We assume that some training/pilot symbols get inserted at
the beginning of each burst. We show that the average MI
over a transmission burst can be decomposed into symbol
position dependent contributions. The MI component at a
certain symbol position optimally combines semiblind in-
formation up to that symbol position (with perfect input re-
covery up to that position) with blind information from the
rest of the burst. We also analyze the asymptotic regime
for which we can formulate optimal channel estimates and
evaluate the capacity loss with respect to the known chan-
nel case. Asymptotically, the decrease in MI involves Fisher
Information matrices for certain channel estimation prob-
lems. We also suggest to exploit correlations in the channel
model to improve estimation performance and minimize ca-
pacity loss.

1: Introduction
We consider single user spatial multiplexing systems

over flat fading MIMO channels. We furthermore consider
the usual block fading model in which data gets transmitted
over a number of bursts such that the channel is constant
over a burst but fading independently between bursts. The
transmitter is assumed to have no channel knowledge. The
formidable capacity increase realizable with such dual an-
tenna array systems has been shown [5],[2] to be propor-
tional to the minimum of the antenna array dimensions for
channel with i.i.d. fading entries. At least, this is the case
when the receiver has perfect channel knowledge. This con-
dition is fairly straightforward to approach in SISO systems
by inserting pilot/training data in the transmission, with ac-
ceptable capacity decrease [1]. For MIMO systems of large
dimensions though, the training overhead for good channel
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estimation quality becomes far from negligible though, es-
pecially for higher Doppler speeds such as in mobile com-
munications. The effect of channel estimation errors on
the MI has been analyzed in [4], whereas optimal design
of training based channel estimation has been addressed in
[6]. The true capacity of the system is higher though than
the MI obtained by training based channel estimates [2],[3].
In this paper, we attempt to approach the true capacity by
optimal semiblind channel estimation that is suggested by a
decomposition of the MI. Related background material ap-
peared in [7] where a variety of semiblind MIMO channel
estimation techniques were introduced.

2: Capacity Decomposition
We shall consider here the usual block fading model, except
that we shall refer to a block as burst; consider then trans-
mission over a MIMO flat fading channely � Hx� v, for
a particular burst ofT symbol periods. The accumulated
received signal over the burst is then:

Y � �IT �H� X � V (1)

whereY andV areNrT � � andX is NtT � �. H is
a Nr � Nt channel matrix.Nt (resp. Nr) is the number
of transmit (resp. receive) antennas. We assume the use of
a pilot training sequence of lengthNtTp, the length of the
transmitted data is thenNtTd so thatTp � Td � T . We
can decompose the burst signal into training and data parts
X � �XT

p � X
T
d �

T � Y � �Y T
p � Y

T
d �T andV � �V T

p � V T
d �T .

As stated in [6], the mutual information between the input
and the output of this system verifies:

I�Yp� Yd�XdjXp� � I�Yd�XdjXp� Yp� � I�Yp�XpjXd�
� I�Yd�XdjXp� Yp�

(2)
I�Yp� Xp�Xd� � � due to the independence betweenXd

and�Yp� Xp�. Consider now a partition ofXd in Q blocks
Xi� i � �� � � � � Q, Xd � �XT

� � � � � � X
T
Q�

T , of different
lengthsTi� i � �� � � � � Q�

P
i Ti � Td. Xi and Vi

are assumed independent from block to block (block-wise
coding across bursts). Let’s define for,j � i, Xj

i �

�XT
i � X

T
i��� � � � � X

T
j �T andY j

i � �Y T
i � X

T
i��� � � � � Y

T
j �T .

Then,



I�Yd�XdjXp� Yp� � I�Y Q
� �X�� X

Q
� jXp� Yp�

� I�Y Q
� �X�jXp� Yp� � I�Y Q

� �XQ
� jXp� Yp� X��

� I�Y Q
� �X�jXp� Yp� � I�Y Q

� �XQ
� jXp� Yp� X�� Y��

� I�Y��X
Q
� jXp� Yp� X��� �z �

��
(3)

where I�Y��X
Q
� jXp� Yp� X�� � h�Y�jXp� Yp� X�� �

h�Y�jXp� Yp� X�� X
Q
� �, and considering the fact thatXQ

� is
independent ofY� conditioned on�Xp� Yp� X��, this leads
to h�Y�jXp� Yp� X�� X

Q
� � � h�Y�jXp� Yp� X�� and finally

I�Y��X
Q
� jXp� Yp� X�� � �. Iterating the equation for

i � �� � � � � Q, this leads to the following:

I�Yd�XdjXp� Yp� �
PQ

i�� I�Y
Q
i �XijXp� Yp� X

i��
� � Y i��

� �

�

QX
i��

I�Yi�XijXp� Yp� X
i��
� � Y i��

� �� �z �
I�

�

Q��X
i��

I�Y Q
i���XijXp� Yp� X

i��
� � Y i

� �� �z �
I�

This clearly shows the way of processing to achieve capac-
ity: for every block we use the already detected blocks as a
(data-aided (DA)) training sequence (in addition to the ac-
tual training) and use the not yet detected blocks as blind
information. Also, the mutual information can be seen as
the sum of two parts:I�Yd�XdjXp� Yp� � I� � I� where:
I�: is the rate that we can achieve by using only the already
treated blocks for side information (DA training).
I�: is the additional amount of rate that can be achieved by
exploiting the blind information contained in the not yet de-
tected blocks.
The average mutual information is defined asIavg �
�
T I�Yd�XdjXp� Yp�. We want to show below that this quan-
tity goes to the coherent MII�y�xjH� asT andQ grow
for finite Tp, whereI�y�xjH� � lim

T��

�

T
I�Y �XjH� �

lim
i��

�

Ti
I�Yi�XijH�. An upper bound is given by:

Iavg � �

T
�h�Xd�� h�XdjXp� Yp� Yd��

� �

T
�h�Xd�� h�XdjXp� Yp� Yd�H��

� �

T
�h�Xd�� h�XdjYd�H��

� �

T
�I�Y �XjH�� I�Yp�XpjH��

� lim
T��

Iavg � I�y�xjH�

(4)

Also
I�Y Q

i �XijXp� Yp� X
i��
� � Y i��

� �

� h�Xi�� h�XijXp� Yp� X
i��
� � Y i��

� � Y
Q
i��� Yi�

� h�Xi�� h�XijYi� bH�Xp� Yp� X
i��
� � Y i��

� � Y
Q
i��� Yi��

� h�Xi�� h�XijYi� bH�Xp� X
i��
� � Yp� Y

i��
� � Y

Q
i��� �z �

�Y i

��

� I�Yi�Xij bH�i��
(5)

where bH�i� � bH�Xp� X
i��
� � Y i� is the optimal es-

timate of the channel (statistic of reduced dimension),

that verifies limi��
bH�i� � H a�s. Given that,

limi��
�
Ni
I�Y Q

i �XijXp� Yp� X
i��
� � Y i��

� � � I�y�xjH�.
This allows us to conclude thatlimT�� Iavg �
I�y�xjH�. Combining this result with (4) we conclude
that: limT��

�
T I�Yd �XdjXp� Yp� � I�y�xjH� � This

means that whenT grows, adopting the detection method
per block, and the associated channel estimation allows to
reach the capacity of the system assuming perfect channel
knowledge (see [3] for related results at high SNR).
Remark1: WhenT grows, the use of detected blocks only
to estimate the channel allows to achieve asymptotically the
MI Iavg of the system. But for finiteT , it is necessary to
also use the blind information to reach it.
Remark2: For a fixedT , and when all the entries ofX
(training and data) are iid, it’s easy to see that the average
MI Iavg of the system is maximized when the number of
the training symbolsTp is as small as possible (i.e. allows
semiblind identifiability of the channel).
Remark3: In the case where H is no longer constant, and
varies from block to blockH � H �i�, the (coherent) ca-
pacity of the system assuming perfect channel knowledge
is no longer achievable for largeT and the average MI is
bounded by:

�

T

QX
i��

I�Yi�Xij bHi� � Iavg �
�

T

QX
i��

I�Yi�XijHi� (6)

for any channel estimatebHi � bHi�Xp� X
i��
� � Y i�.

3: Channel estimation
3.1 Bayesian case (random channel with prior)

The capacityC of the system is the maximum MIIavg
over all input distributions, under a given power constraint.
We have

�
T

PQ
i�� I�Yi�Xij bH�i�� � C �

max
p�Xd��tr�RXd ��TdNt��x

�

T

QX
i��

I�Yi�XijH� �
(7)

This is valid for all choices of the partitioning ofXd into
Xi� i � �� � � � � Q, and in particular forQ � Td andTi � �.
For an AWGNV with power��v and in the absence of side
information on the channel at the transmitter (see [5]), the
max in the upper bound of the capacity (coherent capacity)
is attained for a centered white Gaussian input with covari-
anceRXd

� ��xINt Td .

�

T

TdX
i��

I�Yi�Xij bH�i�� � C �
T � Tp

T
E ln det�I�

��x
��v

HHH�

(8)
where bH�i� � bH�Xp� X

i��
� � Y i�.

The received signal isYi � HXi � Vi � bH�i�Xi �eH�i�Xi � Vi � bH�i�Xi � Vi � Zi, where we as-
sume bH�i� to satisfy the Pythagorean Theorem (PT) (i.e.



bH is decorrelated witheH). Now I�Yi� Xij bH�i�� �

h�Yij bH�i�� � h�YijXi� bH�i�� � h�Yij bH�i�� � h�Vi �

ZijXi� bH�i��. Under the above conditions and for uncor-
related and centered GaussianVi and Xi � XG

i (vari-
able with same 1st and 2nd order moments, but Gaus-
sian), it was shown in [6] that a lower bound for
I�Yi� Xij bH�i�� is given by consideringZi as an indepen-
dent and white Gaussian noise, with covariance��z I, where

��z � �
Nr
tr E�ZiZH

i � � ��x
tr E� eH�i� eH�i�H�

Nr
� Nt�

�
x�

�
eH�i�

and��eH�i�
� tr E� eH�i� eH�i�H�

Nr Nt
. The new lower bound is now:

C � �
T

PTd
i�� I�Yi�Xij bH�i��

�
T�Tp
T

PTd
i�� E ln det�I � ��x

��v�Nt��x�
�
fH�i�

bH�i� bH�i�H �

(9)

Let ��bH�i� �
tr E� bH�i� bH�i�H�

Nr Nt
andH

�i�
�

bH�i�

�
cH�i�

, then due to

the fact that the channel estimator satisfies the Pythagorean
Theorem, we have that��bH�i�

� ��eH�i�
� ��H . Now:

C �
T�Tp
T

PTd
i�� E ln det�I �

��x��
�
H��

�
fH�i� �

��v�Nt��x�
�
fH�i�

H
�i�
H

�i�H
�

� CLB
(10)

The expectation is over the distribution ofH
�i�

, which re-
mains close to that ofH�i�. Then the given capacity lower
boundCLB depends primarily on the Mean Square Error
(MSE) of the channel estimatorbH�i�. SinceCLB is a de-
creasing function of the MSE, the optimum estimator is the
Minimum Mean Square Error(MMSE) estimator:

bH�i�
MMSE � bH�i�

MMSE�Xp� X
i��
� � Y i�

� E�HjXp� X
i��
� � Y i�

(11)

which is an unbiased estimator ofH. The performance
of any unbiased estimator is bounded by the Cramer-Rao
lower bound:

Reh
�i�eh

�i� � Eeh�i�eh�i�T
� J��i� (12)

whereh � 	Re�vect�H��T Im�vect�H��T 
T andJ�i� is
the Bayesian Fischer Information Matrix (FIM) for the a
posteriori distribution ofH, and is in this case:

J �i� � �E �
�h

�
� ln p�HjXp�X

i��
� �Y i�

�h

�T
� �E

�

�h

�
� ln p�Xp� Yp� X

i��
� � Y i��

� jH�

�h

�T
� �z �

J
�i�
DAtraining

�E
�

�h

�
� lnp�Y Td

i��jH�

�h

	T

� �z �
J
�i�
blind

�E
�

�h

�
� ln p�H�

�h

�T
� �z �

J
�i�
prior

We have��eH�i�
� tr J��i�

Nt Nr
. This is an absolute lower

bound on the channel estimation MSE. The MMSE estima-
tor achieves this bound asymptotically (Td � 	). The
above result is also valid for the case when the channel
varies from block to block, since channel re-estimation for
every block is assumed.
3.2 Asymptotic Behavior

We focus here on the asymptotic behavior of the ca-
pacity loss for small channel estimation error. We sup-
pose that the channel is constant over every block, the mu-
tual information for the particular block (i) at the receiver
assuming channel estimation is thenI�Yi�Xij bH�i�� �

E�IH�i� �Yi�Xij bH�i��� , whereIH�i� �Yi�Xij bH�i�� is the ca-
pacity for a particular realization of the channel. It is as-
sumed here that the channelH�i� may vary from block to
block (while allowing an asymptotic regime). The MI as-
suming perfect channel knowledge and for a particular re-
alization isIH�i� �Yi�XijH

�i��. Let’s temporarily drop the
block index�i�.
In the following, we derive a weighting matrix that appears
in the asymptotic MI decrease and optimal semiblind chan-
nel estimate. The first order derivative ofIH �Y �Xj bH� with
respect toeH � H � bH evaluated ateH � � is zero:

�

�
eh
IH �Y �Xj bH�j eH�� � �

�
eh

�
h�X� � hH �XjY� bH�

�
j eH��

�
R R pH�Y�XjH�

pH�XjY�H�
�

�
eh
pH�XjY� bH�j eH��dXdY

�
R R

pH�Y jH� �

�
eh
pH�XjY� bH�j eH��dXdY

�
R
pH�Y jH� �

�
eh
��

Z
pH�XjY� bH�dX� �z �

��

�j eH��dY � � �

(13)
The second order derivative w.r.t.eH evaluated at� is:

�

�
eh

�
�IH�Y �Xj bH�

�
eh

�T
j eH�� � �E �

�
eh

�
� ln pH �Y j bH�

�
eh

�T
j eH��

�E �

�
eh

�
� ln pH �Y jX� bH�

�
eh

�T
j eH�� � JY �H� � JY jX�H�

(14)
JY andJY jX are FIMs describing the MI decrease due to

the channel estimation error and evaluated ateH � �. To
computeJY andJY jX , we consider a receiver point of view

in which, given a certain realizationH and a certainbH,eH is an unknown constant. ThenpH�Y jX� bH� � p�V �

� bH � eH�XjX� bH� � p�V � eHXjX� � p eH �eV jX� whereeV � V � eHX and the variableeV jX follows the same
distribution asV but with an offset (mean)eHX (notation
assumesNi � �). Now:

JY jX �H� � �E

�
�

�
eh

�
� ln p

fH
�eV jX�

�
eh

�T
j eH��

	
JY �H� � E�BBT � � B � � ln pH �Y j bH�

�
eh

j eH��



B � �
pH�Y jH�

�
R
pH�Y�Xj bH�dX

�
eh

j eH��

� �
pH�Y jH�

�
R
pH�Y jX� bH�p�X�dX

�
eh

j eH��

� �
pH�Y jH�

R �p
fH
�eV jX�

�
eh

j eH��p�X�dX

For bH in a small neighborhood ofH, the MI decrease is
approximated by a quadratic function:

IH�Y �Xj bH� � IH �Y �XjH� � �ehT W �H� eh
� ��bh� h�T �JY jX�H� � JY �H���bh � h�

(15)

The weighting matrixW �H� � JY jX�H��JY �H� is non-

negative definite sinceIH �Y �Xj bH� � IH �Y �XjH�.
Example: For white Gaussian and decorrelatedVi and
Xi, eVijXi is Gaussian with meaneHX and covariance

��vI: p eH�eVijXi� � �����v�
�NiNrx exp�

jeVi��INi� eH�Xij
�

��v
.

Then JYi�H� � � andJYijXi
�H� � Ni

��x
��v
I. As a re-

sult Wi�H� � Wi � Ni
��x
��v
I is constant. More gen-

erally, for any Gaussian noiseVi and zero mean input
Xi; JYi�H� � �, JYijXi

�H� � JYijXi
is constant and

Wi�H� �Wi � JYijXi
.

We now want to find the best channel estimator, that
minimizes the MI decrease. Then we need to mini-
mize the cost functionI�Y �XjH� � I�Y �Xj bH�S�� �

EfIH �Y �XjH�� IH �Y �Xj bH�S��g where for every block
i, bH is based onS�i� � �Xp� X

i��
� � Y i�. Asymptotically

minbh�S�
�I�Y �XjH�� I�Y �Xj bH�S���

� E	minbh�S�
Ef�bh�S� � h�TW �H��bh�S� � h�jSg


� bhopt�S� � �EfW �H�jSg����EfW �H�hjSg�
(16)

So bhopt is a weighted MMSE estimate. For centered in-
putX and Gaussian noiseV , W �H� � W and the opti-
mal channel estimator is the MMSE estimatorbhopt�S� �
W�� EfWhjSg � EfhjSg. The minimum mean MI de-
crease w.r.t. the perfectly known channel case is:

I�Y �XjH�� I�Y �Xj bHopt�S�� � E 	hTW �H�h

��EfW �H�hjSg�T �EfW �H�jSg����EfW �H�hjSg�
�

and all this so far for block�i�. The minimum mean MI de-
crease for the complete burst becomes, using the recursive
MI decomposition of section 2:PQ

i��	I�Yi�XijH
�i��� I�Yi�Xij bH�i�

opt�S
�i���


�
PQ

i��	EfhTW �H�i��h

��EfWihjS�i�g�T �EfWijS
�i�g����EfWihjS�i�g�g
�

whereWi � Wi�H�i�� � JYijXi
�H�i��� JYi�H

�i��.
In the case of a constant channel over the different blocks
(i.e H�i� � H� i � �� � � � � Q),

PQ
i�� I�Yi�XijH

�i�� gets
modified toI�Yd �XdjH� andWi�H�i�� toWi�H�.

3.3 Deterministic channel
In this case we have no prior information on the

channel. The channel is constant during the burst with
an unknown valueH. The coherent capacity is then
I�Yd�XdjYp� Xp�H�. For a given realizationY o of Y and a
(variable) channelbH, let’s defineG�Y o� Xp� bH� � h�X��

E�� ln q�XjY o� bH�� � h�Xd�� E�� ln q�XjY o
p � Y

o
d �

bH��
where the expectation here is with respect toXd (Xp is
known), andq�XjY o

p � Y
o
d �

bH� � p�XjY o
p � Y

o
d �H�jH� bH .

Let’s introduce a partition ofYd in which the different
blocks have the same lengthsNi � N�� i � �� � � � � Q and
are i.i.d. Then in�TG�Y o� Xp� bH� � �

T 	ln q�XpjY
o
p �

bH� �PQ
i���h�Xi� � E ln q�XijY

o
i �
bH��
, the averaging over the

blocks tends asymptotically to an expectation w.r.t.Y o
d . We

conclude that :
limT��

�
TG�Y o� Xp�H� � limT��

�
T flnp�XpjY

o
p �H�

�
PQ

i���h�Xi�� E ln p�XijY
o
i �H�g � I�y�xjH�

(17)
So
asymptoticallyG�Y o� Xp�H� approaches the mutual infor-
mation. Let’s defineG�� bH� � limT��

�
TG�Y o� Xp� bH�.

G��H�� G�� bH�

� �
N�

EX��Y�jH 	lnp�X�jY��H�� ln q�X�jY�� bH�


� �
N�

R
p�Y�jH��

R
p�X�jY��H� ln p�X�jY��H�

q�X� �Y�j bH�
dX��dY�

� �
N�

EY�jH 	D�p�X�jY��H�jjq�X�jY�� bH��
 � �

(Kullback-Leibner distance). This means thatG�� bH� is
maximized whenq�X�jY�� bH� � p�X�jY��H�. This fact,
combined with the hypothesis that the training part is suf-
ficiently informative to allow, together with the blind in-
formation, complete channel identifiability, ensures that
asymptotically (forTd andTp big enough)G�Y o� Xp� bH�

is maximized for bH � H. We can hence use the maxi-
mization ofG�Y o� Xp� bH� as optimization approach to find
a consistent channel estimator.
This method is related to the first iteration of an itera-
tive MAP/ML estimation approach for input signal/channel
with EM applied to the ML estimation part for the chan-
nel. The maximum a posteriori (MAP) estimate ofXd in
the MAP/ML approach is:

XMAP
d � argXd

max
Xd�H�

ln q�XjY o�H �� � (18)

Various solution techniques exist for this type of problem.
Consider an alternating maximization (betweenXd andH)
approach in which expectation overXd is introduced when
maximizing overH (EM-like approach). The iterations
comprise two steps. The first step for the first iteration
gives: bH � argmaxH� E�ln q�XjY o�H���

� argmaxH� G�Y o� Xp�H
�� �

(19)



This is a semiblind cost function for the channel estimation.
The second step consists of the MAP estimation of the input
assuming the channelH� � bH.
Remark1: The recursive decomposition of section 2 re-
mains valid in the deterministic channel case, and we can
process by successive detection of the symbols (blocks). To
have an acceptable algorithm complexity, one can choose
from a variety of channel updating techniques. Along the
lines of section 2, this approach allows to maximize the MI
for largeT .
Remark2: Similarly to the Bayesian case, we can evaluate

the asymptotic MI decrease asehT W �H� eh with W �H� �
JY jX �H�� JY �H�. In the deterministic case however, the
direct minimization of the MI decrease does not lead to a
meaningful channel estimator.

4 Correlated MIMO channel model
In order to improve channel estimation and reduce ca-

pacity loss, it is advantageous to exploit correlations in the
channel, if present. So consider the frequency-flat MIMO
channel:H �Nrx � Ntx�� h � vect�H�. The correlated
channel model we suggest is:
h � S g ( � g�h for direct path,jg�j � �)

where the elements ofg are taken to be i.i.d. Gaussian for a
stochastic model. The correlations are captured byS.
Special case 1: Bell-Labs/Saturn model:
H � R

���
r G R

H��
t � S � R

H��
t �R

���
r � g � vect�G�

Special case 2: Cioffi-Raleigh model (multipath model):
H �

X
i

gi ai b
H
i � S � 	b�� � a� b�� � a� 
 
 

 �

The modelh � S g is straightforwardly extendible to the
non-zero delay-spread case.

5 Observations
Capacity approaching channel estimation should exploit

prior info + data/decision aided info + (Gaussian) blind info.
The symbol-wise decomposition of the block fading chan-
nel capacity involves for each symbol position in a burst
a channel estimate that is based on: prior channel distri-
bution info, training and detected inputs up to that symbol
position, (Gaussian) blind info in remaining channel out-
puts. Hence, symbol-wise Gaussian semiblind (Bayesian)
channel estimation is required (blind parts: detected data +
Gaussian undetected data). To have asymptotically (in SNR
and burst length) negligible capacity loss, enough training
symbols are required to have (deterministic) identifiability
of the parameters that cannot be identified blindly (from
the Gaussian undetected symbols), hence blind (Gaussian)
info reduces training data requirements. Exploiting channel
correlations, the (effective) number of degrees of freedom
in the channel and hence the training requirements get re-
duced. The channel with i.i.d. entries, while optimal from
a capacity point of view, is the worst case from the channel
estimation point of view.

The recursive mutual info decomposition may suggest a
practical approach for channel estimation. However, sim-
pler practical approaches would pass through the bursts it-
eratively, with semiblind (blind info = Gaussian undetected
symbols) channel estimation in the first pass, and semiblind
(blind info = detected data) channel estimation in the next
iterations. Prior channel info (andS in the channel model)
gets estimated (sufficiently well) by considering the data in
multiple bursts jointly (assuming these parameters are in-
variant across a (large) set of bursts).

Whereas we have considered block fading so far in this
paper, we conjecture that these results extend to the continu-
ous transmission (CT) case: in steady-state, channel estima-
tion should be based on the semi-infinite detected past sym-
bols, and semi-infinite future blind channel information. A
Gauss-Markov model for the channel variations with a cer-
tain Doppler bandwidth will prevent perfect channel extrac-
tion from this infinite data though. Finally, the proposed
channel model is useful for the introduction of partial chan-
nel knowledge at the transmitter. Indeed, if the transmit-
ter can know the channel correlations summarized inS in
h � S g and only lacks knowledge of the fast fading pa-
rametersg, the channel capacity may be close to that of the
known channel case.
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