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Abstract

In this paper, we analyze the semiblind mutual informa-
tion (MI) between the input and output of a MIMO channel.
To that end we consider the popular block fading model.
We assume that some training/pilot symbols get inserted at
the beginning of each burst. \We show that the average Ml
over a transmission burst can be decomposed into symbol
position dependent contributions. The M| component at a
certain symbol position optimally combines semiblind in-
formation up to that symbol position (with perfect input re-
covery up to that position) with blind information from the
rest of the burst. We also analyze the asymptotic regime
for which we can formulate optimal channel estimates and
evaluate the capacity loss with respect to the known chan-
nel case. Asymptotically, the decrease in Ml involves Fisher
Information matrices for certain channel estimation prob-
lems. We al so suggest to exploit correlations in the channel
model to improve estimation performance and minimize ca-
pacity loss.

1: Introduction

We consider single user spatial multiplexing systems
over flat fading MIMO channels. We furthermore consider

estimation quality becomes far from negligible though, es-
pecially for higher Doppler speeds such as in mobile com-
munications. The effect of channel estimation errors on
the Ml has been analyzed in [4], whereas optimal design
of training based channel estimation has been addressed in
[6]. The true capacity of the system is higher though than
the MI obtained by training based channel estimates [2],[3].
In this paper, we attempt to approach the true capacity by
optimal semiblind channel estimation that is suggested by a
decomposition of the MI. Related background material ap-
peared in [7] where a variety of semiblind MIMO channel
estimation techniques were introduced.

2: Capacity Decomposition

We shall consider here the usual block fading model, except
that we shall refer to a block as burst; consider then trans-
mission over a MIMO flat fading channgl= H« + v, for

a particular burst of" symbol periods. The accumulated
received signal over the burst is then:

Y=(Ir@H)X+V 1)

whereY andV are N, T x 1l and X is N;T x 1. H is
a N, x N; channel matrix. V; (resp. N,) is the number

the usual block fading model in which data gets transmitted Of transmit (resp. receive) antennas. We assume the use of
over a number of bursts such that the channel is constan@ Pilot training sequence of lengh,7;,, the length of the
over a burst but fading independently between bursts. Thetransmitted data is the, Ty so that7, + 7, = T. We
transmitter is assumed to have no channel knowledge. Th&an decompose the burst signal into training and data parts

formidable capacity increase realizable with such dual an-

X=X XDy =lyHTandv = (VI V)T,

tenna array systems has been shown [5],[2] to be propor_As stated in [6], thg mutual infor.njation between the input
tional to the minimum of the antenna array dimensions for @nd the output of this system verifies:
channel with i.i.d. fading entries. At least, this is the case (Y, Ya; Xa|Xp) = [(Ya; Xa|Xp, Yp) + 1(Yp; Xp| Xa)

when the receiver has perfect channel knowledge. This con- =
dition is fairly straightforward to approach in SISO systems

I(Ya; Xa|Xp, Yy)
2

by inserting pilot/training data in the transmission, with ac- (Y3, Xp; Xa) = 0 due to the independence betwe¥n
ceptable capacity decrease [1]. For MIMO systems of largeand (¥, X;). Consider now a partition of ; in @ blocks
dimensions though, the training overhead for good channel X, i = 1,...,Q, Xq4 = (X{,...,X})", of different

lengths7;,i = 1,...,Q, >, Ti = T;. X; andV;
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I(Yy; Xd| V) = I(Y?; X1, X$|X,,Y,)
—I(Yl ’X1| )+I(Y1Q’XQ| ’Xl)
:I(YlQ;X1|X %)Jrf(YzQ;Xr?lX Yp, X1, Y1)
+ (Y1 XS X,, Yy, X1)
=0
®3)
where I(Yl,XQ| Y,, X1) = h(Vi|X,,Y,, X)) —

h(Y1|X,,Y,
independent ot conditioned onX,, Y,

X1, XS ) and considering thefactthé(tZQ is
X1), this leads

to h(Y1]X,, Yy, X1, X&) = h(V1|X, Yp,Xl) and finally
I(Y1; X$|X,,Y,,X1) = 0. lterating the equation for
i=2,...,Q,thisleads to the following:

I(Yd;Xd|XP’YP) = Zinl I(YiQ;X”XP’YP’Xi_l’Yli_l)
Q

= D IV Xl X, Yy, X1V

i=1

I1
1

+ 1(Y:3:5

T

Xi|Xp, Yy, X171 YY)

s
1
-

12

that venfles hml_,oo H®O = H as. Given that,
lim; oo o 1(Y%5 X0 | X, Y,, X170 Y771 > I(y; 2| H).
This allows us to conclude thatimy oo luyy >
I(y;«|H). Combining this result with (4) we conclude
that: limp_, TI(Yd,Xd| Y,) = I(y;z|H) . This
means that whefi’ grows, adoptlng the detection method
per block, and the associated channel estimation allows to
reach the capacity of the system assuming perfect channel
knowledge (see [3] for related results at high SNR).
Remark1: When'l" grows, the use of detected blocks only
to estimate the channel allows to achieve asymptotically the
Ml I.,4 of the system. But for finitd", it is necessary to
also use the blind information to reach it.
Remark?2: For a fixed?", and when all the entries of
(training and data) are iid, it's easy to see that the average
Ml 1,,4 of the system is maximized when the number of
the training symbold}, is as small as possible (i.e. allows
semiblind identifiability of the channel).
Remark3: In the case where H is no longer constant, and
varies from block to blocki = H(), the (coherent) ca-
pacity of the system assuming perfect channel knowledge
is no longer achievable for largé and the average Ml is

This clearly shows the way of processing to achieve CapaC'bounded by:

ity: for every block we use the already detected blocks as a
(data-aided (DA)) training sequence (in addition to the ac-
tual training) and use the not yet detected blocks as blind
information. Also, the mutual information can be seen as

the sum of two partsl(Yq; X4|X,,Y,) = I1 4+ I2 where:

O

1
=~ Iavg < T I(YZaXZ|Hz)

i=1

TZ (Yi; X | Hy) (6)

for any channel estimaté; = H,(X,, X~',Y}).

I1: is the rate that we can achieve by using only the already3: Channel estimation

treated blocks for side information (DA training).

12: is the additional amount of rate that can be achieved by
exploiting the blind information contained in the not yet de-

tected blocks.

The average mutual information is defined &s, =
+1(Yq; Xa|X,, Yp). We want to show below that this quan-
tity goes to the coherent Mi(y; #|H) asT and ) grow

for finite 7,,, whereI(y;z|H) = Th—>cho FI(Y; X|H) =
Zl_lglo T%I(YZ»; X;|H). An upper bound is given by:
lag = 7(h(Xa) = h(XalX, Y};,Yd))
< F(M(Xa) = h(Xa| X, Yy, Yo, H))
= 7(h(Xa) - h(Xd|Yd, )) (4)
= FI(Y; X[H) = 1(Yp; Xp|H))
=  lim I, < (y,a:|H)
Also T
IV X] X, Yy, X170 YY)
= h(X;) — h(X;]|X,, Y,, Xi™t vi= 1,1@31,1/)
> h(X;) — h(XZ|YZ,H(X Y, XL v v )
= h(Xi) — h(X;|Y;, H(X,, XZ LY, vi- 1,Y2§1
= I(Y;; X;|H®) =7,
. (5)
where H® = H(X, Xi~'Y;) is the optimal es-

3.1 Bayesian case (random channel with prior)

The capacityC' of the system is the maximum M, ,
over all input distributions, under a given power constraint.
We have

%ZiQ:lI(Yi;Xﬂﬁ ' ) §C’§

ZI (Yi: X;|H) . 0

p(Xa), tr(RXd)<TdNta2 T

This is valid for all choices of the partitioning of ; into
X;,i=1,...,Q, and in particular for) = Ty and7; = 1.

For an AWGNYV with powers? and in the absence of side
information on the channel at the transmitter (see [5]), the
max in the upper bound of the capacity (coherent capacity)
is attained for a centered white Gaussian input with covari-
anceRx, = oIy, T,

s - T-1T, o2
IV XHD) < C < = LEIndet(I+—%H H™)
i=1 v
P o (8)
whereH ) = H(X,, X{~* Y)

The received signal i§; = HX; +V; = O X; +
HOX; + Vi = HOX; + Vi + 7, Where we as-

timate of the channel (statlstlc of reduced dimension), sumeH () to satisfy the Pythagorean Theorem (PT) (i.e.



His decorrelated withd).  Now I(Y;, X;|H®) = We haves = > % This is an absolute lower

hY; | HDY — h(Yi|X;, HD) = h(v;|HD) — h(V; +  boundon the channel estimation MSE. The MMSE estima-
Z:|X;, HD). Under the above conditions and for uncor- tor achieves this bound asymptoticallfy( — oc). The
related and centered Gaussignand X; = X& (vari- above result is also valid for the case when the channel
able with same 1st and 2nd order moments, but Gaus-varies from block to block, since channel re-estimation for
sian), it was shown in [6] that a lower bound for every blockis assumed.

I(Y;, X;|H®) is given by considering; as an indepen- 3.2 Asymptotic Behavior

dent and white Gaussian noise, with covariant¢é, where We focus here on the asymptotic behavior of the ca-
o2 = 3tr E(Zi2F) = ZM = NeoZoZ, pacity loss for small channel estimation error. We sup-
o ELH( )H< oA e a pose that the channel is constant over every block, the mu-
andoy ,, = - The new lower boundis now: ;5| information for the particular block (i) at the receiver
T o assuming channel estimation is théhYZ,X |H )) =
C oz r¥ih vi; XilHO) E(lyo (Yi; Xi|H D)) , wherelye (Yi; X:|H )Y is the ca-
T-T, o A HO L, Ag ) H@G L, Ag
> I3 Y4 Elndet(l + WH(”H(” pacity for a particular realization of the channel. It is as-
(9) sumed here that the channgl?) may vary from block to
e . . . : : . )
Let Ug() _tr E(? ;VH() ) andH( ) _ ;q# then due to block (while allowing an asymptotic regime). The MI as

7 summg perfect channel knowledge and for a particular re-
the fact that the channel estlmator satlsfles the Pythagoreaahzanon STy (i Xi| H®). Let's temporarily drop the

Theorem, we have that. | + 0%, = o7;. Now: block index(s).
- 02 (0% =02 () =(i) (i) H In the following, we derive a weighting matrix that appears
C> 122571 Elndet(1 + WUPL()H H) in the asymptotic Ml decrease and optimal semiblind chan-
=Crp nel estimate. The first order derivativelof (Y'; X |H) with

(20) respect tof = H — H evaluated af = 0 is zero:

The expectation is over the distributionﬁ(i), which re- 5 ~
mains close to that off ). Then the given capacity lower EIH(Y X|H)|H 0~ SR (h( ) — he(X]Y, H)) |fi=0

(Y, X|H
boundC; g depends prlmarlly or(1 )the Mean Square Error — [ f gHXilYng ﬁpH(X|Y H)|H:0dXdY
(MSE) of the channel estimatdf'"’. SinceCr g is a de-
creasing function of the MSE, the optimum estimator is the — =J fpu(Y|H) th(X|Y H)|H:0dXdY

Minimum Mean Square Error(MMSE) estimator: — [l Y|H)i((/pH(X|Y H)dX)|~ 4y =0
o - R ’ =0t =

HJ(\Z)MSE = HJ(\Z)MSE(Xp’f(Cla?i) (11) -1
E(H|X,, X7, Y5) (13)

The second order derivative w.r. evaluated af is:

which is an unbiased estimator éf. The performance

of any unbiased estimator is bounded by the Cramer- Ragi Lo (Y XU T 910 p (V) T
( ; | ) |H:0:_Ei< p" | ) |H:0

lower bound: N oh . N h
R = ERRT > -0 (12) +EL (QuenIXH) )\ = g (H) - Jyx (H)
h"h sh sh H=0

(14)
Jy andJy|x are FIMs describing the Ml decrease due to
the channel estimation error and evaluated/at= 0. To
compute/y andJy | x, we consider a receiver point of view

whereh = [Re(vect(H))" Im(vect(H))T]" and J) is
the Bayesian Fischer Information Matrix (FIM) for the a
posteriori distribution of7, and is in this case:

g — _g2 (alnp(H|X,,,X;—1,?,))T in which, given a certain realizatiof and a certaind,
oh- L H is an unknown constant. Then; (Y]X, H) =p(V+

Ei <6lnp(Xp,Yp,X§‘ VY[ |H)) (H + H)X|X,H) = p(V + HX|X) :pH(V|X) where
oh oh V = V 4+ H X and the variabld’| X follows the same

TD) trainins distribution asl’ but with an offset (meanﬁX (notation

. assumesy; = 1). Now:
o (9np(yIe|H) o (amp(H)\T onpg(71X))
~on ( o ) _Ea_h< ah ) Jyix (H) = —E(ah (7’;% | )) |H:0)

J( 5 prior - |H:0

blind

yQ) Jy(H) = EBBT), B= Mpf{ﬁ@ _
Ie]



B — 1 6pr(Y,X|fI)dX|~
= (YE) oh H=0
_ 1 6pr(Y|XfI)p(X)dX|~
= (Y H) —oh A=0
ap(V|X
= o ;’ﬁ 2 roop(X)dX

For H in a small neighborhood of/, the MI decrease is
approximated by a quadratic function:

In(Y; X|H) — Iy (Y; X|H) = =R W(H)R

= —(h=h"(Jyx (i) = Jy (H))(h = h)
The weighting matrixV' (H) = Jy|x (H) — Jy ({ ) is non-
negative definite sincéy (YV; X|H) < Ig (Y; X|H).
Example: For white Gaussian and decorrelateg and
X;, Vi|Xi is Gaussian with mear/ X and covariance
021 g (Vi]X) = (2m02)=NiNrs exp — Il Rl
Then Jy,(H) = 0 and.Jy,x,(H) = N;Z1. As a re-
sult W;(H) = W, = iZ—Z:I is constant. More gen-
erally, for any Gaussian noisg and zero mean input

Xi; Jy,(H) = 0, Jy;x,(H) = Jy,x, is constant and
Wi(H) =W; = Jy,x,-

(15)

3.3 Deterministic channd

In this case we have no prior information on the
channel. The channel is constant during the burst with
an unknown valueH. The coherent capacity is then
I(Yy; X4|Y,, X,, H). Foragiven realizatiolr* of Y and a
(variable) channelf, let's defineGi(Y°, X, H) = h(X)—
E(—Ing(X|Y° H)) = h(Xq) — E(=Ing(X|Y), Y7, H))
where the expectation here is with respectdp (X, is
known), andg(X|Y,?, Yy, H) = p(X|Y,2,Y{, H)| g
Let's introduce a partition oft; in which the different
blocks have the same length = Ny, i = 1,...,¢Q and
are i.i.d. TheninyzG(Y°, X, H) = #[lnq(X,|Y,, H) +
S92 (h(X;) + Elng(X;|Y, H))], the averaging over the
blocks tends asymptotically to an expectation wift. We
conclude that :

limy o0 7G(Y°, Xp, H) = limp_ oo 3{lnp(X,|Y;?, H)
= (h(Xe) = Elnp(X:|Yy, H)} = I(y; x| H)
17)
So
asymptotically& (Y °, X,,, H) approaches the mutual infor-

mation. Let's defing., (H) = limp_, o, %G(Y°, X, H).

We now want to find the best channel estimator, that Goo(H) — Goo(ff)

minimizes the MI decrease.
mize the cost function (Y; X|H) — I(Y; X|H(S))
E{IH(Y;X|H)—IH(Y;X|fI(S))} where for every block
i, H is based o5} = (X, Xi~! V;). Asymptotically

(I(Y; X[H) = I(Y; X[H(S)))
s EL(S) = WTW(H)(R(S) - h)|s)]
= hop(S) = (E{W(H)|S}) " (E{W (H)h|S})

minﬁ ()
= E[minﬁ

(16)
So ﬂopt is a weighted MMSE estimate. For centered in-
put X and Gaussian noisg, W (H) = W and the opti-
mal channel estimator is the MMSE estimafg;;t(S)
W=t E{Wh|S} = E{h|S}. The minimum mean MI de-
crease w.r.t. the perfectly known channel case is:

Y5 X[H) = 13 X |Hope(8) = ENTW(H)h
—(E(W (EDN|S))T (E{W (H)|S)) ™ (E(W (H)h|s))]

and all this so far for block:). The minimum mean Ml de-

crease for the complete burst becomes, using the recursive

MI decomposition of section 2:
SO (Y Xa | H Y = 1(Y3; X, H(SO))]
= T [E W (HO)h
—(E{Wih[SONT(E{W;[SD})~H (E{W;h|SD}]].
wherelV; = Wi(HW) = Jy, x,(HD) — Jy,(H®).

In the case of a constant channel over the different blocks

(e HD = H i=1,...,Q), "%, I(Vi; X;|H") gets
modified tol (Yy; X 4| H) andWi(H(Z%) to Wi (H).

Then we need to mini- = 5 Ex, v, u([lnp(X1|Y1, H) —Ing(X,|V1, H)]

N [P ([ p(X0 Y, H) In B X )Yy

= N% Ev, g [D(p(X1|Y1, H)|[¢(X1]Y1, H))] >0
(Kullback-Leibner distance). This means ﬂ@go(ﬁ) is
maximized Wherq(X1|Y1,fI) = p(X1|Y1, H). This fact,
combined with the hypothesis that the training part is suf-
ficiently informative to allow, together with the blind in-
formation, complete channel identifiability, ensures that
asymptotically (forT; andT, big enough)G(Y°, X,,, H)

is maximized fori = H. We can hence use the maxi-
mization of G(Y?, X,,, H) as optimization approach to find
a consistent channel estimator.

This method is related to the first iteration of an itera-
tive MAP/ML estimation approach for input signal/channel
with EM applied to the ML estimation part for the chan-
nel. The maximum a posteriori (MAP) estimate Xf in

the MAP/ML approach is:

Xar (18)

= argy, mnax Ing(X|Y° H').
Various solution techniques exist for this type of problem.
Consider an alternating maximization (betweénand H)
approach in which expectation ov&; is introduced when
maximizing overH (EM-like approach). The iterations
comprise two steps. The first step for the first iteration
gives:

H argmaxy E(lng(X|Y°, H"))

arg maxg G(Y°, X,, H') . (19)



This is a semiblind cost function for the channel estimation.  The recursive mutual info decomposition may suggest a
The second step consists of the MAP estimation of the inputpractical approach for channel estimation. However, sim-
assuming the channél’ = H. pler practical approaches would pass through the bursts it-
Remark1: The recursive decomposition of section 2 re- eratively, with semiblind (blind info = Gaussian undetected
mains valid in the deterministic channel case, and we cansymbols) channel estimation in the first pass, and semiblind
process by successive detection of the symbols (blocks). Tdblind info = detected data) channel estimation in the next
have an acceptable algorithm complexity, one can chooséterations. Prior channel info (anglin the channel model)
from a variety of channel updating techniques. Along the gets estimated (sufficiently well) by considering the data in
lines of section 2, this approach allows to maximize the Ml multiple bursts jointly (assuming these parameters are in-

for largeT'. variant across a (large) set of bursts).
Remark?2: Similarly to the Bayesian case, we can evaluate = Whereas we have considered block fading so far in this
the asymptotic Ml decrease gg W (H) h with W(H) = paper, we conjecture that these results extend to the continu-

Jy|x (H) = Jy (H). In the deterministic case however, the OUS transmission (CT) case: in steady-state, channel estima-

direct minimization of the MI decrease does not lead to a tion should be based on the semi-infinite detected past sym-
meaningful channel estimator. bols, and semi-infinite future blind channel information. A

Gauss-Markov model for the channel variations with a cer-

4 Corrdated MIMO Channe! quel tain Doppler bandwidth will prevent perfect channel extrac-

In order to improve channel estimation and reduce Ca-jon from this infinite data though. Finally, the proposed

pacity loss, it is advantageous to exploit correlations in the ;nannel model is useful for the introduction of partial chan-

channel, if present. So consider the frequency-flat MIMO | knowledge at the transmitter. Indeed, if the transmit-
channel:H (Ny; x Ni), h = vec{H). The correlated  (er can know the channel correlations summarized in

channel model we suggest is: h = S g and only lacks knowledge of the fast fading pa-

h=5g (+ go I for direct path|go| = 1) rametergy, the channel capacity may be close to that of the
where the elements gfare taken to be i.i.d. Gaussian fora known channel case.
stochastic model. The correlations are captured.by References
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