Proceedings of the 1st International Distributed
Conference IDC’95, Madeira, November 1995

A Semi-Distributed Platform for the
Support of CSCW Applications

Christian Blum, Philippe Dubois,
Refik Molva, Olivier Schaller

Institut Eurécom
2229, route des Crétes,
06904 Sophia-Antipolis, France
Voice: (+33) 93.00.26.38
Fax: (+33) 93.00.26.27
{blum,dubois,molva,schaller}@eurecom.fr

Abstract - This paper describes the communication platform that was implemented for the European BETEUS
(Broadband Exchange for Trans-European Usage) project. The BETEUS communication platform supports
the fast implementation of networked multimedia applications with conference character and CSCW (Com-
puter Supported Collaborative Work) features. The platform exhibits the notion of a site as one of its main
abstractions. A site is a collection of workstations, media input and output devices and switching devices
that are, in terms of control, tightly coupled. The available equipment within a site is logically mapped onto
nodes, where the definition of a node is application dependent. Connection control in a site is centralized
within a connection management entity. A site management entity residing on top of the connection man-
agement provides high level connection and session abstractions to applications. Applications can run
within a site as well as span multiple sites, in which case application and connection control is distributed
among the involved sites. So far, two applications have been implemented on top of the platform: a tele-
meeting application and a tele-tutoring application. The ease with which these applications could be imple-
mented justifies the extra-effort that went into the development of a platform.

1 Introduction

The collaborative teleconferencing platform described in this article was developed in the
course of the European BETEUS (Broadband Exchange for Trans-European Usage) project
[1][2][3] and was tested in field trials over the European ATM pilot network which intercon-
nects the BETEUS partners in France (Eurécom, Sophia Antipolis), Switzerland (CERN in
Geneva, EPFL in Lausanne, ETHZ in Zurich), Germany (TUB Berlin) and Sweden (KTH
Stockholm). BETEUS is a 16-month follow-up to the BETEL tele-teaching project [4] in which
two of the BETEUS partners, Eurécom and EPFL, were involved. The BETEUS platform prof-
ited from the experience gained with the BETEL tele-teaching application which was one of the
first collaborative applications to be run over cross-national ATM links in Europe.

Today'’s collaborative teleconferencing systems are usually implemented as stand-alone applica-
tions with fixed interaction and communication scenarios. They implement all the components
of a teleconferencing system, from low-level media transmission and processing up to the user
interfaces, from scratch. One drawback of this approach is that the interaction and communica-
tion scenarios may be hard to modify once implementation is reasonably advanced, or their
modification may even turn out to be impossible. Another drawback is that software may be

hard to reuse for other applications if its internal interfaces were not defined with this require-
ment in mind.

Ease of modification and software reuse were two prominent requirements imposed on the
design of the teleconferencing system for BETEUS. This is because the main focus of BETEUS
is not so much on the actual application than on a concept callgetttta community A vir-

tual community can be described as a group of people that interact with each other in a natural
way by means of a networked application. One prerequisite for natural interaction is high qual-
ity multipoint audiovisual communication which in turn is only possible on a broadband net-
work. Two types of interaction within the virtual community were vaguely envisioned for
BETEUS at the beginning of the design phase, one being a simple collaborative meeting, the
other being tele-teaching. The final interaction scenarios were thought to evolve out of a series
of prototypes that could be tested on the BETEUS network. This situation led to the decision to
construct a communication platform on top of which the various scenarios could be imple-
mented with significantly reduced effort as compared to stand-alone prototype systems for
every scenario. In March 1995, eight months after the initial design steps, work was advanced to
a point that the platform and its components could be deployed for the field trials that started at
that time. In July 1995, two application scenarios, tele-meeting and tele-tutoring, were success-
fully demonstrated to a commission of the European Union. The ease with which these applica-
tion scenarios could be implemented justifies the extra-effort that went into the development of
the platform.

In the following, we will first talk about the objectives and constraints that underlie the design
decisions for the BETEUS platform. We will then describe in detail the platform and its compo-
nents as well as the scenarios that are until now implemented on top of the platform. An exam-
ple scenario illustrates how BETEUS applications are developed. The paper closes with an
outlook on future work.

2 Objectives and Design Issues

A key aspect of BETEUS is that the project partners are interconnected via a broadband net-
work, the European ATM pilot network. The BETEUS CSCW (Computer Supported Collabora-
tive Work) applications are supposed to demonstrate the high quality of human communication
and interaction that can be achieved when bandwidth is not a limiting factor. The people that are
brought together by a BETEUS application should communicate and interact as freely as if they
were sitting together around a table in a conference room, or, in other words, they should expe-
rience themselves as a virtual community within a media space [5]. This is only possible if the
quality of the audiovisual communication and of the collaboration tools is such that every impli-
cated person has real presence at a remote location. This is clearly not the case in a conferencing
environment like for instance MBone [6] over the Internet, where audio is constantly inter-
rupted, where video frame rate is highly irregular and the person in the video window is not per-
ceived as real. The BETEUS applications shall allow people to talk to persons on the screen as
freely as they would talk to them face-to-face.

Application Scenarios

Two application scenarios were envisioned for the project. The first, the tele-meeting scenario,
was supposed to be a rather informal meeting environment where people could come together to
talk and possibly collaborate on some document. The other, which was called the distributed
classroom scenario, should combine classrooms at different sites to a single virtual classroom.
A professor could give a lecture in one classroom in which remote classrooms would partici-
pate. Every classroom would be equipped with multiple screens that show all other classrooms
and possibly the slides of the professor, and people within different classrooms could communi-
cate with each other and the professor in a way similar to a panel discussion. The two applica-
tions differ fundamentally from each other in that the first one assumes a single user terminal as
standard endpoint equipment, whereas the second uses a collection of workstations and media
in- and output devices to assemble a classroom. None of the applications was clearly specified
at the beginning of the project. It was assumed that the application scenarios would evolve in
the course of the project as tests are performed and experience is gained. It was not even clear if
both of the applications would be retained since it could turn out that another one was more ade-
quate for the virtual community concept. These considerations led to the decision to implement
a real conferencing platform rather than stand-alone systems for everyone of the envisaged
application scenarios. The effort to implement an application scenario should be minimal,
requiring the platform to constitute the highest possible common denominator between the
envisaged application scenarios.

At a later stage of the project the decision was taken to postpone the implementation of the dis-
tributed classroom scenario and to implement instead of that a third scenario, the tele-tutoring
scenario, which is a replication of the BETEL application on the BETEUS platform. The practi-
cal consideration behind this decision was that the tele-tutoring scenario could be demonstrated
on the testbed without any changes to the hardware configuration. The tele-tutoring scenario
brings together one professor and a couple of students, all of them at a personal workstation,
with the purpose to train the students on some software. The decision to introduce a new appli-
cation scenario at that stage of the project demonstrates the flexibilty that was gained by having
a platform.

Platform Architecture

Another design issue was the architecture of the platform. In terms of control, the platform
could be completely centralized or completely distributed. The centralized solution was
declined, first because there would be a single point of failure, then because of performance and
scalability considerations. But it was felt that control should be centralized within the network
of a project partner. This is because it was assumed that an application endpoint will not be a
single multimedia workstation, but rather a logical unit that is assembled from a collection of
equipment including workstations, multiple screens, cameras, speakers and microphones, as
well as digital and analog switches. For the total amount of tightly coupled equipment within
the network of a project partner the abstraction $ifesis introduced. The abstraction ohade

is introduced as the application dependent mapping of equipment onto a logical application end-
point. Connection and session control within a site is performed by a central entity that knows
about the application specific node mapping. Control within applications that span multiple sites

SITEB
SITEA

SV3 Node A3

Node B1

SITEC

Node C3

Group Communication

Group Communication

Group Communication

I
A

FIGURE 1. The BETEUS application model (SV=Session Vertex)

is distributed among the central entities of the respective sites. The resulting platform is thus
semi-distributed: it is centralized within a site, but distributed among sites.

3 The BETEUS Platform

This section describes the BETEUS platform. It starts with a description of the application
model; it then summarizes the services offered by the platform and describes the architecture of
the software.

4.1. Application Model

At the heart of the BETEUS platform is an application model. The BETEUS application model
introduces the abstractions ofe@ssionasession verteand asession applicationA session is

the abstraction for one instance of a distributed application that runs on top of the BETEUS plat-
form. A session comprises, from a logical point of view, a set of nodes as session members.
From a computational point of view, a session consists of a set of session endpoints, called ses-
sion vertices, which are processes that run on the session nodes. The ensemble of session verti-
ces within a session constitutes the session application. In the following we will use the term
session application interchangeably with application or application scenario. If we want to refer
to a process running at a node within the framework of a session application we will explicitly
refer to it as session vertex. Note that there is no abstraction for human session participants: the
node abstraction covers participants as well as participant groups or seminar rooms. The
BETEUS abstractioparticipantis therefore just a dynamic name tag for a node that partici-
pates in a session.

Figure 1 shows three sites with each of them having three nodes defined in its site configuration
file. A BETEUS application is indicated that spans all three sites, with three nodes being impli-
cated at site A, two at site B, and one at site C. In fact, there is no limitation on the location of

the nodes that form a session; they can be all within a single site, or all within different sites. It
is therefore also completely hidden to the session vertex on a node if the session in which it par-
ticipates spans remote sites or if it is local. Session vertices always interact with their local site
control, but the processing of a session vertex request may trigger inter-site communication,
which is the case whenever connections need to be established in-between sites. The group
communication module indicated in Figure 1 provides the session broadcast, multicast and uni-
cast messaging services required for inter-site communication.

Roles

The session vertices of an application are identical in terms of code, but behave according to
dynamically taken or assigneoles There is one prominent role within a session, which is the
session mastelhe session vertex that is the session master has certain rights with respect to the
session that other session vertices do not have. This includes for instance the right to delete
nodes or to Kill the session. An application may decide for itself to which extent it offers this
functionality on a user interface. It may also offer this functionality on other interfaces than on
the one of the session vertex that holds the master role. The master role is the only role which
exists per default - all other roles are defined by the application itself. Applications may bind
certain connection endpoints to roles and let the site infrastructure do the mapping of the given
role to a session vertex. All roles, including the master role, can be reassigned to other session
vertices. This allows applications to specify the audio and video connection structure once on
session start-up; later on it will only transfer roles in-between session vertices when it wants to
change the connection structure. An evident example for this would be a speaker role that is at
the root of an audio and a video multicast connection. The infrastructure will automatically
rebuild this multicast connection whenever the speaker role is passed from one session vertex to
another. An application may define as many roles as it wishes to, and session vertices may also
hold multiple roles at the same time.

Bridges and Bridge Sets

The introduction of the role abstraction provides already considerable comfort for application
development. In addition to this the platform provides abstractions for connection structures. A
bridgeis a single-medium connection structure among session nodes. A bridge can either repre-
sent a point-to-point connection, a multicast connection, a broadcast connection, or an all-to-all
connection. The concept of a medium bridge hides the underlying network to the application; a
connection management entity realizes bridges with whatever transport the network offers.
A set of bridges, typically an audio and a related video bridge, can be assembled to form a
bridge set An application configures the platform on start-up with a description of the bridge
sets that it uses. During a session only one bridge set can be active at a time. If the application
wishes to change the connection structure it will switch to another one of its bridge sets. The
infrastructure will then tear down any connection that is not included in the new bridge set, and
establish the ones that are missing.

BeCool

The concept of bridges and bridge sets, along with the concept of roles being at the endpoints of
bridges, allows to build applications that are almost stateless. This more or less reduces the

development effort for simpler applications to the design of the user interfaces. Nevertheless, it
was realized that the development of more advanced applications, i.e., applications using many
different dynamically assigned roles, may pose some problems for unexperienced programmers.
It was therefore decided to build a development tool that compiles an application description
language to a C++ session vertex skeleton that then has to be filled out by the programmer. The
resulting BeCool (BETEUS Cooperative Language) compiler [7][8] turned out to be a useful
tool even for the development of simple applications.

4.2. Platform Services
The services provided by the platform are
* connection control

* session management

application sharing

* messaging service

directory service
These services are summarized in the following.

Connection Control

As outlined above, the application specifies its connection structure in terms of roles, bridges
and bridge sets. The platform establishes the endpoints of bridges, i.e., audio or video sender
and receivers, and the necessary transport links that interconnect these endpoints. Endpoint
parameters like audio volume or video brightness are controlled via the connection manage-
ment.

Session Management

Nodes may create sessions, join them, leave them, and delete them. The session management
interfaces internally to the connection control - connection structures are updated whenever
nodes enter or leave the session.

Application Sharing

Collaboration within BETEUS applications is provided by the possibility to share workspaces
within the framework of the X11 windowing system. The interface of an X11 application run-
ning at one node can be replicated at other nodes without that the application would need to be
prepared for this. This allows to visualize X11 applications at different nodes and further to
share their control among the session members. Visualization is already an important aspect
since it allows to communicate information, like it is contained in electronic documents or in the
interface of a simulator, in a very convenient way. If the control of an X11 application is to be
shared, there is a need for floor control. The platform offers the floor control features of the
shared workspace system that it uses.

Messaging Service
Session vertices use the messaging service of the platform to communicate among each other.

User Interface User Interface

Control Panel Session Vertex

Application

Site
Control

Station Agent

Communication

FIGURE 2. The BETEUS site architecture

Directory Service

Nodes register with the platform when they are activated. One field in the information sent to
the platform is the participant name under which the node wants to register. Once registered the
presence of a node is visible to all other nodes within the network via the directory service. In
addition to registration information, the directory service informs about announced and ongoing
sessions. This information is used by nodes to create or to join sessions.

The directory service enhances the platform from a development to a complete communication
environment that could be used by a group of people scattered over different sites for their daily
work.

4 .3. Site Architecture

The three principle layers of the BETEUS site architecture are depicted in Figure 2. The top
layer is an application layer containing a generic control panel and the BETEUS application
processes - the session vertices. In the middle there is the site control layer which comprises the
site manager, the connection manager and the station agents. The site manager implements the
functionality offered at the high level interface towards the applications, whereas the connection
manager performs physical connection establishment in collaboration with the station agents.
The communication layer finally contains the audio, video and application-sharing software as
well as a group communication entity that supports the exchange of control messages between
site managers and and between connection managers. The shaded architecture components in
Figure 2, i.e., the site manager, the connection manager and the group communication entity,
have only one instantiation within a site and run on a well-known machine. Station agents are

daemons that are found on every machine on the site network that may be source or sink of
audio or video connections or that may run application-sharing software.

Most of the architecture components shown in Figure 2 correspond to UNIX processes. Appli-
cation processes communicate with the site manager by means of Tcl-DP [9], a remote proce-
dure call package for Tcl [10]. Since simple applications will mainly deal with user interface
issues it is possible to implement them completely in Tcl. More complex applications will have
some C++ code in addition, for instance the one generated by the BeCool application compiler,
and will be built on top of an application stub that hides the remote procedure call interface
towards the site manager. Tcl-DP is also used for the communication between site manager and
connection manager. The communication between connection manager and station agent as
well as between the station agent and its subordinate processes is based on a proprietary
scheme.

4 Platform Components

This section looks at the components of the BETEUS platform, starting with audio and video
communication and then moving on to the higher layers of the architecture.

4.1. Audio and Video Communication Components

Both audio and video are built on top of the User Datagram Protocol (UDP) and the Internet
Protocol (IP). One of the biggest issues in BETEUS was how to implement multipoint commu-
nication with audio and video. It turned out that the structure of the BETEUS network [11],
which is fully meshed and has FORE ATM switches at every site that are interconnected via the
cross-connect based ATM pilot, is a hostile environment for IP multicast, which would be the
natural choice for multipoint communication. This is why the BETEUS audio and video compo-
nents implement in addition to IP multicast simple sender based stream duplication. The con-
nection managers that control the establishment of connections over the network may employ
whichever scheme is possible.

Audio

The multipoint nature of the communication in BETEUS makes it necessary to use some sort of
combination of multiple incoming audio streams at the receiving side. This combination could
be done either by a stream selector or a mixer. Using a stream selector requires silence detection
at the sending side and some support for talkspurt transmission at sender and receiver. A stream
selector chooses an active audio stream from the set of incoming streams for output whenever
the talkspurt of the currently chosen stream is finished. A mixer could manage continuous audio
on all incoming streams as well as talks spurts, but using talkspurt audio avoids the situation
that there is a sum of the background noise of multiple remote sites in the mixer’s output signal.
The BETEUS audio component implements silence detection at the sending side with an adjust-
able threshold value and is built on top of the Realtime Transport Protocol (RTP) [12], which in
turn uses UDP for transmission. The receiving side supports stream selection for the moment,
but will support real audio mixing in the near future. Both sender and receiver generate activity
events that can be graphically displayed on the user interface. The sender indicates begin and
end of talkspurt to the local user, whereas the receiver indicates activity for each of the incom-

ing streams on which it listens. The two audio encodings that are supported are 8kHz sampling
rate with 8bit resolution and 16kHz sampling rate with 16bit resolution.

Video

Video transmission is built around the XVideo board from Parallax. The compression of the
Parallax board follows the JPEG standard for the compression of still images [13]. On connec-
tion setup the video sender allows to specify a maximum data rate that is consequently enforced
by means of a control loop in which maximum and measured data rate are constantly compared
and the JPEG compression factor is modified according to the result of this comparison. Such a
mechanism is clearly necessary in cases where there are data rate restrictions per video stream
and traffic policing within the network. The video receiver adapts automatically to the actual
compression factor as it also adapts to frame rate and window size. Care was taken to have a
constant frame rate within the receiver window because the human eye is extremely sensitive to
frame rate irregularities. The quality of the BETEUS video component is excellent even at
frame rates as low as five frames/s, which generally makes people overestimate the frame rate
when asked for a guess.

4.2. Application Sharing Software

The application sharing component allows a BETEUS session member to share any X11 appli-
cation running at his node with all other session nodes. The BETEUS platform is not tailored to

a specific application sharing system; it can integrate whatever system as long as this system can
be controlled via a programming interface. So far SharedX from Hewlett-Packard and Xwedge
[14] from the project partner ETH Zirich have been integrated into the platform.

Xwedge is a distributed shared window system that has agents running at all implicated client
and server sites. A distributed approach was taken in order to improve performance. Another
design goal of Xwedge was to keep it policy-free, i.e., not to prescribe a default admission and
floor control. The system that integrates Xwedge has thus the possibility to employ its own shar-
ing policies.

4.3. Group Communication

Group communication is a service offered to the site manager and the connection manager in
order to insure the control communication between the different sites. A Group Communication
Process (GCP) runs at each site. The messages coming from the site manager and the connec-
tion manager are multiplexed and sent to the correspondent GCPs running at the remote sites.

Currently, group communication is based on TCP/IP, but there is a version of the GCP in devel-
opment that is based on the RMP (Reliable Multicast Protocol) library from the University of
Berkeley [15]. RMP is designed to run on top of UDP and IP Multicast.

4.4. Station Agent

The station agent is a daemon that runs on every machine that may possibly be the endpoint of
an audio or video transmission or that may be implicated as client or server in application shar-

ing. The station agent launches audio, video and application sharing processes and relays opera-
tion requests from the connection manager to these processes and operation results and

Site Manager

TCP/IP

Connection

(SM/CM Communication) Manager
DFOCessing

(Ph ysical addresses >

mapper
Configuration

}CM/SA Commupication m
processing

TCP/IP

database

Station Agent

Station Agent

FIGURE 3. The architecture of the connection manager.

asynchronous events back to the connection manager. If one of the launched processes crashes
the station agent informs the connection manager about this. It should be noted that the actual
processes are transparent to the connection manager. The communication between station agent
and connection manager is built on top of a stream abstraction. The mapping of streams onto
processes is hidden to the connection manager and at any rate of no concern at this level. If a
process becomes idle because all of its streams got disconnected it is the station agents decision
to let this process keep on running, or to delete it. Some processes, like for instance the audio
receiver, are kept for performance reasons because it can be foreseen that they will be reused.

4.5. Connection Manager

The architecture of the connection manager is shown in Figure 3. The connection manager takes
care of the physical realization of a connection and manages all endpoint device parameters like
audio volume and video frame size. The connection manager of the master site of a session
knows the topology of the complete session, i.e., the member nodes and the audio, video and
application sharing endpoints of these nodes. Information about the topology is stored in a hard-

ware configuration database. This database contains a translation of the endpoint abstractions
used by the site manager to physical addresses.

The site manager sends orders like:
CONNECT Endpoint i FROM Node j OF site a TO Endpoint i FROM Node k OF site b

The connection manager maps the logical endpoint and node names to the corresponding physi-
cal addresses. The module which makes this mapping phyfsecal address mappérhe con-

nection manager then decides if it can establish the connection locally, and does so if it is
possible. If one or both endpoints of the connection are outside the site of the session master, the
connection manager prompts remote connection managers to establish these endpoints.

10

Application
_ Site Manager
APl interface
object
Site managel Session
supervisor manager
Communicatio

Endpoint
mapper

Site database

Session directo

Connection]
supervisor supervisor
Connection Mgr > (Group Communicatiop

FIGURE 4. The architecture of the site manager

Currently, the connection manager is able to manage four components:

 application sharing component: shared windows and tele-pointers.
* audio: multistream senders and receivers
 video: multistream sender and single-stream receiver

An eventually involved analog video and audio distribution switch could also be controlled by
the connection manager.

4.6. Site Manager

The control aspects of a distributed application within BETEUS are performed by the site man-
ager. The site manager provides an API which enables to manage the site resources and to create
sessions.

Communication between the site manager API and the application processes is done by Tcl-DP
remote procedure calls. Thus calls to the site manager are synchronous and the site manager can
return an error message if necessary. Tcl-DP also allows the site manager to send asynchronous
notifications back to the application processes.

Figure 4 shows the architecture of the site manager. Remote procedure calls are made by the
application to the API object which maps this RPCs to C++ methods sitéhanager super-

visor. Thesession managenaintains list of all announced and ongoing sessions. The endpoint
mapper maps endpoints at the user node to a connector defined by a specific application sce-
nario. Theconnection supervisasommunicates with the connection manager to establish and

11

remove individual connections. Site manager supervisor and session manager communicate
with remote site managers using the services of the group communication entity.

Below is the description of the functionality provided by the site manager supervisor and the
session manager.

* login: the user logs on the BETEUS platform and registers with it
e session announcement: the user announces a session with a schedule

 session startup: the user who has announced the session starts it and wait for other
participants

* session running: other users join the session and the session is ongoing
 session ending: the session master terminates the session

All these operations are done through the site manager API. But the most innovative part is the
configuration of the session using an application scenario. The following concepts are used to
define an application scenario:

* role: every participant takes one or more roles. Roles are tightly linked with con-
nections between endpoints.

e connector: a connector is the abstraction for a resource.

* bridge: a bridge is the abstraction for a complex multi-source-to-multi-sink con-
nection.

* bridge set: a bridge is a collection of bridges.
* master: the master is a special session role.

At login time the user takes control of a set of multimedia resources (e.g. a video camera, a
audio device, a workstation display, etc.). These resources a known by the site manager as end-
points. Each endpoint has a flow type (audio, video, x11) and a direction type (in, out), accord-
ing to the configuration file of the site. The set of these endpoints is called a node. The user who
logs on a node becomes the owner of all the related endpoints until he logs out.

Then the user makes a session announcement. He gives his name, a brief description and a
planned schedule and the application name that is specified in the announcement. The applica-
tion name corresponds to a registered BETEUS application. By default a session is announced
as public, but it can be private, in which case the announcing user gives a list of authorized par-
ticipants. Once the session is announced, it is visible in the session directory.

The user who has announced the session will start it at the time for which the session was sched-
uled. At this point an instance of a session vertex corresponding to the application identifier is
launched on the user workstation. The session vertex starts with configuring the site manager
with a specific scenario for the current session. Once this is done, the session is in the state
ongoing and the user is now the master participant of this session. He then has to wait for other
users to join the session.

As soon as another user joins the session, connections will be established between user end-
points. User endpoints will be connected and disconnected dynamically depending on the appli-
cation scenario and the users interactions. The session is terminated by the master participant.

12

Sadia Hullisga
A o) 43 | @
i T i — El Dt aunzion direciary (o
[ol e Time hasn Privacy Hoans
T— = [i3, 95 | 1029 Orgeing | Privale | W17
| — | Pugm, 35 W0A0 Femoerced Peblr W i
= |
']
Earscryln: L TELE W07 Vol - lewling
o chic g Sossien fype: TelaSemnar
= (£ i | iliakns whabir I
Brghiiess | |rr| Furtherived users: "] LR i
|
Cantrzt | — immm wchoilar neke REBCHN =
Sahurulios | — . | cess. Deters Aescan st |
Leaggen] s
" gchalir Sefk A

FIGURE 5. The BETEUS Control Panel and Session Directory
The site manager of the master removes it from its session directory and disconnects all partici-
pants via the connection manager.

The definition of a role specifies a name, a maximum number of members and optionally a list

of participants, in which case only these participants can take the role. On a specific node, a con-
nector is directly mapped onto an endpoint. Roles and connectors are used by bridges to inter-
connect participants. A bridge connects a source connector of a role with a sink connector of

another role. As participants take roles, a bridge results in a list of sources and sinks to be con-
nected to each other. A bridge set is a collection of bridges. Only one bridge set is active at a
time. The active bridge set corresponds therefore to the state of the distributed application.

In all BETEUS distributed applications, there is a special session role called the master role.
Only a participant at a time has the master role of the session. This master can change the cur-
rent bridge set, add and remove roles to participants, dismiss a participant and transfer its own
master role to another participant. Since the connection can be lost with the master, the site
manager is able to elect a new master among the remaining participants. For example, in a tele-
meeting session, the master role is usually assigned to the chairman of the session, but in case of
a problem a new chairman will be elected. The master participant receives also a notification
each time a participant joins or leaves the session.

4.7. Control Panel

The BETEUS Control Panel (BCP) is a particular application that allows the user to access the
resources of a node and to log onto the BETEUS platform. Once the user has successfully
started a BCP on a particular node, he can manage his local endpoints (microphone, camera,
display, etc...) and consult the session directory of the site manager. He can then create a ses-
sion, or join ongoing sessions.

13

The main window of BCP allows the user to control his endpoints as shown in Figure 5. The
upper part of the interface is the audio control where volume, gain and silence detection thresh-
old are set. The middle part of the interface controls the video settings of the sending video
sender: every session participant is supposed to optimize his video signal. At the bottom of this
window, BCP shows the logged users, i.e. the BETEUS users that are currently logged on the
BETEUS platform. From the “User” menu, BCP provides also a multitalk functionality called
BETEUS Chat. Any message typed in the Chat window is sent to all logged users.

The session directory window provides access to the session directory of the site manager.
Everytime a user announces or creates a new session, all site managers are informed and BCP
can retrieve this information.

A session has a type. This type is the particular application that will be executed when the ses-
sion starts. In this figure there is currently an ongoing session which runs a tele-meeting sce-
nario. Another session is announced but not yet running. There is one participant in the ongoing
session. The participant is uniquely identified by a user name, a node name and a site name in
dotted notation. Several sessions may run in parallel, but a user on a particular node can only
participate in one session at a time.

e -
Tloenman's vere =] Oeteum Toio Semivew | | |
Iartiripn i Irrecariar Participan’s view
| nrslivar_rala_sursosm ke i ureesm Fati: nanmsl periicpant
da o s Em i, omadns faihs HFT oo
TR S PR L]
-_i_—l__ it of paricpants
| rdier_rwils _pureram
Al presomter | Pk bri marscom
TR —— AR S R
Make Chaiemas =
l inmmia= | Licuwss Ei Sa588001
i, 1 4 o CrorescrnnerI
Termmali S

FIGURE 6. The tele-meeting scenario

5 The BETEUS Scenarios

Two BETEUS scenarios have been developed until now. Using the BETEUS Cooperative Lan-
guage, other scenarios can be easily and quickly implemented. These scenarios are the tele-
meeting and tele-tutoring scenarios.

Tele-Meeting

The tele-meeting scenario exhibits the notion of a chairman who chairs the session and gives
and removes access to the application sharing component. The chairman has the control of the
application. The chairman role is by default given to the first participant who joins the session.
All incoming participants will be shown in the participants list. The scenario of this application

is to have a bidirectional video and audio connection between all participants, and participants
who have the presenter role can share their X-windows with everybody else in the session.

14

The chairman’s role is unique, but transferable. The “make chairman” button allows the actual
chairman to select a new chairman. The previous chairman then becomes a standard participant.
The chairman can also dismiss a participant. The participant then receives the message “You
have been dismissed” and all the connections concerning this participant are closed.

The interface of the tele-meeting scenario is shown in Figure 6.

Tele-Tutoring

The tele-tutoring scenario is a reimplementation of the BETEL application. This proves how
easily an application can be implemented on top of the BETEUS platform. In this scenario, a
professor give a course to students located at different locations. The current scenario defines
two roles, the professor role and the student role. The professor is the initiator of the session,
and students can join or leave the session.

.:_ :]_ e ———— ']'-f'-l
Professor Wi
:| s !_:l_ e .I_r_l
| Sleriard 'y Vierw
‘Oavmrowm Y S | I'rolexser s rreskyn s Ber survoems
Tk | [eemisy S || Teewm i fsLtan Pak Ll o L.
iy e ————— g —— e B,
ipmmm TR — | g Yeur questan o 52 iy Bl
i gurwral b s jai . menm j e |
] |
i Tarmermln sexzios }

FIGURE 7. The tele-tutoring scenario

The professor’s and the students’ views are depicted in Figure 7. The left end list is the list of
the students in the session. The right end list is the list of students having a question and waiting
for the professor to answer. The professor can answer (or directly delete) questions from stu-
dents and also talk with a student to ask him a question. Students can also be dismissed by the
professor. The state of the application can be eglodial or talk. In the global state, the profes-

sor has a view on all participating students. The students see and hear the professor, but not each
other. In the talk state, the professor can talk with a particular student. In this case the audio and
video of both the student and the professor are distributed to all session participants so that
everybody can follow the discussion between the professor and the student. In addition this stu-
dent can share his X-windows applications to show his current work.

6 Role driven applications: Example

This section explains on a simple example how easy a distributed application can be built on top
of the BETEUS platform.

This example defines a tele-tutoring application. This is depicted in Figure 8. Two video con-

nectors are defined: camera (source) and monitor (sink). Three roles are defined: professor,
talker and student. A participant starts the session and gets the professor role plus the master
role. Other participants (studl, stud2 and stud3) join the session. They have the student role.

15

Stud2)
StudD Studd

defineBridge (bridgel, camera, professor, monitor, student)
defineBridge (bridge2, camera, student, professor, monitor)
defineBridge (bridge3, camera, talker, monitor, student)

FIGURE 8. The professor is giving a talk

According to the pseudo-definition of bridgel and bridge2 in Figure 8, each student receives the
video from the professor and the professor sees every student.

Now stud2 has a question. He asks the professor by pressing a button "ask™ on his student inter-
face. Application messages are exchanged between prof and stud2 through the site manager to
notify the professor of the student’s question. Once the professor decides to answer the question,
he just has to add the role'talker’ to stud2. Then studl and stud3 directly receive the video of
stud2 as shown in Figure 9. So the power of this approach relies on the fact that the application
itself does not really care about the list of participants (only if necessary) to create connections
between them, but only on roles they take or leave. Without this role abstraction, the application
would have done something like:

connect (camera, stud2, monitor, sud1)

connect (camera, stud2, monitor, sud3)
The application would need to keep a list of participants and for each of them a list of connec-
tions to the other participants, then make separate calls for each connection and disconnection.

(Prof)

Stud2
(StudD Studd

addRole (stud2, talker)

FIGURE 9. A student is asking a question

16

7 Conclusion and Future Work

We believe that the platform approach will be taken by more and more projects. A platform
allows rapid prototyping of application scenarios and ease of modification, which in turn allows

an incremental improvement of existing scenarios. It has to be seen that the platform itself does
not need to be static. It can be continuously improved along with the scenarios that run on top of
it. New scenarios will be conceived with features that could be implemented into the platform
rather than into the application itself. Every feature that is incorporated into the platform rather
than the application has to be considered as a preserved investment that is profitable as soon as
it is reused.

It is already clear that the BETEUS platform will be reused within at least one other project.
This gives us the opportunity to improve some of its components. As was already pointed out,
RMP will be used for inter-site communication in the future. Another major change will proba-
bly be the use of object request broker technology for intra-site communication.

8 Bibliography

[1] BETEUS Report: "Functional specification", Deliverable D2, July1994.
[2] BETEUS Report: "Detailed specification”, Deliverable D6, November 1994.
[3] BETEUS Report: "Working Prototype of the Application Platform Specification", Deliverable D8, June 1995.

[4] Y.-H. Pusztaszeri, E. Biersack, Ph. Dubois, J.-P. Gaspoz M. Goud, P. Gros, JP Hubaux :"Multimedia Teletu-
toring over a Trans-European ATM NetworRhd IWACA Conferencéleidelberg, September 1994.

[5] S. A.Bly, S. R. Harrison and S. Irwin,"Media Spaces: Bringing People Together in a Video, Audio and Com-
puting Environment"Communications of the AGManuary 1993.

[6] M. R. Macedonia and D. P. Brutzman:"MBone Provides Audio and Video across the IntlfE&"Com-
puter, April 1994.

[7]1 J. Lindblad and O. Schaller:"BeCool and the BETEUS Application Programming Interface", Eurécom Tech-
nical Report, June 1995.

[8] J.Lindblad:"The BeCool Thesis Project Report", Master’s thesis at the KTH Sweden, 1995.

[9] L. A.Rowe, B. Smith, and S. Yenftp:" Tcl Distributed Programming (Tcl-DP)", University of Berkely Com-
puter Science Divisiorftp://mm-ftp.cs.berkeley.edu/pub/multimedia/Tcl-DP/tcl-dp-v],.Maech 1993.

[10] J. K. Ousterhout, "TCL and TK Toolkit", Addison-Wesley Publishing,1994.

[11] T. Walter, M. Brunner and D. Loisel:"The BETEUS Communication Platform", to appear Brdbeedings
of the first International Distributed Conference IDC ;98adeira, November 1995.

[12] IETF Internet Draft:"RTP: A Transport Protocol for Real-TIme Applications”, Audio-Video Transport WG,
ftp://ds.internic.net/internet-drafts/draft-ietf-avt-rtp-07,tkarch 1995.

[13] G. K. Wallace:"The JPEG Still Picture Compression Stand@uofymunications of the AGMpril 1991.

[14] Th. Gutekunst, D. Bauer, G. Caronni, Hasan and B. Plattner:"A Distributed and Policy-Free General-Purpose
Shared Window SystemlEEE/ACM Transactions on Networkingebrurary 1995.

[15] T. Montgomery:"Design, Implementation and Verification of the Reliable Multicast Protocol", Master’s thesis
at West Virginia Universityhttp://research.ivv.nasa.gov/projects/RMP/Docs/RMPdocs, edember 1994.

9 References

HTTP server available on: http://www.tik.ee.ethz.ch/~beteus/

17

