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Abstract—In this paper, we propose an information geometry
approach (IGA) for signal detection in ultra-massive multiple-
input multiple-output (MIMO) systems. We formulate the signal
detection as obtaining the marginals of the a posteriori prob-
ability distribution of the transmitted symbol vector. Then, a
maximization of the a posteriori marginals (MPM) for signal
detection can be performed. With the information geometry
theory, we calculate the approximations of the a posteriori
marginals. It is formulated as an iterative m-projection process.
We then apply the central-limit-theorem (CLT) to simplify the
calculation of the m-projection since the direct calculation of
the m-projection is of exponential-complexity. With the CLT, we
obtain an approximate solution of the m-projection, which is
asymptotically accurate. Simulation results demonstrate that the
proposed IGA is a promising and efficient method to implement
the signal detector in ultra-massive MIMO systems.

Index Terms—Ultra-massive MIMO, signal detection, Bayesian
inference, information geometry.

I. INTRODUCTION

Ultra-massive multiple-input multiple-output (MIMO) is
able to achieve higher spectral efficiency and energy efficiency
than massive MIMO, where the base station (BS) employs an
ultra-large array with hundreds or thousands of antennas and
serves tens or even hundreds of users simultaneously [1]–[3].
For the realization of the substantial benefits of ultra-massive
MIMO, signal detection is of great importance. The optimal
detector based on the maximum the a posteriori (MAP)
criterion or the maximum-likelihood (ML) criterion performs
an exhaustive search and examines all possible symbols, which
is shown as non-deterministic polynomial-time hard (NP-
hard). On the other hand, the linear detectors, e.g., the linear
minimum-mean-squared error (LMMSE) detector, are widely
adopted due to the polynomial-time complexity. Nonetheless,
the estimation of the transmitted symbols of the LMMSE
detector is biased [4], and the performance of the LMMSE
detector degrades severely in massive MIMO systems with
high-order constellations [5].

Information geometry, which is introduced by Rao [6], and
then formally developed by Amari [7] and Cencov [8], has
found a wide range of applications. For Bayesian inference, the
space defined by the parameters of the a posteriori probability
distribution is regarded as a differentiable manifold with a Rie-
mannian structure and the definitions and tools of differential

geometry are well applied by Amari et al. [9]. Amari et al. also
show the intrinsic geometric insight of some classical Bayesian
inference methods, e.g, the belief propagation (BP) [10].
Meanwhile, some optimization methods, such as the concave-
convex procedure (CCCP) [11], are also applied to calculate
the marginals of the a posteriori distribution. On Bayesian
inference in communications applications, [12] analyzes the
turbo and low-density parity-check (LDPC) codes from the
perspective of information geometry, and an improvement of
turbo and LDPC codes is proposed from the geometrical
view. The information geometry is extended to complex signal
processing and an information geometry approach (IGA) is
proposed for massive MIMO channel estimation in [13] and
[14].

In this paper, we propose an information geometry approach
for ultra-massive MIMO signal detection. We formulate the
signal detection as obtaining the marginals of the a posteriori
probability distribution of the transmitted symbols. With the
information geometry theory, we calculate the approximations
of the a posteriori marginals. Furthermore, since the calcu-
lation of the m-projection in signal detection is of expo-
nential complexity, we apply the central-limit-theorem (CLT)
to simplify its calculation. With the CLT, we are able to
find an approximate solution of the m-projection, which is
asymptotically accurate. At last, a soft-decision is performed
based on the approximation of the a posteriori marginals.

The rest of the paper proceeds as follows. The system con-
figuration and problem statement are presented in Section II.
The information geometry approach for ultra-massive MIMO
signal detection is proposed in Section III. Simulation results
are provided in Section IV. The conclusion is drawn in Section
V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Configuration

Consider an ultra-massive MIMO system with one base
station (BS) serving K single-antenna users within a cell,
where the BS comprises a uniform planar array (UPA) of
Nr = Nr,v × Nr,h antennas, and Nr,v and Nr,h are the
numbers of the antennas at each vertical column and horizontal
row, respectively. Denote the transmitted symbol vector of all



users as s̃ ≜ [s̃1, s̃2, . . . , s̃K ]
T ∈ S̃K , where s̃k is the trans-

mitted symbol of user k. S̃ is the modulation constellation and
let us assume S̃ =

{
s̃(0), s̃(1), . . . , s̃(L̃−1)

}
, where

{
s̃(ℓ)
}L̃−1

ℓ=0

are the constellation points, and L̃ is the modulation order
(or constellation size). In this paper, we focus on the L̃-QAM
modulation and assume that each user chooses a symbol from
S̃ uniformly at random, and all users use the same alphabet. We
also assume that the average power of s̃k is normalized to unit,
i.e., E

{
|s̃k|2

}
= 1, k ∈ Z+

K , where Z+
K = {1, 2, ...,K}. The

symbol vector s̃ is then transmitted over a flat-fading complex
channel, and the received signal ỹ ∈ CNr at the BS can be
modeled as

ỹ = G̃s̃+ z̃, (1)

where G̃ ∈ CNr×K is the channel matrix, z̃ is an additive
white circular-symmetric complex Gaussian noise vector, z̃ ∼
CN

(
0, σ̃2

zI
)

and σ̃2
z is the noise variance.

B. Problem Statement

We first reformulate the complex-valued received signal
model (1) into a real-valued one. Define real vectors y ≜
[RT {ỹ} , IT {ỹ}]T ∈ R2Nr , s ≜ [RT {s̃} , IT {s̃}]T ∈ R2K ,
z ≜ [RT {z̃} , IT {z̃}]T ∈ R2Nr and a real matrix

G ≜

 R
{
G̃
}
, −I

{
G̃
}

I
{
G̃
}
, R

{
G̃
}  ∈ R2Nr×2K . (2)

Then, the real-valued received signal model is obtained as

y = Gs+ z, (3)

where s = [s1, s2, . . . , s2K ]
T ∈ S2K , sk ∈ S, k ∈ Z+

2K ,
S =

{
s(0), s(1), . . . , s(L−1)

}
is the alphabet for the real and

imaginary components of a symmetric L̃-QAM modulation,
L =

√
L̃, z ∼ N

(
0, σ2

zI
)

is the noise vector, and σ2
z = σ̃2

z/2.
Assuming that the transmistted signals of all users, as well as
the real and imaginary parts of the transmistted signals, are
independent of each other and follow a uniform distribution.
Given the received signal model (3), the a posteriori distribu-
tion of s can be expressed as

p (s|y) ∝
2K∏
k=1

fk (sk)

2Nr∏
n=1

f (yn|s)

∝
2K∏
k=1

fk (sk)

2Nr∏
n=1

exp

{
−
(
yn − eTnGs

)2
2σ2

z

}
,

(4)

where fk (sk)
∣∣
sk=s(ℓ)

= 1
L , k ∈ Z+

2K , ℓ ∈ ZL−1, is the
a priori probability of sk, ZL−1 = {0, 1, ..., L− 1}, yn is
the n-th element of y, f (yn|s) is the probability density
function (PDF) of yn, n ∈ Z+

2Nr
, given s, and en ∈ C2Nr

is the n-th column of the 2Nr dimensional identity matrix.
In this work, we propose an information geometry approach
for signal detection which aims to obtain the approximations
of the marginals, i.e., pk (sk|y) , k ∈ Z+

2K , of the a posteriori

distribution p (s|y), which can be used for the maximization of
the a posteriori marginals (MPM) detector, i.e., for k ∈ Z+

2K ,

sk,MPM = argmax
sk∈S

pk (sk|y) . (5)

III. INFORMATION GEOMETRY APPROACH FOR SIGNAL
DETECTION

This section applies information geometry into the
signal detection. Define a sufficient statistic of sk as
tk ≜ [tk,1, tk,2, . . . , tk,L−1]

T ∈ RL−1, where tk,ℓ ≜
δ
(
sk − s(ℓ)

)
, k ∈ Z+

2K , ℓ ∈ Z+
L−1, and δ(x) is equal

to 1 when x = 0, otherwise 0. Define dk ≜
[dk,1, dk,2, . . . , dk,L−1]

T ∈ RL−1, k ∈ Z+
2K , and

dk,ℓ = ln
fk (sk)

∣∣
sk=s(ℓ)

fk (sk)
∣∣
sk=s(0)

, ℓ ∈ Z+
L−1. (6)

The a priori probability fk (sk) , k ∈ Z+
2K , can be expressed

as
fk (sk) = exp

{
dT
k tk − ψ (dk)

}
, (7)

where ψ (dk) = − ln
(
fk (sk)

∣∣
sk=s(0)

)
is the free energy. De-

fine cn (s, yn) ≜ − 1
2σ2

z

(
yn − eTnGs

)2
. Then the a posteriori

distribution p (s|y) in (4) can be expressed as

p (s|y) = exp

{
2K∑
k=1

dT
k tk +

2Nr∑
n=1

cn (s, yn)− ψq

}

= exp

{
dT t+

2Nr∑
n=1

cn (s, yn)− ψq

}
, (8)

where d =
[
dT
1 ,d

T
2 , . . . ,d

T
2K

]T ∈ R2K(L−1), t =[
tT1 , t

T
2 , . . . , t

T
2K

]T ∈ R2K(L−1), and ψq is the normaliza-
tion factor. In (8), dT t only contains the separated random
variables {sk}2Kk=1 (i.e., no cross-terms of {sk}2Kk=1), and all
the interactions (cross-terms) between the random variables
{sk}2Kk=1 are included in cn (s, yn) , n ∈ Z+

2Nr
. IGA aims to

approximate
∑2Nr

n=1 cn (s, yn) by θT
0 t, where θ0 ∈ R2K(L−1).

To obtain θ0, we construct two types of manifolds, the
objective manifold (OBM) and the auxiliary manifold (AM).
The OBM M0 is defined as

M0 =
{
p0 (s;θ0)

∣∣∣θ0 ∈ R2K(L−1)
}
, (9a)

p0 (s;θ0) =

2K∏
k=1

p0,k (sk;θ0,k)

= exp
{
dT t+ θT

0 t− ψ0 (θ0)
}
,

(9b)

p0,k (sk;θ0,k) = exp
{
dT
k tk + θT

0,ktk − ψ0 (θ0,k)
}
, (9c)

where θ0 =
[
θT
0,1,θ

T
0,2, . . . ,θ

T
0,2K

]T ∈ R2K(L−1) is the
e-affine coordinate system (EACS) of p0 (s;θ0), θ0,k =

[θ0,k,1, θ0,k,2, . . . , θ0,k,L−1]
T ∈ R(L−1) is the EACS of

p0,k (sk;θ0,k), p0,k (sk;θ0,k) is the marginal distribution of



sk, and ψ0 (θ0) and ψ0 (θ0,k) are normalization factors.
Specifically, ψ0 (θ0,k) is given by

ψ0 (θ0,k) = ln

(∑
sk∈S

exp
{
dT
k tk + θT

0,ktk
})

= ln

(
1 +

L−1∑
ℓ=1

exp {dk,ℓ + θ0,k,ℓ}

)
.

(10)

Given p0 (s;θ0) and its marginals p0,k (sk;θ0,k), the proba-
bility of the signal sk can be expressed in a more explicit way
as

p0,k (sk;θ0,k)
∣∣∣
sk=s(0)

(a)
=

1

1 +
∑L−1

ℓ=1 exp {dk,ℓ + θ0,k,ℓ}
,

(11a)

p0,k (sk;θ0,k)
∣∣∣
sk=s(ℓ)

(b)
=

exp {dk,ℓ + θ0,k,ℓ}
1 +

∑L−1
ℓ=1 exp {dk,ℓ + θ0,k,ℓ}

,

(11b)
where ℓ ∈ Z+

L−1 in (11b), and (a) and (b) come from (9c)
and (10). Then 2Nr AMs are defined as, for n ∈ Z+

2Nr
,

Mn =
{
pn (s;θn)

∣∣∣θn ∈ R2K(L−1)
}
, (12a)

pn (s;θn) = exp
{
dT t+ θT

n t+ cn (s, yn)− ψn (θn)
}
,

(12b)
where θn =

[
θT
n,1,θ

T
n,2, . . . ,θ

T
n,2K

]T ∈ R2K(L−1) is the
EACS of pn (s;θn), θn,k = [θn,k,1, θn,k,2, . . . , θn,k,L−1]

T ∈
R(L−1), and ψn(θn) is the normalization factor.

Before proceeding, we further define a manifold called the
original manifold (OM), and then show that the OBM and
the AMs are its submanifolds. Define the OM as the set
of probability distributions of the 2K dimensional discrete
random vector s as

S =

{
p (s)

∣∣∣p (s) > 0, s ∈ S2K ,
∑

s∈S2K
p (s) = 1

}
. (13)

S is then a L2K − 1 dimensional manifold and forms an
exponential family. It can be obtained that the OBM and
the AMs are the submanifolds of the OM, i.e., M0 ⊆ S,
Mn ⊆ S, n ∈ Z+

2Nr
, since the distributions in the OBM and

the AMs are all particular probability distributions of s when
the EACSs of them are given.

From (12b), it can be found that only one interaction term
cn (s, yn) is remained in pn (s;θn), and all the others, i.e.,∑

n′ ̸=n cn′ (s, yn′), are replaced as θT
n t. Assume that θn of

pn (s;θn) , n ∈ Z+
2Nr

, is given, we calculate the approximation
of cn (s, yn) from the m-projection of pn (s;θn) onto the
OBM M0. Denote the approximation of cn (s, yn) as ξTn t,
where ξn =

[
ξTn,1, ξ

T
n,2, . . . , ξ

T
n,2K

]T ∈ R2K(L−1) and ξn,k =

[ξn,k,1, ξn,k,2, . . . , ξn,k,L−1]
T ∈ R(L−1), k ∈ Z+

2K , n ∈ Z+
2Nr

.
Then the m-projection of pn (s;θn) onto M0 is denoted as
p0 (s;θn + ξn). Specifically, the m-projection is calculated by
minimizing the following Kullback-Leibler (K-L) divergence,

ξn = argmin
ξn

DKL {pn (s;θn) : p0 (s;θn + ξn)} , (14)

where the K-L divergence is given by

DKL {pn (s;θn) : p0 (s;θn + ξn)}

=Epn(s;θn)

{
ln

pn (s;θn)

p0 (s;θn + ξn)

}
. (15)

We now present the properties of the m-projection of
any p (s) ∈ S, onto the OBM M0, which inspires us to
approximate the m-projection of pn (s;θn) onto the OBM
M0. We then have the following theorem.

Theorem 1: Given p (s) ∈ S, and M0 ⊆ S, the m-
projection of p (s) onto M0 is unique. Moreover, p0 (s;θ⋆

0) is
the m-projection of p (s) onto M0 if and only if the following
relationship holds,

η = η0 (θ
⋆
0) , (16)

where η,η0 (θ
⋆
0) ∈ R2K(L−1) are the expectations of t w.r.t.

p (s) and p0 (s;θ⋆
0), respectively.

Define s\k as the (2K− 1)-dimensional vector obtained by
removing the k-th element from s, k ∈ Z+

2K . Then, we can
obtain the marginal probability distribution of sk given the
joint probability distribution p (s) is

pk (sk) ≜
∑

s\k∈S2K−1

p (s) , k ∈ Z+
2K . (17)

From the definition of p0 (s;θ
⋆
0) in (9b), we denote the

marginals of p0 (s;θ⋆
0) in Theorem 1 as p0,k

(
sk;θ

⋆
0,k

)
, k ∈

Z+
2K , where θ⋆

0,k =
[
θ⋆0,k,1, θ

⋆
0,k,2, . . . , θ

⋆
0,k,L−1

]T
and θ⋆

0 =[(
θ⋆
0,1

)T
,
(
θ⋆
0,2

)T
, . . . ,

(
θ⋆
0,2K

)T ]T
. From Theorem 1, we

have the following corollary.
Corollary 1: Given p (s) ∈ S , and M0 ⊆ S , p0 (s;θ⋆

0) is
the m-projection of p (s) onto M0 if and only if the marginals
of p (s) and the marginals of p0 (s;θ⋆

0) are equal, i.e.,

pk (sk) = p0,k
(
sk;θ

⋆
0,k

)
, sk ∈ S, k ∈ Z+

2K . (18)

Meanwhile, the EACS of the m-projection is given by

θ⋆
0 =

[(
θ⋆
0,1

)T
,
(
θ⋆
0,2

)T
, . . . ,

(
θ⋆
0,2K

)T ]T
, where θ⋆

0,k =[
θ⋆0,k,1, θ

⋆
0,k,2, . . . , θ

⋆
0,k,L−1

]T
, and

θ⋆0,k,ℓ = ln
pk (sk)

∣∣
sk=s(ℓ)

pk (sk)
∣∣
sk=s(0)

− dk,ℓ, ℓ ∈ Z+
L−1. (19)

The proofs of Theorem 1 and Corollary 1 can be found in
[15]. From Corollary 1, for any n ∈ Z+

2Nr
, the m-projection

p0 (s;θn + ξn) is determined by the marginal probability
distribution pn,k (sk;θn) , k ∈ Z+

2K , where

pn,k (sk;θn) =
∑

s\k∈S2K−1

pn (s;θn) . (20)

And we have

ξn,k,ℓ = ln
pn,k (sk;θn)

∣∣
sk=s(ℓ)

pn,k (sk;θn)
∣∣
sk=s(0)

− dk,ℓ − θn,k,ℓ, (21)



where n ∈ Z+
2Nr

, k ∈ Z+
2K and ℓ ∈ Z+

L−1. From the definition
of pn (s;θn) in (12b), its marginals can be expressed as

pn,k (sk;θn) =
∑

s\k∈S2K−1

exp
{
(d+ θn)

T
t+ cn (s, yn)− ψn

}
(a)
∝ exp

{
(dk + θn,k)

T
tk

}
q (yn, sk) , (22)

where n ∈ Z+
2Nr

, k ∈ Z+
2K , sk ∈ S, (a) is obtained by

removing the constants that do not vary with the value of
sk, q (yn, sk) is a function of yn and sk, and

q (yn, sk) (23)

=
∑

s\k∈S2K−1

exp
{ 2K∑

k′=1,k′ ̸=k

(dk′ + θn,k′)
T
tk′ + cn (s, yn)

}
.

Note that the proportions in the second line of (22) and
the third line of (24) next will not affect the calculation
of pn,k(sk;θn) since the constants corresponding to these
proportions do not vary with the value of sk, and thus we
can finally normalize pn,k(sk;θn). In the last line of (22),
the calculation of exp

{
(dk + θn,k)

T
tk

}
is simple, if we can

obtain the approximate value of q (sk, yn) , sk ∈ S, we can
then obtain the approximate value of pn,k (sk;θn) , sk ∈ S.
Hence, our goal now is converted to obtain the approximate
value of q (yn, sk) , sk ∈ S. From (23), we can obtain

q (yn, sk)

=
∑

s\k∈S2K−1

( 2K∏
k′=1,k′ ̸=k

exp
{
(dk′ + θn,k′)

T
tk′

}
× exp

{
− 1

2σ2
z

(
yn − eTnGs

)2})
(24)

(a)
∝

∑
s\k∈S2K−1

( 2K∏
k′=1,k′ ̸=k

p0,k′ (sk′ ;θn,k′) fG
(
yn; e

T
nGs, σ2

z

) )
,

where G is defined in (2), (a) is obtained by adding the
constants independent with sk and yn, p0,k′ (sk′ ;θn,k′) is
define by (9c) and fG

(
x;µ, σ2

)
denotes the PDF of a real

Gaussian distribution N
(
µ, σ2

)
. Inspired by the last line

of (24), we consider 2Nr × 2K hybrid random variables
Yn,k, n ∈ Z+

2Nr
, k ∈ Z+

2K , where the (n, k)-th of them is
defined by: for given sk,

Yn,k = eTnGs+ w = gn,ksk +

2K∑
k′=1,k′ ̸=k

gn,k′sk′ + w

=

2K∑
k′=1,k′ ̸=k

gn,k′sk′ + w′
n,k,

(25)

where gn,k is the (n, k)-th element of G, sk is considered as a
deterministic (also known/given) constant, {sk′}k′ ̸=k are con-
sidered as the independent discrete random variables, the prob-
ability distribution of sk′ , k′ ̸= k, is given by p0,k (sk′ ;θn,k′),
the joint probability distribution of {sk′}k′ ̸=k is then given by
p
(
s\k
)
=
∏

k′ ̸=k p0,k′ (sk′ ;θn′,k), w ∼ N
(
0, σ2

z

)
is a real

Gaussian random variable independent with {sk′}k′ ̸=k, and
w′

n,k = w + gn,ksk ∼ N
(
gn,ksk, σ

2
z

)
is also independent

with {sk′}k′ ̸=k. In this case, it is not difficult to obtain that
the PDF of Yn,k is given by [16, Sec. 6.1.2]

f (Yn,k)

=
∑

s\k∈S2K−1

p (s\k) fG

Yn,k−∑
k′ ̸=k

gn,k′sk′ ; gn,ksk, σ
2
z


=

∑
s\k∈S2K−1

(
p
(
s\k
)
fG
(
Yn,k; e

T
nGs, σ2

z

))
, (26)

which will be equal to the last line of (24) after we set the
value of Yn,k as Yn,k = yn.

Before proceeding, we first calculate the expected value and
variance of Yn,k, n ∈ Z+

2Nr
, k ∈ Z+

2K , in (25). Given a prob-
ability distribution p0,k′ (sk′ ;θn,k′) of sk′ , k′ ∈ Z+

2K \ {k},
by using (11) the expected value and the variance of sk′ are
given by

µn,k′ =
∑
sk′∈S

sk′p0,k′ (sk′ ;θn,k′)

=
s(0) +

∑L−1
ℓ=1 s

(ℓ) exp {dk′,ℓ + θn,k′,ℓ}
1 +

∑L−1
ℓ=1 exp {dk′,ℓ + θn,k′,ℓ}

,

(27a)

vn,k′ =
∑
sk′∈S

s2k′p0,k′ (sk′ ;θn,k′)− µ2
n,k′ (27b)

=

(
s(0)
)2

+
∑L−1

ℓ=1

(
s(ℓ)
)2

exp {dk′,ℓ + θn,k′,ℓ}
1 +

∑L−1
ℓ=1 exp {dk′,ℓ + θn,k′,ℓ}

−µ2
n,k′.

Meanwhile, since {sk′}k′ ̸=k and w′
n,k are independent in (25),

the expected value and variance of Yn,k, n ∈ Z+
2Nr

, k ∈ Z+
2K ,

can be readily expressed as

E {Yn,k} =

2K∑
k′=1,k′ ̸=k

gn,k′µn,k′ + gn,ksk, (28a)

V {Yn,k} =

2K∑
k′=1,k′ ̸=k

g2n,k′vn,k′ + σ2
z . (28b)

From Lyapunov CLT [17], we then have the following theo-
rem, and its detailed proof can be found in [15].

Theorem 2: If the following condition

lim
K→∞

1

2K

2K∑
k′=1,k′ ̸=k

g2n,k′vn,k′ = ζ > 0 (29)

holds for a positive constant ζ, then Yn,k converges in distri-
bution to a real Gaussian random variable Ỹn,k, as 2K goes
to infinity, and

Yn,k
d→ Ỹn,k ∼ N (E {Yn,k} ,V {Yn,k}) . (30)

Intuitively, the condition (29) means that as K tends to infin-
ity, the variance of the random variable s̃n,k′ ≜ gn,k′sk′ , k′ ∈
Z+

2K \{k}, in (25) does not tend to zero, or s̃n,k′ does not tend
to be a deterministic value. This guarantees that the CLT holds.



When K is large, from Theorem 2, q (yn, sk) is approximately
proportional to fG

(
Ỹn,k;E {Yn,k} ,V {Yn,k}

) ∣∣
Ỹn,k=yn

, and
thus we can obtain

pn,k (sk;θn)

(a)
∝ exp

{
(dk + θn,k)

T
tk − (yn − E {Yn,k})2

2V {Yn,k}

}

= exp

{
(dk + θn,k)

T
tk − (gn,ksk − µ̃n,k)

2

2V {Yn,k}

}
,

(31)

where sk ∈ S, k ∈ Z+
2K , n ∈ Z+

2Nr
, (a) is obtained by

removing the constants independent with sk and yn, and
µ̃n,k, n ∈ Z+

2Nr
, k ∈ Z+

2K , is defined as

µ̃n,k ≜ yn −
∑2K

k′=1,k′ ̸=k
gn,k′µn,k′ . (32)

As a summary, when K is large we approximately have

pn,k (sk;θn)
∣∣
sk=s(0)

= Cn,k exp

{
−
(
gn,ks

(0) − µ̃n,k

)2
2V {Yn,k}

}
,

(33a)
pn,k (sk;θn)

∣∣
sk=s(ℓ)

=Cn,k exp

{
dk,ℓ + θn,k,ℓ −

(
gn,ks

(ℓ) − µ̃n,k

)2
2V {Yn,k}

}
,

(33b)

where Cn,k is the normalization factor, and ℓ ∈ Z+
L−1 in (33b).

Combining (21), we can immediately obtain that

ξn,k,ℓ =
gn,k

(
s(0) − s(ℓ)

) [
gn,k

(
s(0) + s(ℓ)

)
− 2µ̃n,k

]
2V {Yn,k}

,

(34)
where n ∈ Z+

2Nr
, k ∈ Z+

2K and ℓ ∈ Z+
L−1.

After the approximate ξn is obtained, we update θn as
θn =

∑
n′ ̸=n ξn′ since θT

n t replaces
∑

n′ ̸=n cn′ (s, yn′) and
each cn′ (s, yn′) is approximated as ξTn′t. Then θ0 is updated
as θ0 =

∑
n ξn since the ultimate goal is to approximate∑

n cn (s, yn) as θT
0 t. In practice, to improve the convergence

of IGA, the EACSs are usually updated in a damped way.
Given θ0(t), θn(t) and ξn(t) in the t-th iteration, θ0(t + 1)
and θn(t+ 1) in the (t+ 1)-th iteration are then updated as

θn (t+ 1) = α

2Nr∑
n′=1,n′ ̸=n

ξn′ (t) + (1− α)θn (t) , n ∈ Z+
2Nr

,

(35a)

θ0 (t+ 1) = α

2Nr∑
n=1

ξn (t) + (1− α)θ0 (t) , (35b)

where 0 < α ≤ 1 is the damping. Repeat m-projection and
the updating process until convergence. We summarize the
IGA for signal detection in Algorithm 1. The computational
complexity (the number of real-valued multiplications) of the
IGA is O (16NrK (L+ 1)) per iteration, where Nr is the
number of antennas at the BS , K is the number of users,
L =

√
L̃, and L̃ is the modulation order.

Algorithm 1: IGA for Signal Detection
Input: The a priori probability fk (sk) , k ∈ Z+

2K , the received
signal y, the noise power σ2

z and the maximal iteration
number tmax.

1 Initialization: set t = 0, set damping α, where 0 < α ≤ 1,
initialize θn(0), n ∈ Z2Nr ;

2 repeat
3 1. Calculate

ξn(t) =
[
ξTn,1 (t) , ξ

T
n,2 (t) , . . . , ξ

T
n,2K (t)

]T
, n ∈ Z+

2Nr
,

where ξn,k(t) =
[
ξn,k,1(t), ξn,k,2(t), . . . , ξn,k,L−1(t)

]T ,
ξn,k,ℓ(t) is given by (34), and the intermediate variables are
given by (27), (28b) and (32);

4 2. Update θ0(t+ 1) and θn(t+ 1), ∀n ∈ Z+
2Nr

as (35);
5 3. t = t+ 1;
6 until Convergence or t > tmax;

Output: The approximate probability of the a posteriori marginals
pk (sk|y) is given by p0,k

(
sk;θ0,k(t)

)
in (11),

∀k ∈ Z+
2K . Then, the MPM detection is given by (5).

IV. SIMULATION RESULTS

In this section, we provide simulation results to illustrate
the performance of the proposed IGA for signal detection.
The uncoded bit error rate (BER) is adopted as the perfor-
mance metric. We average our results for 1000 realizations
of the channel matrix G, which is generated by the widely
adopted QuaDRiGa [18]. The simulation scenario is set to
”3GPP 38.901 UMa NLOS”, and the main parameters for
the simulations are summarized in Table I. The channel matrix

TABLE I
PARAMETER SETTINGS OF THE SIMULATION

Parameter Value
Number of BS antennas Nr,v ×Nr,h 16× 64

UT number K 240
Center frequency fc 4.8GHz
Modulation Mode QAM

Modulation Order L̃ 4, 16 and 64

is normalized as E
{
∥G∥2F

}
= NrK. The average power of

the transmitted symbol of each user is normalized to 1, and
the SNR is set as SNR = K

σ̃2
z

. Based on the received signal
model (3), we compare the proposed IGA with the LMMSE
detector, the expectation propagation (EP) detector proposed
in [5] and the approximate message passing (AMP) detector
proposed in [19].

The computational complexity of the LMMSE detector
is O

(
8
(
2NrK

2 +K3
))

[5]. The computational complexity
of the EP detector and AMP are O

(
8
(
NrK

2 +K3
))

and
O (8 (NrK)) per iteration, respectively [5], [19]. The com-
plexity of EP detector is the highest among all algorithms.
When the number of iterations is low (e.g., tens), the com-
plexity of IGA is lower than that of LMMSE detection. The
computational complexity of AMP is the lowest.

We first consider 4-QAM modulation. Fig. 1 shows the
BER performance of the IGA compared with LMMSE, EP
and AMP. The iteration numbers of IGA, EP and AMP are
set as 10, 10 and 30, and 10 and 30, respectively. From Fig.
1, we can find that all the iterative algorithms outperform the
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Fig. 1. BER performance of IGA compared
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Fig. 2. BER performance of IGA compared
with AMP, EP and LMMSE under 16-QAM.

10 11 12 13 14 15 16 17 18 19

SNR in dB

10
-4

10
-3

10
-2

10
-1

B
E

R

AMP, T = 40

AMP, T = 90

LMMSE

EP, T = 5

EP, T = 20

IGA, T = 20

IGA, T = 40

Fig. 3. BER performance of IGA compared
with AMP, EP and LMMSE under 64-QAM.

LMMSE detector within limited iteration numbers. For BER =
10−3, the SNR gains of the IGA with 10 iterations compared
to the AMP with 10 and 30 iterations are around 0.7dB and
0.3dB, respectively. Meanwhile, IGA with 10 iterations can
improve the EP performance with 10 and 30 iterations in 1dB
and 0.7dB for BER = 10−3, respectively.

Fig. 2 and Fig. 3 show the BER performance for 16-QAM
and 64-QAM, respectively. From Fig. 2, we can find that
the BER performance of LMMSE outperforms that of the
AMP with 20 iterations. Meanwhile, we can find that the
gap between IGA and the other algorithms is increasing. For
BER =10−3, the SNR gains of the IGA with 15 iterations
compared to the EP with 20 and 90 are about 1.2dB and
0.9dB, respectively. The SNR gain for the the IGA with 40
iterations increases by about 0.2dB each over the two gains
above. For 64-QAM, from Fig. 3, we can find that the BER
performance of the LMMSE detector exceeds that of the
AMP after convergence. The gap between IGA and the other
algorithms is still increasing. For BER = 10−2, IGA with 20
iterations has improved the EP performance with 5 and 20
iterations in 2.1dB and 1.6dB, respectively. The SNR gain for
the the IGA with 40 iterations increases by about 0.7dB each
over the two gains above.

V. CONCLUSION

We have proposed an information geometry approach for
ultra-MIMO signal detection in this paper. The signal detection
is formulated as an MPM detection problem based on the
approximation of the a posteriori marginals of the transmit-
ted symbols of all users. We convert the calculation of the
approximation of the a posteriori marginals into an iterative
m-projection process. Then, the Lyapunov CLT is applied to
have an approximate solution of the m-projection between a
probability distribution of the AM and the OBM. Simulation
results verify that the IGA can obtain the best BER perfor-
mance within a limited number of iterations compared with
the existing approaches, which demonstrates the superiority
of the proposed IGA for ultra-MIMO signal detection.
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[5] J. Céspedes, P. M. Olmos, M. Sánchez-Fernández, and F. Perez-Cruz,
“Expectation propagation detection for high-order high-dimensional
MIMO systems,” IEEE Trans. Commun., vol. 62, no. 8, pp. 2840–2849,
Aug. 2014.

[6] C. R. Rao, “Information and the accuracy attainable in the estimation of
statistical parameters,” in Breakthroughs in Statistics. Springer, 1992,
pp. 235–247.

[7] S. Amari and H. Nagaoka, Methods of Information Geometry. American
Mathematical Soc., 2000, vol. 191.

[8] N. N. Cencov, Statistical Decision Rules and Optimal Inference. Amer-
ican Mathematical Soc., 2000, no. 53.

[9] S. Amari, Information Geometry and Its Applications. Tokyo, Japan:
Springer, 2016.

[10] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.

[11] A. L. Yuille and A. Rangarajan, “The concave-convex procedure,”
Neural Computation, vol. 15, no. 4, pp. 915–936, Apr. 2003.

[12] S. Ikeda, T. Tanaka, and S. Amari, “Information geometry of turbo and
low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 50, no. 6,
pp. 1097–1114, June 2004.

[13] J. Y. Yang, A.-A. Lu, Y. Chen, X. Q. Gao, X.-G. Xia, and D. T. M. Slock,
“Channel estimation for massive MIMO: An information geometry
approach,” IEEE Trans. Signal Process., vol. 70, pp. 4820–4834, Oct.
2022.

[14] J. Y. Yang, Y. Chen, A.-A. Lu, W. Zhong, X. Q. Gao, X. You, X.-G. Xia,
and D. T. M. Slock, “A simplified information geometry approach for
massive MIMO-OFDM channel estimation,” submitted to IEEE Trans.
Signal Process., 2023.

[15] J. Y. Yang, Y. Chen, X. Q. Gao, D. T. M. Slock, and X.-G. Xia, “Signal
detection for ultra-massive MIMO: An information geometry approach,”
to be submitted.

[16] H. Pishro-Nik, Introduction to Probability, Statistics, and Random
Processes. Kappa Research: Galway, Ireland, 2014.

[17] P. Billingsley, Probability and Measure. John Wiley & Sons, New
York, 2008.

[18] S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele, “Quadriga: A 3-d
multi-cell channel model with time evolution for enabling virtual field
trials,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3242–3256,
2014.

[19] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algo-
rithms for compressed sensing: I. motivation and construction,” in 2010
IEEE Information Theory Workshop on Information Theory (ITW 2010,
Cairo), Jan 2010, pp. 1–5.


