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Abstract—Driven by the key principles of open interfaces,
virtualization and programmability, Open RAN has emerged as
a new paradigm to evolve contemporary Radio Access Networks
(RANs) into a more vendor-agnostic, softwarized, and intelligent
ecosystem. To this end, Software Defined RAN (SD-RAN) ini-
tiatives (e.g., O-RAN) are drafting specifications to provide the
means to embrace it. However, even though O-RAN following the
Open RAN paradigm specifies Service Models (SMs) to monitor
and control the RAN, it does not go beyond the Quality of
Service (QoS) mechanisms provided by 3GPP. Therefore, the QoS
degradation that occurs mostly due to data flow’s nature at the
slowest data path link (e.g., high L2 sublayers), is not addressed
by contemporary O-RAN SMs.

In this paper, we present a traffic control system for SD-
RAN, denoted as TC-RAN, that consists of an E2 service Model
(E2SM) and a RAN Function (RF) that adheres to the Open
RAN principles and promotes data flows to first-class citizens in
cellular networks, upgrading contemporary 5G QoS mechanism.
TC-RAN introduces a 6 programmable, extendable, and cus-
tomizable pipeline composed of a classifier, a policer, a queue, a
scheduler, a shaper and a pacer. Additionally, TC-RAN addresses
QoS degradation scenarios unsolvable through Resource Block
(RB) allocation or 3GPP slicing mechanisms, unleashing the true
potential for deploying extremely demanding applications and
creating a green field for AI/ML cross-optimization algorithms on
the road to 6G. We prototype and validate TC-RAN in a real 5G
Stand Alone (SA) RAN stack using an O-RAN compatible near
Real-Time Radio Intelligent Controller (nearRT-RIC), xApps,
and Commercial off-the-shelf (COTS) User Equipments (UEs).
The results show that intelligently composing a TC-RAN pipeline
in cellular networks can considerably reduce the latency, notably
enhancing the Quality of Experience (QoE) in a real multiplayer
online game.

Index Terms—Open RAN, O-RAN, E2SM, nearRT-RIC, 5G
QoS.

I. INTRODUCTION

Open RAN is emerging as a new paradigm for open,
intelligent, programmable and virtualized cellular networks.
Intelligent networks can forecast the network status, retrieving
Key Performance Indicators (KPI) and act accordingly through
closed-loop data-driven control algorithms to optimize the per-
formance. To this end, networks require open and standardized
interfaces to permit interoperability among different compo-
nents, and thus, enable vendor-agnostic intelligent algorithms.
Additionally, networks entail programmability, unleashing the
potential for algorithms to dynamically change RAN’s be-
havior/composition and smoothly adapt to the new demands.
Another pillar in Open RAN is virtualization that allows the

Fig. 1. RRUL in Amarisoft and OpenAirInterface (OAI) 5G SA RANs with
TCP BBR enabled in both endpoints.

cloudification of the network, facilitating deployments and
dynamically managing resources based on the application
demands. Towards these ends, O-RAN [1] is a vendor and
operator driven community that drafts standardized proto-
cols which permit interoperability between different vendors,
unlocking the SD-RAN paradigm. Among other things, O-
RAN defines the E2 Application Protocol (E2AP), which
encapsulates the Service Model (SM), providing a standard
mechanism of communication between an xApp and an RF.
In this way it provides forward compatibility and decoupling,
as new unforeseen SMs that address novel challenges can be
designed and transported using the E2AP, similar to how IP
packets agnostically transport L4 protocols (e.g., TCP or UDP)
in their data section. One of these novel challenges that are
still not tackled by O-RAN or 3GPP, and that can be designed
using the Open RAN principles and E2AP/SMs is the RAN
data flow control. As shown in Fig. 1, the throughput and
Round Trip Time (RTT) of two contemporary softwarized
5G RAN stacks in SA mode under the Real-Time Response
Under Load (RRUL) test provided by flent [2], present delays
in the order of hundreds of milliseconds, which exceeds the
latency envisioned by 3GPP for low-latency scenarios [3].
During the first 5 seconds in the RRUL test, only the UDP
and ping flows are active, and thus, we can observe that
the no-load delay of the system is around 10 ms, a suitable
value for time sensitive over the top (OTT) applications [4].
However, after the 5th second, the TCP flows begin and the
perceived delay increases dramatically. Even worse, in Fig.
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1 the reported results were generated using a non-loss-based
Congestion Control Algorithm (CCA) (i.e., TCP BBR [5]),
which aim to achieve low latency, estimating the available
throughput and pacing the traffic accordingly. In fact, the
observed downward spikes in the total throughput in Fig. 1
happen every 10 seconds during 200 ms1 where the CCA
tries to estimate the available bandwidth in a no-load scenario.
Moreover, even though the flows are marked with different
QoS classes (i.e., DiffServ Best Effort (BE), Background
(BK), Signaling (CS5) and Expedited Forwarding (EF)), they
end up sharing a common queue (i.e., Radio Link Control
(RLC)) and packets that are time sensitive (e.g., EF is used
for sensitive real-time, interactive traffic) suffer considerable
latency, ruining user QoE. This outcome clearly shows the
necessity to upgrade the current 5G QoS mechanism.

To meet latency requirements, 5G proposes slicing, that
has been traditionally presented as a key enabler for low-
latency communications [6] [7]. When a slice is created, a
new PDU Session is established [3], and flows marked with
the appropriate QoS Flow Indicator (QFI) are redirected to
the newly created Data Radio Bearer (DRB) through the
Service Data Adaptation Protocol (SDAP) sublayer. O-RAN
envisions the necessity to dynamically map the QFI to DRB,
and thus, provides an SM (i.e., E2 RAN Control (E2RC)
[8]) that permits its control using an xApp. In fact, 3GPP’s
QoS mechanism is very similar to the DiffServ mechanism.
Packets are classified into classes (e.g., real-time gaming),
and segregated in different queues, from which a scheduler
dequeues them every transmission opportunity. However, cor-
rectly segregating the flows is challenging due to: (i) the
growing privacy and security concerns (e.g., Tor project or
VPNs), (ii) the cloudification of the services, and thus, network
dynamicity, and (iii) the lack of communication among the
service providers and the content providers. Therefore, there
exists a considerable amount of packets that may be time
sensitive that will end sharing the default DRB, rather than
instantiating a new dedicated bearer. Moreover, even if the
flows can be segregated, if two flows from different services
belong to the same QFI, they will share the RLC buffer and
3GPP does not provide any fairness mechanism to avoid one
greedy flow to monopolize the access to the resources. Hence,
the latency requirements of the second flow will be ruined, as
its packets will have to wait in a bloated queue until the packets
of the former have been transmitted, a situation that can be
observed in Fig. 1. Additionally, 3GPP’s QoS mechanism is a
funnel where [1, 64] QFIs per UE can exist, while only [1, 32]
DRBs can be instantiated [3] [9], worsening the situation due
to the pigeonhole principle. Lastly, 3GPP QoS finest grained
mechanism is QFI, and hence, there does not exist a data flow
slicing possibility within the standard framework for flows
marked with the same QFI.

State-of-the-art solutions for this problem in the wired
and Wi-Fi stack suggest using Active Queue Management
(AQM) and Fair Queuing (FQ) mechanisms [10] [11] [12].
However, in a 3GPP network, packets marked with the same
QFI should be treated equally [3], and thus, no fairness

1From the linux kernel net/ipv4/tcp bbr.c

mechanism among flows is envisioned. Additionally, AQM
techniques where packets may be dropped (e.g., using CoDel)
or further segregated do not strictly comply with 5G QoS
Model. Therefore, other techniques that mark the Explicit
Congestion Notification (ECN) bit, to reduce senders’ pace
have recently being adopted by 3GPP [3] (i.e., Low Latency,
Low Loss, Scalable Throughput (L4S) [13]), trying to tackle
the sojourn latency problem generated by greedy flows.

Other 3GPP limitation is the fact that the QFI classification
is performed in the UPF, which may be located geographically
distant from the RAN depending on the type of service, as
shown in Figure 2 (i.e., at the edge, regional, or central cloud).
Such placement intrinsically brings an associated latency. This
calls for a native flow-based QoS differentiation in the RAN
user-plane to support stringent requirements of forthcoming
services in terms of latency and reliability, and entails further
architectural evolution in enabling RAN to natively process
data flows.

On account of the aforementioned shortcomings, in this
paper we propose and validate a programmable SD-RAN data
plane pipeline that promotes data flows to first-class citizens
in the RAN beyond the 3GPP specification in twofold: (i)
introducing a new RF and a new O-RAN compatible SM, and
(ii) implementing a concrete instance of TC-RAN using a real
5G SA testbed, COTS UEs, xApps, and an O-RAN compatible
nearRT-RIC to validate our approach.

To this end, the main contributions of this paper can be
summarized as follows:

• Introduce a programmable, composable, extendable, cus-
tomizable SD-RAN data flow processing pipeline to
natively treat user data packets as first-class citizens in
5G adhering to the Open RAN principles.

• Present an architectural upgrade in 5G’s QoS mechanism,
enhancing the granularity from QFIs to data flows, and
thus, enabling data flow control, that works in near real-
time.

• Validate TC-RAN in a real 5G SA testbed using an
O-RAN compatible nearRT-RIC with COTS UEs and
xApps, and provide a concrete implementation of it.

• Contribute to the research community with an extendable
tool to manipulate data flows in the RAN with 5G/6G
specificities (e.g., 5G-BDP pacer).

The remainder of the paper is structured as follows. In
Section II we describe the related work regarding QoS in
5G and the Open RAN contributions. Afterwards, in Section
III we give an overview of the proposed TC RF/SM. The
following Section IV is devoted to provide a detailed archi-
tectural overview, and in Section V we show the results that
we obtained while validating TC-RAN. This paper outlines
the conclusion in Section VI.

II. RELATED WORK

This section can be divided between the Open RAN con-
tributions and the contributions regarding the QoS model in
5G.
A. 5G’s QoS model limitations

There has been a significant QoS enhancement in 5G aiming
to guarantee latency and throughput, and thus, unlock the
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TABLE I
MOST COMMON TERMINOLOGY USED IN THIS PAPER.

Abbrev. Meaning
E2 O-RAN-defined interface
E2AP Application Protocol for E2 management and

SM encapsulation
E2SM, SM Service Model for information exchange
E2TC, TC E2 Traffic Control
nearRT-RIC near Real-Time RAN Intelligent Controller
RAN Radio Access Network
RF RAN Function. Managed via E2SM
SD-RAN Software-Defined Radio Access Networking
xApp eXternal App. Manages a RF via an E2SM

potential for novel applications to emerge. Following, we
explain the data path for a packet in downlink while similar
reasoning applies for uplink due to 5G’s stack symmetry. In
5G, data packets firstly arrive to the User Plane Function
(UPF), which supports 5 different type of PDU sessions (i.e.,
IPv4, IPv6, IPv46, Ethernet or unstructured) [3]. At the UPF,
among other things, packets are segregated through a Packet
Detection Rule (PDR), policed using the Multi-Access Rule
(MAR), forwarded based on the Forwarding Action Rules
(FARs), tagged based on the QoS Enforcement Rules (QERs)
and lastly reported employing the Usage Reporting Rules
(URRs). Packets are egressed from the UPF marked with a
Qos Flow Indicator (QFI), which is the finest grain quality
indicator provided by 3GPP. Besides, a new RAN sublayer
has been introduced (i.e., SDAP [14]), which principal raison
d’être is to map the QFIs into the DRBs. The next stage in
the packet journey is found in the RLC buffer, where packets
sojourn until they are scheduled by the MAC sublayer and
forwarded to the PHY layer. This QoS model based in QFIs
is very similar to DiffServ2, where every class has associated
some QoS features, and the MAC scheduler decides which
packets to schedule next, based on different policies.

However, 5G’s QoS model is based on packet tagging,
which is becoming more challenging in contemporary net-
works as the privacy and security concerns increase (e.g., Tor
Browser or VPN connections), where the information needed
for classification (e.g., 5-tuple) may not always be available to
the UPF. Moreover, contemporary applications’ cloudification
trend amplifies the problem. Applications may dynamically
change their IP address while migrating, searching to increase
or shrink their resources as needed, effectively limiting UPF’s
capability to tag the packets. Furthermore, 5G’s QoS model
assumes information exchange between the applications con-
tent providers and the network service providers for correctly
tagging the packets, which may not always occur in a system
with increasingly OTT applications. In such cases, flows from
diverse applications shall be tagged with the same QFI, and
thus, they will share the last buffer (i.e., RLC in downlink)
before the slowest data link. There, packets are handled in a
FIFO manner, and thus, one greedy flow can monopolize the
queue, negatively affecting the remaining flows tagged with
the same QFI, since no contention or fairness mechanism
is foreseen. In fact, from the MAC scheduler’s perspective

2DiffServ and QFI use 6 bits i.e., 26 = 64 classes

there exists a group of different queues with diverse QFIs,
where the ordering of arrival within the queues needs to
be respected, forming a partially ordered set or poset [15].
Additionally, the MAC scheduler lacks any ability to segregate
the packets within an RLC queue, as their contents may
have been ciphered for security reasons at the Packet Data
Convergence Protocol (PDCP). Therefore, no further fine-
grained processing is possible such as fairly scheduling the
packets belonging to the same QFI that were generated from
different applications, or isolating and dropping packets from
abusive sources. Other 5G’s QoS model shortcoming happens
due to the funnel nature of the 3GPP stack (i.e., 64 QFIs and
32 DRBs), where different flows will share RLC buffers in the
data path due to the pigeonhole principle even if tagged with
different QFIs. In all the aforementioned situations, data flows
with diverse requirements may end sharing the radio bearer,
and thus, the RLC buffer. In such situations, it is not possible
to address the problem from the MAC scheduler, where the
order of arrival in the queues needs to be respected, and thus,
5G’s QoS model limitations to tackle the root causes become
tangible.

Moreover, the situation is exacerbated when packets are
transported using a loss-based TCP algorithm (e.g., Cubic
[16]), where the sender’s pace is estimated through packet
losses, and large queues are formed before the slowest link
in the data path. This behavior could be avoided, limiting
the traffic of abusive flows at the UPF. However, correctly
estimating the cellular network throughput is very challenging,
and thus, the optimal flow’s throughput, since queues need to
be maintained full to prevent RBs starvation while every extra
packet just adds extra sojourn time [17]. In fact, it has been
theoretically proved that it exists an optimal pacing point to
forward packets in a network [18], achieving full bandwidth
utilization and minimum delay. Unfortunately, it has also been
proved that no distributed congestion control algorithm (CCA)
converges to the aforementioned optimal pacing point [19].
Besides, transmitting packets optimally in cellular networks
is very challenging due to: (i) the variability in the wireless
quality channel, and consequently in the available bandwidth
(e.g., fading due to user mobility), (ii) occurrence of high
packet losses, (iii) unpredictability in the number of active
users and their performance requirements (e.g., URLLC),
and (iv) unknown vendor-specific MAC scheduler algorithm.
Hence, it is very difficult to estimate the correct traffic flow’s
throughput, a fact that it is aggravated due to the distance, and
thus the latency, between the UPF and the RLC buffer (see
Fig. 2).

B. Open RAN

The advantages that abstractions provide separating the in-
terface from implementation details have been largely proven,
being the C programming language probably the most notable
example [20]. In the network engineering discipline, Open-
Flow [21] emerged as a standardized interface for Ethernet
switches. More recently, P4 [22] appeared as a program-
ming protocol for processing packets, which has already been
proven in 5G contexts [23]. Similarly, in the 5G domain,
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Open RAN aims to define common RAN interfaces to provide
multivendor interoperability. In this context, O-RAN is an
alliance [1] that provides standardized interfaces (e.g., E2 or
A1) to achieve such goals. O-RAN defines a near-RT RIC
which is responsible through SMs to monitor information from
E2 Nodes (e.g., DU, CU or gNodeB) and control resources.
At the time of writing this manuscript, O-RAN defines 4
SMs: the RAN Function Network Interface (NI) [24], the
Key Performance Metric (KPM) [25], the RAN Control (RC)
[8] and the Cell Configuration and Control (CCC) [26]. The
NI SM exposes the Network Interfaces, while the KPM SM
is used to monitor statistics from the E2 Nodes. RC SM
defines the interface to control the Radio Bearers, map the QoS
flows to DRBs, the Radio Resource Allocation, the Connected
Mode Mobility Control, the Radio Access Control, the Dual
Connectivity or the Carrier Aggregation, among other things.
Lastly, the CCC SM can be used to control and monitor the
configuration of the cells. However, O-RAN does not define
any method within any SM to manipulate the data flows
beyond mapping the QFI to DRB, limiting itself to the current
5G QoS model. Other SMs based in 3GPP sublayers have also
flourished [27], where, similarly to the KPM SM, statistics
can be gathered from the E2 Node based in the sublayer (e.g.,
MAC, RLC, PDCP). Regarding Open RAN ML/AI solutions,
other works have focused on the benefits of using Open RAN
ML/AI solutions [28] [29] to control and optimize the RAN,
without going beyond 5G’s QoS mechanisms.

In summary, none of the Open RAN solutions known to
the authors provide a remedy to tackle the per-flow 5G QoS
problem in cellular networks.

C. 5G QoS in the Research Community

A considerable number of research papers try to improve
5G’s QoS optimizing the system operating point (i.e., achiev-
ing low latency and full throughput) in cellular networks
through the CCA [30] [5], trying to apply Kleinrock’s motto
of keep the pipe just full, but not fuller [17]. If the sender
transmits packets at a higher rate than the link capacity of
the slowest link in the path, packets start accumulating (e.g.,
in the RLC sublayer in 5G), bloating the buffer and ruining
any latency requirements of other flows that share the link
with the greedy flow. Additionally, this effect is accentuated
if the CCA is loss-based (e.g., Cubic [16]) as it estimates
the link capacity through packet losses, which occur at the
buffer before the slowest link in the path once it is bloated.
In fact, the impact of bloating the buffers (i.e., bufferbloat)
in the latency on cellular networks has been known by the
research community by at least a decade [31]. Tackling the
problem from a sender’s perspective resolves it in specific
situations, but cannot avoid the notification delay from the
congestion location (i.e., RLC buffer) until the sender’s CCA.
Additionally, CCA cannot gather RAN status information to
optimize the pace. Therefore, some new CCA based on deep
reinforcement learning techniques [32] try to guess the optimal
point at which each flow should be transmitted, trying to
anticipate the network status when packets are forwarded.
However, all the CCA solutions try to address the problem

from a single flow’s perspective, but they lack the ability
to group different flows and assign them specific semantic
(e.g., they all belong to one application), or steer the traffic.
Moreover, a CCA solution lacks the capacity to isolate and
limit the bandwidth of a greedy competing flow.

Other approaches try to estimate the rate and the pace of
the packets positioning themselves before the 3GPP stack [33]
[34] treating the RAN as a black box, and backlogging the
packets. Indeed, algorithms located closer to the congestion
point will inherently react faster, and thus, reduce the latency
while trying to fully utilize the available throughput. However,
this approach will also miss any information that can be
leveraged from the 3GPP stack to improve the performance.

Another traditional approach to improve the QoS from a
flow’s perspective is to directly act in the elements involved in
the data path (e.g., using Active Queue Management (AQM)).
In fact, the 10th anniversary for the first implementation of
the nowadays, well understood and deployed AQM algorithms
CoDel and FQ-CoDel [35] has been recently celebrated. The
FQ-CoDel algorithm is based in a Deficit Round Robin (DRR)
scheduler and a group of queues, where the flows’ packet
header is hashed, and the packets are enqueued accordingly.
Each queue has a quantum to guarantee their fairness when
scheduled in a Round Robin (RR) manner, as well as a Codel
AQM to keep the latency and the queue size under control.
This approach has been explored in Wi-Fi wireless commu-
nications with excellent results [36] [11], where additionally
to these techniques, the mature Linux network stack provides
the versatile TC utility to handle the flows. However, apart
from a few exceptions [15] [37] [38] with limited adoption
but encouraging outcomes, these mature solutions have not
been widely applied in cellular networks.

Recently, L4S [13] has been proposed and adopted in 3GPP
[3] as a remedy to fight the bufferbloat, segregating the flows in
”classic” (i.e., flows with propensity to bloat the buffers such
as Reno or Cubic) and ”scalable” (e.g., TCP Prague [39]),
and forwarding them in two different queues [40]. In case
that congestion is detected, packets are marked when entering
the PDCP sublayer with the Explicit Congestion Notification
(ECN) bit, signaling the receiver to reduce its pace with
promising results [41]. However, L4s does not address the
fairness problem of different flows marked with the same QFI
beyond the two queues approach.

Other interesting approaches to improve the QoS mecha-
nism focus in the RBs allocation problem through network
slicing [42] [43], predicting the network status and acting be-
forehand to optimize the resources. However, these approaches
do not consider the dynamicity of the network (e.g., a delay
delivering a TCP packet may alter the CCA transmission rate,
and thus, the overall test) and cannot handle the per-flow QoS
problem or are not 3GPP standard.

In summary, TC-RAN similarly to the CCA or black box
approach, works in per-flow level, but contrary to them, it
can directly leverage the RAN status information through
an xApp, and thus, it has better chances to optimize the
overall performance. Additionally, it has information of all
the current flows in the RAN, contrary to the CCA, that can
only infer the network status. On the other hand, TC-RAN is
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Fig. 2. Proposed TC-RAN system with its pipeline in a disaggregated RAN (i.e., CU-DU) in conjunction with the nearRT-RIC with onboarded xApps and
different UPFs. The navy blue parts show the contributions made by TC-RAN.

flow based, and thus, it provides solutions unsolvable through
a MAC slicing algorithm (e.g., abusive flows, flow level slicing
or bufferbloat). Moreover, TC-RAN provides great flexibility
through its 6 pipeline stage, which allows composing complex
QoS mechanisms, in contrast with L4S type of solutions where
the mechanism cannot be dynamically modified. Furthermore,
it handles the QoS problem just before the slowest link in the
data path, in contrast to 3GPP’s UPF that may be localized far
away from the RAN, providing an upgrade for current 5G QFI
mechanism. On top of it, TC-RAN is built following the Open
RAN principles as an O-RAN SM, embracing open interfaces
that permit vendor interoperability, and thus, interaction with
other SMs (e.g., RC) for cross-optimization algorithms.

III. TRAFFIC CONTROL OVERVIEW

The core contribution of this paper is a novel Traffic Control
system that adheres to the Open RAN principles and promotes
data flows to first-class citizens in cellular networks to upgrade
the overall QoS, as well as a natural architectural evolution to
reduce the user plane latency. While latency reduction is one
of the main reasons for such architectural evolution, there is
more into it: treating 5G RAN as a native packet Access Point
(AP). Meeting the low-latency requirements demanded by the
Service Level Agreements (SLAs) that cannot be handled by
the MAC resource allocation scheduler (e.g., the bufferbloat),
while embracing to Open RAN principles (i.e., through O-
RAN SMs) is the primary, and yet unsolved challenge in the
5G context, addressed by TC-RAN.

The TC-RAN system consists of the following components:
(i) the TC RF, located between the SDAP and the PDCP
sublayers, which consists of a 6 stage pipeline and processes
the data plane, and (ii) the TC SM, that enables the control

plane of the TC RF, both of them depicted in blue in the
Fig. 2. There exists one TC RF pipeline per user DRB, and
thus, the TC RF can handle, IPv4, IPv6, IPv4v6, Ethernet
or Unstructured packets [3]. Similarly to the O-RAN RFs
and SMs, TC-RAN is managed by at least one xApp, which
monitors and controls the packet processing pipeline and
enforces diverse actions to the flows that traverse the TC RF
in near real-time. The xApp is connected to the RF through a
nearRT-RIC and an E2 Agent, as shown in Fig. 2.

The proposed TC-RAN unlocks the possibility for control-
ling individual flows arriving from the layer 3/4 protocols (e.g.,
IP/TCP) through TC-RAN, upgrading 5G QoS mechanism
from QFIs to flows. In this way, an xApp can optimize the
RAN for diverse purposes such as fairly distributing the RBs
among flows marked with the same QFI, isolating abusive
flows, or drop a packet to reduce the bufferbloat generated by
TCP flows (e.g., CoDel) to meet guaranteed latency constraint,
to name a few.

A. Data Plane

As shown in Fig. 2, the TC-RAN RF pipeline is located
after the SDAP but before the PDCP sublayer. Since the SDAP
maps the packets from their QFIs to DRBs, the packets still
preserve their header, and thus, they can be classified accord-
ingly, even though care shall be taken as the SDAP sublayer
may include an optional 1 byte header [14]. Furthermore,
PDCP may alter the packet header information [44] (e.g., using
the Robust Header Compression (ROHC) algorithm) before
forwarding the packets to the RLC queue, where packets are
buffered until the MAC scheduler requests them, and the PHY
layer transmits them. Therefore, the natural place to locate
TC-RAN pipeline lies just before the PDCP and after the
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SDAP sublayer, as shown in Fig. 2. The same reasoning was
applied when deploying L4S in 5G for marking the packets
[41], leading to a marking mechanism located just before the
PDCP. The proposed TC-RAN system processes packets on
per user DRB basis, being therefore compatible with F1AP
[45] split procedures. In downlink, packets arrive in the RAN
from the UPF, where they are marked with a QFI according
to their requirements. Once in the SDAP sublayer, the packet
is mapped to the appropriate RLC DRB according to the
QFI. In the first stage, a CLASSIFIER maps the packet to a
queue according to the classifier’s configuration. Examples
of classifiers are Deep Packet Inspectors, where packets are
dispatched according to L3, L4 and L7 information, or hash
based classifiers (e.g., Stochastic Fair Queuing [46]), where a
packet may be redirected according to its 5-tuple (i.e., source
address, destination address, source port, destination port and
protocol). Once a packet has been classified, a POLICER may
accept forwarding the packet, decide to deviate the packet to
another queue due to excessive traffic detected through a meter
or even drop it. If the allowed rate has not been surpassed,
the packet is forwarded to the third stage, where a QUEUE
buffers them. Different types of queues (e.g., CoDel or FIFO)
can coexist within TC RF tailoring different types of traffic
(e.g., ”classic” vs ”scalable” in L4S specification [13]). In the
fourth stage, a SCHEDULER decides from which queue the
next packet should be dequeued.

Typical schedulers include but are not limited to RR or
priority based schedulers. A SHAPER determines in the fifth
stage if the packet shall be forwarded or not according to the
measured traffic rate. Contrarily to the policer, the shaper has
the capability to delay a packet if the desired rate is surpassed.
Lastly, a PACER, determines whether the packets are forwarded
or delayed. This stage is crucial as it permits avoiding bloating
the RLC buffer, and thus avoids the bufferbloat, while it should
always provide enough packets to the RLC buffer to fully
utilize the available RBs. To ensure the correct functioning of
the PACER, feedback from the RLC buffer status is needed,
which in monolithic RANs may be directly obtained from the
RLC, and in disaggregated RAN’s could come through the NR
user plane protocol, where the desired buffer size and the data
rate per radio bearer is transmitted from the distributed unit
(DU) to the centralized unit (CU) using the F1-U interface
[45] or through an xApp subscribed to the RLC sublayer in
the DU. Cellular network examples of pacers are DQL or 5G-
BDP [47], where the backlog mechanism applies. Contrarily
to the shaper, the pacer considers the rate of all the queues
within the SM, rather than the rate of a single queue.

B. Control Plane

The TC SM is designed to be transported using the O-
RAN E2AP protocol, and thus, facilitate its future integration
into different RAN vendors’ stack. Additionally, the TC SM
exposes the capabilities of the TC RF by means of a set
of control action primitives. Moreover, the TC RF can be
dynamically composed, customized and reconfigured by an
xApp via a TC SM, allowing to define how each packet
should be processed. Such an xApp acts as a TC RF controller,

and triggers a RIC Control message towards the intended E2
Agent. Upon the reception and decoding of the message, the
TC RF updates the pipeline accordingly (e.g., add, modify, or
delete a component). For example, once detected an abusive
flow, an xApp can add a new CoDel queue, add a new filter
in the OSI classifier to deviate the traffic belonging to that IP
address, modify and limit its accepted rate, and modify the
queue’s priority when scheduling.

C. Enabling TC-RAN capabilities in the RAN

5G enables provisioning of UPFs tailored to specific use
cases. As shown in Fig. 2, the UPF may be placed in different
locations based on the service types and the latency con-
straints. UPF detects applications using the Service Data Flow
(SDF) traffic filter templates, routes and forwards packets,
as well as handles per-flow QoS. This mechanism presents
limitations as it is far from the bottleneck of the data path
(i.e., RLC in downlink), and thus, AQM techniques do not
apply (e.g., CoDel) [48]. Moreover, to avoid the bufferbloat,
information regarding the channel status from the RAN needs
to be retrieved, with its non-negligible delay [49]. Therefore,
latency constrained applications (i.e., URLLC [50]) are envi-
sioned to be provisioned with an edge UPF, and converged
UPF-CU is the logical evolution of this trend in 6G, treating
the data flows directly in the RAN. In this manner, the data
path distance is reduced, and thus, the latency. Therefore, the
natural architectural evolution for reducing the latency of the
data path leads to our proposed design, where the data flows
of low latency applications are directly managed by the RAN,
avoiding the unnecessary GTP encapsulation/decapsulation
that occurs between the UPF and the CU, through the NGAP
protocol [51]. This brings user plane (UP) capabilities directly
into the RAN, closer to the slowest link in the data path, which
is the wireless channel as shown in Section V. Thus, with
the proposed TC-RAN system, the RAN acquires new packet
processing capabilities, able to directly interact with edge/local
applications servers (e.g., for time-sensitive or synchronous
applications) without any intervention of the UPF and just
before the slowest data path link, avoiding unnecessary delays.

IV. ARCHITECTURE AND IMPLEMENTATION

In this section, we elaborate on the TC-RAN architectural
design, challenges, and implementation details, primarily fo-
cusing on the following design challenges:

• Design and implement a programmable data flow pro-
cessing pipeline for 5G/6G SD-RAN that supports com-
posability, customizability and extendability.

• Create a novel set of user-plane abstraction in a form of
(open) interfaces between the TC RF and E2 Node, that
is applicable to both current and future cellular systems,
ensuring backward and forward compatibility.

• Integrate TC-RAN according to the O-RAN specifica-
tions, and thus, unleash Open RAN’s potential as a
vendor-agnostic open and standard solution, cleanly seg-
regating its control plane (CP) and UP through its E2AP
protocol.
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Fig. 3. TC RF pipeline in downlink.

A. TC RF Flow Processing Architecture Pipeline

The TC RF provides a modular and extensible interface
following the Unix philosophy [52], based on six stages: clas-
sification, policing, queuing, scheduling, shaping and pacing,
that, as observed in Fig. 3, can be separated in two mayor
actions: ingress and egress.

1) Ingress::Classifier: The first stage that a packet traverses
in the TC RF pipeline is the classifier. The classifier’s raison
d’être is to segregate the packets into different queues. The
classifier answers the question of where a packet should be
routed. Therefore, the input of a classifier is a packet and
its output a queue ID. No restriction on the packet header
type is applied, accepting current 5G IPv4, IPv6, IPv4/IPv6,
Ethernet and unstructured PDU sessions [3]. However, due
to the location of TC RF before PDCP, the packet header
information can be used for classification purposes (e.g., the
5 tuple in IP PDU sessions). The classifier also needs to
register the queue stage status, specifically the amount of
active queues and their ID, which may change dynamically.
Only one classifier per RLC buffer exists. The taxonomy
algorithm is implementation specific, while typical algorithms
segregate the packets into different queues stochastically [46]
or using OSI model information. For example, the concrete
OSI classifier that we developed can segregate packets ac-
cording to their Layer 3 and Layer 4 information, allowing a
5-tuple segregation. Thus, packets are separated according to
their protocol, source address, source port, destination address
and destination port 3 Typical statistics that can be gathered
are the amount of packets forwarded to a specific queue, while
typical configuration values are based in packet filter match
actions. The classifier can be loaded online as it is designed
as a shared object, enabling forward compatibility.

2) Ingress::Policer: The second stage in the pipeline is
the policer. Once the classifier has assigned the destination
queue for the packet, the responsibility moves to the policer.
The policer can reject the packet received from the classifier
or redirect it to another queue, if a rate limit is reached
within a time window. The policer answers the question of
how much data rate can be accepted, and thus, it decides
either to forward the packet, deviate it or drop it. Typical
statistics are the transmitted rate, and the deviation rate. The
maximum rate, and the time window for calculating them,
can be dynamically configured. Only one policer can exist per

3More details can be found at: https://gitlab.eurecom.fr/oai/
openairinterface5g/-/blob/tc-ran/openair2/tc/cls/osi/osi cls.c

queue and its lifetime is tied to the lifetime of the associated
queue, and thus their relation is 1:1.

3) Ingress::Queue: The TC RF queue module ingresses and
egresses packets after the policer and before the scheduler. A
queue is a buffer where packets are gathered before being
forwarded to an RLC buffer. The queue does not answer any
question as it serves as a buffer between the ingress and the
egress actions, even though it can drop a packet if its maximum
capacity is reached. Examples of queues are FIFO, CoDel [53]
or RED [54]. Typical statistics show the average sojourn time
of the packets or the amount of packets accumulated, while
typically its maximum capacity can be configured among other
parameters. Even though from a theoretical point of view,
infinite queues could be added, from a practical point of view
at most few dozens of queues are expected. Queues can be
dynamically created.

4) Egress::Scheduler: Scheduler is the first stage in the
egress journey of a packet after the queues. The scheduler
decides from which queue the next packet should be dequeued.
To draw the decision, the scheduler can gather information
from the queues’ status for scheduling decisions (e.g., schedule
the largest queue or the smallest packet first). Since the packet
that is selected from the scheduler may not be egressed due
to the refusal of the shaper or the pacer, the scheduler gets
notified whether the packet from the queue that it selected
was ultimately egressed. TC-RAN’s scheduler is designed to
be forward compatible 4. An scheduler needs to implement the
interface queue t ∗ (∗next queue)(structsch s∗), returning
the next queue from which the scheduler will pop the follow-
ing packet. In this manner, internal implementation remains
private and forward compatibility is achieved 5. Examples of
schedulers include but are not limited to priority schedulers,
where the packets from one queue are preferred, or RR
schedulers. Typical statistics show the amount of packets
egressed from specific queues, while the algorithm to schedule
the queues can typically be configured. Only one scheduler per
RLC buffer can be active. Schedulers can also be uploaded ”on
the fly” as they are implemented as plug-ins.

5) Egress::Shaper: Once the scheduler has decided from
which queue the following packet should be egressed, the
decision falls in the shaper. The shaper allows egressing a
packet from a queue if a rate has not been reached. Therefore,
it answers whether a packet should be egressed or not. Similar
to the scheduler, the shaper needs to be informed if the packet
was ultimately forwarded. Contrarily to the policer, the shaper
cannot discard a packet, but it can limit the rate at which
packets are egressed. The shaper only answers whether the
following packet can be dequeued or not. Typical statistics
show the current rate of a queue, which can also be configured,
as well as its time window to calculate it. Similarly to the
policer, the shaper’s lifetime is bound with the lifetime of a
queue, and thus, it can only exist if an associated queue exists.

6) Egress::Pacer: The last stage in the TC RF pipeline is
the pacer. While the shaper works per TC RF queue, the pacer

4https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/tc-ran/openair2/tc/
sch/sch.h line 16

5Linux CCAs use the same technique using function pointers, as it can be
observed at linux/net/ipv4/tcp bbr.c

https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/tc-ran/openair2/tc/cls/osi/osi_cls.c
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/tc-ran/openair2/tc/cls/osi/osi_cls.c
https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/tc-ran/openair2/tc/sch/sch.h
https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/tc-ran/openair2/tc/sch/sch.h
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is responsible for not bloating the RLC buffer that exists before
the MAC sublayer, that aggregates the data egressed from
all the TC SM queues. The pacer also responds whether the
following packet should be egressed or not. Typical statistics
are the total bandwidth or the amount of packets forwarded
to the RLC, while its parameters to configure are related to
the pacing algorithm. Examples of pacers are the DQL or the
5G-BDP [47] which can be dynamically loaded.

B. Programability

Besides, the TC SM can configure the RF 6 stages using
the add/delete/modify actions relying on the E2AP Control
message generated by the nearRT-RIC, while the statistics are
gathered using the E2AP RIC Indication message, similar to
other E2SMs (e.g., KPM).

TC SM’s pipeline design allows composing complex archi-
tectures tailored to specific use cases. To name a few: (i) the
FQ-CoDel with cellular network specificities can be smoothly
composed using a stochastic classifier, CoDel queues, a deficit
round-robin scheduler and a 5G-BDP pacer, (ii) or the L4S ar-
chitecture can be implemented using a classifier that segregates
the flows into ”classic” and ”scalable”, two queues capable of
marking (i.e., ECN) or dropping the packet when congestion
is detected, a conditional priority scheduler and a pacer to
avoid bloating the RLC buffer, (iii) or a flow slicing pipeline
can be configured deploying an OSI classifier to segregate the
flows, a policer to limit the input data rate, FIFO queues, a
RR scheduler to evenly allocate transmission opportunities, a
shaper to limit one queue’s rate and a 5G-BDP pacer to avoid
the bufferbloat at RLC. Additionally, these configurations are
dynamic. If an anomaly is detected, (e.g., all the packets are
classified to the same queue since they are transported inside
a VPN, and thus, they share a common flow-identifier or
the CoDel sojourn time is not adequate for current network
conditions) the pipeline can be reconfigured. This flexibility
is achieved using xApps that can subscribe to specific SMs
using the E2 Subscription procedure for monitoring the status
of the RAN and control it through the E2 Control procedure.
In this way, an algorithm (e.g., ML/AI algorithm) in an xApp
that is subscribed to the O-RAN RC and KPM E2SMs and
to the proposed TC SM can monitor the RAN behavior
through the KPM E2SM, perform actions at packet level if
necessary through the TC SM (e.g., flow slicing or bufferbloat
avoidance), and adjust the bandwidth (i.e., the bandwidth in
5G is highly correlated to the amount of RBs assigned and
the Modulation and Coding Scheme (MCS)) utilizing the RC
E2SM.

C. TC-RAN Implementation

Regarding the code used in our implementation, the TC-
RAN can be divided between the code that is necessary
to define its E2SM compatible data layout with its encod-
ing/decoding schemes and the code that is needed in the TC
RF. The former and later contain approximately 5K lines of
C11 code each (we use the Generic reserved keyword for
static polymorphism in the encoding/decoding scheme, with

no external dependencies). TC-RAN has been prototyped in
downlink in the 5G gNodeB of OpenAirInterface (OAI) [55].

The TC RF needs to communicate with the SDAP and the
PDCP sublayers in downlink to ingress and egress packets as
required. However, the API needs to be as small as possible
yet complete. To identify the RLC DRB, the RAN, needs to
pass the Radio Network Temporal Identifier (RNTI), as well
as the DRB ID, which uniquely identifies the RLC buffer,
in conjunction with the packet address location and its size.
For egressing, a mechanism periodically traverses the active
TCs, activating the pipeline and forwarding packets if required.
TC-RAN is implemented using the scalable I/O system call
notification facility epoll, and a configurable timer file descrip-
tor. Since different TC RF instances do not share data among
them, if further parallelism is needed, different instances could
be processed in parallel. Thus, ingress and egress can be
considered as two independent processes that only share a
queue. We prototyped TC-RAN in a monolithic gNodeB where
we obtained the RLC buffer status periodically, just after the
MAC scheduler has formed the TBS, and thus, the packets
from the RLC buffer have been dequeued. However, the RLC
buffer status needed for the pacer, could also be gathered using
an xApp or in a disaggregated deployment, this can also be
achieved through the F1-U protocol Downlink Data Delivery
Status procedure messages [45], where the desired buffer size
and its data rate for the corresponding data radio bearer is
transmitted.

The classifier, queue, scheduler and pacer stages are de-
signed as shared objects with a common interface, similar to
how loadable kernel modules are designed (i.e., at start the
module function pointers are initialized 6), and thus, they can
be reconfigured online, enabling fine-grained control of the
proposed TC RF pipeline from an xApp.

We did not use recursive mechanisms in TC-RAN. However,
in our design, recursive structures within shared objects can
be easily implemented if needed.

V. EVALUATION

In this section, we first describe our testbed and the overhead
of TC RF in comparison with vanilla OAI [55]. Following,
we validate TC-RAN’s per-flow traffic slicing and low-latency
capabilities. Next we show a real online multiplayer game
scenario, and we end this section with some results that aim
to shed some light in the still open question of the adequacy
of handling 5G QoS in the RAN against CCA solutions in
a time-varying MCS cellular scenario. The code used in this
manuscript for the RAN can be found in the official OAI’s
repository, 7, while nearRT-RIC’s and xApp code is available
at FlexRIC’s official repository 8.

A. Testbed and Performance Overhead
We prototyped TC RF on top of the OAI 5G SA stack 9.

Likewise, we connected our PC (i.e., Intel (R) Xeon (R) Gold

6See net/ipv4/tcp bbr.c and struct tcp congestion ops definition in the linux
kernel source code for an example.

7https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/tc-ran
8https://gitlab.eurecom.fr/mosaic5g/flexric/-/tree/master/
9Commit 50d9c1f2bfaf094e60178f830cad4c8ddc3039d6.

https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/tc-ran
https://gitlab.eurecom.fr/mosaic5g/flexric/-/tree/master/
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TABLE II
NORMALIZED CPU AND MEMORY USED.

No Load Full Load
Mem. (MB) CPU (%) Mem. (MB) CPU (%)

Van. 603.877 4.024 603.877 5.436
TC 623.313 4.028 624.084 5.759

Incr. 3.22% 0.09% 3.35% 5.94%

Fig. 4. Disaggregated latency per sublayer in downlink and xApp E2 Control
and E2 Indication communication latencies.

6208U @ 2.90 GHz with 16 cores) to a USRP B210 capable
of achieving a 40 MHz bandwidth. For creating our TC SM
we chose FlexRIC due to its easy integration with OAI, as well
as its lean, clear and extensible architecture to create SMs à
la carte in comparison with the nearRT-RIC provided by O-
RAN or the Open Network Foundation (ONF). Furthermore,
we utilized the Quectel 5G RM510Q-GL, connected to another
PC (i.e., Intel (R) Core (TM) i7-8550U CPU @ 1.80GHz), as
well as a Huawei P40 phone as UEs. We used the 5G band
n78 (i.e, TDD), subcarrier spacing µ 30kHz, 1 component
carrier, 1 layer and 106 PRB, with a TTI of 500 µs and a
configuration of 7/2/1 D/U/M. For the tested scenarios, we
used iperf3 for emulating a greedy flow and the ping utility
tool to emulate a time-sensitive application, as well as to
measure the RTT. Unless explicitly mentioned, we used TCP
Cubic. For measuring the extra resources consumed by our TC
RF implementation, we measured two scenarios: (i) no load
where only the ping utility is running and, (ii) full load where 4
greedy flows in parallel are instantiated. As observed in Table
II, the TC RF built on top of OAI consumes 3.22% and 3.35%
more memory and 0.09% and 5.94% more normalized CPU
than vanilla OAI, for no load and full load cases, respectively.
Therefore, the cost of adding the TC RF is small and relatively
negligible with other CPU and memory demanding tasks. The
results here shown represent an average of 10 different runs.

We also analyzed the contribution to the delay budget per
sublayer in an unloaded OAI RAN, as well as the delay
between the xApp and the gNodeB for E2 Control and E2
Indication messages, both of them generated with a periodicity
of 1 ms. As observed in Fig. 4a, the total downlink latency
of a packet is dominated by the RLC sublayer. This is due to
the fact that we are using a TDD configuration, so whenever
the packet arrives into the RLC sublayer, it has to synchronize
with a downlink transmission opportunity which in the worst

Fig. 5. 50%-50%, 15 MBps and CoDel TC RF deployed stages in the tests.

case may occur 1.5 ms later (i.e., in the DDDDDDDMUU
pattern the packet could arrive just a moment after the M has
been scheduled, and thus, it needs to wait the full M and
the following two UU uplinks, each of which consume 500
µs). Regarding TC RF implementation, the packet processing
latency is close to 25 times less than the one introduced
by RLC, and thus, it does not play any significant role in
the total delay of the packet. Regarding the xApp to gNode
communication delay, in our testbed, where the xApp, nearRT-
RIC and E2 Agent embedded into the gNodeB run in the
same machine on different processes, the measured median
latencies are 71 and 67 µs for the E2 Control (xApp to E2
Agent) and E2 Indication messages (from E2 Agent to xApp),
respectively. These values are also more than two orders of
magnitude lower than the required O-RAN value of 10 ms
for nearRT-RIC communications.

B. Validation

In this subsection, we validate the TC-RAN’s capabilities
and its versatility. For stability purposes we limited the MCS
to 10.

1) RAN Flow Slicing: Similar to how the MAC Resource
Block Groups (RBGs) can be sliced (e.g., assigning a percent-
age of RBGs to a specific RLC buffer), so can be achieved with
data flows. In Fig. 6a, four flows in downlink can be observed.
Around the 5th second, the TC RF is reconfigured through
an xApp with an OSI classifier, a second FIFO queue, a RR
scheduler and a 5G-BDP pacer, as shown in Fig. 5a. The OSI
classifier will segregate the flows according to their 5-tuple
when queuing, while the RR scheduler will fairly dequeue
the packets from the available queues. Additionally, a control
message is sent to the classifier, aiming to segregate the Flows
2, 3, and 4 into an independent queue, emulating an application
that consists of 3 flows, while the rest of the flows (i.e., Flow
1) are routed to the default queue. As a result the resources
are equally distributed among the 2 queues with a 50%-50%
percentages, due to the scheduler’s RR algorithm, achieving
both a 20 Mbps rate, as observed in Fig. 6a. Note that without
the pacer, the packets would have ingress in the RLC directly,
similar to the vanilla case, and no slicing effects would have
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Fig. 6. 50 - 50 % resource share between Flow 1 and Flow 2,3,4 and 15
Mbps shaper limit for Flow 1,2,3.

Fig. 7. CoDel and 5G-BDP effect in the throughput, latency and RLC buffer.

been perceived. Other requirements of flow slices may involve
limiting the traffic of a slice to a data rate, similar to how the
QoS in 5G is specified [3]. In Fig. 6b, the effect of deploying
a similar TC RF configuration (i.e., Fig. 5b) around the 10th

second can be observed, but in this scenario a shaper, limiting
the rate to 15 Mbps is also deployed. In this case, an xApp
aggregates the Flow 1,2, and 3 into the first queue as observed
in Fig. 5b leading to a 15 Mbps aggregated throughput in
contrast to the 25 Mbps that achieve the rest of the flows that
are dispatched to the second queue (i.e., Flow 4). Note that
3GPP lacks a mechanism to achieve per-flow slicing for flows
marked with the same QFI as the two described scenarios. The
bandwidth of a flow can be limited from the UPF, but there
is no mechanism to partition the resources among the flows
marked with the same QFI, in a system where the bandwidth
can fluctuate notably (e.g., due to channel conditions). Hence,
the results shown here are not achievable in contemporary
standard 3GPP cellular networks.

2) Low Latency: For applications with stringent latency
requirements, 3GPP guarantees a maximum delay a packet
shall experience [3]. However, it does not define the means
to achieve it. In Fig. 7, four flows in downlink along with
a time-sensitive flow are instantiated. From Fig. 7d, it can
be observed how the TCP flows start accumulating in the
RLC sublayer buffer, causing the RLC buffer to grow beyond
1.5 MBs. A linear relation between the RLC buffer size and

the sojourn time from Fig.7c of a packet in the RLC buffer
can also be observed. Besides, in this scenario, the delay
perceived by the time-sensitive flow is mostly governed by
the delay generated at the RLC queue, going above 300 ms
and thus, breaking any low-latency guarantee, as shown in Fig.
7b. To remedy it, we developed an xApp with a control loop
that triggers the TC RF configuration shown in Fig. 5d. The
pipeline deployed by the xApp includes a CoDel queue with
default values (i.e., interval/target 100/5 ms), a RR Scheduler,
and a 5G-BDP pacer, as shown in Fig. 5c. It can be observed
from the Fig. 7c and 7d that at the 31st second (Fig. 7a and
Fig. 7b’s time are not synchronized with Fig. 7c and Fig. 7d),
the RLC buffer occupancy starts decreasing, while the CoDel
queue starts increasing. The sojourn time that occurs in the
RLC queue is maintained for some time, due to the amount
of packets that were already enqueued, but starts decreasing
afterwards. Note here the effectiveness of the 5G-BDP pacer
in maintaining the RLC buffer with enough data not to starve
the MAC scheduler, while not bloating it, as no throughput
decrease is observed. Fig. 7c also shows the moments where,
due to excessive sojourn time, CoDel drops packets. The Y
axis for these events is omitted and are only plotted in the case
where a packet is dropped. At the first moments where CoDel
is deployed (i.e., around the 31st second), the pace at which the
CCA (i.e., Cubic) sends packets is considerably higher than
the channel throughput. Therefore, CoDel drops packets more
frequently at the beginning, reducing the queue size, while still
maintaining enough packets to feed the MAC scheduler. 3GPP
foresees different behaviors for different QFIs. Therefore, this
scenario could be avoided in contemporary cellular networks
if the time sensitive packet could be segregated with a different
QFI and enqueued in a different buffer from the rest of
the flows. However, this may not always be possible (e.g.,
the content provider does not inform the service provider).
Additionally, 3GPP does not expect any AQM mechanism,
and thus, it does not exist a standard manner to communicate
to the sender to reduce its pace (e.g., using ECN or dropping
a packet) before bloating the buffer. Moreover, 3GPP’s model
foresees a communication with the Core Network to mark the
packets with different QFIs, which may lay geographically
distant, contrary to the proposed solution, that is instantiated
locally.

C. Online multiplayer game scenario: Slither.io

Lastly, we demonstrate the flexibility and effectiveness of
the proposed TC-RAN system with the Slither10 online mul-
tiplayer game played on a Huawei P40 5G Android phone, in
conjunction with a greedy background traffic using Android’s
termux terminal emulator, for which we provide a video
11. In this manner, the results can be analyzed from three
different perspectives: (i) end users QoE playing the online
game, (ii) network performance through ping and iperf3, and
(iii) RAN’s perspective through RLC sublayer’s statistics. The
xApp subscribes to the RLC SM measuring the sojourn time
through the E2 Indication message. When it detects that the

10http://slither.io/
11https://vimeo.com/783683553

http://slither.io/
 https://vimeo.com/783683553 
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Fig. 8. Deployed TC RF pipeline while playing slither.io.

Fig. 9. Network perspective: throughput and latency while playing slither.io.

sojourn time of the packets trespass 10 ms, it deploys a second
CoDel queue and deviates the greedy flows to them, as shown
in Fig. 8. In this manner, the QoE perceived by the user
is maintained. From the video, in the vanilla case, it can
be noticed that the game becomes unresponsive 5 seconds
after the background traffic starts, ruining the user experience.
This is completely different from the second case, where
the background flows are segregated into a second CoDel
queue. The video results confirm that with the deployed TC
RF configuration, the user experience significantly improves,
as the game continues smoothly while the greedy traffic
does not cease flowing in the background. Meanwhile, Fig.
9 shows the network perspective. In the vanilla case, the
achieved throughput arrives to 40 Mbps while in the xApp
case, 10 Mbps are not utilized and only 30 Mbps are reported.
However, the lost bandwidth is compensated by the latency, as
segregating the traffic maintains the time sensitive traffic delay

Fig. 10. RAN perspective: RLC buffer occupancy, sojourn time, unused RBs
and packets drops while playing slither.io.

Fig. 11. TC RF deployed stages.

Fig. 12. MCS dynamic profile and the corresponding TBS.

around 20 ms while in the vanilla case, the delay increases
up to 1.8 seconds, as illustrated by Fig. 9c. As observed
in Fig. 10, from the RAN’s perspective, in the vanilla case,
after 10 seconds the background traffic has generated a buffer
of 1 MBytes, and it continues increasing the buffer, until
it completely bloats the buffer with 10 MBytes that cause
delays in the RLC buffer of around 1.8 seconds, completely
ruining the user experience. Fig. 10a also shows that during
the seconds 5-10, there are TTIs where there is not enough
data to fulfil the MAC scheduler capacity. Therefore, in the
video, the game is still responsive during the first 5 seconds
after the background traffic has started. On the other hand,
when the TC RF configuration from Fig. 8 is deployed through
the xApp, the latency in the RLC buffer never surpasses
20 ms, and thus, the game can be played normally, at the
cost of not fully using all the available RBs. Fig. 10 also
shows CoDel’s instants where it drops packets, which coincide
with the moments where all the RBs are utilized, due to the
fact that a queue is forming and CoDel tries to maintain it
unbloated. This dichotomy of bandwidth vs delay needs to
be interpreted through an xApp that is capable of assigning
semantic to the network behavior and act accordingly. As an
example, in this scenario, sacrificing bandwidth in favor of
reducing the delay seems the most sensible solution, as it
enables a smooth QoE from a user’s perspective at the cost of a
small amount of bandwidth. However, this decision is arbitrary
and context dependent, and thus, it is xApp’s responsibility
to decipher the context, assign a semantic and deploy the
appropriate configuration to achieve the required SLAs. This
real world scenario shows 3GPP’s weakness to achieve the
goals for which it was designed. Some applications (e.g., OTT
applications) will not trigger a new DRB creation, and thus,
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they will end sharing the RLC buffer. Therefore, in such cases
segregating the traffic marked with the same QFI is crucial if
some fairness per-flow is required. In this scenario, E2 TC
also shows its versatility, as queues from different types can
be instantiated, and different traffic flows can be segregated
belonging to the same QFI in near real-time.

To sum up, TC-RAN’s composability, customizability
and configurability have been evaluated. TC-RAN permits
smoothly composing different pipelines tailored to diverse use
cases, configuring the stages as needed and configuring the
pipeline online, provisioning means to achieve the demanded
5G QoS requirements that vanilla 3GPP lacks.

D. Case study: Low-latency and High Throughput in Cellular
Networks

Even though it is known from a theoretical point of view
that no distributed CCA can achieve low-latency and high
throughput [19], new CCAs flourished in recent years trying
to work as close as possible to the optimal point [39] [5].
On the other hand, other solutions try to tackle the problem
before the slowest link in the path (e.g., FQ-CoDel), as
they can gather key information to optimize the pacing rate
and reduce the sojourn time. Either way, the question of
the best location remains open with new proposed solutions
continuously emerging [56] [32] [57].

Therefore, and trying to shed some light, in this subsection,
we benchmark two CCAs in 5G that aim not to bloat the
buffers while maintaining some per-flow fairness and high
throughput, namely BBRv2 and Prague [39], against a tra-
ditional solution (i.e., FQ-CoDel) deployed through TC-RAN
in a dynamic MCS scenario, as shown in Fig. 11. For testing
Prague, we enabled ECN in both endpoints and marked the
packet if the sojourn time was above 5 ms during a 100
ms interval, similar to CoDel. This deployment is similar to
the L4S deployment in 5G [41], but we measure the sojourn
time at the TC RF queue rather than the sojourn time at the
RLC sublayer, and we only test it with ”scalable” flows (i.e.,
TCP Prague). This deployment mimics L4S architecture and
is possible due to the versatile 6 stage architecture of TC-
RAN. Fig. 12 illustrates the MCS Index variation in the range
[6, 18] for a duration of 60 seconds, representing user channel
quality improvement over time. Note that the throughput is
tightly correlated with the MCS, as shown in Fig. 12. In fact,
the optimal point to work, in a channel with zero losses, shall
only have enough bytes to fulfil the TBS of the current TTI.
Any additional byte adds delay, while any missing byte results
in lost transmission opportunities. Fig. 13 and Fig. 14 show
the RLC buffer status of the four considered scenarios. As
expected, Cubic uses all the RBs available from the RAN
during the first 40 seconds, at the cost of accumulating up
to 2.5 MBytes in the RLC buffer. During the last 20 seconds,
the MCS increases, and so does the link capacity, achieving
more than 9000 bytes per TTI, as shown in Fig. 12. However,
Cubic is not capable of correctly estimating the new channel
capacity, and thus, there exists lost transmission opportunities
where no data is sent. BBRv2, on the other hand, is able to
correctly estimate the channel capacity increase that occurs in

Fig. 13. RLC buffer status and RB utilization in a dynamic MCS scenario
for TCP Cubic and TCP BBRv2.

Fig. 14. RLC buffer status and RB utilization in a dynamic MCS scenario
for TCP Prague and FQ-CoDel with TCP Cubic.

the last 20 seconds, and thus, it forwards more bytes, trying
to always maintain the RLC buffer with enough bytes not
to starve the MAC scheduler. However, when analyzing RB
utilization, BBRv2’s channel capacity estimation leads to non-
negligible unused RBs during the whole experiment, while in
the case of Cubic, only during the last 20 seconds RBs are not
utilized. In the case of Prague, packets are marked with the
ECN bit, to inform the sender that congestion is happening,
which mostly occurs in the first part of the experiment, as the
channel capacity is modest, while no packet marking occurs
in the last 20 seconds when the capacity increases, as shown
in Fig. 14a. Note that Prague pipeline requires a pacer (i.e.,
5G-BDP in this experiment), to control the size of the RLC
buffers. It can also be observed that Prague also misses a non-
negligible amount of transmission opportunities, as illustrated
in Fig. 14a, especially when the channel quality increases.
Lastly, we deployed a more traditional system segregating the
flows (i.e., greedy and time-sensitive) with the well-known
CoDel queues using the TC-RAN system through an xApp.
As observed, in Fig. 14b, the behavior is similar to Prague
but with a better RB utilization. More interesting conclusions
can be drawn from Table III and Fig. 15. In the Table III , the
mean throughput reported by iperf3 is shown. Surprisingly,
BBRv2 is the method that reaches the highest throughput
(i.e., 44.60) followed by Cubic (i.e., 42.30), FQ-CoDel (i.e.,
41.72), and Prague (i.e., 39.58). The fact that Cubic uses all
the available RBs during the first part of the experiment, where
the MCS is low, and thus, so is the available throughput,
does not compensate the lost transmission opportunities that



13

TABLE III
MEAN THROUGHPUT.

Cubic BBRv2 Prague FQ-CoDel
Throughput (Mbps) 42.30 44.60 39.58 41.72

Fig. 15. Mean Delay vs Normalized Utilized PRBs and RTT of Cubic,
BBRv2, Prague and FQ-CoDel.

occur later. Regarding the latency, Cubic’s bloated RLC buffer
causes up to 500 ms delays, while BBRv2, Prague and FQ-
CoDel, maintain a lower delay, close to 20 ms each. Moreover,
interesting conclusions can be reached from the Delay vs used
RBs graph in Fig. 15 a, where the optimal point for the system
to work is the latency obtained when there is no load in the
system (i.e., 10 ms in this deployment) and where all the
RBs are used. Cubic uses most of the RBs (i.e., 86%) while
the mean delay is 210 ms, far from many time-sensitive use
cases in 5G. FQ-CoDel achieves a more appealing result using
82% of the available RBs, while suffers a 21 ms mean delay,
while BBRv2 utilizes 83% of all the available RBs with a
mean 30 ms delay and Prague shows also competitive 78%
RB utilization and 20 ms mean delay.

This scenario validates a static FQ-CoDel design with 5G
specificities (i.e., 5G-BDP pacer) against CCA approaches
and shows current 3GPP QoS model limitations as only one
queue per QFI is foreseen even with non-loss based CCA.
Besides, this subsection shows that addressing the problem
near the location where it occurs (i.e., the RLC buffer) results
in better yet comparable results over solutions that tackle
the problem through the CCA (i.e., BBRv2 and Prague) and
act accordingly. Furthermore, it also shows the shortages of
current CCAs, where there exists a mechanism to inform them
to slow down (i.e., dropping/marking a packet) while there
is no way to notify them that starvation is happening, and
thus, RBs are squandered. Therefore, mechanisms as the one
proposed at [58], where starvation can be reported to the CCA
to accelerate its forwarding rate, may be promising solutions
for cellular networks, where low-latency guarantees can be
achieved, but not full bandwidth.

TC-RAN’s versatility to unleash 5G QoS means is shown
in this section. Current Linux default TCP CCA’s (i.e., Cubic)
behavior ruins most of the time-sensitive use cases described
by 3GPP, and it is not capable of dynamically adjusting its
rate to the cellular network channel variability. However, TC-

RAN, through its composable, customizable and reconfig-
urable flexible design, provides the means to deploy different
configurations to achieve stringent time and resource demands.
Using TC-RAN, xApps are empowered to dynamically com-
pose, customize and reconfigure the data flow pipelines in
near real-time considering the RAN status, and thus, optimize
the overall performance. Additionally, some limitations when
trying to optimize the QoS from the CCA have been shown.

VI. CONCLUSION

In this paper, we present TC-RAN, an O-RAN compatible
E2SM for promoting traffic flows to first-class citizens in
cellular networks, modifying the current 3GPP stack, while
embracing the Open RAN paradigm. As demonstrated in this
paper, there exist concrete and realistic scenarios that neither
3GPP nor O-RAN address, that are of utmost importance
for guaranteeing the QoS in cellular networks. The presented
TC SM is a fundamental pillar to embrace the 5G/6G QoS
requirements and manage the traffic flows through a standard
interface (i.e., E2SM) in the RAN, that opens a new field
for cross-optimization algorithms in AI/ML to combine RB
allocation with per-flow QoS. The presented 6 stage pipeline
segregates the responsibility of each module, following the
principle of Do One Thing and Do It Well and enabling
extension, customization, composition and programmability.
In this manner, TC-RAN provides the means to compose
complex architectures seamlessly (e.g., FQ-CoDel), customize
them tailoring to specific scenarios (e.g., multiplayer online
game), extend them with new components (e.g., new AQM
algorithms), and reconfigure them as required. Additionally,
results shown in Section V-C highlight the QoE improvement
that a UE can notice in a multiplayer online game scenario
using TC-RAN, avoiding large response times of over a second
when diverse flows share the DRB. Moreover, Section V-
D demonstrates that addressing the QoS from the CCA in
a dynamic channel scenario is very challenging, and that
CCAs, that provide low-latency services are distant from the
optimal working point (i.e., Prague 22% squandered RBs and
x2 higher latency than the no-loaded network and BBRv2
18% squandered RBs and x3 higher latency in the tested
scenario). Therefore, addressing the problem close to the
slowest data path link is of upmost importance, for which TC-
RAN provides the means. Furthermore, it shows the necessity
of a communication link between the RAN and the CCA to
avoid squandering RBs.

TC-RAN is open source 12 13 under a permissive license
(i.e., OAI’s FRAND license)14 to promote its adoption and
use. As future work, we plan to extend the TC-RAN with
more pluggable entities (e.g., RED AQM queue), devise new
abstractions to facilitate xApp control loop (e.g, SLA on total
throughput) and port the TC RF into other cellular network
stacks (e.g., srsRAN).

12https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/tc-ran
13https://gitlab.eurecom.fr/mosaic5g/flexric/-/tree/master/
14https://openairinterface.org/legal/oai-public-license/

https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/tc-ran
https://gitlab.eurecom.fr/mosaic5g/flexric/-/tree/master/
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