

One-Line-of-Code Data Mollification Improves Optimization of Likelihood-based Generative Models Ba-Hien Tran, Giulio Franzese, Pietro Michiardi, Maurizio Filippone

Objective and Contributions

- ► We verify that the success of score-based diffusion models (DMs) is in part due to the process of **data smoothing**, by incorporating this in the training of *likelihood-based generative models* (GMs), e.g. VAEs and normalizing flows
- Connecting this to continuation methods in the optimization literature
- Easy to implement by adding one line of code in any training loop!
- Showing consistent improvements in terms of quality of samples

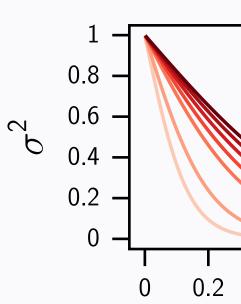
Training Likelihood-based Generative Models

- ► Given a dataset $\mathcal{D} \stackrel{\Delta}{=} \{\mathbf{x}_i\}_{i=1}^N$, we aim to estimate the unknown data generating distribution $p_{data}(\mathbf{x})$ by training a generative model $p_{\theta}(\mathbf{x})$
- \blacktriangleright Common approach to estimate θ is to maximize the likelihood of the data

 $\mathcal{L}(oldsymbol{ heta}) \stackrel{\Delta}{=} - \mathbb{E}_{p_{ ext{data}}(\mathbf{x})} [\log p_{oldsymbol{ heta}}(\mathbf{x})]$

Data Mollification

Main idea: Adding Gaussian noise to the data throughout training and gradually reducing its variance until recovering the original data



Training Iteration Figure: Illustration of Gaussian mollification.

0.2 0.4 0.6 0.8 **Figure:** Sigmoid schedule $\gamma(\cdot)$ with different temperatures au

 \blacktriangleright The distribution of smoothed data $\tilde{\mathbf{x}}_t$ at iteration t is as follows:

 $q(\tilde{\mathbf{x}}_t \,|\, \mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}}_t; \alpha_t \mathbf{x}, \sigma_t^2 \mathbf{I}),$

where $\alpha_t = \sqrt{1 - \sigma_t^2}$ and $\sigma_t^2 = \gamma(t/T)$, with T is the maximum training iteration, and $\gamma(\cdot)$ monotonically decreases from 1 to 0 controlling the rate of smoothing

One Line of Code in Training Loop

Algorithm 1: Data Mollification with Gaussian Noises 1 for $t \leftarrow 1, 2, ..., T$ do

2 $\mathbf{x} \sim p_{data}(\mathbf{x})$ // Sample training data

- 3 $\tilde{\mathbf{x}}_t = \alpha_t \mathbf{x} + \sigma_t \varepsilon$ // Smooth data with $\alpha_t, \sigma_t^2 \leftarrow \gamma(t/T)$ and $arepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
- $\boldsymbol{\theta}_t \leftarrow \mathsf{UPDATE}(\boldsymbol{\theta}_{t-1}, \tilde{\mathbf{x}}_t)$ // Train the model

(2)

Manifold Hypothesis and Manifold Overfitting

Manifold hypothesis

- \blacktriangleright Real-world high-dimensional data tend to lie on a manifold \mathcal{M} characterized by a much lower dimensionality
- Data points on the manifold should be associated with high probability density, while points outside the manifold lie in regions of nearly zero density

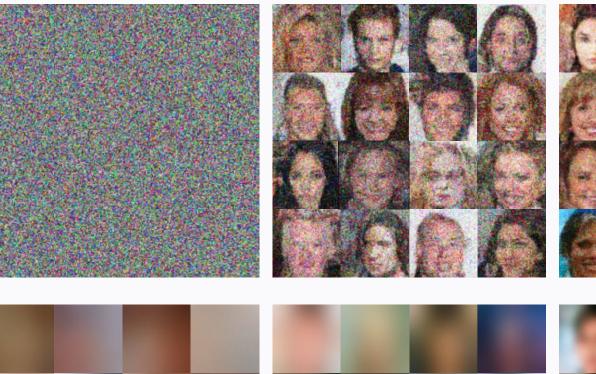
Manifold overfitting

- The model $p_{\theta}(\mathbf{x})$ assigns an arbitrarily large likelihood in the vicinity of the manifold, even if it does not capture accurately the data distribution $p_{\text{data}}(\mathbf{x})$
- This makes it difficult for GMs to capture the true data distribution

	Experiments on Image Datasets											
Γat	ble: FID scores between va	D scores between vanilla and mollification training on CIFAR10 and CELEBA datasetsModelCIFAR10CELEBAVANILLAGAUSS.BLURRINGVANILLAGAUSS.BLURRINGAL-NVP (Dinh et al., 2017)131.15121.75120.8881.2579.6885.40(Kingma & Dhariwal, 2018)74.6264.8766.7097.5970.9174.74										
-	Madal	CIFAR10			CELEBA							
	Μοαει	VANILLA	GAUSS.	BLURRING	VANILLA	GAUSS.	BLURRING	-				
-	REAL-NVP (Dinh et al., 2017)	131.15	121.75	120.88	81.25	79.68	85.40	-				
	GLOW (Kingma & Dhariwal, 2018)	74.62	64.87	66.70	97.59	70.91	74.74					
	VAE (Kingma & Welling, 2014)	191.98	155.13	175.40	80.19	72.97	77.29					
	VAE-IAF (Kingma et al., 2016)	193.58	156.39	162.27	80.34	73.56	75.67					
	IWAE (Burda et al., 2015)	183.04	146.70	163.79	78.25	71.38	76.45					
	eta-VAE (Higgins et al., 2017)	112.42	93.90	101.30	67.78	64.59	67.08					
-	HVAE (Caterini et al., 2018)	172.47	137.84	147.15	74.10	72.28	77.54	_				
	Enoch 0	Enoch 10		Enoch 20		Enoch 8()					

Epoch 0

Epoch 10



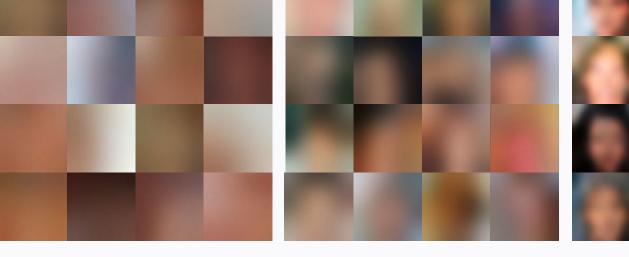
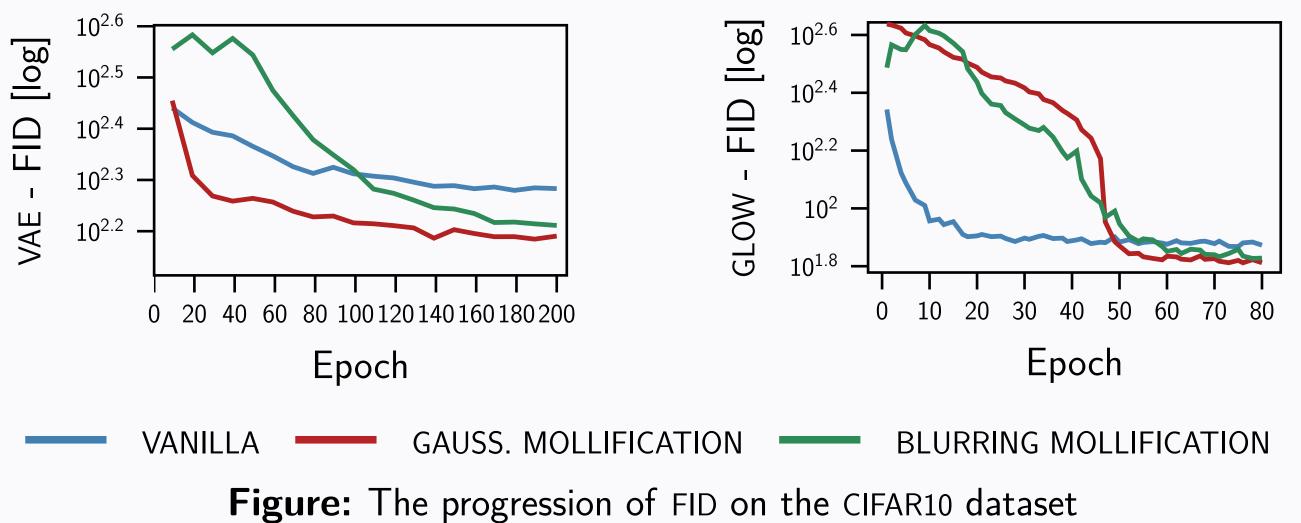
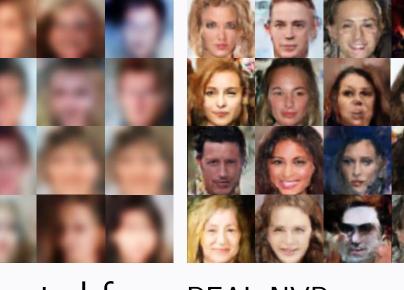


Figure: Intermediate samples generated from REAL-NVP



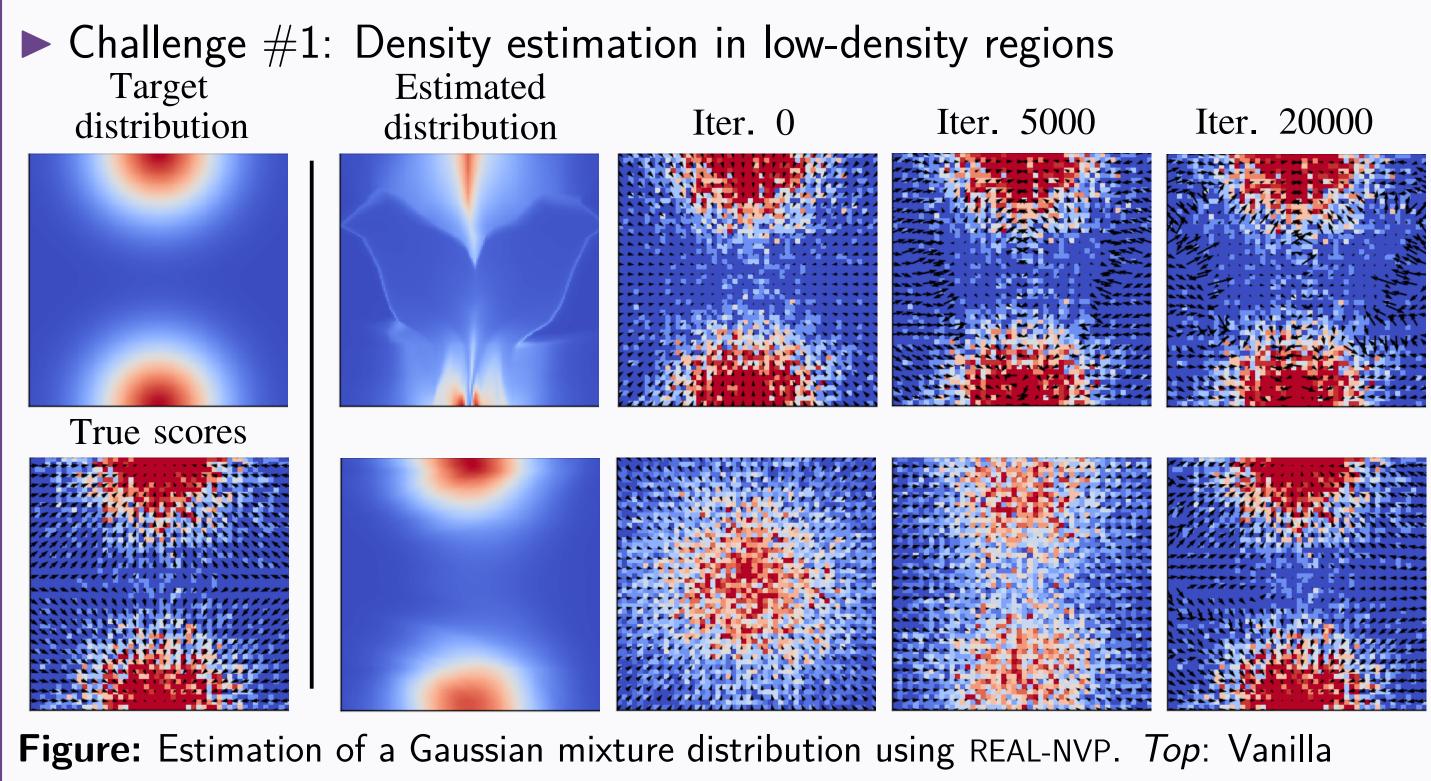
Epoch 20

Epoch 80



Mitigating Challenges in Training Generative Models

generative models:



training. *Bottom*: Data Mollification.

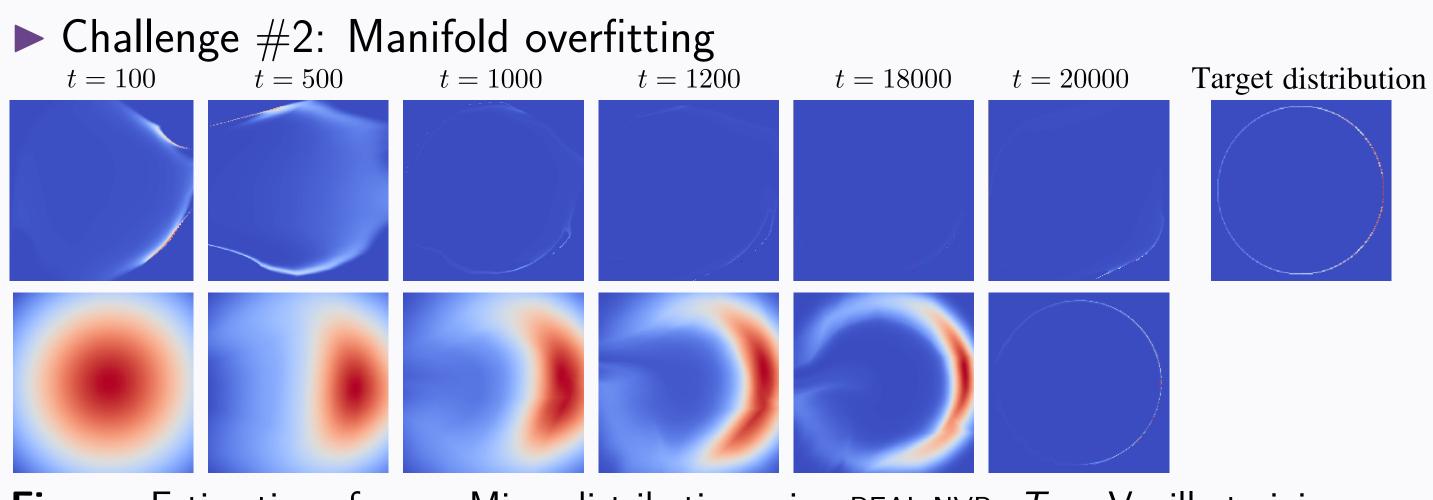


Figure: Estimation of a von Mises distribution using REAL-NVP. *Top*: Vanilla training. Bottom: Data Mollification.

Dataset	MAF		REAL	-NVP	GLOW		
DATASET	VANILLA	MOLLIF.	VANILLA	MOLLIF.	VANILLA	MOLLIF.	
RED-WINE	-16.32 ± 1.88	-11.51 ± 0.44	-27.83 ± 2.56	-12.51 ± 0.40	-18.21 ± 1.14	-12.37 ± 0.33	
WHITE-WINE	-14.87 ± 0.24	$\textbf{-11.96} \pm 0.17$	$\textbf{-18.34} \pm 2.77$	$\textbf{-12.30} \pm 0.16$	$\textbf{-15.24} \pm 0.69$	$\textbf{-12.44} \pm 0.36$	
PARKINSONS	-8.27 ± 0.24	-6.17 ± 0.17	$\textbf{-14.21} \pm 0.97$	-7.74 ± 0.27	$\textbf{-8.29} \pm 1.18$	$\textbf{-6.90} \pm 0.24$	
MINIBOONE	$\textbf{-13.03} \pm 0.04$	$\textbf{-11.65} \pm 0.09$	$-20.01 \pm $	$\textbf{-13.96} \pm 0.12$	-14.48 ± 0.10	$\textbf{-13.88} \pm 0.08$	

Generative Models". TMLR 2022 2021

Homotopy". ICML Workshop 2023 2016

Data mollification helps to mitigate two challenges in training likelihood-based

Density Estimation on UCI Datasets

Table: Average test log-likelihood (*higher is better*) on the UCI datasets

References

[1] Gabriel Loaiza-Ganem et al. "Diagnosing and Fixing Manifold Overfitting in Deep

[2] Meng et al. "Improved Autoregressive Modeling with Distribution Smoothing". ICLR

[3] Tran et al. "Improving Training of Likelihood-based Generative Models with Gaussian

[4] Hazan et al. "On Graduated Optimization for Stochastic Non-Convex Problems". ICML