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One-Line-of-Code Data Mollification Improves

Ba-Hien Tran, Giulio Franzese, Pietro Michiardi, Maurizio Filippone

Manifold Hypothesis and Manifold Overfitting

Objective and Contributions Mitigating Challenges in Training Generative Models

» We verify that the success of score-based diffusion models (DMs) is in Manifold hypothesis Data mollification helps to mitigate two challenges in training likelihood-based
par.t .due to ’Fhe.process of data sm.oothlng, by incorporating this in the » Real-world high-dimensional data tend to lie on a manifold M generative models:
training of likelihood-based generative models (GMs), e.g. VAEs and characterized by a much lower dimensionality » Challenge #1: Density estimation in low-density regions
normalizing flows _ _ _ | _ - Target Estimated
» Data points on the manifold should be associated with high probability distribution distribution
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» Connecting this to continuation methods in the optimization literature -

density, while points outside the manifold lie in regions of nearly zero

» Easy to implement by adding one line of code in any training loop! density

» Showing consistent improvements in terms of quality of samples

Manifold overfitting

Training Likelihood-based Generative Models » The model py(x) assigns an arbitrarily large likelihood in the vicinity of

True scores

the manifold, even if it does not capture accurately the data distribution

pdata(x)
» This makes it difficult for GMs to capture the true data distribution

. A . .
» Given a dataset D = {x,;}",, we aim to estimate the unknown data

generating distribution pgy,:a(X) by training a generative model pg(x)

» Common approach to estimate @ is to maximize the likelihood of the data .‘ e
Figure: Estimation of a Gaussian mixture distribution using REAL-NVP. Top: Vanilla
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Experiments on Image Datasets

training. Bottom: Data Mollification.

Table: FID scores between vanilla and mollification training on CIFAR10 and CELEBA datasets

Data Mollification Vode CIEAR10 CELEBA
ode

» Challenge #2: Manifold overfitting

VANILLA GAUSS. BLURRING | VANILLA  GAUSS.  BLURRING

t =100 t = 500 t = 1000 t = 1200 t = 18000 t = 20000 Target distribution
REAL-NVP (Dinh et al., 2017 131.15 121.75 120.88 81.25 79.68 85.40

gradually reducing its variance until recovering the original data GLOW (Kingma & Dhariwal, 2018) | 74.62 ~ 64.87  66.70 0759  70.91  74.74 ~ D . . . .

)
) |
VAE (Kingma & Welling, 2014) | 191.98  155.13 175.40 80.19 72.97 77.29 r - - - - ‘
1 VAE-IAF (Kingmaetal., 2016) | 193.58  156.39 162.27 80.34  73.56 75.67
0.8 - IWAE (Burda et al., 2015) | 183.04  146.70 163.79 78.25 71.38 76.45 . . ’ ) )
~ 0.6 — B-VAE (Higgins et al., 2017) | 112.42  93.90 101.30 67.78 64.59 67.08 k
© 04 - | 137.84 72.28 - ‘ - -

HVAE (Caterini et al., 2018 172.47 147.15 74.10 (7.54 _ _ _ _ _ _ _ _ _ o
0.2 — Figure: Estimation of a von Mises distribution using REAL-NVP. Top: Vanilla training.

0 — 20 Epoch 80 Bottom: Data Mollification.

Main idea: Adding Gaussian noise to the data throughout training and

0.2
Training Iteration t/ T

Density Estimation on UCI Datasets

Figure: lllustration of Gaussian mollification. Figure: Sigmoid schedule ~(-)

with different temperatures 7 Table: Average test log-likelihood (higher is better) on the UCI datasets

» T he distribution of smoothed data X; at iteration t is as follows:

q(X: | x) = N (X¢; ax, U? ), (2)

MAF REAL-NVP GLOW
VANILLA MOLLIF'. VANILLA MOLLIF'. VANILLA MOLLIF'.

DATASET

RED-WINE | -16.32 +188 -11.B1 +044 -27.83 +256 -12.51 £040 -18.21 +1.14 -12.37 + 0233
WHITE-WINE | -14.87 0214 -11.96 +017 | -18.34 +277 -12.30 +0.16 -15.24 +069 -12.44 = 036
PARKINSONS | -8.27 o024 -0.17 1017 [ -14.21 097 -7.74 1027 | -8.29 2118 -6.90 +0.24

MINIBOONE | -13.03 £o0.04 -11.65 =000 -20.01 022 -13.96 +012 -14.48 +010 -13.88 +0.08

where a; = v/1 — 02 and 02 = 4(t/T), with T is the maximum training

iteration, and (-) monotonically decreases from 1 to 0 controlling the

rate of smoothin : .
5 Figure: Intermediate samples generated from REAL-NVP
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e ~ N(0,1) = VANILLA GAUSS. MOLLIFICATION === BLURRING MOLLIFICATION
0 < UPDATE(0;-1,X;) // Train the model Figure: The progression of FID on the CIFAR10 dataset
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