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Objective and Contributions
I We verify that the success of score-based diffusion models (DMs) is in

part due to the process of data smoothing, by incorporating this in the
training of likelihood-based generative models (GMs), e.g. VAEs and
normalizing flows

I Connecting this to continuation methods in the optimization literature
I Easy to implement by adding one line of code in any training loop!
I Showing consistent improvements in terms of quality of samples

Training Likelihood-based Generative Models

I Given a dataset D ∆= {xi}N
i=1, we aim to estimate the unknown data

generating distribution pdata(x) by training a generative model pθ(x)
I Common approach to estimate θ is to maximize the likelihood of the data

L(θ) ∆= −Epdata(x) [log pθ(x)] (1)

Data Mollification

Main idea: Adding Gaussian noise to the data throughout training and
gradually reducing its variance until recovering the original data

Training Iteration

Figure: Illustration of Gaussian mollification.
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Figure: Sigmoid schedule γ(·)
with different temperatures τ

I The distribution of smoothed data x̃t at iteration t is as follows:

q(x̃t | x) = N (x̃t;αtx,σ2
t I), (2)

where αt =
√

1− σ2
t and σ2

t = γ(t/T ), with T is the maximum training
iteration, and γ(·) monotonically decreases from 1 to 0 controlling the
rate of smoothing

One Line of Code in Training Loop

Algorithm 1: Data Mollification with Gaussian Noises
1 for t ← 1, 2, ..., T do
2 x ∼ pdata(x) // Sample training data
3 x̃t = αtx + σtε // Smooth data with αt,σ

2
t ← γ(t/T ) and

ε ∼ N (0, I)
4 θt ← UPDATE(θt−1, x̃t) // Train the model

Manifold Hypothesis and Manifold Overfitting

Manifold hypothesis
I Real-world high-dimensional data tend to lie on a manifold M

characterized by a much lower dimensionality
I Data points on the manifold should be associated with high probability

density, while points outside the manifold lie in regions of nearly zero
density

Manifold overfitting
I The model pθ(x) assigns an arbitrarily large likelihood in the vicinity of

the manifold, even if it does not capture accurately the data distribution
pdata(x)

I This makes it difficult for GMs to capture the true data distribution

Experiments on Image Datasets
Table: FID scores between vanilla and mollification training on CIFAR10 and CELEBA datasets

Model CIFAR10 CELEBA
VANILLA GAUSS. BLURRING VANILLA GAUSS. BLURRING

REAL-NVP (Dinh et al., 2017) 131.15 121.75 120.88 81.25 79.68 85.40
GLOW (Kingma & Dhariwal, 2018) 74.62 64.87 66.70 97.59 70.91 74.74

VAE (Kingma & Welling, 2014) 191.98 155.13 175.40 80.19 72.97 77.29
VAE-IAF (Kingma et al., 2016) 193.58 156.39 162.27 80.34 73.56 75.67

IWAE (Burda et al., 2015) 183.04 146.70 163.79 78.25 71.38 76.45
β-VAE (Higgins et al., 2017) 112.42 93.90 101.30 67.78 64.59 67.08
HVAE (Caterini et al., 2018) 172.47 137.84 147.15 74.10 72.28 77.54
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Figure: Intermediate samples generated from REAL-NVP
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Figure: The progression of FID on the CIFAR10 dataset

Mitigating Challenges in Training Generative Models
Data mollification helps to mitigate two challenges in training likelihood-based
generative models:
I Challenge #1: Density estimation in low-density regions
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Figure: Estimation of a Gaussian mixture distribution using REAL-NVP. Top: Vanilla
training. Bottom: Data Mollification.

I Challenge #2: Manifold overfitting
Target distribution

Figure: Estimation of a von Mises distribution using REAL-NVP. Top: Vanilla training.
Bottom: Data Mollification.

Density Estimation on UCI Datasets

Table: Average test log-likelihood (higher is better) on the UCI datasets

Dataset maf real-nvp glow
vanilla mollif. vanilla mollif. vanilla mollif.

red-wine -16.32 ± 1.88 -11.51 ± 0.44 -27.83 ± 2.56 -12.51 ± 0.40 -18.21 ± 1.14 -12.37 ± 0.33

white-wine -14.87 ± 0.24 -11.96 ± 0.17 -18.34 ± 2.77 -12.30 ± 0.16 -15.24 ± 0.69 -12.44 ± 0.36

parkinsons -8.27 ± 0.24 -6.17 ± 0.17 -14.21 ± 0.97 -7.74 ± 0.27 -8.29 ± 1.18 -6.90 ± 0.24

miniboone -13.03 ± 0.04 -11.65 ± 0.09 -20.01 ± 0.22 -13.96 ± 0.12 -14.48 ± 0.10 -13.88 ± 0.08
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