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Abstract—Accurate distance estimation is of utmost im-
portance in enabling seamless positioning and location-based
services for 5G and Beyond 5G (B5G) networks. This paper
focuses on addressing the ranging problem caused by multipath
propagation, utilizing the widely adopted Nakagami-m ampli-
tude fading model. We propose a novel method for estimating
range based on Multipath Components (MPCs), establishing
a relationship between the distribution parameters and prop-
agation distance. To address the estimation problem within
the MPCs-based ranging method, we employ the Expectation
Maximization (EM)-Revisited Approximate Message Passing
(ReVAMP) algorithm. This algorithm is specifically designed to
handle challenges in parameter estimation for generalized linear
models (GLMs) with hidden random variables and intractable
posterior distributions during EM iterations. Simulation results
have been conducted to prove the accuracy and robustness of
our ranging method, which consistently confirm its effective-
ness.

Index Terms—Ranging Estimation, Multipath Components,
Expectation Maximization, Revisited Approximate Message
Passing Algorithm

I. INTRODUCTION

With the rapid advancement of communication techniques,
localization estimation has emerged as a critical aspect
in fifth-generation (5G) and beyond 5G (B5G) networks
[1]. Many distance-based positioning protocols rely on the
received signal strength indicator (RSSI) to estimate position
via analyzing the power level received by the receiver [2]–
[4]. However, it was asserted that RSSI is not an ideal
metric due to its vulnerability to multipath effects [5], [6].
In complex environments, the receiver may encounter mul-
tiple signals arriving through different paths, including line-
of-sight (LoS) and non-line-of-sight (NLoS) paths, which
significantly intensifies the multipath effect shown as Fig.
1. Consequently, establishing a straightforward relationship
between received power and propagation distance becomes
impractical [7].

Since RSSI is not applicable in scenarios involving LoS
path and a large number of NLoS paths, several studies
have aimed to establish empirical models that differentiate
between their power attenuation in relation to propagation
distance [8]–[10]. One widely accepted propagation model
for indoor multipath propagation is the Saleh-Valenzuela
model [9], which takes into account factors such as reflec-
tion, diffraction, and scattering caused by indoor structures.
However, this model may not accurately represent channel
behavior in outdoor or wide-area environments, as it does
not explicitly consider wide-area path loss, shadowing, and
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Fig. 1. Example of LoS and NLoS links.

other outdoor-specific phenomena [11]. To accurately model
outdoor or wide-area channel behavior, different empirical
models or models based on extensive outdoor measurements,
such as the Okumura-Hata model [12] or the 3GPP model
[13], are commonly used. However, establishing a generic
attenuation model for each MPC with respect to (w.r.t.) the
propagation distance is not adequately accounted for.

To address these challenges, our initial focus was on se-
lecting a suitable model that accurately captures the decay of
MPCs. After a comprehensive evaluation, we concluded that
the Nakagami-m distribution is well-suited for representing
the amplitude fading of each MPC, taking into account the
uniform distribution of the phase varying from 0 to 2π [14].
In comparison to alternative models like Rayleigh, Rician,
or log-normal distributions, the Nakagami-m distribution
demonstrated superior versatility and accuracy in fitting a
wide range of experimental data [15]. This superiority stems
from its capability to accommodate the superposition of
primary and clutter signals resulting from diffuse reflections
within a single path, making it a better fit than the Rayleigh
distribution [14]. It is worth noting that both the Rician and
Nakagami distributions exhibit similar characteristics at the
mean attachment point.

Furthermore, we considered how to establish the relation-
ship between the parameters of the Nakagami-m distribution
and the propagation distance to enable distance estimation.
The parameter m is closely associated with the environment,
while Ω represents the average attenuation power intensity
[16], which is directly linked to the propagation distance.



Consequently, when the received data contains sufficient
information about the attenuation of different paths, we can
directly estimate the distance based on these measurements.
While previous studies [17]–[19] have explored the use
of MPCs for localization estimation, to the best of our
knowledge, no prior research has specifically focused on
directly estimating the propagation distance of the LoS path
by assuming that both the LoS and NLoS paths conform to
specific fading distributions.

For range estimation utilizing MPCs with Nakagami-
m amplitude fading, we formulate the problem of range
estimation and propose the EM-ReVAMP algorithm as an
effective solution. The EM algorithm is employed to handle
a GLM that incorporates hidden variables. In cases where the
analytic formula for the posterior probability density function
(PDF) is unavailable within the EM algorithm, we introduce
the ReVAMP inference algorithm to approximate the poste-
rior distribution. The simulations demonstrate that the MPCs-
based ranging exhibits high accuracy and robustness. Our
ranging method serves as a foundation for precise distance
estimation and further positioning in wireless communication
networks, thereby enhancing performance and improving
user experiences.

The organization of the remaining sections is as follows:
Section II presents the system model, encompassing the
orthogonal frequency-division multiplexing (OFDM) model,
Nakagami-m amplitude fading of MPCs, and MPCs-based
ranging estimation. Sections III and IV delve into expla-
nations of the EM algorithm and the ReVAMP algorithm,
respectively. In Section V, we describe the procedure for es-
timating distance using the EM-ReVAMP algorithm. Subse-
quently, Section VI showcases the simulation results. Finally,
Section VII concludes with our findings and conclusions.

Notation: The following notation will be used throughout
this paper. Column vectors are denoted by lowercase bold
x. Matrices are denoted by uppercase bold X . Scalars are
represented without bold, such as x. The ith entry of a
vector x is designated as x[i] or xi. The element at row i
and column j of matrix X is denoted as Xij .The operation
diag(X) is used to extract the column vector consisting of
the main diagonal elements of the matrix X .

II. SYSTEM MODEL

In this section, we will offer a succinct introduction to the
system model.

A. OFDM model

The widely preferred modulation technique in communi-
cation networks is OFDM, which finds extensive application
in 5G-NR [20]. In the OFDM model, the received baseband
signal can be mathematically expressed as the convolution
of the transmitted OFDM signal, denoted as s(t), and the
channel impulse response, denoted as g(t). Additionally,
complex additive white Gaussian noise, represented as v(t),
is added to the received signal. This relationship can be
represented as:

r(t) = s(t) ∗ g(t) + v(t), (1)

where * denotes the convolution operation. After the received
signal, r(t), is sampled at a rate of Ts, time and frequency
synchronizations are performed prior to the N -point fast
Fourier transform (FFT) operation. The output of the FFT,
denoted as y, can be written as:

y = Xh+ v ∈ CN×1, (2)

where X is an N ×N diagonal matrix containing the trans-
mitted pilot symbols on its diagonal, h represents the channel
frequency response (CFR) as a vector, and v is a vector
of independently and identically distributed (i.i.d.) complex
zero-mean Gaussian noise samples with equal variance σ2

v .
In the case of a block fading channel that remains constant

over the duration of a packet, the channel impulse response
(CIR) can be described as follows: [21]

g(t) =

L−1∑
l=0

alδ(t− κlTs), (3)

where al and κlTs(κ0 < κ1 < ... < κL−1) represent the
gain and delay of the lth path, respectively, and δ(t) denotes
the Kronecker delta function. Let

h = [h0, h1, ... , hN−1]
T , (4)

be the discrete CFR, where ()T represents the transpose of
(). Under the assumption that the sampling starts at t = 0,
the n th element of h can be written as: [22]

hn =

L−1∑
l=0

ale
−jκlω|

ω=
2π[n]N

N

, (5)

where

[n]N =

{
n, n ≤ N/2− 1,

n−N, n ≥ N/2 + 1.
(6)

Therefore, we can present (5) as

h = Ta ∈ CN×1 (7)

where a ∈ CL×1 is a vector filled with fading gains
and T ∈ CN×L is a transformation matrix that Tkl =
e−jκlω|

ω=
2π[k]N

N

.

B. Nakagami-m amplitude fading of MPCs

As discussed in the previous subsection, the received
signal in OFDM can be represented as follows:

y = XTa+ v = Ha+ v; v ∼ CN (0, σ2
vI), (8)

where a ∈ CN×1 denotes the complex attenuation coef-
ficients (amplitude m and phase ϕ). For each individual
element ai = mie

jϕi of a, we assume its magnitude mi

with a Nakagami-m distribution and phase ϕi with a uniform
distribution. Therefore, the PDF of magnitude and phase can
be expressed as follows:

p(mi|Ωi) =
2mmm2m−1

i

Γ(m) Ωm
i

exp

[
−mm2

i

Ωi

]
,mi > 0; (9a)

p(ϕi) =
1

2π
, ϕi ∈ [0, 2π), (9b)



where Γ(·) denotes the gamma function m is the shape
parameter of the Nakagami-m distribution and Ωi is the
average power intensity of path i. The shape parameter m
controls the fading characteristics of the distribution. For
lower values of m, the distribution resembles a Rayleigh
distribution with a more rapid decay. As m increases, the
distribution becomes more concentrated around its mean,
resembling a more concentrated fading behavior. In prac-
tice, m is often estimated from channel measurements to
accurately model the fading characteristics of the specific
wireless channel. Referring to [23], the parameter Ωi can be
defined as:

Ωi(d0) = PtGtGr

[
λ

4π(d0 + cτi)

]n
= G0(d0 + cτi)

−n,

(10)
in the given equation, several variables are defined as
follows: Pt represents the transmitting power, Gt denotes
the transmitting antenna amplification, λ is the wavelength
of the electromagnetic wave, c is the velocity of light, n
represents the propagation fading factor influenced by the
environment, d0 indicates the LoS distance, and τi indicates
the propagation delay between the i-th path and the LoS
path.

In (10), the term PtGtGr

(
λ
4π

)n
can be considered as

a constant, denoted as G0, which combines the effects of
transmit power, antenna gains, wavelength, and path loss ex-
ponent. The propagation fading factor n plays a crucial role
in determining the rate of signal attenuation with distance
and can vary depending on the characteristics of the wireless
channel and the environment in which the signals propagate.
As the propagation distance d0+ cτi increases, Ωi decreases
following an inverse power-law relationship (d0 + cτi)

−n.
This allows us to estimate the specific range d0 based on Ωi

when τi is known in a given environment.
Using the Jacobi determinant, we can obtain the PDF of

the complex fading coefficient ai as follows:

p(ai|Ωi(d0)) =
mm|ai|2m−2

π Γ(m) Ωm
i

exp

[
−m |ai|2

Ωi

]
,m ≥ 0.5.

(11)
For simplicity, we denote p(ai|d0) by p(ai|Ωi(d0)). Thus,
the PDF of the collection a can be given as:

p(a|d0) =
L−1∏
i=0

p(ai|d0). (12)

In this estimation process, we assume the presence of a LoS
path with an unknown distance d0, as well as measurable
time delay between NLoS paths and the LoS path. While
there may be some measurement bias, it is relatively negli-
gible compared to the bias associated with estimating the
distance d0. Hence, we can disregard these biases in the
subsequent estimation process.

C. MPCs-based Ranging Estimation

Our objective is to estimate d0 directly from y. To achieve
this, we will employ the maximum likelihood estimation

(MLE) method, which transforms the problem into the
following equation:

d̂0 = argmax
d0

ℓ(d0;y) = argmax
d0

lnL(d0;y), (13)

where L(·) and ℓ(·) represent the likelihood function and
log-likelihood function, respectively.

Regarding the optimization problem (13), the likelihood
function can be expressed as:

L(d0;y)=p(y|d0)=
∫

p(a,y|d0)da=
∫

p(y|a)p(a|d0)da.
(14)

The PDF p(y|d0) is crucial for estimating the LoS range
d0 based on the received signal y in 13. However, solving
the integral problem directly to acquire p(y|d0) proves to
be intractable, as finding an analytical form poses signifi-
cant challenges. In the next sections, a subtle algorithm is
leveraged to solve this puzzle.

III. REVIEW OF EXPECTATION MAXIMIZATION (EM)

As we discussed before, in the linear mixing data model
described by equation (8), we have a known measurement
matrix H ∈ CM×L and an independent and non-identically
distributed (n.i.i.d.) prior p(a|d0) =

∏L−1
i=0 p(ai|d0) for the

vector a. Additionally, we consider a zero-mean Gaussian
measurement noise p(v) = CN (v;0,Cvv) with covariance
matrix Cvv ∈ RM×M .

To address the optimization problem (13), the Expectation-
Maximization (EM) algorithm [24] proves to be a suitable
solution. This algorithm is effective for estimation problems
involving latent variables, such as a, which are unobserved.

According to (14), the Log-Likelihood of d0 can be
presented as

ℓ(d0;y) = ln p(y|d0) = ln

∫
p(y|a)p(a|d0)da (15)

As discussed in (13), the parameters d0 estimation becomes
maximizing the log-likelihood

d̂0 = argmax
d0

ℓ(d0). (16)

Direct optimization of the log-likelihood may be very dif-
ficult. One approach is to do minorization maximization
(MM) [25] in which we construct a more easily optimized
lower bound of the log-likelihood function and iteratively
approximate the optimal parameters by continuously opti-
mizing this lower bound. When considering the Nakagami-m
prior distribution of a as described in equation (12), the EM
iteration can be expressed as follows:

d
(t+1)
0 = argmax

d0

E
p(a|y,d(t)

0 )

[
L−1∑
i=0

(− lnΩi(d0)−
|ai|2

Ωi(d0)
)

]

= argmin
d0

L−1∑
i=0

[
lnΩi(d0) +

E
p(a|y,d(t)

0 )

[
|ai|2

]
Ωi(d0)

)

]
,

(17)
where Ωi(d0) was defined in (10). However, in this scenario,
the EM algorithm remains intractable because obtaining
the posterior distribution p(a|y, d(t)0 ) is challenging due to



the integration. Therefore, it becomes crucial to develop
an algorithm that approximates this posterior distribution
with another tractable distribution. To achieve this goal, we
propose an algorithm called Revisited Approximate Message
Passing (ReVAMP).

IV. REVISITED APPROXIMATE MESSAGE PASSING
(REVAMP)

The purpose of the ReVAMP algorithm is to find a
complex Gaussian distribution N (a;m,Cm) approximating
the posterior p(a|y, d(t)0 ) where d

(t)
0 is known, as

p(a|y, d(t)0 ) =
p(y,a|d(t)0 )∫
p(y,a|d(t)0 )dy

≈ q(a) = CN (a;m,Cm).

(18)
To obtain m and Cm, in the linear mixing data model (8),
we factorize the approximate distribution as:

q(a) =

L−1∏
i=0

q(ai) ∝ p(y|a)
L−1∏
i=0

fi(ai), (19)

where fai(ai) is supposed to be complex gaussian. The
Expectation Propagation (EP)-liked form of ReVAMP is
given as:

1) Initialize the factors: fi(ai)
2) Compute the posterior for a from the product of fi(ai):

q(a) =
p(y|a)

∏L−1
i=0 fi(ai)∫

p(y|a)
∏L−1

i=0 fi(ai)da
. (20)

3) Until all fi(ai) converge:
a) Choose a fi(ai) to refine
b) Remove fi(ai) from the posterior and integral out

a except ai to get an extrinsic:

b(ai) =

∫
q(a)

fi(ai)
da\i. (21)

c) Combine with real prior p(ai|d(t)0 ) and minimize
Kullback–Leibler (KL) divergence to get an ap-
proximate marginal posterior q̂(ai):

q̂(ai) = arg min
q(ai)

DKL

[
b(ai)p(ai|d(t)0 )||q(ai)

]
.

(22)
d) Update f̂i(ai) ∝ q̂(ai)/b(ai)

4) Generate an approximated posterior q̂(a):

q̂(a) =
p(y|x)

∏L−1
i=0 f̂i(ai)∫

p(y|x)
∏L−1

i=0 f̂i(ai)da
. (23)

This algorithm always has a fixed point with gaussian
approximation factors and if initialized too far away from
a fixed point, it may diverge [26]. ReVAMP is an EP-liked
algorithm that extends the VAMP algorithm, and for more
comprehensive insights into the inner workings, refer to their
respective research papers [26]–[28].

Algorithm 1 EM-ReVAMP
Ensure: d̂0
Require: y, H , pv(v), G0, τ

1: Initialize: d̂0
2: repeat [For t = 0 . . . L− 1]
3: Initialize: Cp, p
4: repeat
5: repeat [For i = 1 . . . N ]
6: [Update the posterior approximation]
7: Ca =

(
HHC−1

vv H +C−1
p

)−1

8: â = Ca

(
HHC−1

vv y +C−1
p p

)
9: [Update the extrinsic]

10: ri =
Cpii

ai−Caii
pi

Cpii
−Caii

11: τri =
Cpii

Caii
Cpii

−Caii
12: [Gaussian marginal posterior approximation]
13: âi =

∫
aip(ai|d̂0)CN (ai;ri,τri )dai∫
p(ai|d̂0)CN (ai;ri,τri )dai

14: Caii =
∫
|ai−âi|2p(ai|d̂0)CN (ai;ri,τri )dai∫

p(ai|d̂0)CN (ai;ri,τri )dai

15: [Resulting Gaussian prior approximation]
16: pi =

τri âi−Caii
ri

τri−Caii

17: Cpii =
τriCaii
τri−Caii

18: until All i-s have been updated
19: until Convergence
20: d̂0 = argmin

d0

∑L−1
i=0

[
lnΩi(d0) +

Caii
+|âi|2

Ωi(d0)
)
]

21: until Convergence

V. RANGING ESTIMATION WITH NAKAGAMI-M PRIOR
DISTRIBUTION

We propose the EM-ReVAMP algorithm, outlined in Algo-
rithm 1, for estimating d0. This algorithm utilizes ReVAMP
sequentially at each step of the EM algorithm to obtain
approximate second-order moments. Specifically, within the
ReVAMP part, the marginal posterior approximation involves
the calculation of âi and τai

, which can be computed as
follows:

âi =
md

(t)
0 ri

mτi + d
(t)
0

1F1(m+ 1; 2;
d
(t)
0 |ri|2

mτ2
i +τid

(t)
0

)

1F1(m; 1;
d
(t)
0 |ri|2

mτ2
i +τid

(t)
0

)
, (24a)

τai
=

md
(t)
0 τi

mτi + d
(t)
0

1F1(m+ 1; 1;
d
(t)
0 |ri|2

mτ2
i +τid

(t)
0

)

1F1(m; 1;
d
(t)
0 |ri|2

mτ2
i +τid

(t)
0

)
− âiâ

∗
i ,

(24b)

where 1F1(a; b; z) represents the confluent hypergeometric
function [29], defined by the hypergeometric series:

1F1(a; b; z) =

∞∑
k=0

(a)k
(b)k

zk

k!
. (25)

VI. SIMULATION RESULTS

This section presents the simulation verification using
MATLAB to assess the impact of different parameters.
Table I lists the main parameters involved. In general, the
main environmental influences on MPCs-based ranging are
the number of distinguishable MPCs, the magnitude of the
Signal-to-Noise Ratio (SNR), the propagation attenuation



TABLE I
PARAMETERS SETTING

Parameter Value
G0 1.

SNR (dB) Range from 10 to 30, default 20.
N 10.
L Ranging from 2 to 4
n Ranging from 2 to 4, default 3.
m Ranging from 0.5 to 2, default 1.

d0 (meter) 10.
Distance of NLOS path (m) Random between 1.1d0 to 2.0d0.

Test repetitions 20.

factor n, and the shape parameter of Nakagami-m distribu-
tion m. In the following subsection, we analyze the effects
of these factors on ranging accuracy through simulations. We
conducted 20 times for each test and calculated the average
of the absolute values of the bias.

A. Impact of SNR and Number of NLoS Paths

In this set of experiments, we examine the influence of
SNR and the number of NLoS paths on the estimation bias.
Fig. 2 illustrates the simulation results. The average estimated
errors were 2.8m, 0.7m and 0.1m when there were one NLoS
and two NLoS and three NLoS, respectively. We observe
that varying SNR from 10dB to 30dB does not significantly
affect our performance. However, the estimation accuracy
gradually improves with an increasing number of NLoS
paths. This finding demonstrates that our algorithm maintains
good estimation performance even at low SNR levels.
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Fig. 2. The impact of SNR and the number of NLoS paths on d0 estimation

B. Impact of the propagation fading factor n and Number
of NLoS Paths

This set of experiments investigates the effects of the
environmental propagation fading factor n and the num-
ber of NLoS paths on the estimation bias. The simulation
results, depicted in Fig. 3, indicate that the variation of
n within the range of 2 to 4 has a negligible impact on
our performance. The average estimated errors were 2.9m,
0.7m and 0.2m when there were one NLoS and two NLoS
and three NLoS, respectively. These results suggest that our
algorithm exhibits robust estimation performance even in
complex environments, with estimation accuracy gradually
improving as the number of NLoS paths increases.
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Fig. 3. The impact of the environment propagation fading factor n and the
number of NLoS paths on d0 estimation

C. Impact of the shape parameter m and Number of NLoS
Paths

We examine the influence of the shape parameter of the
Nakagami-m distribution, denoted as m, and the number
of NLoS paths on the estimation bias. Fig. 4 presents the
simulation results, indicating that varying m from 0.5 to 2
does not significantly affect our performance. The average
estimated errors were 3.0m, 0.7m and 0.2m when there were
one NLoS and two NLoS and three NLoS, respectively.
These findings highlight the favorable theoretical estimation
performance of our algorithm even in complex environments,
with the accuracy of estimation gradually improving as the
number of NLoS paths increases.
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Fig. 4. The impact of the Nakagami-m distribution’s shape parameter m
and the number of NLoS paths on d0 estimation

D. Simulation Conclusions

Based on the experimental simulations conducted with
varying SNR, values of n and m, and the number of NLoS
paths, our method has demonstrated strong performance in
diverse and complex environments. Notably, the number of
NLoS paths has emerged as a crucial parameter, significantly
influencing the accuracy of our estimation. As the number
of NLoS paths increases, the accuracy of our algorithm
improves. Because the accuracy of the estimation is directly
linked to the availability of eligible samples. Consequently,
a higher number of eligible samples leads to improved
estimation accuracy. The number of eligible samples used
in the estimation is the primary determinant of the accuracy
of our range estimation algorithm when the SNR is not



particularly small. Hence, in complex environments char-
acterized by a substantial multipath component, the EM-
ReVAMP algorithm proves to be an effective solution for
estimating the LoS distance.

VII. CONCLUSIONS

We propose a novel method for precise range estima-
tion within multipath propagation, aimed at overcoming
the associated challenges. Our approach utilizes the widely
adopted Nakagami-m amplitude fading model and estab-
lishes a relationship between distribution parameters and
propagation distance. To address the challenge of parameter
estimation for GLMs that involve hidden random variables
and intractable posterior distributions in the context of our
range estimation method, we introduce the EM-ReVAMP
algorithm. The simulation results convincingly demonstrate
the accuracy and robustness of our approach, providing
substantial evidence to support the effectiveness of the EM-
ReVAMP algorithm. To further validate the practicality and
effectiveness of our method, our next objective is to gather
measurement data from diverse environments and conduct
thorough experimental analysis. This crucial step will enable
us to evaluate the performance of our method in real-world
scenarios. Additionally, exploring additional application sce-
narios of EM-ReVAMP and investigating its theoretical per-
formance are vital aspects that require attention.
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