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Abstract � For the case of white uncorrelated in�

puts� most of the blindmultichannel identi�cation tech�

niques are not very robust and only allow to estimate

the channel up to a number of ambiguities� especially

in the MIMO case� On the other hand� all current stan�

dardized communication systems employ some form of

known inputs to allow channel estimation� The channel

estimation performance in those cases can be optimized

by a semiblind approach which exploits both training

and blind information� When the inputs are colored

and have su�ciently di�erent spectra� the MIMO chan�

nel may become blindly identi�able up to one constant

phase factor per input� and this under looser conditions

on the channel� For the case of spatial multiplexing�

possible cooperation between the channel inputs allows

for more complex MIMO source pre�ltering that may

allow blind MIMO channel identi�cation up to just one

global constant phase factor� We introduce semiblind

criteria that are motivated by the Gaussian ML ap�

proach� They combine a training based weighted least�

squares criterion with a blind criterion based on linear

prediction� A variety of blind criteria are considered

for the various cases of source coloring�

I� Introduction

The multichannel aspect has led to the development of a
wealth of blind channel estimation techniques over the last
decade� In this paper� blind identi
cation shall mean channel
identi
cation on the basis of the second�order statistics of the
received signal� We shall at 
rst treat the case of white uncor�
related source signals� Consider linear digital modulation over
a linear channel with additive Gaussian noise� Assume that we
have p transmitters and m � p receiving channels �e�g� antennas
in BLAST or SDMA�� The received signals can be written in
the baseband as

yi�t� �

pX
j��

X
k

aj�k�hij�t� kT � � vi�t� ���

where the aj�k� are the transmitted symbols from source j� T
is the common symbol period� hij�t� is the �overall� channel
impulse response from transmitter j to receiver antenna i� We
assume the channels to be FIR� In particular� after sampling
we assume the �vector� impulse response from source j to be of
length Nj� W�l�o�g�� we assume the 
rst non�zero vector impulse
response sample to occur at discrete time zero� and we can as�
sume the sources to be ordered so that N� � N� � � � � � Np�
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Let N �
Pp

j��Nj� The discrete�time Rx signal can be repre�
sented in vector form as

y�k� �

pX
j��

Nj��X
i��

hj�i�aj�k�i� � v�k� �

N���X
i��

h�i�a�k�i� � v�k�

�

pX
j��

Hj�NjAj�Nj �k� � v�k� � HNAN�k� � v�k� �

y�k� �

�� y��k�
���

ym�k�

���v�k� �
�� v��k�

���
vm�k�

���hj�k� �
�� h�j�k�

���
hmj�k�

��
Hj�Nj ��hj��� � � �hj�Nj���� �HN�

�
H��N�

� � �Hp�Np

�
�

h�k� � �h��k� � � �hp�k�� � Aj�Nj �k� � �aj�k� � � � aj�k�Nj����
T �

a�k� � �a��k� � � �ap�k��
T � AN �k� �

�
AT
��N�

�k� � � �AT
p�Np �k�

�T
where superscripts T � H denote transpose and Hermitian
transpose respectively� The multichannel aspect leads to a
signal subspace when m � p since y�k� � H�q� a�k� � v�k�

with H�q� �
PN���

i�� h�i� q�i and q�� the unit delay opera�
tor �q��a�k� � a�k���� and hence we get for the power spec�
tral density matrix Syy�z� � H�z�Saa�z�H

y�z� � Svv�z� �
��aH�z�Hy�z� � ��v Im�

II� MIMO Linear Prediction

In the MIMO case� we propose here as in ��� to use linear
prediction quantities for the blind information� Linear predic�
tion is applicable equally well to both the SIMO and MIMO
cases� Two �avors can be obtained� depending whether the
transmitted symbols are modeled as deterministic unknowns or
as uncorrelated random sequences �in the deterministic case� for
the purpose of linear prediction� some considerations are more
straightforward if the symbols are considered as stationary se�
quences with unknown correlation��

Consider the problem of predicting y�k� from YL�k � �� �
�yT �k��� � � �yT �k�L��T � for noiseless received signal� The pre�
diction error can be written as

ey�k�jYL�k���
� y�k�� by�k�jYL�k���

� PLYL���k� ���

with PL � �PL�� PL�� � � �PL�L� � PL�� � Im� Minimizing
the prediction error variance leads to the following optimisation
problem

min
PL

PLRY YP
H
L � ��ey�L ���

hence

PLRY Y �
h
��ey�L � � � � �

i
� �
�

Let L �
�
N�p
m�p

�
� The rank pro
le of ���y�L behaves as a function

of L generically �for an irreducible and column reduced MIMO
channel� like



rank
	
��ey�L


�
� p �L � L
�m�m � fp��� ���mg � L � L��
�m �L � L��

���

where m � L�m� p� �N � p � f�� �� � � � �m��� pg represents
the degree of singularity of RY Y�L� For L � L� ey�k�jYL�k���

�

h���a�k�� For such L� let Vi be the eigenvectors of ��ey�L in

order of decreasing eigenvalue� then V�	p � �V� � � �Vp� has the
same column space as h��� and P�z� � V H

p��	mP�z� satis
es
P�z�H�z� � � �P�z� represents a parameterization of the noise
subspace�� Note that P�z� changes if the symbols are corre�
lated �hence P�z� contains information about the symbol cor�
relation� whereas P�z� is insensitive to such correlation� To
obtain the noisefree prediction quantities� we need to denoise

an estimated covariance matrix via bRd
Y Y � bRY Y � b��v I �partial

denoising� or bRd
Y Y � bbRY Y � b��v Ic� �full denoising�� In the case

of partial denoising� we used a generalized version �to covariance
windowing� of the MIMO Levinson algorithm� which applies in
the nonsingular inde
nite case� Singular components appear
then as negative semide
nite� In the case of full denoising� we
determined the prediction quantities directly from the normal
equations� with a generalized inverse R
 � U�HD
U�� where
R � UDUH is the UDL triangular factorization of R and D


is the Moore�Penrose inverse of the singular diagonal matrix D�
As in ���� the columns in U corresponding to zeros in D are
taken to be all zero� except for a unit diagonal element� In both
approaches� the overestimation of L leads to consistent in SNR
P�z�� whereas for P�z� we only have consistency in amount MB

of �blind� data samples y�k� �the noiseless uncorrelated symbols
case with 
nite amount of data is similar to a colored symbols
case�� Note that the partial and full denoising approaches cor�
respond to resp� the 
rst and second subspace estimates in �	��
Let hi � �hTi ��� � � �h

T
i �Ni����

T �HtT
i�Ni where

t denotes trans�

position of the block entries� and h � HtT
N � Then a stretch of

Rx signal Y can be written as

YM � T �h�A�VM � Ah�VM

where T �h� � �TM�H��N�
� � � � TM �Hp�Np �� and TM�H� denotes

a block Toeplitz convolution matrix with M block rows and
�H � � � � �� as 
rst block row� A is a structured matrix con�
taining the multi�source symbols� Let TS denote the number of
training sequence �TS� symbols per source �considered equal for
all sources for most of what follows�� The TSs for the di�erents
users are considered to be simultaneous initially�

III� Deterministic Semi�Blind �DSB� Approach

In the semiblind approaches� we shall seek a channel estimatebh with possibly overestimated channel lengths bNi � Ni and we
shall assume that bN� remains the largest bNi� In the determin�
istic symbols setting� we shall work with P� P�z� bHi�z� � �

can be written in the time domain as T TbNi�Pt
� bhi � �� Let

B �

pM
i��

T TbNi �Pt
� where

pM
i��

Ai � blockdiagfA�� � � � �Apg� We

can now formulate a semiblind criterion as

minbh
�


YTS �ATS bh


� � �




B bh


�� �	�

where � is a weighting factor� and YTS is the portion of Rx signal
containing only training symbols� A more optimal approach
introduces weighting involving the covariance matrix C of B h
due to the estimation errors in P and leads to

minbh
�


YTS �ATS bh


� � ��v bhHBH C



B bh� ���

where a possible pseudo�inverse can be avoided by using an
in
nitisemal amount of regularization� Inspired by an approxi�

mate expression for C given in ���� we have taken ��v C


� MB I

so that ��� reduces to �	� with � � MB�
With overestimated channel lengths� deterministic blind

identi
cation leads to an estimate
bbH�z� �H�z�S�z� where p�p

S�z� is also causal and polynomial and the length of Sij�z� can

be shown to be � bNi �Nj � ��� where �x�� � maxfx� �g �this

is a generalization of a result in ��� for the case bNi � Ni��

IV� Gaussian Semi�Blind �GSB� Approach

In the Gaussian case� the blind estimation ambiguity gets re�
duced to an instantaneous unitary mixture of the sources �which
gets even limited to mixtures of subsets of sources with iden�
tical channel length Ni�� Since h��� can only be determined
up to an instantaneous mixture� we reduce the exploitation of
P�z�H�z� � h��� or P�q�h�k� � h��� �k� to P�h��� � � and
P�q�h�k� � �� k � �� We shall call this the reduced Gaus�
sian case� in which all decorrelation is exploited except between
symbols at the same time instant� This can be expressed by

B h � � where B �

pM
i��

�
P� �

T TbNi �Pt�

�
where T TbNi �Pt� is T TbNi�Pt�

with the 
rst block row removed� The problem of recovering h
from T TbNi�Pt�hi � � in the SIMO case� with an optimal weight�

ing between the nuller P�z� and the equalizer portions of P�z�
has been addressed in ��� and involves the covariance matrix of

T TbNi �Pt�hi �a simple approximation is given also�� This allows

us to introduce a semi�blind criterion of the form

min
h

�
kYTS �ATS hk

� � ��v h
H BH C
 B h

�
� ���

We took C � MB

pM
i��

�Im � ��Im � ���v ��ey�� INi����� inspired

by ����
For both semiblind methods� if the amount of blind data be�

comes very large� then the particular structure of the weighting
matrix for the blind part becomes unimportant and the soft�
constrained criterion approaches the hard constrained criterion�
in which the TS criterion kYTS �ATS hk

� gets minimized sub�

ject to the blind constraints B bh � � or B bh � ��

V� Augmented Training�Sequence Part

So far �classical TS approach� YTS denoted the Rx samples in
which only TS symbols appear� In an augmented TS approach�
YTS shall collect all Rx samples in which at least one TS symbol
appears� In that case we can write YTS � V � T �h�A �
TKAK � TUAU in which AK�U collect the known�unknown
symbols and TK�U the corresponding columns of T � The TS
part of the semiblind criteria becomes

�YTS �AK h�
H�I �

��a
��v
TUT

H
U ����YTS �AK h� � ���

Due to the parameter�dependent weighting� the semiblind cri�
teria now require at least one iteration� In the Gaussian ap�
proach� the weighting can be determined blindly �and hence
consistently�� Identi
ability conditions for the augmented ap�
proaches�



pX
i�j��

� bNi �Nj � ��� �m�TS � bN� � ��

pX
i��

� bNi �Nj � ��� � TS�Nj� bN� � 	j

����

for DSBA� weheras for GSBA

p� � m�TS � bN� � �� � p � TS�Nj� bN� � 	j � ����

The augmented approach also allows us to handle the user�
wise grouped TS approach �YTS contains TS symbols from only
one user at a time� and the distributed TS approach �YTS con�
tains only one TS symbol from any user at a time�� The identi�

ability conditions in these cases reduce to having at least one
TS symbol for every user�

VI� Blind Identification for Colored Inputs

In this section we aim to improve the Second�Order Statis�
tics �SOS� based blind channel identi
cation by exploiting cor�
relation in the inputs� In the context of digital communi�
cations� the inputs are symbol sequences which are typically
uncorrelated� Correlation can be introduced by linear convo�
lutive precoding� which corresponds to MIMO pre
ltering of
the actual vector sequence bk of symbols to be transmitted
with a MIMO pre
lter T�z� such that the transmitted vec�
tor signal becomes ak � T�q�bk� In this paper we consider
full rate linear precoding so that T�z� is a p � p square ma�
trix transfer function �in ���� an example of low rate precod�
ing appears since the same symbol sequence gets distributed
over all TX antennas�� We get for the transmitted signal spec�
trum Saa�z� � T�z�Sbb�z�T

y�z� � ��b T�z�T
y�z� and for

the received signal spectrum Syy�z� � H�z�Saa�z�H
y�z� �

Svv�z� � ��b H�z�T�z�Ty�z�Hy�z� � ��vIm� The choice of ap�
propriate pre
ltering� as we shall see below� may reduce the non�
identi
ability to a phase factor per source or even to a global
phase factor� In the context of wireless communications� two
scenarios may be distinguished�
Noncooperative scenario� this scenario corresponds to the
multi�user case �on the transmitter side� without cooperation
between users� We shall consider the simple case in which the
users transmit through only one antenna� This noncooperative
scenario can also arise in other source separation applications
since natural sources tend to have di�erent spectra� In this sce�
nario� H�z� has no structure� other than possibly being FIR�
and T�z� and Saa�z� are diagonal� This scenario has been con�
sidered in ��������
Cooperative scenario� this is the single�user spatial multiplex�
ing case� In this case� since transmit antennas are near each
other and also receive antennas are near each other� all �FIR�
entries in H�z� have the same delay spread and hence are poly�
nomial of the same order� Saa�z� is allowed to be nondiagonal�

In the noncooperative case the channel will tend to be irre�
ducible� a characteristic we have assumed so far� due to the fact
that the users tend to be spread out in space� In the spatial
multiplexing case however� in which the TX antennas are es�
sentially colocated� the irreducibility of the channel depends on
the richness of the scattering environment� In general� we need
to consider a reducible channel� Such a channel can be factored
as H�z� � G�z�C�z� where G�z� is irreducible and column re�
duced with columns in order of e�g� non�increasing degree� If r
is the �generic� rank of H�z�� then G�z� is m� r whereas C�z�
is r � p� In the noncooperative scenario C�z� has no particular

structure� In the cooperative scenario however� all entries in a
particular row of C�z� have the same degree and the degrees of
the rows are non�decreasing �the degree pro
le of the rows in
C�z� is complementary to the degree pro
le of the columns in
G�z���

If r � m��� then ��v is blindly identi
able from Syy�z� and
G�z� is blindly identi
able from the signal�noise subspaces of
Syy�z� up to a postmultiplication factor L�z� that is block lower
triangular with block sizes according to the multiplicities of the
degrees of the columns of G�z� and L�z� is also polynomial
with the degree of block �i� j� being the di�erence between the
degrees of block i and block j of the columns of G�z� ���� So
in particular� the diagonal blocks of L�z� are constant� Also�
L���z� has the same polynomial structure as L�z�� In the co�
operative case� L���z�C�z� has the same polynomial structure
as C�z�� If r � m��� there are essentially no restrictions on the
number of inputs p for identi
ability� If r � m� identi
ability of
��v becomes an issue and there�s no longer a point in considering
a factorization of H�z� for its identi
cation�

Finally� let us note that TX pulse shape 
lters can be incor�
porated in T�z� or Saa�z� and that oversampling at the RX
also leads to an increase in the number of RX channels� Also�
the formulation of complex quantities as a superposition of real
quantities may lead to an extra MIMO dimension� In the next
two sections we investigate channel identi
ability with diagonal
or full pre
ltering T�z��

VII� Noncooperative�Diagonal Prefiltering

In general� we would like to handle the reducible channel case�
The rank r can be identi
ed from Syy�z�� If r � m � �� then
we can denoise the SOS and identify the factor G�z� from the
subspaces� G�z� is unique up to a factor L�z�� For whichever
G�z� in this equivalence class� it remains to identify C�z� in
H�z� �G�z�C�z� from

S�z� � G

�z� �Syy�z�� ��vIm�G


 y�z� � C�z�Saa�z�C
y�z�
����

where G
�z� is a MMSE ZF equalizer for G�z�� G
�z�G�z� �
Ir � For r � m� the problem is similar to the one in ����
with C�z� replaced by H�z� �apart from the ��v identi
cation
issue which will be discussed below�� The value of the rank
r � f�� �� � � � �min�m�p�g is unpredictible in general� For a cer�
tain rank r� subsets of r�� columns of C�z� could be identi
ed
jointly from S�z� using certain Saa�z� and under certain con�
ditions on C�z� �or subsets of r columns under more stringent
conditions on C�z��� So to be general� Saa�z� should be such
that it allows identi
ability for the worst case of r� which is
r � �� In that case� each column of C�z� needs to be iden�
ti
ed separately� On the other hand� since in the case r � �
each column of C�z� is a scalar FIR transfer function� only its
minimum�phase equivalent is identi
able� So a column would
be truly identi
able only if it is minimum�phase� To avoid hav�
ing zeros would require to impose r � �� In any case� to be
fully general� it is desirable to have Saa�z� such that it allows
identi
ability of each column of C�z� separately� So the MIMO
problem gets converted into a set of disconnected SIMO �r � ��
or SISO �r � �� problems� This will allow identi
ability of each
column up to a constant phase factor of the form ej� if the col�
umn has no maximum�phase zeros �which is quite possible if
r � � but highly unlikely for r � ��� Another issue is the degree
of Cj�z�� column j of C�z�� We have Hj�z� �G�z�Cj�z�� The
degree of Cj�z� is unpredictible and can be up to Nj � �� the



degree of the corresponding column Hj�z� of H�z�� For identi�

ability� we need to consider the worst case and hence we shall
assume that the degree of Cj�z� is Nj � �� Of course� the Nj

themselves may be unpredictible and in practice need to be re�
placed by an upper bound� We now consider two approaches
for identi
cation� leading to two classes of solutions for Saa�z��

Frequency domain approach� The idea here is to introduce
zeros into the diagonal elements of T�z� or hence Saa�z� such
that all other elements other than diagonal element j share Nj

zeros

Tjj�z� �

pY
i�����j

NiY
k��

��� zi�kz
��� ����

This allows identi
ability of Cj�z� from S�z� up to a phase since

S�zj�k� � Cj�zj�k�Sajaj �zj�k�C
y
j�zj�k� � k � �� � � � �Nj ��
�

where Sajaj �z� � ��bTjj�z�T
y
jj�z�� If all Nj are equal �to

N��� then we can choose equispaced zeros on the unit cir�

cle�
QNi

k���� � zi�kz
��� � � � ej�iz�N� � If we furthermore

choose overall equispacing by taking �i � �i � ���	
pN�� then

Tii�z� �
��z�pN�

��ej�i z�N�
� In ��� very similar work appears in which

the degree of Saa�z� �in the case of equal Nj� is at least pN�

�compared to �p � ��N� here�� but the discussion in ��� is lim�
ited to the case m � p � �� Note that here we can easily allow
p � m even �more inputs than outputs��� Remark also that
by introducing a number of zeros in T�z�� we can furthermore
identify an equal number of noise parameters �such as ��v for in�
stance when r � m�� Non�FIR Saa�z� can be considered also�
For instance we can consider the case in which the Sajaj �e

j��f �
have at least Nj disjoint expansion coe�cients in some orthog�
onal basis� An extreme example of this would be Sajaj �e

j��f �
that are bandlimited with the p bands being non�overlapping�

Time domain approach� The idea here is to introduce delay
in the pre
lter so that the correlations of each Cj�z� appear sep�
arately in certain portions of the correlation sequence of S�z��
This can be obtained for instance with

Tjj�z� � � � �jz
�dj � dj �

j��X
i��

Ni � ����

Identi
cation can be done with a correlation sequence peeling
approach that starts with the last column Cp�z� of which the
���sided� correlation sequence appears in an isolated fashion in
the last Np correlations of S�z�� Identi
cation of Cp�z� from its
correlation sequence can be done up to a phase factor ej�p �and
up to the phase of zeros if Cp�z� has zeros�� We can then sub�
tract Sajaj �z�Cp�z�C

y
p�z� �which does not require Cp�z� but

only its correlation sequence� from S�z� which will then reveal
the correlation sequence of Cp���z� in its last Np�� correla�
tions� etc� The degree of Saa�z� is in this case the degree dp of
Sapap�z� which� in the case of all equal Nj� is again �p� ��N��
which leads to a degree of pN�� � for S�z� or hence pN� corre�
lations� Such a degree for Saa�z� is not only su�cient but also
necessary since when r � �� there are pN� parameters to be
identi
ed for which indeed at least pN� correlations are needed�
Note that in the temporal approach� increasing all the delays
dj with an amount D allows furthermore the �straightforward�
identi
cation of MA�D � �� noise �e�g� D � � for white noise
with arbitrary spatial correlation��

In practice� with estimated correlations� the correlation
peeling approach leads to increasing estimation errors as the
columns of C�z� get processed� This error increase can be

avoided by doubling the delay separation between sources�
which may furthermore lead to simpler algorithms �e�g� SIMO
subspace 
tting with asymmetric covariance matrices�� Time
domain approaches also appear in ����

VIII� Cooperative�Spatial�Multiplexing
Prefiltering

Non�cooperative approaches can of course also be applied in
the cooperative scenario� so diagonal pre
ltering can be used
for spatial multiplexing� However� this leads to at least a un�
known phase per TX antenna and hence requires either di�eren�
tial encoding or training symbols per TX antenna� By applying
full pre
ltering� such that Saa�z� is not blockdiagonal in which
case it is said to be fully diverse� the channel may possibly be
identi
ed up to a global phase factor only� Since better iden�
ti
ability results in this case� better estimation may possibly
be another consequence� We consider here linear precoding by
time�invariant MIMO pre
ltering� In ���� a block precoding ap�
proach is considered�

We can work with the eigen or LDU decompositions of eigen
and LDU approaches of Saa�z�� To begin with� consider the
eigendecomposition Saa�z� � V�z�D�z�Vy�z� where V�z� is
paraunitary �i�e� Vy�z�V�z� � I� and contains the eigenvectors
as columns� and D�z� is diagonal with the diagonal elements�
the eigenvalues� being valid scalar spectra�

A paraunitary matrix V�Z� is said to be full diverse� if
PV�z�Vy���P T cannot be made block diagonal for any per�
mutation P �

Theorem � � An irreducible FIR MIMO channel is blindly

identi�able up to a phase factor per user if Saa�z� has distinct
eigen value functions� and up to one global phase factor if its

eigenvector matrix is fully diverse�

It may perhaps be more practical to work with the LDU
�Lower triangular�Diagonal�Upper triangular� decomposition
Saa�z� � L�z�D�z�Ly�z� where L�z� is lower triangular with
unit diagonal and the non�zero o��diagonal elements being un�
constrained transfer functions� and D�z� is diagonal with the
diagonal elements being valid scalar spectra� The relation be�
tween the LDU decomposition and the pre
lter T�z� is immedi�
ate if T�z� is of the form T�z� � L�z���z� where ��z� is diago�
nal� An example of such a T�z� that allows irreducible channel
identi
cation up to one global phase factor is ��z� � Ip and

T�z� � L�z� � Ip� eDz�� where eD has only non�zero elements
on the 
rst subdiagonal and those elements are all di�erent con�
stants�

Stationary precoding can be generalized to cyclostationary
precoding via periodically timevariant pre
ltering� By stacking
q consecutive symbol period quantities yk� vk� ak� bk� we obtain
Yk� Vk� Ak� Bk� We can then introduce a pq � pq LTI MIMO
pre
lter T�z� such that

Yk �Vk � �Iq �H�q��Ak � �Iq �H�q��T�q�Bk � ��	�

Cyclostationary pre
ltering introduces more information� hence
should allow improved estimation �and possibly avoid stationary
noise��

IX� Gaussian ML SemiBlind Channel
Identification

For Gaussian ML� which will allow to exploit the SOS� we
model the unknown symbols as uncorrelated Gaussian variables
whereas the known symbols bk lead to a non�zero mean� By



neglecting the non�stationarity due to the known symbols� the
Gaussian likelihood function can be written in the frequency
domain�H

�M ln det�Syy�z���
�y�z��H�z�T�z�bK�z��

yS��yy�z��y�z��H�z�T�z�bK�z���

����
where

H
is short for �

��j

H
dz
z

and y�z�� bK�z� denote the z
transforms of the signal ofM samples yk and the known symbols
bk� The gradient of this criterion is the same as the gradient of
the following sum of two subcriteria� The 
rst subcriterion isI

�y�z��H�z�T�z�bK�z��
yS��yy�z��y�z��H�z�T�z�bK�z��

����
which is a weighted LS criterion �quadratic in H�z�� with the
training information� The second subcriterion is

tr

I
fS��yy�z�eSyy�z�S��yy�z�eSyy�z�g ����

where eSyy�z� � Syy�z�� bSyy�z�� bSyy�z� � �
M y�z�y�z�

y �pe�
riodogram�� and the gradient is taken by considering S��yy�z�
as constant� This second criterion is one of weighted spec�
trum matching and expresses the blind information� By tak�
ing the gradient of the sum of the two subcriteria� we combine
training and blind information in an optimal fashion �compare
to the CRB expression for GML�� Asymptotically we can re�

place S��yy�z� by a consistent estimate bS��yy�z� such as the pe�
riodogram� Also� we can replace the periodogram by an AR
model which matches the covariance sequence estimate appear�
ing implicitely in the periodogram �or asymptotically by a con�

sistent AR model� such that P�z�bSyy�z�Py�z� � I so thatbS��yy�z� � Py�z�P�z�� where P�z� is the MIMO prediction error

lter in which a square�root of the prediction error covariance
matrix inverse has been absorbed� The blind subcriterion then
becomes I 

P�z�Syy�z�Py�z�� Im



�
F

����

which is of fourth order in H�z�� One solution consists of in�
terpreting H��z� and H��z� in Syy�z� � H��z�Saa�z�H��z� �
��v Im as di�erent quantities and performing alternating opti�
mizations between them �and ��v��

X� Blind GML Channel Identification for a Flat
Channel

Here we shall focus on the blind identi
cation part for a
frequency �at channel H � GC with r � m� We can take
G � VS � an orthonormal matrix spanning the signal subspace�
We shall estimate 
rst VS and then C�

Identi�cation of the signal subspace VS �
We can alternatively estimate the noise subspace VN � Ideally�

RL �IL�VN � � � whereRL is the denoised covariance matrix of
L symbol periods of yk � We shall estimate VN using a weighted
LS criterion

min
VN 	VH

N
VN�Im�r

trfvect�bRL �IL�VN ��g
H
Wfvect�bRL �IL�VN ��g

����

where bRL is the sample covariance matrix� bRL � RL �eRL� The optimal weighting is W � E fvect�bRL �IL �

VN ��gfvect�bRL �IL � VN ��g
H � With bRL based on M samples�

we get E fvect�eRL�gfvect�eRL�g
H � �

MR
T
L �RL� This allows

us to work out the WLS criterion ���� to become

min
VN 	VH

N
VN�Im�r

tr fV H
N �

LX
i��

�ryy�i� � ryy�i�
H��VN g ����

where ryy�i� is the estimated correlation matrix of yk at lag i�
The solution is clearly given by the noise subspace of the matrix
in the middle� so that VS becomes its signal subspace�

Identi�cation of C�
By equalizing VS � we get r�i� � V H

S ryy�i� VS �
Craa�i�C

H � We introduce a normalization so that

r
�������Cr

���
aa ��� raa�i� r

H��
aa ���CH

r
�H����� � r�i� ����

for i � �� �� � � � � L� and where r�i� � r�������r�i�r�H����� and

raa�i� � r
����
aa ���raa�i�r

�H��
aa ���� �From i � �� we observe that

r�������Cr���aa ��� � Q for some matrix Q with orthonormal

rows� or hence C � r������Q r
����
aa ���� To 
nd estimate Q� we

shall assume r � p so that Q is square and unitary� and we shall
solve ����� which becomes Q raa�i�Q

H � r�i�� for i � i� � � � � L
in a least�squares sense�

min
Q	 trfQHQg�r

LX
i��

kQ raa�i�� r�i�Qk�F ��
�

The solution of this problem involves an eigendecomposition
and is unique in general up to a phase factor�
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