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Abstract — For the case of white uncorrelated in-
puts, most of the blind multichannel identification tech-
niques are not very robust and only allow to estimate
the channel up to a number of ambiguities, especially
in the MIMO case. On the other hand, all current stan-
dardized communication systems employ some form of
known inputs to allow channel estimation. The channel
estimation performance in those cases can be optimized
by a semiblind approach which exploits both training
and blind information. When the inputs are colored
and have sufficiently different spectra, the MIMO chan-
nel may become blindly identifiable up to one constant
phase factor per input, and this under looser conditions
on the channel. For the case of spatial multiplexing,
possible cooperation between the channel inputs allows
for more complex MIMO source prefiltering that may
allow blind MIMO channel identification up to just one
global constant phase factor. We introduce semiblind
criteria that are motivated by the Gaussian ML ap-
proach. They combine a training based weighted least-
squares criterion with a blind criterion based on linear
prediction. A variety of blind criteria are considered
for the various cases of source coloring.

I. INTRODUCTION

The multichannel aspect has led to the development of a
wealth of blind channel estimation techniques over the last
decade. In this paper, blind identification shall mean channel
identification on the basis of the second-order statistics of the
received signal. We shall at first treat the case of white uncor-
related source signals. Consider linear digital modulation over
a linear channel with additive Gaussian noise. Assume that we
have p transmitters and m > p receiving channels (e.g. antennas

in BLAST or SDMA). The received signals can be written in

the baseband as
Z 2 el

where the a;(k) are the transmltted symbols from source 3, T
is the common symbol period, hi;(¢) is the (overall) channel
impulse response from transmitter j to receiver antenna t. We
assume the channels to be FIR. In particular, after sampling
we assume the (vector) impulse response from source j to be of
length N;. W.l.o.g., we assume the first non-zero vector impulse
response sample to occur at discrete time zero, and we can as-
sume the sources to be ordered so that Ny > No > --- > N,.
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Let N = Zle N;. The discrete-time Rx signal can be repre-
sented in vector form as
=3 Z h; (i)a; (k—i) + v(k) = Z h(i)a(k—i) + v(k)
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where superscripts T,

# denote transpose and Hermitian
transpose respectively. The multichannel aspect leads to a
signal subspace when m > p since y(k) = H(q)a(k) + v(k)
with H(q) = Zf&o—lh(i) g~ and ¢~' the unit delay opera-
tor (¢~ 'a(k) = a(k—1)) and hence we get for the power spec-
tral density matrix Syy(z) = H(z) Saa(z)HT(z) + Svv(z) =

o2 H(z) HT(Z) + 62 I,

II. MIMO LINEAR PREDICTION

In the MIMO case, we propose here as in [5] to use linear
prediction quantities for the blind information. Linear predic-
tion is applicable equally well to both the SIMO and MIMO
Two flavors can be obtained, depending whether the
transmitted symbols are modeled as deterministic unknowns or
as uncorrelated random sequences (in the deterministic case, for
the purpose of linear prediction, some considerations are more
straightforward if the symbols are considered as stationary se-
quences with unknown correlation).

Consider the problem of predicting y(k) from Yr(k — 1) =
[yT(k=1)---yT(k=L)]7, for noiseless received signal. The pre-
diction error can be written as

=y(k)— §(k)|YL(k_1) =PLY11(k) (2)

with P;, = [Pro Pr1---Pri], Pro = Im. Minimizing
the prediction error variance leads to the following optimisation
problem

cases.

S;(k)|YL(k—1)

min P;RyyP} = a?L (3)
L

hence

PrRyy = {Gf;L 0~~~0} . (4)

Let L = {m p—l The rank profile of cr .1, behaves as a function
of L generically (for an irreducible and column reduced MIMO
channel) like
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where m = L(m —p) — N+p € {0,1,..., — p} represents

the degree of singularity of Ryy . For L > L, vk )|YL(k—1) =
h(0)a(k). L

order of decreasing eigenvalue, then Vi., = [Vi---V}] has the
same column space as h(0) and P(z) = pjilsz(z) satisfies
P(z)H(z) = 0 (P(2) represents a parameterization of the noise
subspace). Note that P(z) changes if the symbols are corre-
lated (hence P(z) contains information about the symbol cor-

For such L, let V; be the eigenvectors of o2 in

relation) whereas P(z) is insensitive to such correlation. To
obtain the noisefree prediction quantltles we need to denoise

an estimated covariance matrlx via RYY = Ryy —o2] (partlal

denoising) or RYY = I_Ryy o2 I+ (full denoising). In the case
of partial denoising, we used a generalized version (to covariance
windowing) of the MIMO Levinson algorithm, which applies in
the nonsingular indefinite case. Singular components appear
then as negative semidefinite. In the case of full denoising, we
determined the prediction quantities directly from the normal
equations, with a generalized inverse R* = U2 D#U ™! where
R = UDU¥ is the UDL triangular factorization of R and D#
is the Moore-Penrose inverse of the singular diagonal matrix D.
As in [1], the columns in U corresponding to zeros in D) are
taken to be all zero, except for a unit diagonal element. In both
approaches, the overestimation of L leads to consistent in SNR
P(z), whereas for P(z) we only have consistency in amount Mp
of (blind) data samples y(k) (the noiseless uncorrelated symbols
case with finite amount of data is similar to a colored symbols
case). Note that the partial and full denoising approaches cor-
respond to resp. the first and second subspace estimates in [6].
Let h; = [h7(0)---hf(N;—1)]T Hf v, where * denotes trans-
position of the block entries, and h = HtT. Then a stretch of
Rx signal Y can be written as

YMZT(h)A—i—VM:.Ah—i—VM

where T(h) = [Tas(Hi,n,) -+ - Tae(Hp v, )] and Tas(H) denotes
a block Toeplitz convolution matrix with M block rows and
[HO

taining the multi-source symbols. Let T'S denote the number of

0] as first block row. A is a structured matrix con-

training sequence (T'S) symbols per source (considered equal for
all sources for most of what follows). The TSs for the differents
users are considered to be simultaneous initially.

ITI. DETERMINISTIC SEMI-BLIND (DSB) APPROACH

__ In the semiblind approaches, we shall seek a channel estimate
h with possibly overestimated channel lengths N; > N; and we
shall assume that N; remains the largest N;. In theAdetermin—
istic symbols setting, we shall work with P. P( JH;(z) = 0
P)h: = 0. Let

can be written in the time domain as TA(

= DT (P whae

can now formulate a semiblind criterion as

2
min { HYTS —Arsh
h

where @Ai = blockdiag {4, ..., A,}. We

} (6)

where «a is a weighting factor, and Yrs is the portion of Rx signal

+ «

‘Eﬁ

containing only training symbols. A more optimal approach
introduces weighting involving the covariance matrix C' of Bh

due to the estimation errors in P and leads to

min { [¥re — dreii| + 2R7F 0¥ Eﬁ} ")
h

where a possible pseudo-inverse can be avoided by using an

infinitisemal amount of regularization. Inspired by an approxi-

mate expression for C given in [2], we have taken o2 c* = Mg

so that (7) reduces to (6) with a = Mp.

With overestimated channel lengths, deterministic blind

identification leads to an estimate ﬁ(z) = H(z)S(z) where pxp
S(z) is also causal and polynomial and the length of S;;(z) can
be shown to be (N; — N; + 1) where (2)* = max{z,0} (this

is a generalization of a result in [3] for the case N; = Nj).

IV. GaussiaN SEMI-BLIND (GSB) APPROACH

In the Gaussian case, the blind estimation ambiguity gets re-
duced to an instantaneous unitary mixture of the sources (which
gets even limited to mixtures of subsets of sources with iden-
tical channel length N;). Since h(0) can only be determined
up to an instantaneous mixture, we reduce the exploitation of
P(z)H(z) = h(0) or P(¢) h(k) = h(0)éxo to Foh(O) =0 and
P(q)h(k) = 0, k > 0. We shall call this the reduced Gaus-
sian case, in which all decorrelation is exploited except between
symbols at the same time instant. This can be expressed by

P
Bh =0 where B = @ Tfjof(,)t)

N;

with the first block row removed. The problem of recovering h
from TJ% (P")h; = 0 in the SIMO case, with an optimal weight-

where T_I(Pt) is TI (P9

ing between the nuller P(z) and the equalizer portions of P(z)
has been addressed in [2] and involves the covariance matrix of
TT (P") h; (a simple approximation is given also). This allows

us to introduce a semi-blind criterion of the form

mﬁn{||YTs—ATsh||2 + oo h" B C* Bh} | (8)

r
We took €' = Mp (I

i=1
by [2].

For both semiblind methods, if the amount of blind data be-
comes very large, then the particular structure of the weighting
matrix for the blind part becomes unimportant and the soft-
constrained criterion approaches the hard constrained criterion,
in which the TS criterion ||YT5 —Ars h|| gets minimized sub-

ject to the blind constraints B h=0or Bh=0.

& ((Im+ 01,_20?}7) ® In,—1)), inspired

V. AUGMENTED TRAINING-SEQUENCE PART

So far (classical T'S approach) Yrs denoted the Rx samples in
which only TS symbols appear. In an augmented TS approach,
Yrs shall collect all Rx samples in which at least one T'S symbol
appears. In that case we can write Yrs — V = T(h)A =
TiwAx + TovAy in which A /v collect the known/unknown
symbols and Tx,y the corresponding columns of 7. The TS
part of the semiblind criteria becomes

2

(Yrs = Ax ) (1 + 2T T) ™ (Yrs — Axch). - (9)

Due to the parameter-dependent weighting, the semiblind cri-

teria now require at least one iteration. In the Gaussian ap-

proach, the weighting can be determined blindly (and hence

consistently). Identifiability conditions for the augmented ap-
proaches:
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for DSBA, weheras for GSBA

P> <m(TS+Ny—1), p< TS—N;+N,,vj. (11)

The augmented approach also allows us to handle the user-
wise grouped TS approach (Yrs contains TS symbols from only
one user at a time) and the distributed TS approach (YTS con-
tains only one TS symbol from any user at a time). The identi-
fiability conditions in these cases reduce to having at least one
TS symbol for every user.

VI. BLIND IDENTIFICATION FOR COLORED INPUTS

In this section we aim to improve the Second-Order Statis-
tics (SOS) based blind channel identification by exploiting cor-
relation in the inputs. In the context of digital communi-
cations, the inputs are symbol sequences which are typically
uncorrelated. Correlation can be introduced by linear convo-
lutive precoding, which corresponds to MIMO prefiltering of
the actual vector sequence by of symbols to be transmitted
with a MIMO prefilter T(z) such that the transmitted vec-
tor signal becomes ap = T(g)bx. In this paper we consider
full rate linear precoding so that T(z) is a p X p square ma-
trix transfer function (in [10] an example of low rate precod-
ing appears since the same symbol sequence gets distributed
over all TX antennas). We get for the transmitted signal spec-
trum Saa(z) = T(z) Sbb(z) TT(Z) = o} T(z) TT(Z) and for
the received signal spectrum Syy(z) = H(z) Saa(z) HT(Z) +
Svv(z) = o; H(z) T(z) TT(Z) HT(Z) + 021m. The choice of ap-
propriate prefiltering, as we shall see below, may reduce the non-
identifiability to a phase factor per source or even to a global
phase factor. In the context of wireless communications, two
scenarios may be distinguished:

Noncooperative scenario: this scenario corresponds to the
multi-user case (on the transmitter side) without cooperation
between users. We shall consider the simple case in which the
users transmit through only one antenna. This noncooperative
scenario can also arise in other source separation applications
since natural sources tend to have different spectra. In this sce-
nario, H(z) has no structure, other than possibly being FIR,
and T(z) and Saa(z) are diagonal. This scenario has been con-
sidered in [7],[8].

Cooperative scenario: this is the single-user spatial multiplex-
ing case.
other and also receive antennas are near each other, all (FIR)
entries in H(z) have the same delay spread and hence are poly-
nomial of the same order. Saa(z) is allowed to be nondiagonal.

In the noncooperative case the channel will tend to be irre-
ducible, a characteristic we have assumed so far, due to the fact
that the users tend to be spread out in space. In the spatial
multiplexing case however, in which the TX antennas are es-
sentially colocated, the irreducibility of the channel depends on
the richness of the scattering environment. In general, we need
to consider a reducible channel. Such a channel can be factored
as H(z) = G(z)C(z) where G(z) is irreducible and column re-
duced with columns in order of e.g. non-increasing degree. If r
is the (generic) rank of H(z), then G(z) is m X r whereas C(z)
is r x p. In the noncooperative scenario C(z) has no particular

In this case, since transmit antennas are near each

structure. In the cooperative scenario however, all entries in a
particular row of C(z) have the same degree and the degrees of
the rows are non-decreasing (the degree profile of the rows in
C(z) is complementary to the degree profile of the columns in
G(2)).

If r < m—1, then o7 is blindly identifiable from Syy(z) and
G(z) is blindly identifiable from the signal/noise subspaces of
Syy (#) up to a postmultiplication factor L(z) that is block lower
triangular with block sizes according to the multiplicities of the
degrees of the columns of G(z) and L(z) is also polynomial
with the degree of block (¢, 7) being the difference between the
degrees of block ¢ and block j of the columns of G(z) [3]. So
in particular, the diagonal blocks of L(z) are constant. Also,
L7'(#) has the same polynomial structure as L(z). In the co-
operative case, L™!(2)C(z) has the same polynomial structure
as C(z). If r < m—1, there are essentially no restrictions on the
number of inputs p for identifiability. If r = m, identifiability of
02 becomes an issue and there’s no longer a point in considering
a factorization of H(z) for its identification.

Finally, let us note that TX pulse shape filters can be incor-
porated in T(z) or Saa(z) and that oversampling at the RX
also leads to an increase in the number of RX channels. Also,
the formulation of complex quantities as a superposition of real
quantities may lead to an extra MIMO dimension. In the next
two sections we investigate channel identifiability with diagonal
or full prefiltering T(z).

VII. NONCOOPERATIVE/DIAGONAL PREFILTERING

In general, we would like to handle the reducible channel case.
The rank r can be identified from Syy(z). If r < m — 1, then
we can denoise the SOS and identify the factor G(z) from the
subspaces. G(z) is unique up to a factor L(z). For whichever
G(z) in this equivalence class, it remains to identify C(z) in

H(z) = G(z)C(z) from

S() = G*(2) (Syy (=) — 021) G*1(2) = C(2) Saa(2) €' (2)

(12)
where G¥#(2) is a MMSE ZF equalizer for G(z): G¥(2) G(z) =
I.. For r = m, the problem is similar to the one in (12)
with C(z) replaced by H(z) (apart from the o2 identification
issue which will be discussed below). The value of the rank
r €{1,2,...,min(m, p)} is unpredictible in general. For a cer-
tain rank r, subsets of r — 1 columns of C(z) could be identified
jointly from S(z) using certain Saa(z) and under certain con-
ditions on C(z) (or subsets of r columns under more stringent
conditions on C(z)). So to be general, Saa(z) should be such
that it allows identifiability for the worst case of r, which is
r = 1. In that case, each column of C(z) needs to be iden-
tified separately. On the other hand, since in the case r = 1
each column of C(z) is a scalar FIR transfer function, only its
minimum-phase equivalent is identifiable. So a column would
be truly identifiable only if it is minimum-phase. To avoid hav-
ing zeros would require to impose r > 2. In any case, to be
fully general, it is desirable to have Saa(z) such that it allows
identifiability of each column of C(z) separately. So the MIMO
problem gets converted into a set of disconnected SIMO (r > 1)
or SISO (r = 1) problems. This will allow identifiability of each
column up to a constant phase factor of the form e’ if the col-
umn has no maximum-phase zeros (which is quite possible if
r > 2 but highly unlikely for r = 1). Another issue is the degree
of C;(z), column j of C(z). We have H;(z) = G(2)C;(z). The
degree of C;(z) is unpredictible and can be up to N; — 1, the



degree of the corresponding column H;(z) of H(z). For identi-
fiability, we need to consider the worst case and hence we shall
assume that the degree of C;(z) is N; — 1. Of course, the N;
themselves may be unpredictible and in practice need to be re-
placed by an upper bound. We now consider two approaches
for identification, leading to two classes of solutions for Saa(z).

Frequency domain approach: The idea here is to introduce
zeros into the diagonal elements of T(z) or hence Saa(z) such
that all other elements other than diagonal element j share N,

Z€eros
P
Tj(2) = H
i=1,#5

This allows identifiability of C;(z) from S(z) up to a phase since

(1- z,;kz_l)

=

(13)

e
Il

1

S(ijk) =C; (ijk)sajaj (ijk)CT

Hzw), k=1,...,N;  (14)
where Saja;(2) = 031}; (Z)T]TJ (z). If all Nj are equal (to
N1), then we can choose equispaced zeros on the unit cir-
cle: Hi\;’l(l -
choose overall equispacing by taking 8; = (1 — 1)2x/pN1, then
1—z—PN1
Ti(2) = o=y
the degree of Saa(z) (in the case of equal Nj) is at least pN;
(compared to (p — 1)N; here), but the discussion in [8] is lim-
ited to the case m > p = 2. Note that here we can easily allow
p > m even (more inputs than outputs!). Remark also that
by introducing a number of zeros in T(z), we can furthermore
identify an equal number of noise parameters (such as o2 for in-
stance when r = m). Non-FIR Saa(z) can be considered also.
For instance we can consider the case in which the Saj a; (eﬂ”f)
have at least /V; disjoint expansion coefficients in some orthog-
onal basis. An extreme example of this would be Sajaj (eﬂ”f)
that are bandlimited with the p bands being non-overlapping.
Teme domain approach: The idea here is to introduce delay
in the prefilter so that the correlations of each C;(z) appear sep-
arately in certain portions of the correlation sequence of S(z).
This can be obtained for instance with

z,;kz_l) = 1—¢&% =M If we furthermore

. In [8] very similar work appears in which

g—1
Tj(s)=1—a,2"% | dy=> Ni . (15)
=1

Identification can be done with a correlation sequence peeling
approach that starts with the last column Cp(z) of which the
(1-sided) correlation sequence appears in an isolated fashion in
the last N, correlations of S(z). Identification of C,(z) from its
correlation sequence can be done up to a phase factor e’°r (and
up to the phase of zeros if C,(z) has zeros). We can then sub-
tract So;a; (2) CP(Z)CL(Z) (which does not require Cp(z) but
only its correlation sequence) from S(z) which will then reveal
the correlation sequence of Cp_l(z) in its last Np_; correla-
tions, etc. The degree of Saa(z) is in this case the degree dj of
Sapa,(z) which, in the case of all equal Ny, is again (p — 1) N1,
which leads to a degree of pN1 — 1 for S(z) or hence pN; corre-
lations. Such a degree for Saa(z) is not only sufficient but also
necessary since when r = 1, there are pN; parameters to be
identified for which indeed at least p/N; correlations are needed.
Note that in the temporal approach, increasing all the delays
d; with an amount D allows furthermore the (straightforward)
identification of MA(D — 1) noise (e.g. D = 1 for white noise
with arbitrary spatial correlation).

In practice,
peeling approach leads to increasing estimation errors as the
columns of C(z) get processed. This error increase can be

with estimated correlations, the correlation

avoided by doubling the delay separation between sources,
which may furthermore lead to simpler algorithms (e.g. SIMO
subspace fitting with asymmetric covariance matrices). Time
domain approaches also appear in [7].

VIII. COOPERATIVE/SPATIAL-MULTIPLEXING
PREFILTERING

Non-cooperative approaches can of course also be applied in
the cooperative scenario, so diagonal prefiltering can be used
for spatial multiplexing. However, this leads to at least a un-
known phase per TX antenna and hence requires either differen-
tial encoding or training symbols per TX antenna. By applying
full prefiltering, such that Saa(z) is not blockdiagonal in which
case it is saild to be fully diverse, the channel may possibly be
identified up to a global phase factor only. Since better iden-
tifiability results in this case, better estimation may possibly
be another consequence. We consider here linear precoding by
time-invariant MIMO prefiltering. In [9], a block precoding ap-
proach is considered.

We can work with the eigen or LDU decompositions of eigen
and LDU approaches of Saa(z). To begin with, consider the
eigendecomposition Saa(z) = V(z) D(z) VT(Z) where V(z) is
paraunitary (i.e. V1(z)V(z) = I) and contains the eigenvectors
as columns, and D(z) is diagonal with the diagonal elements,
the eigenvalues, being valid scalar spectra.

A paraunitary matrix V(Z) is said to be full diverse, if
PV (z)VI(1)PT cannot be made block diagonal for any per-
mutation P.

Theorem 1 : An irreducible FIR MIMO channel s blindly
identifiable up to a phase factor per user if Saa(z) has distinct
eigen value functions, and up to one global phase factor if its
eigenvector matrix is fully diverse.

It may perhaps be more practical to work with the LDU
(Lower triangular-Diagonal-Upper triangular) decomposition
Saa(z) = L(2) D(z) LT(Z) where L(z) is lower triangular with
unit diagonal and the non-zero off-diagonal elements being un-
constrained transfer functions, and D(z) is diagonal with the
diagonal elements being valid scalar spectra. The relation be-
tween the LDU decomposition and the prefilter T(z) is immedi-
ate if T(z) is of the form T(z) = L(2)A(z) where A(z) is diago-
nal. An example of such a T(z) that allows irreducible channel
identification up to one global phase factor is A(z) = I, and
T(z)=L(z) =1, + D 271 where D has only non-zero elements
on the first subdiagonal and those elements are all different con-
stants.

Stationary precoding can be generalized to cyclostationary
precoding via periodically timevariant prefiltering. By stacking
q consecutive symbol period quantities y,, vk, ax, bx, we obtain
Y4, Vi, Ak, Bx. We can then introduce a pg x pg LTI MIMO
prefilter T(z) such that

Yi— Vi =, ©H(q)) Ak = (I @ H(q)) T(q) Bx . (16)

Cyclostationary prefiltering introduces more information, hence
should allow improved estimation (and possibly avoid stationary
noise).

IX. GaussiaN ML SEMIBLIND CHANNEL
IDENTIFICATION

For Gaussian ML, which will allow to exploit the SOS, we
model the unknown symbols as uncorrelated Gaussian variables
whereas the known symbols by lead to a non-zero mean. By



neglecting the non-stationarity due to the known symbols, the
Gaussian likelihood function can be written in the frequency
domain:

jg[M Indet(Syy (2))+
(v(2) = H(2)T(2)bx(2)) Syy (2)(y(2) = H(z)T(2)bx(2))]
17
where jg is short for == ()

%jg % and y(z), br(z) denote the z
transforms of the signal of M samples y, and the known symbols
bi. The gradient of this criterion is the same as the gradient of
the following sum of two subcriteria. The first subcriterion is

?{(y(z) — H(2)T(2)bx (=)' Syy (2)(y(z) — H(z)T(2)bx (2))

(18)
which is a weighted LS criterion (quadratic in H(z)) with the
training information. The second subcriterion is

tr f (573 (:)3yy (2) 574 (=)8yy ()} (19)

where Syy(z) = Syy(z) — Syy(2), Syy(2) = 37¥(2)y(2)" (pe-
riodogram), and the gradient is taken by considering S;,;,(z)
as constant. This second criterion is one of weighted spec-
trum matching and expresses the blind information. By tak-
ing the gradient of the sum of the two subcriteria, we combine
training and blind information in an optimal fashion (compare
to the CRB expression for GML). Asymptotically we can re-
place S;,;,(z) by a consistent estimate g{,;, (2) such as the pe-
riodogram. Also, we can replace the periodogram by an AR
model which matches the covariance sequence estimate appear-
ing implicitely in the periodogram (or asymptotically by a con-
sistent AR model) such that P(z)gyy(z)PT(z) = [ so that
§§,§,(Z) = P'(2)P(z), where P(2) is the MIMO prediction error
filter in which a square-root of the prediction error covariance
matrix inverse has been absorbed. The blind subcriterion then
becomes

f [P(:)Syy ()P (=) — I

which is of fourth order in H(z). One solution consists of in-
terpreting Hi(z) and Hz(2) in Syy(z) = Hi(2)Saa(z)H2(2) +
02 I, as different quantities and performing alternating opti-
mizations between them (and o72).

(20)

X. BLIND GML CHANNEL IDENTIFICATION FOR A FLAT
CHANNEL

Here we shall focus on the blind identification part for a
frequency flat channel H = G C with r < m. We can take
G = Vs, an orthonormal matrix spanning the signal subspace.
We shall estimate first Vs and then C.

Identification of the signal subspace Vs:

We can alternatively estimate the noise subspace Vy. Ideally,
R (I1®Vyx) = 0 where R is the denoised covariance matrix of
L symbol periods of y,. We shall estimate Vjy using a weighted
LS criterion

min tr{vect(Ry (I.@Vn)) T W{vect(R. (I.@Vr))}

VN VEVy=In_ )
)

v~vhere f{L is the sample covariance matrix, f{L = R; +
R;. The optimal weighting is W = E{vect(R; ({1 ®
Vi) Hvect(Rr (I @ VN))}H. With R based on M samples,

we get E{Uect(f{L)}{vect(f{L)}H = ﬁRf ® Ry. This allows
us to work out the WLS criterion (21) to become

t~

VN:VH?/J{?=I _ tr{ng(z(ryy(i)+rYY(i)H))VN}

N i=0

(22)

where ryy(7) is the estimated correlation matrix of y, at lag 1.
The solution is clearly given by the noise subspace of the matrix
in the middle, so that Vs becomes its signal subspace.
Identification of C:
By equalizing Vs, we get r(i) = VIryy(i)Vs =
Craal(1) C*H. We introduce a normalization so that

r72(0) Cryla (0) Taa(i) rag (0) C¥ v #/2(0) = ¥(i)  (23)

for i =0,1,...,L, and where T(i) = I'_l/2(0)r(i)r_H/2(0) and
Taa(i) = r;;llp (O)raa(i)r;é{p (0). ;From i = 0, we observe that
I'_1/2(0) Cr;l/é (0) = @ for some matrix @ with orthonormal
rows, or hence C = r1/2(0) Qr;;lp (0). To find estimate @, we
shall assume r = p so that @ is square and unitary, and we shall
solve (23), which becomes QTaa(i) Q7 = (i), for i =4,..., L
in a least-squares sense:

L

min |QTaal(i) — (i) Qll7 (24)
Q:tr{QHQ}=r ;

The solution of this problem involves an eigendecomposition

and is unique in general up to a phase factor.
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