Cloud Native Lightweight Slice Orchestration (CLiSO) Framework

Sagar Arora, Adlen Ksentini and Christian Bonnet

Eurecom, Communication Systems, Biot, 06410, France

ARTICLE INFO

Keywords:

Network Slice Orchestration
Cloud-native

Microservices

Containers

ABSTRACT

Cloud-native network functions are becoming promising for 5G and beyond networks. They provide
the much needed agility and flexibility that was missing from virtual machines. Though, this paradigm
shift of using cloud-native application design principles, containerization, microservices, high re-
silience, and on-demand scaling has created challenges for legacy orchestration systems. They were
designed for handling virtual machine-based network functions. Indeed, network slice orchestration
requires interaction with multiple technological domain orchestrators, access, transport, core network,
and edge computing. The specifications and existing orchestrators are made on top of the legacy
virtual machine based network function orchestration. Hence, this limitation constrains their approach
to managing a cloud-native network function. To overcome their challenges, we propose a novel
Cloud-native Lightweight Slice Orchestration (CLiSO) framework extending our previously proposed
Lightweight edge Slice Orchestration (LeSO) framework. In addition, we present a technology-
agnostic and deployment-oriented network slice template. To allow zero-touch management of
network slices, our framework provides a concept of Domain Specific Handlers. The framework has
been thoroughly evaluated via orchestrating OpenAirInterface container network functions on public

and private cloud platforms.

1. Introduction

Network Function Virtualization (NFV) is the key en-
abler of Network slicing [1] in 5G and beyond networks.
It enables hosting multiple communication services on top
of the same physical infrastructure without compromising
their Quality of Service (QoS). Handling a network slice
that spreads across different technological domains, i.e.,
Radio Access Network (RAN) [2], [3], Transport Network,
Core Network (CN), and Edge computing is a difficult task.
Indeed, a network slice is divided into sub-slices, which
are managed by domain-specific service orchestrators. These
orchestrators translate domain-specific Service Level Ob-
jectives (SLOs) to resource-level objectives and forward
them to resource orchestrators. The resource orchestrators
manage the infrastructure for network functions. The job of
a network slice orchestrator is to manage interactions with
sub-slice/service orchestrators and deliver a network slice.
Figure 1 shows multi-domain network slice orchestration.

Sub-slice or service orchestrators are responsible for
handling the network function’s life cycle. The transition
from virtual machine based Virtual Network Functions
(VNF) to Container based Network Functions (CNF) has
created new challenges for service orchestrators. One such
challenge is following cloud-native application design prin-
ciples, containerization, microservice, and on-demand scal-
ing. Containerization is the process of packaging soft-
ware in containers. It simplifies the software packaging,
orchestration mechanism and reduces software deployment
time with lower computational cost as compared to Virtual
Machines (VM). All these benefits of using containers
amplify when fused with cloud-native principles. Hence, the

B sagar.arora@eurecom. fr (S. Arora); adlen.ksentini@eurecom.fr (A.
Ksentini); christian.bonnet@eurecom. fr (C. Bonnet)

ORCID(S): 0000-0003-0729-8260 (S. Arora); 0000-0001-6857-2679 (A.
Ksentini)

l Network Slice Template

Network Slice Orchestrator

RAN sub Slice Edge Sub Slice Core Sub-Slice
Template Template Template
RAN Sub-Slice Edge Sub-Slice Core Network Sub-Slice
Orchestrator Orchestrator Orchestrator

| [|
| . | A 5
III | Edge Computing | '[JE: LD_: AU;F
| | Sub Slice | -
o
|
| CNF _NF
RRUPNF
II
[Radio Access | [

Network Sub (- - [Core Network

| Slice |

Hardware Resource Pool (Computing, Networking, Storage, Radio)

Figure 1: Multi-Domain Network Slice Orchestration

transition from VNF to CNF requires re-designing VNFs and
service orchestrators. Whereas, the recent release of ETSI
Network Function Virtualization (NFV) Management and
Orchestration (MANO) [4] adds another layer of compo-
nents to orchestrate containers alongside VMs. Rather than
re-designing the service orchestration framework to fully
support containers. This approach complicates the VNF
descriptors and hides the simplicity of using containers.
However, ETSI Multi-access Edge Computing (MEC) [5]
specifications for orchestrating applications at the edge of
the network, still do not clearly mention container-based
MEC applications.

The well-known service orchestration frameworks pre-
sented in [6], ONAP and OSM followed the same path as
ETSI-NFV MANO and added the support for CNF orches-
tration to their legacy orchestration mechanism. Leading to a
complicated workflow and multiple redundant components

S.Arora et al.: Preprint submitted to Elsevier

Page 1 of 15

CLiSO Framework

in the service orchestration framework to support containers
and VMs both. In addition, these orchestrators can not
orchestrate MEC applications or provide MEC Platform
(MEP) services. MEP is essential for hosting applications
at the edge of the network. It allows re-directing user traffic
to the edge application. These frameworks do not provide
a clear mechanism for orchestrating isolated network slices
and ONAP demands high computational and networking
resources. Hence, this inability to orchestrate MEC appli-
cations, high resource consumption, complicated service
orchestration workflow, and missing isolation between net-
work slices inspired us to propose an end-to-end network
slice orchestration framework based on cloud-native design
principles.

Cloud-native Lightweight Slice Orchestration (CLiSO)
framework is designed to handle Radio Access Network
(RAN), Core Network, and MEC domains. The framework
can be deployed in resource constraint environments due to
its lean design and low resource consumption. The frame-
work allows hosting CNFs on public, private, or hybrid
clouds. Our proposed framework is an extension of our
previous work, the Lightweight edge Slice Orchestration
(LeSO) framework [7]. The previous framework only fo-
cused on the MEC domain, whereas the new framework adds
additional support for RAN and Core Network domains.

On the other hand, Zero-touch Service Management
(ZSM) [8] plays an important role in enabling self-managed
services. ZSM allows each service orchestrator to perform
a closed-loop automation and heal their services in case
of errors. Existing orchestrators or ETSI ZSM specification
provides a notion of ZSM via state-of-the-art machine learn-
ing and artificial intelligence algorithms. Whereas, such a
solution would completely rely on the intelligence of the
service orchestrator and could result in a single point of
failure.

To address this challenge our second contribution in this
paper is a proposal for Domain Specific Handlers (DSHs),
which is a management network function designed to man-
age the life cycle of one or many network functions via
communicating with the service orchestrator’s Application
Programming Interfaces (APIs). Service orchestrators de-
ploy DSH as a CNF and are responsible for managing DSH’s
health. However, DSH communicates with service orches-
trators using a dedicated interface to manage the health and
resource consumption of its network functions. This will
allow offloading sub-slice operational management from
service orchestrators to DSH. DSH may contain vendor-
specific logic to handle its network functions. This provides
the freedom to customize network function life cycle man-
agement rather than relying on the service orchestrator’s
generic mechanism to handle all the network functions.

Finally, management of network slices enabling mission-
critical services requires dynamic management of infrastruc-
ture resources. For example, a fleet of drones acting as edge
servers and hosting a mission-critical service. Our proposed

slicing framework provides an interface to dynamically man-
age infrastructure resources. It allows a container-based Vir-
tual Infrastructure Manager (VIM) to offer its resources to
the hardware resource pool managed by the resource orches-
trator. Facilitating on-demand life cycle handling of mission-
critical services. To summarize our paper’s contributions:

* We proposed an end-to-end Cloud-native Lightweight
Network Slice Orchestration (CLiSO) framework capable
of orchestrating CNFs and MEC applications on public,
private, and hybrid cloud and Physical Network Functions
(PNF). CLiSO allows dynamic management of infrastruc-
ture.

* We presented a concept of Domain Specific Handlers
(DSHs) to allow Zero-touch Service Management of sub-
slices.

* We proposed a Network Slice Template (NST) based
on a modified version of the ETSI Physical and Virtual
Network Function Descriptor (PNFD and VNFD) and
MEC Application Descriptor (AppD).

Table 1 summarizes the abbreviations we used in this
paper.

2. Background

In this section, we will explain the state of the art and
terminologies used in the rest of the paper. It forms the
foundation for the other sections.

2.1. 3GPP Approach Towards Managing Network
Slices

Network slicing depends on resource virtualization and
the orchestration mechanism depends on whether the net-
work functions are, realized as physical machines, virtual
machines, containers, or a combination of both. 3GPP SA5
group in Technical Specification 28.53X (X in 0,1,2,3) de-
fines the network slice management and automation mecha-
nism. The 3GPP approach has two key concepts Network
Slice Instance (NSI) and Network Slice Subnet Instance
(NSSI). A NSSI is analogous to a network sub-slice. The
3GPP defines the following management functions related
to NSI management, listed below in the order corresponding
to their hierarchy:

* Communication Service Management Function (CSMF):
Responsible for translating the communication service-
related requirement(s) to network slice-related require-
ment(s). It forwards the request to Network Slice Man-
agement Function (NSMF) to manage the life cycle of a
NSIL

* Network Slice Management Function (NSMF): Manages
the life cycle and monitors the KPIs of NSIs. It derives
network slice subnet-related requirements from the net-
work slice-related requirements. NSMF communicates
with several NSSMFs, one for each domain to manage the
life cycle of the Network Slice Subnet Instance (NSSI).

S.Arora et al.: Preprint submitted to Elsevier

Page 2 of 15

Table 1

Summary of Abbreviations

Notation‘ Definition

AMF Access and Mobility Management Function
AUSF Authentication Server Function
AppD Application Descriptor

CISM Container Infrastructure Service Management
CNF Cloud-native Network Function
CSSO Core Sub-Slice Orchestrator

CU-CP | Central Unit-Control Plane

CU-UP | Central Unit-User Plane

DU Distributed Unit

DSH Domain Specific Handlers

ESSO Edge Sub Slice Orchestrator

GST Generic Network Slice Template

KPI Key Performance Index

MEC Multi-access Edge Computing

MEP MEC Platform

MEO MEC Orchestrator

NFV Network Function Virtualization
NRF Network Registry Function

NSD Network Service Descriptor

NST Network Slice Template

NSO Network Slice Orchestrator

NSSO Network Sub Slice Orchestrator
PNFD Physical Network Function Descriptor
RNIS Radio Network Information Service
RSSO RAN Sub-Slice Orchestrator

RU Radio Unit

SLO Service Level Objectives

UbM Unified Data Management Function
UDR Unified Data Repository

UPF User Plane Function

VIM Virtual Infrastructure Manager

VNF Virtual Network Function

VNFD Virtual Network Function Descriptor
ZSM Zero-touch Service Management

* Network Slice Subnet Management Function (NSSMF):
Manages the life cycle and monitors the KPIs of NSSIs.
There can be a dedicated NSSMF for each functional
domain, access network, transport network, edge network,
and core network.

A NSI has four phases preparation, commissioning,
operation, and decommissioning. In the preparation phase,
NSI does not exist, the phase includes calculating instance
requirements, on-boarding needed entities, reserving re-
sources, and preparing the environment. NSI’s life cycle
stage includes the commissioning, operation, and decom-
missioning phase. In these phases, NSI goes through differ-
ent stages creation, activation, modification, de-activation,
and termination. A NSI is described using a Network Slice
Template (NST). GSMA defines a Generic network Slice
Template (GST)[9] to describe slice behavior, required
quality of service, network functions required by the slice,
etc. It does not focus on the deployment aspect of a NSI,
the hardware requirement of network functions, their con-
figuration, and links between them, etc. In [10] authors have

CLiSO Framework

proposed to use ETSI NFV Orchestrator and ETSI MEO as
NSSMF for core and edge domains respectively.

2.2. Containerization Support in ETSI
NFV-MANO

ETSI NFV network service can comprise one or more
physical or virtual network functions or a combination of
both. The life cycle of a network service is managed by
ETSI NFV Orchestrator (NFVO). ETSI group report NFV-
EVE 012 V3.1.1, explains the relationship between 3GPP
proposed NSI and a network service. A network service is a
resource-centric view of a network slice if a NSI contains
at least one virtual network function. The group report
highlights how 3GPP slice management functions can be
integrated with ETSI NFVO using os-Ma-nfvo interface.
Figure 2 shows that interface. The legacy NFVO architecture
was not capable to manage modern CNFs. ETSI GS NFV
006 v4.4.1 proposed new functional blocks shown in Figure
2 for managing the life cycle of CNFs. It should be noted
ETSI refers CNFs as container-based VNFs. In this paper,
we have used both the terminologies, CNF, or container-
based VNF.

3GPP slice related
management functions
CSMF
— os-Manfvo NFVO
wsme |0 | T .
i H
NSSMF .
EM
| l I —
| I 1 wnFm
VNF | .
CISICIS Cluster CISM CCM
H
NFVI i - CIR ----
1
WAN

Figure 2: NFV-MANO architectural framework with support
for containers

For simplicity, we only highlighted the newly added
blocks for container management and used dotted lines
for connection. We did not mention the names of all the
interfaces to avoid confusion. Container Infrastructure Ser-
vice (CIS) provides run-time infrastructural dependencies,
computational, storage, and networking resources for one
or more containerization technologies. It can be considered
the cloud-native equivalent of a virtual-machine hypervisor.
Hypervisors provide infrastructure to host virtual machines.
Container Infrastructure Service Management (CISM) man-
ages containers executed by CIS. It is responsible for con-
tainer deployment, monitoring, and life cycle management.
CIS Cluster Management (CCM) is responsible for manag-
ing the life cycle of CISM.

Network services are described using a Network Ser-
vice Descriptor (NSD). A NSD contains multiple Virtual
Network Function Descriptors (VNFDs). The new specifi-
cations contain special fields such as osContainerDesc to

S.Arora et al.: Preprint submitted to Elsevier

Page 3 of 15

CLiSO Framework

include container description. The new fields were designed
to deploy CNFs on Kubernetes-backed infrastructure. Each
VNEFD inside a NSD can have multiple containers described
via the osContainerDesc field, one for each container. The
number of containers depends on the VNFD provider. How-
ever, the VNFD template still lacks some fields needed
to configure the security, networking, and configuration of
network functions in a cloud-native environment. It should
be noted that the current specification has a tight coupling
with Kubernetes, a CISM. Apart from NSD, ETSI NFVO
requires other packages that are needed for orchestrating
network functions. These packages rely on helm-charts'
which are tightly coupled with Kubernetes.

2.3. Edge Sub Slice Orchestrator

In [7], we proposed a Lightweight edge Slice Orchestra-
tion (LeSO) framework to handle an edge domain sub-slice.
The framework proposed an Edge Sub Slice Orchestrator
(ESSO) inspired by ETSI MEC Orchestrator (MEO). MEO
is responsible to orchestrate MEC applications defined using
Application Descriptor (AppD). It communicates with the
MEC Platform (MEP) to provide services like service reg-
istry, service discovery, Radio Network Information Service
(RNIS), DNS redirection, and traffic redirection to MEC
applications. The LeSO framework is a crucial component
of our proposed end-to-end network slicing framework. It
handles the edge domain.

2.4. Kubernetes a CISM

Kubernetes is an industrial de-facto standard for con-
tainer orchestration, inspired by Google’s Borg platform
[11]. ETSI NFV-MANO standard mentions Kubernetes as
one of the possible container orchestration platforms, sim-
ilarly, other service orchestrators use Kubernetes. Today
Kubernetes has an important role in realizing a network
slice built on top of CNFs. Kubernetes is capable of man-
aging multiple pods spread across a cluster of nodes. A
Kubernetes Pod is a group of co-located containers. It is
the smallest entity that can be scheduled by the Kubernetes
scheduler. The containers inside a Pod share the same net-
work namespace, separate computational resources, and can
have common storage. Pods are designed to run multiple
co-located processes with a degree of isolation. Whereas,
containers are designed to host a single process. The con-
tainers inside a pod communicate with each other using
the local network (loopback interface), shared memory IPC
(inter-process calls), and shared volumes if the volumes are
common. Figure 3 shows the design of a Kubernetes Pod. It
should be noted Kubernetes is an example of CISM but there
can be alternatives; other alternatives are out of the scope of
this paper.

3. Related Work and Motivation

The existing slice or service orchestrators and their net-
work slice templates or service descriptors were designed

Uhttps://helm.sh/docs/topics/charts

Node Physical
Kubernetes Interface

Node

Kubernetes
Pod
eth0 O ¢ loopback

Outside Pad " Inside Pod

Shared network

Container 1 Shared Memory Container 2 ‘

gpc) -

Volume

Figure 3: Kubernetes Pod

to orchestrate VNFs. Later they adapted their architecture
and service descriptors to orchestrate CNFs. The service
descriptors of the orchestrators are either based on standard
ETSINSD or a tailored NSD. The orchestrators are capable
of placing the applications at the edge, but they do not
provide the capabilities of MEP to edge applications. Below
are some of the known slice/service orchestrators,

* Open Source MANO (OSM): A network service orches-
trator proposed by ETSI as a reference design based on
ETSI NFV standard. Designed to orchestrate VM-based
network services, it supports container-based network
functions. OSM can deploy network functions at the edge
cloud but not MEC Applications, which require MEP
support. For supporting MEC applications the ETSI MEC
framework proposes an interface with NFVO. Starting
OSM version 5 network slices can be orchestrated us-
ing the OSM network slice template. The network slice
template contains several ETSI NSDs. The template does
not clearly allow resource isolation. Apart from NSD, the
orchestrator requires helm-charts or juju-charms? to de-
scribe the CNF configuration, required software images,
and computation resources.

* Open Network Automation Platform (ONAP): Designed
to manage VM-based VNFs, and with the recent release, it
is following cloud-native principles to orchestrate CNFs.
ONAP’s complicated architecture with a large number of
components results in high resource consumption. Frank-
furt release of ONAP introduced the functionality of
network slice orchestration using Topology and Orches-
tration Specification for Cloud Applications (TOSCA)
template. The network slice template is convoluted and
it is difficult to define resource isolation. The complex
realization of ONAP demands the involvement of a big
team in taking care of service orchestration. The high
resource consumption makes it unsuitable to deploy in a
resource constraint environment.

* 5G Transformer Service Orchestrator (SGT-SO) [12]: 5G
transformer framework proposed a vertical slicer as the

Zhttps://charmhub.io

S.Arora et al.: Preprint submitted to Elsevier

Page 4 of 15

CLiSO Framework

gateway for different verticals to instantiate their network
services. The SGT-SO is built on top of OSM and Cloud-
ify but only supports VNFs.

* 5G Growth [13]: A network slice orchestration frame-
work for verticals is an extension of the 5G Transformer
framework. The framework and the proposed VNFD were
designed for orchestrating VM based VNFs. Though it is
capable of orchestrating container-based VNF via using
a Kubernetes Plugin. Apart from this, the framework can
orchestrate PNF via a Radio plugin and MEC applications
via a MEC plugin. There is no detailed information on the
capabilities of the radio plugin and MEC plugin.

* 5G SONATA [14]: A service orchestrator capable of
orchestrating VNFs and CNFs. However, it does not or-
chestrate MEC applications. Making it unsuitable to or-
chestrate an end-to-end network slice.

* OptiMized Edge Slice OrchestratioN (MESON) [15]:
This framework is designed for optimized and secure
cross slice communication within edge clouds. The frame-
work is inspired by ETSI-MANO architecture and uses
MEC AppD to enable cross slice communication. The
framework is mainly designed for edge slices using VM-
based MEC applications. The authors does not mention
other aspects of MEC AppD, traffic redirection, and DNS-
based redirection. They mostly focus on service discovery
and service registry aspects of the MEP.

* JOX [16]: Is an event-driven orchestrator for 5g network
slicing. The framework relies on Juju-charms based or-
chestration. It was not designed to orchestrate microser-
vices based CNFs or MEC applications. The framework
mentions integration with a MEC agent but there are no
further details on the capabilities or functioning of the
MEC agents.

* Open Baton [17]: One of the initial network service or-
chestrators highly inspired by ETSI MANO architecture.
The framework only supports VM-based VNFs and does
not offer MEP capabilities.

ONAP and OSM both have their own tailored NSDs and
NSTs and apart from that they need VIM-specific packages
like helm-charts and juju-charms. This forces the network
function provider to be infrastructure and platform aware.
OSM has a tight coupling with Juju-charms and Ubuntu-
based Linux. Besides these orchestrators, Google proposed
Nephio?. It is integrated with Kubernetes and it requires the
users to be aware of Kubernetes. The project is at an early
stage and there is nothing mentioned about network slicing.
The authors of [18] proposed SIiIMANO, an expandable
framework for the management and orchestration of End-
to-end Network Slices. Their proposed framework interacts
with existing MANO frameworks, RAN controllers, and
SDN controllers. Further, the paper does not mention in-
teractions with a MEC orchestrator. SIMANO is restricted

3https://nephio.org

by the capabilities of the frameworks used for orchestrating
different domains i.e., if the domain orchestrator supports
container-based VNFs then it will be able to orchestrate them
else it can not.

The authors of [19] proposed a MEC application slicing
concept via a proof of concept framework. They proposed
a MEC Application Slice Subnet Descriptor to describe
container-based MEC applications of a MEC slice. Their
proposed descriptor and framework highly rely on helm-
charts to describe application deployment/configuration-
related information. Such an approach requires application
providers to be infrastructure aware.

The core and edge domains both will have container-
based network functions or applications. In fact, according
to Open RAN Alliance (O-RAN)* architecture it is possible
that some of the access network functions for example CU-
CP and CU-UP can be deployed as CNFs. ONAP addresses
the challenges of orchestrating RAN network functions.
However, its high resource consumption restricts its usage
to a limited group of users. Our proposed work is motivated
by the absence of a:

* lean ease to use lightweight end-to-end slicing orches-
tration framework. A framework that can simultaneously
orchestrate ran, edge, and core domain slices.

* framework that follows cloud-native principles to orches-
trate and manage CNFs on public, private, and hybrid
clouds.

* framework that abstracts the platform and infrastructure-
related information from NST providers.

4. Cloud-native Lightweight Slice
Orchestration (CLiSO) Framework

This section will introduce the architecture of the CLiSO
framework. The roles and functioning of its different compo-
nents. The concept of Domain Slice Handler(s) and how they
can communicate with sub-slice orchestrators to manage
their sub-slice(s). The section also presents the skeleton of
the proposed cloud native NST and its different fields and
their parameters.

4.1. CLiSO Framework Architecture

The proposed framework has a hierarchical architecture
starting from the top, Network Slice Orchestrator (NSO),
Network Sub-Slice Orchestrator (NSSO) (ran, edge, and
core domain), CISM, and Container Image Registry (CIR).
To compare our framework with 3GPP proposed network
slice management framework, NSO is analogous to NSMF
and NSSO is analogous to NSSMF. Apart from these com-
ponents, there is a template registry and a global Domain
Name Server (DNS); these components are not shown in
Figure 4. The transport domain is out of the scope of the
proposed slice orchestration framework. The different layers
are highlighted to distinguish the role of the components.

“https://www.o-ran.org

S.Arora et al.: Preprint submitted to Elsevier

Page 5 of 15

CLiSO Framework

Network Slice Template (NST)

Northbound Api Engine
NST Parser Monitoring and Analytics
Sub Slice Coordination Manager

RSSTl ESST‘\ Cs STj»

Network Slice
Orchestrator
(NSO)

Network Sub Slice

Orchestrators
i
; Ran Sub Slice | |[Edge Sub Slice| |Core Sub Slice ' (NSSO)
f Orchestrator Orchestrator Orchestrator Service
() ! (EED) (EssO) (Ce=m) Orchestration
cr | f---- [—————— [---—---- ----- Layer (SOL)
!
CISM / Resource MEC
i ! .
—|:, © c;?::]iﬂ) [Val":lt}lll‘s; Rf(as) (Other container ! Orchestration [Platform
' p orchestrators) d Layer (ROL)
e . o o - - - - __ - - ---—_-_-
DSH (RIC) DSH (OAM)
Optional (Optional)
PNF CNF Apps PNF CNF

/6n Demand Resources (Public cloud, Private Clouds, UAVS)/

Remote Radio Units (RRU)USRPs
Resource Pool (NFVI) CPU/RAM/Storage/Networking /

'I\:Jen/\.rtqu
L:”;r"’” ETSI MEC
Y Interfaces

Infrastructure
Layer

Figure 4: Proposed Cloud-native Lightweight Slice Orchestration Framework

The Service Orchestration Layer is responsible for translat-
ing SLOs to Resource Level Objectives and coordinating
with resource controllers. Whereas Resource Orchestration
Layer manages the resources via communicating with the
underlying resource pool. The purpose of each component
of the framework is described below,

* Network Slice Orchestrator (NSO): It is responsible for
creating Network Sub Slice Templates (NSST) for differ-
ent domains and coordinating the life cycle management
of sub-slices. It receives the monitoring data from differ-
ent sub-slice orchestrators to extract slice-level monitor-
ing information.

* Network Sub-Slice Orchestrators (NSSO) or Service Or-
chestrators: They are responsible for handling sub-slices
of their respective domains and collecting monitoring
data to share with NSO. They expose APIs for DSH to
consume slice-specific KPIs,

- Ran Sub-Slice Orchestrator (RSSO): Handles the life
cycle of ran sub-slices composed of PNFs or CNFs.
It communicates with CISM to manage the CNFs and
PNFs. To manage each PNF, RSSO creates ephemeral
containers with short lifespans when needed. CISMs
managed by RSSO are capable of handling radio access
network functions, RU, DU, CU or CU-CP, CU-UP.

- Edge Sub-Slice Orchestrator (ESSO): Handles the life
cycle of edge sub-slices composed of MEC Applica-
tions. It coordinates with the MEC Platform to provide
the necessary services like traffic redirection, DNS-
based redirection, or RNIS to the MEC Apps. ESSO

only handles container-based MEC Apps. MEC Plat-
form is also part of the proposed framework. The de-
tailed functioning of ESSO is described in [7].

- Core Sub-Slice Orchestrator (CSSO): CSSO handles
the life cycle of core network sub-slices composed of
PNFs or CNFs. It communicates with CISM to manage
PNFs and CNFs.

* CISM: As described in the previous sections, it is re-
sponsible for orchestrating containers. It creates the nec-
essary communication links between network functions to
deliver the required slice behavior. NSSOs communicate
with CISM via a CISM agent hosted on the CISM plat-
form. The framework is capable of orchestrating contain-
ers on different distributions of Kubernetes, Openshift,
Vanilla Kubernetes (also known as K8s), and K3s”. A new
distribution can be supported by creating a plugin. The
Vanilla Kubernetes plugin can be used for orchestrating
network functions on the public cloud Kubernetes distri-
bution. It has most of the required functionalities.

* Container Image Registry (CIR): Manages and stores
Open Container Initiative (OCI) format container images.
It is capable of pulling images from public or private
repositories and building images from source code.

* Template Registry: Database to store all the Network
Slice Template (NSTs) and Network Sub-Slice Templates
(NSSTs)

* Global Domain Name Server: Allows the network func-
tions hosted on different CISM infrastructures to resolve

Shttps://k3s.io

S.Arora et al.: Preprint submitted to Elsevier

Page 6 of 15

CLiSO Framework

the fully qualified domain name of other network func-
tions belonging to the same slice.

Our proposed framework follows cloud-native design
principles, microservices architecture, and supporting on-
demand scaling of the components. Each component ex-
poses a REST APL. It is possible to downsize the framework
if required and deploy only selected components. For exam-
ple, to manage only core sub-slices, it is required to deploy
only CSSO. RSSO and ESSO are optional.

The framework proposes dynamic resource management
based on the CISM registration mechanism. Unlike ETSI
NFV, CLiSO does not follow the concept of fixed infras-
tructure. CISM is added to the individual NSSO CISM
repository via NSO. A CISM agent should be running on the
CISM platform. It is registered using the CISM registration
template shown in figure 5. The fields in underline are
required fields and others are optional. listOfSubnet allows
CISM to describe its subnets and this information is used
to allocate IP-address to network functions. dpdk Boolean
value is to specify if the interface supports data plane accel-
eration technology, Data Plane Development Kit (DPDK).
annotations field allows mentioning resources apart from
CPU and RAM that CISM exposes, for example, hugepages.

CISM Descriptor

cismld
Subnet Descriptor

name

gateway
url

ipAddressRange
cismType

description
placement

dpdk
listOf{subnet)

name
accessToken

reservedipAddressRange
annotations

parentinterface
considerUnreachable
drone
querylnterval

Figure 5: Proposed CISM Descriptor

Registered CISM shares regular heartbeats with their
respective handlers in NSSOs. This allows NSSOs to be
infrastructure aware and make decisions when there is a
problem at the infrastructure level. The field drone allows
registering UAV-based CISM. This field instructs the CISM
agent not to remove the network slice when a heartbeat is not
being shared with NSSO. CISM can manage PNFs by us-
ing ephemeral containers, short-lived containers which can
communicate with PNFs and perform any required action
based on the instructions provided in NSST.

MEC platforms are registered dynamically only to ESSO
via NSO. ESSO directly communicates with MEC platforms
and gets the list of services hosted at the MEP. Figure 6
shows the MEP descriptor. The fields in underline are re-
quired fields and others are optional. ESSO has the capability

to query the MEP regularly for heartbeats and the list of
hosted services.

MEP Descriptor
mepld
name

rl

accessToken
services
considerlUnreachable

querylnterval

Figure 6: Proposed MEP Descriptor

4.2. Domain Specific Handler (DSH)

Domain Specific Handlers are management network
functions responsible for handling the life cycle of one or
many network functions belonging to the same slice. They
are analogous to an Element Management System (EMS)
but designed with an ability to communicate with the CLiSO
framework to negotiate the SLOs of the slice. A slice may
have multiple DSHs depending on the NST provider. Their
administrative domain is restrictive to their slice. Few key
points about DSH:

* They get life cycle notifications of all the network func-
tions from NSSO. They have a direct communication
link with all the network functions of their administrative
domain. They fetch network function level KPIs and push
them to the CLiSO monitoring engine.

* They can subscribe to infrastructure-level KPIs, computa-
tion, and networking resources consumed by the network
functions. Based on this information, they can request the
NSSO to increase or decrease the resources consumed by
the CNF or MEC application.

* They can request the NSSO to upgrade the container
software image of a CNF instance.

DSH can provide ZSM if they collect KPIs from network
functions and the CLiSO framework to handle the life cycle
of their managed network slice. DSH may use Atrtificial
Intelligence and Machine Learning algorithms to perform
ZSM. CLiSO Framework does not have an inbuilt DSH as
they are external to the proposed framework. There are no
standards around designing an EMS similarly nor for DSH.
But to communicate with the NSSO they should have a ded-
icated interface. DSH provides the freedom to network func-
tion providers or vendors to manage their network functions
rather than using NSO’s generic management algorithm.

Figure 4 shows some examples of network functions that
can be used as DSH if appropriate APIs are implemented
to communicate with CLiSO. 1) RAN Intelligent Controller
(RIC) that manages RAN network functions via analyzing

S.Arora et al.: Preprint submitted to Elsevier

Page 7 of 15

CLiSO Framework

their and infrastructure level KPIs from CLiSO. 2) Opera-
tions And Maintenance (OAM) that manages the life cycle
of core network functions via subscribing to notifications
from Access and Mobility Management Function (AMF),
Session Management Function (SMF) and Network Data
Analytics Function NWDAF) and consuming infrastructure
level KPIs from CLiSO framework. However, DSHs are not
mandatory components of a sub-slice. If network functions
have a self-management mechanism, they can communicate
with NSSOs to manage their own resource consumption.

4.3. Network Slice Template

Our proposed network slice template in figure 7 is de-
ployment oriented and contains network function deploy-
ment specific information. We consider that slice or sub-slice
level SLOs can be translated to network function’s config-
uration. The proposed NST contains dedicated sections to
define Core, Edge, and RAN sub-slices. NSO accepts a NST
package in tarball format. This allows providing dedicated
Yet Another Markup Language (YAML) files for each sub-
slice template and any additional files like scripts or configu-
ration files required by the PNF, CNF, or MEC applications.
Apart from the network slice template our proposed frame-
work does not require any additional deployment-related
packages like helm-charts or juju-charms as required by
OSM and ONAP. To stay aligned with ETSI proposed virtual
network function descriptor instead of using CNF Descriptor
(CNFD) we use VNF Descriptor (VNFD) in our proposed
NST. Below is the description for some of the fields of NST:

* templateld: A unique identifier for an onboarded slice. If
the field is present for a slice then instead of creating a new
slice the orchestrator will update the onboarded slice.

* metadata: This field contains only slice name as a manda-
tory parameter and other parameters are optional, annota-
tions and order in which sub-slices should be instantiated.

* commonData: This field contains data that is common to
all the sub-slices and it will be provided to all the sub-
slices of a slice. It can contain any user-defined infor-
mation and it will be forwarded to the network functions
of a sub-slice. For example, this field can contain SLO
information and DSH can use this information to tune the
configuration of other network functions to achieve the
required SLO.

* s-nssai: single network slice selection assistance infor-
mation is a unique network slice identifier defined by
3GPP. It contains Slice Service Type (SST), a mandatory
parameter to identify slice characteristics, and an optional
parameter Service Differentiator (SD).

* listOfRegions: This field allows defining the regions
where the network slice will be created. The regions are
defined in the CISM descriptor. A region can be the name
of a city, state, or custom value defined when a new CISM
is added to the repository.

* When providing a new NST to the orchestrator, one of the
sub-slices must be defined. If the sub-slice unique iden-
tifier, coreSliceld, ranSliceld or edgeSliceld is provided
in the respective section then the orchestrator will auto-
matically fetch the sub-slice template from the template
registry. It is possible to define the subSlice template in a
separate YAML file and provide its relative location to the
package.

|
Network Slice Core Sub-Slice Edge| Sub-Slice RAN Sub-Slice
Template Template Template Template
templateld listof(templateld) listOf(templateld) | listOt(templateld)
commonData coreSliceld edgeSliceld ranSliceld
metadata listOf(ranSliceld) listOf(ranSliceld) listOf(coreSliceld)
s-nssai nssai nssai nssai
coreSlice commonData listOf(coreSliceld) commonData
edgeSlice il metadata commonData metadata
ranSlice | listOf(wnfD) metadata listOf{vniD)
listOfRegions listOf(pnfD) listOf(appD) listOf(pnfD)

placement placement placement

Figure 7: Proposed Network Slice Template

All the sub-slice templates have a similar design,

* They all contain a list of NST templateld, as a sub-slice
can be shared among multiple slices.

* The unique sub-slice identifiers coreSliceld, ranSliceld
or edgeSliceld are only present when the sub-slice is
successfully on-boarded. If the field is present in the
sub-slice template the sub-slice orchestrator will update
the on-boarded sub-slice instead of on-boarding a new
template.

* The placement field allows specifying the placement of
the sub-slice network functions in a region. This can be the
unique identifier of a CISM or the position tag, for exam-
ple, FAR EDGE, ASSOCIATED EDGE, or CENTRAL
CLOUD. These tags are customized and can be defined in
the CISM descriptor. This placement will be common for
all the CNFs of a sub-slice. Unless the VNF or MEC App
descriptors also have the placement field and specifics the
cismld. The placement field can be manually added in
the NST, if not then NSO will automatically instruct the
domain orchestrators about the placement.

* coreSlice contains a list of ranSlicelds using the coreSlice.
Similarly, ranSlice contains a list of coreSlicelds it is us-
ing. edgeSlice contains a list of coreSliceld and ranSliceld
through which the edgeSlice is reachable. This mapping
is used to provide security isolation among sub-slices. For
example, only allowed ranSlicelds can use the coreSlice.

* Edge sub-slice template is restricted to defining only MEC
applications.

* nssai is a list of s-nssai. It allows enabling sharing of
sub-slices with sub-slices of different network slices. This
parameter is also used to provide isolation among different
slices.

S.Arora et al.: Preprint submitted to Elsevier

Page 8 of 15

CLiSO Framework

The vnfD, pnfD, and appD used by coreSlice, ranSlice,
and edgeSlice templates are modified versions of ETSI
NFV VNF Descriptor (VNFD), PNF Descriptor (PNFD) and
ETSI MEC Application Descriptor (AppD). However, the
recent version of VNFD allows describing containers using
osContainerDesc field but there is no simple possibility to
define the container’s exposed ports, subnets it should be
connected to, initial startup configuration, and placement-
related information of VNF. To overcome such shortcom-
ings we have proposed a modified VNFD and PNFD in figure
8. It should be noted that we have only highlighted the fields
added or modified by us.

PNF Descriptor
VNF Descriptor pniDid

vnfDId allowsharing
allowSharing cismid
replicas nodeld
listOf(osContainerDesc) pnfinterfaceDefinition
annotations annotations
events lifecycleScript
placement logininformation

linkedCnflds

Figure 8: Proposed VNF and PNF Descriptor

* ynfDId and pnfDId: Are unique identifiers allocated by
CISM when the network functions are already on-boarded.
If already present, CISM will update the on-boarded
descriptor rather than on-boarding a new descriptor.

* osContainerDesc: Describes the container images re-
quired to deploy the CNF. It contains several sub-fields
to allow describing computational resources required and
their limit, container image location, storage-related in-
formation, and monitoring parameter to be tracked for this
osContainer. We extended the model to add information
related to ports exposed by the container, the possibility
to pass configuration to containers, startup command in
case the container wants some initial command, liveliness
to understand network function is always running, and
readiness probe to know when the network function is
ready to use, etc.

* replicas: Number of replicas of the CNF. The CNF should
support load balancing between different replicas.

* events: Each CNF can subscribe to events published by
CSSO or RSSO. This field is mostly relevant for DSH.
The events give information about all network functions
of the slice.

* placement: If mentioned it will supersede the placement
defined in the sub-slice template.

* cismld: Mandatory field for PNF to define its location, and
in case PNF is only accessible via one of the nodes of the
CISM then it is mandatory to define nodeld.

* pnfinterfaceDefination: It allows describing the interfaces
which are connected to the PNF and their IP-addresses.

* linkedCnflds: This field defines the list of CNFs that will
use the PNF. This will allow deciding the placement
of CNFs to enable communication with their PNF. For
example, if 5G New Radio DU will be placed on the node
through which it can connect to Radio Unit (RU).

* lifecycleScript: A relative location or URL of a script
to execute in the PNF at the time of on-boarding. It is
executed via a short-lived container instantiated in the
same network or host from where PNF is reachable.

* annotations: This field is to consume the resources ex-
posed by CISM.

We have slightly updated the application descriptor,
appD as described in [7]. We have replaced swlmageDescrip-
tor field with osContainerDesc as it is more relevant accord-
ing to the ETSI NFV standards. ETSI MEC appD standards
are still not adapted for container-based VNFs or CNFs.

4.4. Isolation between slices

Isolation between network slices is important for secu-
rity concerns while providing the required Quality of Service
(QoS) to the network slice. We have divided isolation into
two categories, first resource isolation, and second commu-
nication isolation.

1. Resource Isolation: Isolation at the level of infrastruc-
ture resources used by a CNF. In the osContainerDesc
field, it is mandatory to define the required CPU and
RAM needed by the container and their limits. The
CISM will always guarantee that these resources are
allocated to the container.

2. Communication Isolation: For each container of CNF
in osContainerDesc there is a sub-field ports to men-
tion the exposed ports of the container and the network
in which they are exposed. Outside this network, the
ports will not be reachable. nssai field controls the
communication between sub-slices of different slices.
A sub-slice will only be able to communicate with
slices defined in nssai else all the outgoing traffic to
other slices will be rejected. Each instantiated CNF
has an infrastructure-level container. This container
guards the ingress and egress traffic of the CNF. An
example of a tool that can manage resource isolation
is Linux iptable rules.

4.5. Monitoring and Logging Capability of the
Framework

To keep the framework lightweight, we only expose
a limited set of KPIs using the inbuilt capability of the
CISM. The framework provides CPU and RAM consumed
by each network function of a slice. The PNF or their linked
management CNFs can push their resource consumption to
the monitoring engine. The framework provides the standard

S.Arora et al.: Preprint submitted to Elsevier

Page 9 of 15

CLiSO Framework

output logs of each CNF of the slice. The PNF or their
linked VNF have to push their logs to the logging engine.
Our proposed framework can be plugged into the monitoring
framework proposed by the authors in [20] to get elaborated
KPIs related to each network function.

4.6. Functioning of the Framework
A NST template defines a network slice instance. Each
network slice instance has four crucial phases,

1. Preparation phase: It includes calculating the re-
quirement of the network slice instance, on-boarding
the required container image, reserving the required
resources at the CISM level, and creating CISM
deployment-specific definitions.

2. Commissioning phase: After the successful onboard-
ing of the slice network functions, the network func-
tions are instantiated and in the case of MEC appli-
cations if required, ESSO communicates with MEP
to provide requested services. At this phase, the slice
is ready and operational. The KPI collection can be
started.

3. Operational phase: The slice instance can serve its
consumers and KPI can be monitored. At this phase, it
is possible to use the output of the monitoring engine
to update the slice resource consumption.

4. De-commissioning phase: The slice instance will be
terminated, all the reserved resources will be released
and the container images will be off-boarded.

NSO exposes a northbound REST API to allow CSMF
to request the creation of a network slice instance described
using NST. NSO using the NST parser disintegrate the NST
in different NSSTs based on the domains defined in NST.
If the listOfRegions is defined in the NST and there is no
placement field in NSST, NSO will calculate the placement
of the sub-slice and add the placement field in the NSST.
NSO contains the position and load-related information of
each CISM. Currently, based on the targeted domain NSO
adds the position tag of the CISM as described in section
4.3.

Further, the sub-slice coordination manager forwards
these NSSTs to their respective NSSO. The NSSOs/domain
orchestrators can simultaneously communicate with mul-
tiple CISM agents spread across different regions or in
the same region to create the sub-slice. NSSOs read the
placement field and if it is a position tag and there is more
than one CISM. The NSSOs decide the final CISM based on
certain factors such as:

e The total requested CPU, memory, and storage by
CNFs or MEC Applications of the NSST.

e The total limit of CPU, memory, and storage that
CNFs or MEC applications can utilize

e Requested ports to expose for the CNFs or MEC
applications. NSSO verifies that CISM can expose the
requested ports.

e The instantaneous load of the CISM (number of in-
stantiated pods, available CPU, memory, and storage).

This placement approach may have limitations in case
of large numbers of CISM associated with a position tag
and located in the same region. Then different NSSOs can
not select the appropriate CISM that will satisfy the slice
SLOs. In this scenario, NSO can take advantage of its
global position to provide the CISM for each sub-slice. This
solution is not integrated into the current framework it needs
further investigation.

If the VNFD or AppD defines the placement of the CNF
or MEC application then it will supersede the placement
value defined in NSST. Domain orchestrators add an infras-
tructure level container based on the nssai field of the NSST
to enable communication isolation and translate the PNFD,
VNEFD, and appD to CISM level definition.

A CNF or MEC application defined using a VNFD or
AppD respectively, corresponds to a Kubernetes Pod. All
container images defined via osContainerDesc map to one
Pod. In situations when CNF or MEC Application design
does not require close placement of all their components
or they require replicas for a particular component de-
fined via osContainerDesc then such CNF or MEC appli-
cations can be defined using multiple VNFD or AppDs.
Each VNFD/AppD may contain single or multiple osCon-
tainerDesc. This mapping between VNFD/AppD, Pod, os-
ContainerDesc, and container allows allocating computa-
tion resources to every component of the CNF, defining
CNFs that may require close placement of components and
CNFs that require both close placement of some components
and loosely coupled placement for other components. The
CISM agent is responsible for placing replicas of a CNF
or its components on different CISM nodes for the sake of
availability. This mapping is inspired by the ETSI group
report NFV-IFA 029 V3.3.1 [21] and ETSI VNFD [22].In a
previous work [23], we discussed the different possibilities
of designing an ESST and the impact of the design on the
latency and availability of the slice.

CISM level objects define the resource requirements
of the pod, virtual interface definition, software configura-
tion, etc. Domain orchestrator communicates with CISM
via CISM agent to instantiate Pods. CISM communicates
with PNFs via short-lived containers. The containers use
the ICMP ping mechanism or Linux NETCAT command
to check the connectivity with the PNF. They execute life-
CycleScript if provided in PNFD. CISM agent responds
back to domain orchestrators with network information of
the CNFs, PNF, and MEC application. If MEC applications
request MEP services, DNS redirection, or traffic redirection
as described in appD. ESSO communicates with the desired
or default MEP and provides the requested services.

After the successful creation of all the network functions
of a sub-slice, the slice instances are ready to serve their

S.Arora et al.: Preprint submitted to Elsevier

Page 10 of 15

CLiSO Framework

customers. The termination of a slice instance follows a
similar mechanism and results in terminating all the network
functions, disabling services used by the MEC application,
and off-boarding all the container images.

5. Comparision of LeSO and CLiSO
Frameworks

The CLiSO framework is an extension of the LeSO
framework described in section 2.3 and in [7]. The key
differences between these two frameworks are:

1. LeSO framework is designed to orchestrate only edge
or MEC sub-slices. It does not allow orchestrating
CNFs that require multiple networking interfaces such
as 5G UPF or PNFs.

2. The LeSO proposed ESST was not aware of slices
of different domains. Whereas, CLiSO modifies the
LeSOs ESST to be multi-domain slice-aware and al-
lows the possibility to share an edge slice with multi-
ple core or ran slices.

3. CLiSO allows sharing the sub-slices with other slices.
Which was not the case with LeSO.

4. CLiSO provides the functionality to dynamically reg-
ister and de-register CISM and MEPs. The registered
CISM can have any number of physical or virtual
interfaces. This ability was missing from LeSO.

5. The CISM plugin of CLiSO provides basic monitoring
information which was not present in the LeSO CISM
plugin.

6. Performance Evaluation

To evaluate the CLiSO framework, we used public and
private clouds as CISM. Public cloud as Amazon Elastic Ku-
bernetes Service (EKS), Google Kubernetes Engine (GKE),
Azure Kubernetes Service (AKS), and OVH provides Ku-
bernetes as Platform as a Service (PaaS). The Kubernetes
life cycle and underlying infrastructure are managed by the
cloud provider. To create a private cloud, we used Minikube®
and Red Hat OpenShift Local’, two command line tools
to install Vanilla Kubernetes and Openshift, respectively.
To evaluate our proposed framework, we performed three
different experiments with different motives:

* Compatibility Testing: The motive is to evaluate the com-
patibility of our framework with different Kubernetes
distributions.

* Configuration Testing: There are two motives for this test,
First to evaluate the capability of the CLiSO framework to
manage multi-domain slicing. Second, if the framework
can be disintegrated and deployed on different platforms.

Shttps://minikube.sigs.k8s.io
"https:/developers.redhat.com/products/openshift-local

* Scalability Testing: The motive is to evaluate multi-
tenancy and resource consumption when multiple slice
creation requests arrive.

In all the experiments, we have used OpenAirInterface
(OAI) [24] 5G Core and RAN Network Functions. Every ex-
periment has a different slice configuration, different number
of CNFs, or different deployment complexity to understand
how many CNFs in a slice our framework can support.

6.1. Compatibility Testing

To evaluate the compatibility of the CLiSO framework
with various public clouds, we managed the life cycle of a 5G
Core Network Slice on different production level Kubernetes
platforms. In the experiment, the core network slice went
through all four phases on each public cloud. The core net-
work slice contained AMF, SMF, NRF, UPF, AUSF, UDM,
UDR, and two replicas of MYSQL. Each of the network
functions and MYSQL instances were deployed as CNFs,
slice contained 9 CNFs or Kubernetes Pods or 9 containers.

All the CISMs were single node clusters. Their hardware
details are mentioned in Table 2. To manage the life cycle of
the core network slice, we only used the CLiSO components,
which are necessary, image registry, database, CSSO, and
NSO. The CLiSO framework was deployed on an OVH
cloud instance with 4vCPU, 15 GB RAM, and Kubernetes
version 1.25.4-1.

We compared the results of the CLiSO framework with
ETSI OSM. We deployed ETSI OSM in a Ubuntu 20.04
Virtual Machine with 4vCPU and 16GB RAM. We followed
the instructions from the website [25]. Inside the virtual
machine, the OSM deployer script deployed OSM on a
Kubeadm based Vanilla Kubernetes cluster, a tool to create
a Kubernetes cluster. We used OVH (II) and Kubeadm as
CISM, their hardware details are mentioned in Table 2. OSM
supports an older version of Kubernetes. In OSM terminol-
ogy CISM is referred to as a dummy Virtual Infrastructure
Manager (VIM). The 5G core network slice descriptor was
using helm-charts [26].

Table 3 highlights the time taken (in seconds) to register
different CISMs, create a core network slice and delete a
core network slice using CLiSO and OSM. The values are
averaged over 10 iterations. From the table we can draw
some conclusions:

1. We observed that CLiSO takes less time to deploy the
core network slice than OSM, which can be argued by
the architectural difference between OSM and CLiSO.
CLiSO’s CISM agent communicates with Kubernetes
using its REST APIs, whereas OSM communicates
using the command line interface of Kubernetes and
Helm-charts, kubectl and helm, respectively. This adds
another layer of communication with the Kubernetes
cluster.

2. CISM agent is compatible with different public cloud
platforms and can deploy a core network slice on
various public cloud platforms.

S.Arora et al.: Preprint submitted to Elsevier

Page 11 of 15

Table 2

CISM Details for Compatibility Testing

CLiSO Framework

Platform Location Kubernetes Version Resources (vCPU,
RAM)
Azure (AKS) Paris 1.24.9 4, 16GB
Google (GKE) Paris 1.24.8-gke.2000 4, 16GB
OVH(I) Strasbourg 1.25.4-1 4, 15GB
Amazon (EKS) Ireland 1.24 4, 7.5GB
OVH(II) Strasbourg 1.23.14 4, 15GB
Kubeadm Local 1.23.17 4, 16GB
Table 3
Core Network Slice Life cycle On Various Cloud Platforms via CLiSO and OSM
| Orchestrator | Platform | CISM Registration(s) | Creation (s) | Deletion (s) |
Azure 0.502 30.048 1.436
Google 0.396 43.926 2.317
CLiSO OVH(I) 0.513 44.1 2.394
Amazon 0.718 65.46 1.538
OSM Kubeadm 1.846 97.68 29.97
OVH(II) 2.930 138.98 34.78

3. CLiSO framework can be deployed partially, if only
the core network slice has to be handled then only
CSSO is required.

Apart from this, the CLiSO framework can deploy repli-
cas of a CNF. For example, MYSQL in this scenario. This
is done by mentioning the replicas in VNFD. In OSM the
replicas were only possible via manipulating the helm-charts
manually.

6.2. Configuration Testing

The motive of this test is to understand the capability
of the CLiSO framework to manage a multi-domain slice
hosted on different CISM instances. Figure 9 shows the slice
and required placement of the CNFs. This configuration
of 5G network slice is meant for applications requesting
low latency, as the user plane is hosted at the edge. The
CLiSO framework was disintegrated, image registry and its
database was deployed in public cloud OVH with 2vCPU
and 4GB RAM. The rest of the components, CSSO, RSSO,
NSO, and their database were deployed in a local Kubernetes
instance with 4vCPU and 4GB RAM. The image registry
has to be located in the public cloud where all the CISM can
communicate. Hence, the image registry requires a public
IP-address in this scenario. Hardware information related to
CISMs is below:

1. Public Cloud (OVH): 4vCPU and 16GB RAM, loca-
tion Strasbourg

2. Local Openshift: 4vCPU and 16GB RAM, Openshift
Local version 4.12

3. Local Minikube Kubernetes: Baremetal Kubernetes
with 4CPU (No Hyper-threading) and 16GB RAM,
connected with USRP B210.

Placement Private

Cloud (Local Placement Public Cloud
Kubemetes) (OWVH)
. 1
r - 1)]
RAN Slice
N1/N2
gNB AMF NRF uom MYSOL
CNF CNF CNF CNF Q
USETDT\IEJZIO Placement Private |
Cloud (Local
Ope shit) SMF UDR AUSF MYSQL
CNF CNF CNF
Edge UPF
] CNF N4
. J
T
Core Slice

Figure 9: Ran and Core Slice Deployment

The public cloud slice had AMF, SMF, NRF, AUSF,
UDM, UDR, and two replicas of MYSQL. At the edge,
there was one UPF managed by Openshift CISM, and on
the other edge instance, gNB CNF managed by Minikube
CISM. In total, there were 10 CNFs or 10 Kubernetes
Pod and USRP as PNF managed by gNB CNF. Table 4
shows the time taken (in seconds) to on-board, instantiate,
terminate, and off-board the network slice. The values are
averaged over 10 iterations. Though the above values are
subjected to the hardware capabilities, the table concludes
that the framework can manage a multi-domain slice hosted
on multiple CISM instances. Like other orchestrators, OSM
and ONAP connectivity between public and private clouds
is a prerequisite and the CLiSO framework assumes that
CISM instances can communicate with each other. ETSI
OSM at the time of writing this paper did not support RedHat
Openshift.

S.Arora et al.: Preprint submitted to Elsevier

Page 12 of 15

CLiSO Framework

Table 4
Ran and Core Network Slice Life cycle Time (seconds)
Creation Deletion
43.042 3.545
Onboard | Instantiate | Terminate | Offboard
3.259 39.783 2.431 1.114

6.3. Scalability Testing

To inspect the multi-tenancy capability of the complete
CLiSO framework, we selected a slice configuration spread
across all three technological domains and hosted on multi-
ple CISM platforms. In this experiment the RAN slice used
3GPP proposed three split RAN architecture, DU, CU-CP,
and CU-UP deployed on three different CISM respectively.
For the experiment, we used OAI-DU in RF-simulated mode
rather than connected to a physical radio unit. The control
plane of the core network slice was deployed on one CISM
and User Plane Function on another CISM. The MEC Ap-
plication connected to UPF was a content caching server. In
total 12 CNFs or 12 Kubernetes Pod were included in the
end-to-end network slice.

Placement

Placement
Associated Edge

Placement

Far Edge Cloud Cloud Central Cloud
I 1 I
r 3 r 1 |
.................................

RAN Slice - '
1 U Fi-¢ cu-cp
1 CchE cone |1
e cu-up El ! Core Slice
FLu CNF 1
o 4

Edge UPF
CNF

- MEC APP
Edge Slice

Figure 10: Slice in Three Technological Domains

We created four instances of OVH Kubernetes, two
instances with 8 vCPU and 30GB RAM to imitate central
and associated edge cloud, and other two instances with
4 vCPU and 16GB RAM for far edge cloud and hosting
CLiSO components. For this experiment, we deployed all
the components of the CLiSO framework. Due to computa-
tional resource constraints, we had to deploy all the CNFs
and MEC application in sleep mode rather than functional
mode. The slice network functions went through the four life
cycle stages on-boarding, instantiation, termination, and off-
boarding.

Figure 11 shows the slice creation time and CPU core
consumption by the CLiSO framework while handling mul-
tiple slices, 2, 4 up to 14 at the same time. Due to Ku-
bernetes default constrained of 110 Pods per host machine,
we were not able to go beyond 14 slices. In OVH-managed
Kubernetes this value is not configurable. Though the slice

—— Creation Time
-—- cPu ,
220 1o
_ 200 -
b F10 2
E 180 E
D 160 v
o 8
3 140 | o6
120 4 o4
100 A i
2 4 6 8 10 12 14
Number of Slices
Figure 11: Slice Creation time vs CPU Consumed
Table 5
Resource Requirement OSM and ONAP
Orchestrator vCPU Memory (GB)
ONAP 112 224
(Jakarta)
OSM-13 2 8

creation time depends on the hardware and the CNF, the
graph reflects that the framework is capable of managing
the life cycle of multiple slices at the same time. To create
two slices the complete framework consumed 0.275 CPU
and 340MB RAM. Whereas, for 14 slices the framework
consumed 1.33 CPU and 365MB RAM. In addition, the
framework consumes most of the resources at the time of
slice creation. Once the slice is created the slice orchestrator
and sub-slice orchestrators just share heartbeats among them
and with CNFs. After the slice is created user can interact
with the slice CNFs via CNFs management API or DSHs
API/graphical user interface.

Table 5 shows the resource requirement of OSM and
ONAP taken from their official website. CLiSO resource
consumption is based on the scaling test we performed but
we do not have similar results for other orchestrators. It
should be noted CLiSO framework supports the orches-
tration of MEC applications and interactions with MEP.
Whereas other orchestrators do not have this ability. All
the components of the CLiSO framework can be deployed
on any public managed Kubernetes distribution or private
Kubernetes instance.

7. Future Work

We presented different capabilities and features of the
CLiSO framework. In the future, we would like to add ad-
ditional functionalities. Most important is integrated Zero-
touch Service Management, for now, ZSM is only possible
via DSH. Ideally, we would like to implement a generic

S.Arora et al.: Preprint submitted to Elsevier

Page 13 of 15

CLiSO Framework

ZSM in the CLiSO framework. ONAP’s Control Loop Au-
tomation Management Platform (CLAMP)[27] provides a
notion of ZSM. Apart from ZSM, we would like to include
energy consumption metrics for each network slice and their
respective network functions. In 5G and beyond networks
energy consumption metrics for different network functions
have started becoming a major focus.

8. Conclusion

In this paper, we introduced a novel end-to-end orches-
tration framework CLiSO. The framework is lightweight
when compared with other orchestrators. It takes less time
to deploy slices when compared with OSM. It allows or-
chestrating container-based VNFs or CNFs on multiple
Kubernetes distribution, Amazon Elastic Kubernetes Ser-
vice, Azure Kubernetes Service, Google Kubernetes Engine,
OVH, RedHat Openshift, Vanilla Kubernetes and K3S a
lightweight Kubernetes distribution supporting AArch64
(ARM64) architecture. It is possible to deploy the com-
ponents of the CLiSO framework on all these Kubernetes
distributions. Hence, making the framework cloud-native,
and easy to port to multiple cloud platforms. The framework
is designed with a plugin approach and network sub-slice
orchestrators abstract the type of CISM. This allows sup-
porting any other container orchestration framework. CLiSO
framework is highly customizable and can be deployed par-
tially, as shown in the evaluation section. The deployment-
centric and CISM agnostic network slice template allows
describing sub-slices and their required network functions
or MEC applications by abstracting infrastructure-related
information. The proposed concept of Domain Slice Han-
dlers (DSH) distributes the responsibility of managing a sub-
slice among themselves and network sub-slice orchestrators.
DSH allows zero-touch service management of the sub-
slice network functions. DSH are network function provider-
centric, allowing the providers to personalize the life cycle
management of their network functions. The source code of
the CLiSO framework will be released under OpenAirInter-
face Software Alliance (OSA).

Acknowledgement

This work is partially supported by the European Union’s
Horizon Program under the 6GBricks project (Grant No.
101096954), the European Commission, and the Imagine-
B5G project (Grant No. 101096452).

References

[1] 1. Afolabi et al., “Network Slicing and Softwarization: A Survey on
Principles, Enabling Technologies, and Solutions," IEEE Communi-
cations Surveys & Tutorials, thirdquarter 2018, vol. 20, no. 3, pp.
2429-2453, doi: 10.1109/COMST.2018.2815638.

[2] A. Ksentini et al., “Toward Enforcing Network Slicing on RAN:
Flexibility and Resources Abstraction,” in IEEE Communica-
tions Magazine, vol. 55, no. 6, pp. 102-108, June 2017, doi:
10.1109/MCOM.2017.1601119.

[3] Karim Boutiba et al, “NRflex:
slicing in 5G New Radio",

Enforcing network
Computer Communications,

[4]

[3]
(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

Volume 181, 2022, Pages 284-292,
https://doi.org/10.1016/j.comcom.2021.09.034.
ETSIGS NFV 006 V4.4.1, “Network Functions Virtualisation (NFV)
Release 4, Management and Orchestration, Architectural Framework
Specification", Dec 2022

ETSI GS MEC 003 V3.1.1, “Multi-access Edge Computing (MEC),
Framework and Reference Architecture", March 2022

Girma M. Yilma et al., “Benchmarking open source NFV MANO sys-
tems: OSM and ONAP", Computer Communications, 2020, Volume
161, pp. 86-98, https://doi.org/10.1016/j.comcom.2020.07.013

S. Arora et al., “Lightweight edge Slice Orchestration Framework",
ICC 2022 - IEEE International Conference on Communications,
2022, pp. 865-870, doi: 10.1109/ICC45855.2022.9838854

C. Benzaid et al., “Al-Driven Zero Touch Network and Service Man-
agement in 5G and Beyond: Challenges and Research Directions," in
IEEE Network, March/April 2020, vol. 34, no. 2, pp. 186-194, doi:
10.1109/MNET.001.1900252

GSM Association, “Generic Network Slice Template Version 7.017",
June 2022.

A. Ksentini et al., “Toward Slicing-Enabled Multi-Access Edge Com-
puting in 5G," in IEEE Network, March/April 2020, vol. 34, no. 2, pp.
99-105, doi: 10.1109/MNET.001.1900261

B. Burns et al., “Borg, Omega, and Kubernetes: Lessons learned from
three container-management systems over a decade", Queue 14, 1,
2016, pp. 70-93, https://doi.org/10.1145/2898442.2898444

J. Mangues-Bafalluy et al., “SG-TRANSFORMER Service Orches-
trator: design, implementation, and evaluation," 2019 European
Conference on Networks and Communications (EuCNC), Valencia,
Spain, 2019, pp. 31-36,doi: 10.1109/EuCNC.2019.8802038

X. Li et al., “5Growth: An End-to-End Service Platform for Auto-
mated Deployment and Management of Vertical Services over 5G
Networks," in IEEE Communications Magazine, vol. 59, no. 3, pp.
84-90, March 2021, doi: 10.1109/MCOM.001.2000730.

S. Driixler et al., “SONATA: Service programming and orchestration
for virtualized software networks," ICC Workshops, 2017, pp. 973-
978,doi: 10.1109/ICCW.2017.7962785

G. Papathanail et al, “MESON: Optimized Cross-Slice
Communication for Edge Computing," in IEEE Communications
Magazine, vol. 58, no. 10, pp. 23-28, October 2020, doi:
10.1109/MCOM.001.2000207.

K. Katsalis et al., “JOX: An event-driven orchestrator for 5G net-
work slicing," NOMS 2018 - 2018 IEEE/IFIP Network Operations
and Management Symposium, Taipei, Taiwan, 2018, pp. 1-9, doi:
10.1109/NOMS.2018.8406236.

Open Baton, https://openbaton.github.io/, Accessed July 2023

F. Meneses et al., “SIMANO: An Expandable Framework for
the Management and Orchestration of End-to-end Network Slices,"
2019 IEEE 8th International Conference on Cloud Networking
(CloudNet), Coimbra, Portugal, 2019, pp. 1-6, doi: 10.1109/Cloud-
Net47604.2019.9064072.

S. Bolettieri et al., “Towards end-to-end application slicing
in Multi-access Edge Computing systems: Architecture
discussion and proof-of-concept”, Future Generation Computer
Systems, Volume 136, 2022, Pages 110 127, ISSN 0167-739X,
https://doi.org/10.1016/j.future.2022.05.027.

M. Mekki et al., “A Scalable Monitoring Framework for Network
Slicing in 5G and Beyond Mobile Networks," IEEE Transactions on
Network and Service Management, March 2022, vol. 19, no. 1, pp.
413-423, doi: 10.1109/TNSM.2021.3119433

ETSI GR NFV-IFA 029 V3.3.1, “Network Functions Virtualisation
(NFV) Release 3; Architecture; Report on the Enhancements of the
NFV architecture towards *Cloud-native’ and PaaS’", Nov 2019
ETSI GS NFV-IFA 011 V4.3.1, “Network Functions Virtualisation
(NFV) Release 4;Management and Orchestration; VNF Descriptor
and Packaging Specification", Jul 2022

S. Arora et al., “Availability and Latency Aware Deployment of
Cloud Native Edge Slices," GLOBECOM 2022 - 2022 IEEE Global

ISSN 0140-3664,

S.Arora et al.: Preprint submitted to Elsevier

Page 14 of 15

https://openbaton.github.io/

CLiSO Framework

Communications Conference, Rio de Janeiro, Brazil, 2022, pp. 3441-
3446, doi: 10.1109/GLOBECOM48099.2022.10001341.

[24] F. Kaltenberger et al., “The OpenAirInterface 5G New Radio Im-
plementation: Current Status and Roadmap,” WSA 2019, Vienna,
Austria, 2019, pp. 1-5

[25] ETSI-OSM, https://osm.etsi.org/docs/user-guide/latest/20-tutor
ial.html, Accessed April 2023

[26] OpenAirInterface Software Alliance, https://gitlab.eurecom.fr/oa
i/cn5g/oai-cn5g-fed/-/tree/v1.5.0/charts, Accessed April 2023

[27] ONAP, https://docs.onap.org/projects/onap-policy-parent/en/ist
anbul/clamp/clamp/clamp-architecture.html, Accessed April 2023

S.Arora et al.: Preprint submitted to Elsevier Page 15 of 15

https://osm.etsi.org/docs/user-guide/latest/20-tutorial.html
https://osm.etsi.org/docs/user-guide/latest/20-tutorial.html
https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed/-/tree/v1.5.0/charts
https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed/-/tree/v1.5.0/charts
https://docs.onap.org/projects/onap-policy-parent/en/istanbul/clamp/clamp/clamp-architecture.html
https://docs.onap.org/projects/onap-policy-parent/en/istanbul/clamp/clamp/clamp-architecture.html

