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Abstract—This work considers the problem of real-time remote
tracking and reconstruction of a two-state Markov process for
actuation. The transmitter sends samples from an observed in-
formation source to a remote monitor over an unreliable wireless
channel. We propose a state-aware randomized stationary sam-
pling and transmission policy, which considers the importance of
different states and their impact on the communication objective.
We then analyze the performance of the proposed policy and
compare it with existing goal-oriented joint sampling and trans-
mission policies using relevant metrics. Specifically, we assess
the real-time reconstruction error, the cost of actuation error,
and the consecutive error metrics. Furthermore, a constrained
optimization problem is formulated and solved so as to minimize
the average cost of actuation error by determining optimal
sampling probabilities. Our results show that the optimal state-
aware randomized stationary policy outperforms other policies in
scenarios with constrained sampling for fast-evolving sources. In
addition, when the source changes slowly, although the semantics-
aware policy tends to be more effective, the optimal state-aware
randomized stationary policy excels under certain conditions.

I. INTRODUCTION

An increasing number of applications and services today
rely on cyber-physical and real-time communication systems
for remote monitoring and control. These systems require
reliable, effective, and timely acquisition, processing, and
transport of large amounts of data sources. In this regard,
a new communication paradigm has been proposed, which
takes into account the semantics of information [1]. This
paradigm considers the significance, goal-oriented usefulness,
and contextual importance of information as a means to
generate, transmit, and reconstruct data in time-sensitive and
data-intensive communication systems. A highly relevant yet
challenging problem in this context is the design of techniques
that incorporate joint source sampling, transmission, and re-
construction, which consider the dynamics of the informa-
tion source, enabling real-time remote tracking for actuation.
Most prior works on remote tracking have mainly proposed
sampling/scheduling policies to minimize the estimation error,
disregarding the significance and utility of the information
generated and transmitted for specific goals and contextual
requirements. The works [2]–[4] consider the scheduling prob-
lem in event-triggered estimation. Optimal estimation and
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transmission policies for remote estimation over time-varying
packet drop channels are analyzed in [5]. The works [6] and [7]
have studied optimal sampling strategies for real-time remote
monitoring and estimation of stochastic processes. Various
approaches to remote state estimation under communication
constraints for linear time-invariant (LTI) systems are investi-
gated in [8] and [9]. The main objective of the aforementioned
studies is to propose sampling and transmission strategies
that minimize estimation errors, without considering the uti-
lization of information. Recent works [1], [10]–[15] have
introduced metrics that capture the semantics and effectiveness
of information. These metrics aim to leverage the synergies
between data processing, information transmission, and signal
reconstruction.

This paper considers the problem of real-time remote track-
ing of an information source in a time-slotted communication
system, where a two-state Markov process is sampled and
transmitted as packets to a remote receiver via an unreliable
wireless channel. The receiver then takes a specific action
based on the estimated state of the information source. This
work extends the results of [10] and [14], which have investi-
gated real-time tracking and reconstruction of an information
source for actuation purposes. We propose a sampling and
transmission policy named state-aware randomized stationary,
which accounts for varying sampling and success probabilities
depending on the information source’s states. This is important
when the states signify actuation commands or other tasks of
varying significance, emphasizing the need for distinct sam-
pling frequencies. Furthermore, we analyze the performance of
our proposed strategy in terms of time-averaged reconstruction
error, cost of actuation error, and consecutive error metrics.
Then, we compare our approach with previously proposed
joint sampling and transmission policies [10] and [14]. We
also solve an optimization problem with the objective to
minimize the average cost of actuation error subject to a time-
averaged sampling cost constraint. Our analysis establishes the
regimes and the conditions under which the proposed policy
outperforms state-of-the-art counterparts.

II. SYSTEM MODEL

In this paper, we study a time-slotted communication system
that involves sampling an information source X(t) at each
time slot t. The sampled data is then transmitted to the
receiver over a wireless channel. The receiver, operating as



an actuator, performs actions based on the reconstructed state
of the information source. To model the information source,
we use a discrete-time Markov chain (DTMC) with two
states, represented as X(t), t ∈ N. Therein, the self-transition
probability and the probability of transition to another state at
time slot t+ 1 are defined as Pr

[
X(t+ 1) = i

∣∣X(t) = j
]
=

1(i = 0, j = 0)(1 − p) + 1(i = 0, j = 1)q + 1(i = 1, j =
0)p+ 1(i = 1, j = 1)(1− q).

In this paper, we consider various sampling and transmission
strategies for the states of the information source. We designate
the act of sampling at time slot t when the information source
is in state i (i = 0, 1) as αs

i(t). If αs
i(t) is equal to 1, it

indicates that the source in state i is sampled; otherwise, it
remains at 0. Furthermore, the transmission action associated
with αs

i(t) = 1 is denoted as αtx
i (t). When αtx

i (t) = 1, it
signifies that the sampled data is transmitted, while αtx

i (t) = 0
implies that the transmitter remains idle. At each time slot t,
the receiver constructs an estimate X̂(t) of the process X(t)
based on successfully received samples. The channel state
hi(t) assumes the value 1 if the information source in state
i is both sampled and decoded successfully by the receiver;
otherwise, it is 0. To quantify the success probability of
sampling and transmission when the information source is in
state i, we define psi = Pr

[
hi(t) = 1

]
. Note that incorporating

different success probabilities opens up intriguing possibilities
for implementing simple state-aware power control. The trans-
mitter receives immediate and error-free feedback in the form
of acknowledgment (ACK) or negative-ACK (NACK) packets,
enabling it to have perfect knowledge of the reconstructed
source state at time slot t

(
X̂(t)

)
1. Additionally, we assume

that a sample is discarded if its transmission fails.

III. SAMPLING AND TRANSMISSION POLICIES

We introduce a novel sampling and transmission policy
called the state-aware randomized stationary policy. This
policy involves triggering sample generation in a probabilis-
tic manner at each time slot. Specifically, we propose a
scheme that enables assigning distinct sampling probabilities
to different states. This allows for adjusting the sampling
frequency based on the significance of each state. For instance,
in a scenario where each state represents a command for a
remote agent, different commands may have varying levels of
importance or criticality. We assume that pαs

i
is the probability

of joint sampling and transmission actions when the source is
at the state i. Therefore, we define pαs

i
as follows

Pr
[
αs
i(t+ 1) = 1, αtx

i (t+ 1) = 1
]
= pαs

i
. (1)

The probability that the source at the state i is not sampled at
time slot t+1 is Pr

[
αs
i(t+1) = 0

]
= 1−pαs

i
. For comparison

purposes, we consider three relevant policies, namely uniform,
change-aware, and semantics-aware proposed in [10] and [14].

1In practice, only the semantics-aware policy actually requires an
ACK/NACK feedback channel.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance of state-aware
randomized stationary policy in terms of three metrics, namely
time-averaged reconstruction error, average cost of actuation
error, and average consecutive error.
A. Real-time Reconstruction Error

The real-time reconstruction error captures the discrepancy
between the original source X(t) and the reconstructed source
X̂(t) at time slot t, i.e.,

E(t) =
∣∣∣X(t)− X̂(t)

∣∣∣ , (2)

where at time slot t, E(t) = 0 denotes the system is in the
sync state, while the erroneous state of the system is denoted
by E(t) ̸= 0. The time-averaged reconstruction error or the
probability that the system is in an erroneous state, PE , for
an observation interval [1, T ] with T being a large positive
number, is defined as [10] and [14]

PE= lim
T→∞

1

T

T∑
t=1

1 (E(t) ̸=0)= lim
T→∞

1

T

T∑
t=1

1

(
X(t) ̸=X̂(t)

)
, (3)

where 1(·) is the indicator function. For a two-state DTMC
information source, PE =Pr[X(t)=0, X̂(t)=1]+Pr[X(t) =
1,X̂(t) = 0] = π0,1+π1,0. Note that π0,1 and π1,0 are the
probabilities obtained from the stationary distribution of the
two-dimensional DTMC describing the joint status of the
system regarding the current state at the original source, i.e.,(
X(t), X̂(t)

)
. To derive πi,j , (i, j) ∈ {0, 1}, we assume that

when the sampler performs sampling, the transmitter sends
the sample in the form of packets during the same time
slot. For a two-state DTMC information source, the stationary
distribution πi,j for the state-aware randomized stationary
policy is given by

π0,0 =
qpαs

0
ps0

[
q + (1− q)pαs

1
ps1

]
(p+ q)Φ

(
pαs

0
, pαs

1

) (4a)

π0,1 =
pqpαs

1
ps1

(
1− pαs

0
ps0

)
(p+ q)Φ

(
pαs

0
, pαs

1

) (4b)

π1,0 =
pqpαs

0
ps0

(
1− pαs

1
ps1

)
(p+ q)Φ

(
pαs

0
, pαs

1

) (4c)

π1,1 =
ppαs

1
ps1

[
p+ (1− p)pαs

0
ps0

]
(p+ q)Φ

(
pαs

0
, pαs

1

) , (4d)

where
Φ
(
pαs

0
, pαs

1

)
=ppαs

1
ps1

(
1−pαs

0
ps0

)
+pαs

0
ps0

(
q+(1−q)pαs

1
ps1

)
. (5)

Using (4b), (4c), and (5), the time-averaged reconstruction
error in (3) can be calculated as

PE= π0,1+π1,0 =
pq
[
pαs

1
ps1 + pαs

0
ps0

(
1− 2pαs

1
ps1

)]
(p+ q)Φ

(
pαs

0
, pαs

1

) . (6)

B. Cost of Actuation Error

This metric quantifies the importance of errors occurring
during reception and takes into account various costs or
penalties associated with different types of incorrect actions.
To analyze the cost of actuation error, we introduce Ci,j , which
represents the cost of an error when the source is in state i,



and the reconstructed source is in a state j that is not equal to
i. It is assumed that the value of Ci,j remains constant over
time. Now, using Ci,j , the average cost of actuation error for
a two-state DTMC can be calculated as follows

PC
E = C0,1π0,1 + C1,0π1,0, (7)

where using (4b) and (4c), we can write (7) as

PC
E =
pq
[
C0,1pαs

1
ps1

(
1−pαs

0
ps0

)
+C1,0pαs

0
ps0

(
1−pαs

1
ps1

)]
(p+q)

[
ppαs

1
ps1

(
1−pαs

0
ps0

)
+pαs

0
ps0

(
q+(1−q)pαs

1
ps1

)] . (8)

Remark 1. We can analytically prove that when
max{0, T1} ⩽ pαs

1
⩽ 1, the state-aware randomized

stationary policy has lower average cost of actuation
error as compared to the semantics-aware policy for
max{0, T2} ⩽ pαs

0
⩽ 1, where T1 and T2 are given by

T1=
pC1,0+C1,0ps0−pC1,0ps0−qC0,1(1−ps0)

C1,0(1−p)ps0+pC1,0ps1+C0,1(1−q)ps1+qC0,1ps0

T2=pαs
1

[
C0,1

(
q+(1−q)ps1

)
−pC1,0(1−ps1)

]
×
[
pαs

1

(
C1,0ps0(1−p)+pC1,0ps1+C0,1ps1(1−q)

+qC0,1ps0

)
−pC1,0−C1,0ps0+pC1,0ps0+qC0,1(1−ps0)

]−1

. (9)

C. Consecutive Error Metric

The consecutive error metric, introduced in [14], measures
the number of consecutive timeslots in which a system remains
in an erroneous state2. To quantify this metric, a DTMC,
depicted in Fig. 1, is employed. When the system is in a synced
state, it is denoted as CE(t) = 0. On the other hand, if the
system is in an erroneous state for a consecutive number of
time slots, it is represented by CE(t) = 1 ⩽ i ⩽ n− 1, where
i indicates the number of consecutive erroneous time slots.
Furthermore, the transition probability Pi,i+1 is given by

Pi,i+1 = Pr
[
CE(t+ 1) = i+ 1

∣∣CE(t) = i
]

=
Pr

[
CE(t) = i+ 1

]
Pr

[
CE(t) = i

] , ∀i ⩾ 0, (10)

where Pr[CE(t) = i] for i = 0 is equal to Pr
[
CE(t) = 0

]
=

π0,0 + π1,1. Also, for i ⩾ 1 and the state-aware randomized
stationary policy, Pr[CE(t) = i] is calculated as

Pr
[
CE(t) = i

]
=p(1−q)i−1

(
1−pαs

1
ps1

)i
π0,0+q(1−p)i−1

(
1−pαs

0
ps0

)i
π1,1, (11)

where πi,j ,∀i, j ∈ {0, 1} was given in (4a) and (4d). Using
(11), we calculate the average consecutive error C̄E as

C̄E =

∞∑
x=1

xPr
[
CE(t) = x

]
=

p
(
1− pαs

1
ps1

)
π0,0(

q + (1− q)pαs
1
ps1

)2 +
q
(
1− pαs

0
ps0

)
π1,1(

p+ (1− p)pαs
0
ps0

)2 . (12)

2A similar metric was defined first in [16] and then in [17].

· · ·210

1− P0,1

P0,1 P1,2

1−P1,2

1− P2,3

P2,3

1− Pn,n+1

Fig. 1. DTMC describing the state of the consecutive error.

V. OPTIMIZATION PROBLEM

In this section, our objective is to find an optimal state-
aware randomized stationary sampling policy, so that it min-
imizes the average cost of actuation error subject to a time-
averaged sampling cost constraint. Here, we assume that each
attempted sampling has a sampling cost δ, and that the time-
averaged sampling cost cannot exceed a certain threshold δmax.
Therefore, the optimization problem is formulated as

minimize
pαs

0
,pαs

1

PC
E (13a)

subject to lim
T→∞

1

T

T∑
t=1

δ1{αs
t = 1} ⩽ δmax, (13b)

where the constraint given in (13b) can be written as

lim
T→∞

1

T

T∑
t=1

δ1{αs
t=1}=δPr[X(t)=0]pαs

0
+δPr[X(t)=1]pαs

1

= δ
qpαs

0

p+ q
+ δ

ppαs
1

p+ q
. (14)

Using (7) and (14), (13) can be simplified as

minimize
pαs

0
,pαs

1

pqΨ
(
pαs

0
, pαs

1

)
(p+ q)Φ

(
pαs

0
, pαs

1

) (15a)

subject to qpαs
0
+ ppαs

1
⩽ η(p+ q), (15b)

where η = δmax/δ, Ψ
(
pαs

0
, pαs

1

)
= C0,1pαs

1
ps1

(
1− pαs

0
ps0

)
+

C1,0pαs
0
ps0

(
1− pαs

1
ps1

)
, and Φ

(
pαs

0
, pαs

1

)
is given by (5). To

solve this optimization problem, we consider two cases: one
with pC1,0 ⩾ qC0,1 and one other with pC1,0 < qC0,1.3

1) When pC1,0 ⩾ qC0,1: in this case, the objective function
in (15a) has its minimum value when pαs

1
is maximized.

Now, using the constraint given in (15b), the maximum
value of pαs

1
is

pαs
1
=

η(p+ q)− qpαs
0

p
. (16)

We substitute (16) into (15a), resulting in an objective
function that depends on pαs

0
. To determine the value of

pαs
0

that minimizes this objective function, we need to cal-
culate the critical points of the objective function within
the interval

[
pLB
αs

0
, pUB

αs
0

]
where pLB

αs
0
= max

{
0, η(p+q)−p

q

}
,

and pUB
αs

0
=min

{
1, η(p+q)

q

}
. Now, we evaluate the objec-

tive function at the critical points, as well as at points pLB
αs

0

and pUB
αs

0
. The minimum value of the objective function

within the given interval corresponds to the smallest
value. After determining the value of pαs

0
that minimizes

the objective function, we can calculate pαs
1

by utilizing

3The complete steps to solve this optimization problem are detailed in [18].



the expression given in (16). We can prove that the values
of pαs

0
and pαs

1
obtained by solving the this optimization

problem, are the optimal values of the sampling proba-
bilities when pαs

1
⩾ pC1,0−qC0,1

ps1

(
pC1,0+(1−q)C0,1

) . Otherwise, the

optimal values of sampling probabilities pαs
0

and pαs
1

are

equal to p∗αs
0
= 0 and p∗αs

1
= min

{
1, η(p+q)

p

}
.

2) When pC1,0 < qC0,1: in this case, as pαs
0

increases, the
objective function in (15a) decreases. Using the constraint
in (15b), the maximum value of pαs

0
is given by

pαs
0
=

η(p+ q)− ppαs
1

q
. (17)

Now, we substitute (17) in (15a) and obtain an ob-
jective function that depends on pαs

1
. Similar to the

case when pC1,0 ⩾ qC0,1, we can obtain pαs
1

that
minimizes this objective function by calculating its crit-
ical points within the interval

[
pLB
αs

1
, pUB

αs
1

]
where pLB

αs
1
=

max
{
0, η(p+q)−q

p

}
, and pUB

αs
1
=min

{
1, η(p+q)

p

}
. Then, we

obtain pαs
0

using (17). We can similarly prove that when
pαs

0
⩾ qC0,1−pC1,0

ps0

(
qC0,1+(1−p)C1,0

) , pαs
0

and pαs
1

derived by

solving this optimization problem, are the optimal values
of the sampling probabilities. Otherwise, the optimal
values of the sampling probabilities are equal to p∗αs

0
=

min
{
1, η(p+q)

q

}
and p∗αs

1
= 0.

VI. NUMERICAL AND SIMULATION RESULTS
In this section, we validate our analytical results and assess

the performance of the sampling policies in terms of time-
averaged reconstruction error, average cost of actuation error,
and average consecutive error under various system param-
eters. In the uniform policy, a sample is acquired every 5
time slots. Simulation results are obtained by averaging over
107 time slots. In what follows, RS and RSC policies are
the abbreviations for the state-aware randomized stationary
policy and the state-aware randomized stationary policy in the
constrained optimization problem, respectively.

In Tables I to VI, we depict the minimum average cost of
actuation error under a sampling cost constraint of η = 0.5,
considering various values of p, q, ps0 , and ps1 , while setting
C0,1 = 1 and C1,0 = 2. As observed, when pC1,0 ⩾ qC0,1,
the average cost of actuation error reaches its minimum when
pαs

1
is greater than pαs

0
. Otherwise, the minimum average cost

of actuation error occurs when pαs
0
> pαs

1
. Note also that,

in the case of lower successful probabilities, the minimum
average cost of actuation error is achieved at small values
of p∗αs

0
and p∗αs

1
, where pC1,0 ⩾ qC0,1 and qC0,1 > pC1,0,

respectively. Furthermore, we observe that the optimal RSC
policy demonstrates superior performance compared to the
semantics-aware policy under the conditions given in Remark
1, for both slowly and rapidly changing information sources.
Conversely, in cases where Remark 1 is not applicable, the
semantics-aware policy outperforms the optimal RSC policy
only when the source evolves slowly. Note that the optimal
values highlighted in red for the semantics-aware, change-
aware, and RS policies are derived using p, q, ps0 , and ps1

values violate the constraint requirement. This implies that
in the unconstrained scenario, the optimal RS policy demon-
strates either superior or equivalent performance compared to
the semantics-aware policy. However, in this specific case,
the optimal solution for the RS policy involves sampling
and transmitting during most of the timeslots, resulting in an
excessive number of generated samples.

The optimal values for sampling probabilities in the uncon-
strained scenario are presented in Tables III and VI. For all
values of p and q, we have pC1,0 ⩾ qC0,1. As a result, the
optimal value of p∗αs

1
is set to 1. Moreover, when considering

values of p and q where ps1 <
pC1,0−qC0,1

pC1,0+(1−q)C0,1
, the optimal

value of p∗αs
0

is determined as 0; otherwise, p∗αs
0
= 1. This indi-

cates that in scenarios where the success probability of a state
is low, the optimal approach is to refrain from sampling for the
state that causes less significant errors in terms of actuation.
Conversely, in situations with higher success probabilities, the
optimal policy is to always perform sampling.

TABLE I
MINIMUM AVERAGE COST OF ACTUATION ERROR FOR RSC STATE-AWARE WITH

η = 0.5, C0,1 = 1, C1,0 = 2, pS0 = 0.2, pS1 = 0.3.
p q p∗

αs
0

p∗
αs
1

Minimum average cost of actuation error

0.1 0.01 0.083 0.542 0.091
0.3 0.1 0 0.667 0.25
0.5 0.4 0 0.9 0.444
0.7 0.8 0 1 0.533
0.9 0.95 0 1 0.513

TABLE II
MINIMUM AVERAGE COST OF ACTUATION ERROR FOR η = 0.5, C0,1 = 1,

C1,0 = 2, pS0 = 0.2, pS1 = 0.3.
p q Semantics-aware Change-aware Uniform RSC RS

0.1 0.01 0.055 0.628 0.131 0.091 0.055
0.3 0.1 0.267 0.613 0.417 0.25 0.25
0.5 0.4 0.489 0.596 0.638 0.444 0.444
0.7 0.8 0.571 0.588 0.683 0.533 0.533
0.9 0.95 0.587 0.589 0.677 0.513 0.513

TABLE III
MINIMUM AVERAGE COST OF ACTUATION ERROR FOR RS STATE-AWARE WITH

η = 0.5, C0,1 = 1, C1,0 = 2, pS0 = 0.2, pS1 = 0.3.
p q p∗

αs
0

p∗
αs
1

Minimum average cost of actuation error

0.1 0.01 1 1 0.055
0.3 0.1 0 1 0.25
0.5 0.4 0 1 0.444
0.7 0.8 0 1 0.533
0.9 0.95 0 1 0.513

Figs. 2, and 3 show the average consecutive error contour
plots as a function of pαs

0
and pαs

1
for p > q, considering

the slow and rapid changes of the source, respectively. As

TABLE IV
MINIMUM AVERAGE COST OF ACTUATION ERROR FOR RSC STATE-AWARE WITH

η = 0.5, C0,1 = 1, C1,0 = 2, pS0
= 0.6, pS1

= 0.6.
p q p∗

αs
0

p∗
αs
1

Minimum average cost of actuation error

0.1 0.01 0.730 0.477 0.049
0.3 0.1 0.155 0.615 0.241
0.5 0.4 0.171 0.763 0.422
0.7 0.8 0.200 0.842 0.501
0.9 0.95 0.127 0.893 0.503



TABLE V
MINIMUM AVERAGE COST OF ACTUATION ERROR FOR η = 0.5, C0,1 = 1,

C1,0 = 2, pS0
= 0.6, pS1

= 0.6.
p q Semantics-aware Change-aware Uniform RSC RS

0.1 0.01 0.017 0.545 0.092 0.049 0.017
0.3 0.1 0.118 0.5 0.404 0.241 0.118
0.5 0.4 0.278 0.444 0.640 0.422 0.278
0.7 0.8 0.373 0.419 0.686 0.501 0.373
0.9 0.95 0.414 0.424 0.690 0.503 0.414

TABLE VI
MINIMUM AVERAGE COST OF ACTUATION ERROR FOR RS STATE-AWARE WITH

η = 0.5, C0,1 = 1, C1,0 = 2, pS0
= 0.6, pS1

= 0.6.
p q p∗

αs
0

p∗
αs
1

Minimum average cost of actuation error

0.1 0.01 1 1 0.017
0.3 0.1 1 1 0.118
0.5 0.4 1 1 0.278
0.7 0.8 1 1 0.373
0.9 0.95 1 1 0.414

(a) ps0 = 0.2, ps1 = 0.3 (b) ps0 = 0.7, ps1 = 0.8
Fig. 2. Average consecutive error as a function of pαs

0
and pαs

1
for a slowly

changing source with p = 0.3, q = 0.2.

illustrated in Fig. 2, when the source changes slowly, the
minimum average consecutive error occurs at high values
of pαs

0
and pαs

1
. In addition, as observed in Fig. 3, when

the source changes rapidly and success probabilities are low,
the average consecutive error decreases with a high value
of pαs

1
and a low value of pαs

0
. Furthermore, when success

probabilities are high, the average consecutive error has its
minimum value as pαs

0
and pαs

1
increase. Also, note that these

figures can be used to obtain the optimal values of sampling
probabilities. Interestingly, as the success probabilities in-
crease, we can achieve a comparable average consecutive error
with smaller sampling probabilities compared to situations
where the success probabilities are lower. For example, when
p = 0.3 and q = 0.2, with ps0 = 0.2 and ps1 = 0.3, the
minimum average consecutive error is approximately 0.65,
which is achieved by setting pαs

0
= 1 and pαs

1
= 1. However,

for ps0 = 0.7 and ps1 = 0.8, the similar average consecutive
error value can be obtained by using pαs

0
= 0.2 and pαs

1
= 1.

VII. CONCLUSIONS

This paper considers a time-slotted communication system
that involves sampling and transmission over a wireless erasure
channel to track a two-state Markov process. A state-aware
randomized stationary policy considering different sampling
and success probabilities according to the source’s states
was proposed. The system performance was evaluated using
the time-averaged reconstruction error, the average cost of
actuation error, and the average consecutive error metrics.
Furthermore, we optimized the system so as to minimize
the average cost of actuation error while keeping the time-

(a) ps0 = 0.2, ps1 = 0.3 (b) ps0 = 0.7, ps1 = 0.8
Fig. 3. Average consecutive error as a function of pαs

0
and pαs

1
for a rapidly

changing source with p = 0.8, q = 0.1.

averaged sampling cost below a specified threshold. Our
results demonstrated that the proposed state-aware randomized
stationary policy outperforms other state-of-the-art policies,
especially under cost constraints and rapid source changes,
while being effective in slowly varying sources under certain
conditions.
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