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Abstract

The use of multiple transmitter and receiver antennas allows to transmit mul
tiple signal streams in parallel and hence to increase communication capacity� To

distribute the multiple signal streams over the MIMO channel� linear spacetime
codes have been shown to be a convenient way to reach high capacity gains with

a reasonable complexity� The spacetime codes that have been introduced so far
are block codes� leading to the manipulation of possibly large matrices� To reduce

complexity� we propose to introduce convolutive codes� associated with MIMO �l
ters� We investigate capacity� error exponents� matched �lter bounds and diversity

for convolutive MIMO channels� with linear spacetime coding systems based on
MIMO �lters� We consider full rate and lower rate coding systems for various
scenarios of number of TX antennas versus number of RX antennas� Combined

convolutive�block coding schemes are also introduced�

� Introduction

Spatial multiplexing has been introduced independently in a ���� Stanford University
patent by A� Paulraj and by Foschini ��� at Bell Labs� Spatial multiplexing can be viewed
as a limiting case of Spatial Division Multiple Access �SDMA	 in which the various mobile
users are colocated in one single user multi antenna mobile terminal� In that case� the
various users are no longer distinguishable on the basis of their �main	 direction �DOA	
since all antennas are essentially colocated� Nevertheless� if the scattering environment
is su
ciently rich� the antenna arrays at TX and RX can see the di�erent DOAs of the
multiple paths� One can then imagine transmitting multiple data streams� one stream
per path� For this� the set of paths to be used should be resolvable in angle at both TX
and RX� Without channel knowledge at the TX� the multiple streams to be transmitted
just get mixed over the multiple paths in the matrix channel� They can generally be
linearly recovered at the RX if the channel matrix rank equals or exceeds the number
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of streams� This rank equals the number of paths that are simultaneously resolvable at
TX and RX� The assumptions we shall adopt for the proposed approach are no channel
knowledge at TX� perfect channel knowledge at RX� frequency�at channels for most of
the paper� full rate transmission �Ns � Ntx	� Nrx � Ntx such that the rank of the channel
possibly equals the number of streams Ns�

� Linear pre�ltering approach
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Figure �� General ST coding setup�

A general ST coding setup is sketched in Fig� �� The incoming stream of bits gets trans�
formed to Ns symbol streams through a combination of channel coding� interleaving�
symbol mapping and demultiplexing� The result is a vector stream of symbols bk con�
taining Ns symbols per symbol period� The Ns streams then get mapped linearly to the
Ntx transmit antennas and this part of the transmission is called linear ST precoding�
The output is a vector stream of symbols ak containing Ntx symbols per symbol period�
The linear precoding is spatiotemporal since an element of bk may appear in multiple
components �space	 and multiple time instances �time	 of ak� The vector sequence ak
gets transmitted over a MIMO channelH with Nrx receive antennas� leading to the sym�
bol rate vector received signal yk after sampling� The linear precoding can be considered
to be an inner code� while the nonlinear channel coding etc� can be considered to be
an outer code� As the number of streams is a factor in the overall bitrate� we shall call
the case Ns � Ntx the full rate case� while Ns � � corresponds to the single rate case�
Instead of multiple antennas� more general multiple channels can be considered by over�
sampling� by using polarization diversity or other EM component variations� by working
in beamspace� or by considering in phase and in quadrature �or equivalently complex and
complex conjugate	 components� In the case of oversampling� some excess bandwidth
should be introduced at the transmitter� possibly involving spreading which would then
be part of the linear precoding�

As we shall see below� channel capacity can be attained by a full rate system without
precoding �T�z	 � I	� In that case� the channel coding has to be fairly intense since it
has to spread the information contained in each transmitted bit over space �across TX
antennas	 and time� see the left part in Fig� � and ����� The goal of introducing the
linear precoding is to simplify �possibly going as far as eliminating	 the channel coding
part ���� In the case of linear dispersion codes �������� transmission is not continuous
but packet�wise �block�wise	� In that case� a packet of T vector symbols ak �hence a
Ntx � T matrix	 gets constructed as a linear combination of �xed matrices in which the



combination coe
cients are symbols bk� A particular case is the Alamouti code which is
a full diversity single rate code corresponding to block length T � Ntx � �� Ns � ��
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Figure �� Two channel coding� interleaving� symbol mapping and demultiplexing choices�

In this paper we shall focus on continuous transmission in which linear precoding
corresponds to MIMO pre�ltering� This linear convolutive precoding can be considered as
a special case of linear dispersion codes �making abstraction of the packet boundaries	 in
which the �xed matrices are time�shifted versions of the impulse responses of the columns
of T�z	� see Fig� �� Whereas in the absence of linear precoding� the last operation of the
encoding part is spatial demultiplexing �serial�to�parallel �S�P	 conversion	 �see left part
of Fig� �	� this S�P conversion is the �rst operation in the case of linear precoding� see
the right part of Fig� �� After the S�P conversion� we have a mixture of channel coding�
interleaving and symbol mapping� separately per stream� The existing BLAST systems
are special cases of this approach� VBLAST is a full rate system with T�z	 � INtx

which leads to quite limited diversity� DBLAST is a single rate system with T�z	 �
�� z��� � � � � z��Ntx����T which leads to full diversity �delay diversity	� We would like to
introduce a pre�ltering matrix T�z	 without taking a hit in capacity� while achieving full
�spatial	 diversity� The MIMO pre�ltering will allow us to capture all diversity �spatial�
and frequential for channels with delay spread	 and will provide some coding gain� The
optional channel coding per stream then serves to provide additional coding gain and
possibly �with interleaving	 to capture the temporal diversity �Doppler spread	 if there
is any� Finally� though time�invariant �ltering may evoke continuous transmission� the
pre�ltering approach is also immediately applicable to block transmission by replacing
convolution by circulant convolution�

� Capacity

Consider the MIMO AWGN channel

yk � Hak � vk � HT�q	 bk � vk ��	

where the noise power spectral density matrix is Svv�z	 � ��
v I� q

�� bk � bk��� The
ergodic capacity when channel knowledge is absent at the TX and perfect at the RX
is given by�
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where we assume that the channel coding and interleaving per stream leads to spatially

and temporally white symbols� Sbb�z	 � ��
b I� and � �

��
b

��v
� The expectation EH is

here w�r�t� the distribution of the channel� As in ���� we assume the entries Hi�j of
the channel to be mutually independent zero mean complex Gaussian variables with unit
variance �Rayleigh at fading MIMO channel model	� Teletar has shown ��� that for such
a channel model� the optimization of the capacity subject to the TX power constraint
�

��j

H
dz
z
tr�Saa�z		 � Ntx�

�
b leads to the requirement of a white �and Gaussian	 vector

transmission signal Saa�z	 � ��
b I� Combined with the whiteness of the vector stream

bk resulting from the channel encoding� this leads to the requirement for the pre�lter to
be paraunitary� T�z	Ty�z	 � I to avoid capacity loss�

Motivated by the consideration of diversity also �see below	� we propose to use the
following paraunitary pre�lter

T�z	 � D�z	 Q
D�z	 � diagf�� z��� � � � � z��Ntx���g � QHQ � I � jQijj � �p

Ntx

��	

where Q is a �constant	 unitary matrix with equal magnitude elements� Note that for
a channel with delay spread� the pre�lter can be immediately adapted by replacing the
elementary delay z�� by z�L for channel of length �delay spread	 L� For the at propa�
gation channel H combined with the pre�lter T�z	 in ��	� symbol stream n �bn�k	 passes
through the equivalent SIMO channel

NtxX
i��

z��i���H��iQi�n ��	

which now has memory due to the delay diversity introduced by D�z	� It is important
that the di�erent columns H��i of the channel matrix get spread out in time to get full
diversity �otherwise the streams just pass through a linear combination of the columns� as
in VBLAST� which o�ers limited diversity	� The delay diversity only becomes e�ective by
the introduction of the mixing�rotation matrix Q� which has equal magnitude elements
for uniform diversity spreading� The pre�lter introduced in ���� is essentially the same as
the one in ��	� However� the symbol stream bk in ���� is a subsampled stream� subsampled
by a factor Ntx� As a result� the system is single rate� The advantage in that case though
is that no interference between the rotated substreams occurs� which simpli�es detection�

� Matched Filter Bound and Diversity

The Matched Filter Bound �MFB	 is the maximum attainable SNR for symbol�wise
detection� when the interference from all other symbols has been removed� Hence the
multistream MFB equals the MFB for a given stream� For VBLAST �T�z	 � I	� the
MFB for stream n is

MFBn � �jjH��njj�� ��	

hence� diversity is limited to Nrx� For the proposed T�z	 � D�z	Q on the other hand�
stream n has MFB

MFBn � �
�

Ntx
jjHjj�F ��	

hence this T�z	 provides the same full diversity NtxNrx for all streams� Larger diversity
order leads to larger outage capacity�



� Pairwise Probability of Error Pe

The received signal is�

yk � H T�q	 bk � vk �H D�q	 Q bk � vk � H D�q	 ck � vk ��	

where ck � Q bk � �c��k	 c��k	 � � � cNtx
�k	�T � We consider now the transmission of the

coded symbols over a duration of T symbol periods� The accumulated received signal is
then�

Y � H C�V ��	

whereY and V are Nrx�T and C is Ntx�T � The structure of C will become clear below�
Over a Rayleigh at fading i�i�d� MIMO channel� the probability of deciding erroneously
C� for transmitted C is upper bounded by �see ���	�

P�C� C�	 � �
rY

i��

�i	
�Nrx�

�

�
	
�Nrx r

��	

where r and �i are rank and eigenvalues of �C � C�	H�C � C�	� and

C�C� �
�

�b

�
����
c���	� c����	 c���	� c����	 � � � � � � � � � � � �

�
� � � � � � � � � � � � � � �

���
� � � � � � � � � � � � � � �

� � � � � cNtx
��	� c�Ntx

��	 cNtx
��	� c�Ntx

��	 � � �

�
����

���	
Let i be the time index of the �rst error� and introduce ek �

�
�b
�ck � c�k	� then�

C � C� �

�
�� � � � � � e��i	 � � � � � � � � � � � �

���
� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � eNtx
�i	 � � � � � �

�
�� � ���	

Under the condition
NtxY
n��

en�i	 �� � ���	

the upper bound on the pairwise error probability becomes �maximized for a single error
event i	�

P�C� C�	 � �
NtxY
n��

jen�i	j�	�Nrx � �
�

�
	
�Nrx Ntx

� ���	

Hence� full diversity NrxNtx is guaranteed� and the coding gain is� min
ei ���

NtxY
n��

jen�i	j�� The
condition ���	 is well known in the design of lattice constellations �see ���� ����	� a �eld
based on the theory of numbers� A solution that satis�es our criteria of unitary matrix
and equal magnitude components of Q� is the Vandermonde matrix�

Qs �
�p
Ntx

�
����
� �� � � � ��

Ntx��

� �� � � � ��
Ntx��

���
���

���

� �Ntx
� � � �Ntx

Ntx��

�
���� ���	

where the �i are the roots of �Ntx � j � � � j �
p���



��� Optimality for QAM constellations in the case Ntx � �
nt

For Ntx � �nt�nt � Z	� Qs also leads to satisfaction of ���	 ���� and guarantees for any
constellation such that bn�i	 � b�n�i	 � a � jb � Z�j� �Z�j� � fa � jb j a� b � Z	� with
bi � b�i � �Z�j�	Ntx��	� that �Ntx

Ntx��
QNtx

n�� en�i		 �Z�j���� and hence�

min
ei ���

NtxY
n��

jen�i	j� �
�

�

Ntx

�Ntx

� ���	

For �nite QAM constellations with ��M	� points� any symbol can be written as� bn�i	 �
df��l��	� j��p��	g where d � R��� l� p � f�M����M ��� � � � �Mg� Then �

�b
�bn�i	�

b�n�i		 �
�d
�b
�l�� jp�	� l�� p� � f��M � ����M � �� � � � � �M � �g and ��

b �
��	M����d�


 � The

lower bound of ���	� which is valid in fact for any Vandermonde matrix Q of the form in
���	 built with roots of a polynomial of order Ntx with coe
cients in Z�j� and satisfying
a certain number of conditions ��� �hence Qs is a special case of this family	� becomes

min
ei ���

NtxY
n��

jen�i	j� �
�
�d�

��
b

�Ntx
�

�

Ntx

�Ntx

�

�
�d�

Ntx��
b

�Ntx

� ���	

In what follows� we consider an upper bound for the coding gain for any matrix Q with
normalized columns� The minimal product of errors

Q
n jen�i	j� is upper bounded by a

particular error instance corresponding to a single error in the b�s� when �
�b
�bi � b�i	 �

�d
�b
wn�� where wn� is the vector with one in the n

th
� coe
cient and zeros elsewhere� hence

min
ei ���

NtxY
n��

jen�i	j� �
�
�d�

��
b

�Ntx NtxY
n��

jQn�n� j� � ���	

Now� given that
PNtx

n�� jQn�n� j� � �� then by applying Jensen�s inequality� we get

NtxY
n��

jQn�n�j� �
�

�

Ntx

�Ntx

� ���	

Hence�

min
ei ���

NtxY
n��

jen�i	j� �
�
�d�

��
b

�Ntx
�

�

Ntx

�Ntx

�

�
�d�

Ntx�
�
b

�Ntx

���	

is an upper bound for the coding gain for any matrix Q with normalized columns� Now�
the intersection of the sets of matrices that lead to the lower bound ���	 and the upper
bound ���	 includes the unitary matrix Qs given in ���	� which hence achieves the upper

bound on the coding gain� min
ei ���

NtxY
n��

jen�i	j� �
�

�d�

Ntx��
b

�Ntx

�

Remark�� The Jensen�s inequality ���	 becomes an equality if and only if all the co�
e
cients Qn�n� � n � �� � � � � Ntx have the same module ��

p
Ntx� This holds for any

n� � �� � � � � Ntx� Hence we conclude that a necessay condition on any unitary matrix
Q to maximize the coding gain is to have all equal magnitude coe
cients� This is equiv�
alent to our condition to achieve the same maximumMFB for all streams �full diversity	�
Remark�� In the case when Ntx �� �nt �and using Qs	� the coding gain is closely related
to the size of the used QAM constellation� and is in general lower then the upper bound
given above�



� ML Reception

In principle� we can perform Maximum Likelihood reception since the delay diversity
transforms the at channel into a channel with �nite memory� However� the number of
states would be the product of the constellation sizes of the Ntx streams to the power
Ntx��� Hence� if all the streams have the same constellation size jAj� the number of states
would be jAjNtx�Ntx���� which will be much too large in typical applications� Suboptimal
ML reception can be performed in the form of sphere decoding ����� The complexity
of this can still be too large though and therefore suboptimal receiver structures will be
considered in the next section� Before continuing however� we wish to make a comparison
of the proposed approach with the full rate linear dispersion codes of Bel�ore � Galliou
���� based on Galois theory�

� both schemes have full rate with full diversity�

� design of one unitary matrix to optimize coding gain in our approach� need at
least two unitary matrices in their design and the coding gain optimization is more
involved�

� ML decoding of similar complexity if minimal block length �� Ntx	 is used in their
design�

� MIMO DFE Reception

Let G�z	 � HT�z	 �HD�z	Q be the cascade transfer function of channel and precod�
ing� The matched �lter RX is

xk � Gy�q	yk � Gy�q	G�q	 bk �Gy�q	vk � R�q	 bk �Gy�q	vk ���	

where R�z	 � Gy�z	G�z	� and the psdf of Gy�q	vk is ��
vR�z	� The DFE RX is then�

bbk � � L�q		
z�
feedback

bk � F�q		
z�
feedback

xk ���	

where feedback L�z	 is strictly �causal�� Two design criteria for feedforward and feedback
�lters are possible� MMSE ZF and MMSE�

��� MIMO MMSE ZF DFE RX

Consider the matrix spectral factorization�

Gy�z	G�z	 � R�z	 � Ly�z	�L�z	 ���	

where L�z	 �
P

k Lk z
�k with diag�L�	 � I �monic	� � � � is diagonal and constant�

Then F�z	 � ��� L�y�z	� L�z	 � L�z	 � I� The total feedforward �lter is a scaled
Whitened Matched Filter �WMF	

F�z	Gy�z	 � ��
�

� ��
�

�L�y�z	Gy�z	 � ��
�

� U�z	 ���	

where U�z	 � paraunitary�lossless�WMF� The forward �lter output

F�q	xk � L�q	bk � F�q	Gy�q	vk � L�q	bk � ek ���	

where See�z	 � ��
v �

��� At detector output i� SNRi � ��ii� We can detect the bk
elementwise by backsubstitution �feedback	 and symbol�by�symbol detection�



��� MIMO MMSE DFE RX

Consider now the backward channel model based on LMMSE ����

bk � bbk � ebk � Sbx�q	S
��
xx�q	xk � ebk ���	

where Sbx�z	 � Sbb�z	G
y�z	G�z	 and Sxx�z	 � Gy�z	G�z	Sbb�z	G

y�z	G�z	 �

��
vG

y�z	G�z	� Hence Sbx�z	S
��
xx�z	 � R���z	 withR�z	 � Gy�z	G�z	���

v S
��
bb

�z	 �

Gy�z	G�z	��
�
I so bk � R���q	xk�ebk� We get S

ebeb
�z	 � Sbb�z	�Sbx�z	S��xx�z	Sxb�z	 �

��
v R

���z	� Apply again matrix spectral factorization�

R�z	 � Ly�z	�L�z	 ���	

then bk � L���q	��� L�y�q	xk � ebk� We get

F�q	xk � ���L�y�q	xk � L�q	bk � L�q	 ebk � L�q	bk � ek ���	

where See�z	 � L�z	R���z	Ly�z	 � ��
v �

��� At detector output i again� SNRi �
��ii� In general

�MMSE � �MMSEZF 	 SNRMMSE
i � SNRMMSEZF

i

and even SNRUMMSE
i � SNRMMSE

i � � � SNRMMSEZF
i where UMMSE refers to

Unbiased MMSE�

��� Capacity Decomposition

For a given channel realization

C � �
��j

H
dz
z
log� det�INrx

� �G�z	Gy�z		
� �

��j

H
dz
z
log� det�INtx

� �Gy�z	G�z		

� �
��j

H
dz
z
log� det��R

MMSE�z		 � log� det���
MMSE	

�

NtxX
n��

log� SNR
MMSE
i �

NtxX
n��

log��� � SNRUMMSE
i 	

���	

The total capacity � sum of capacities of Ntx substreams output by a UMMSE DFE�
taken as independent AWGN channels �Gaussian approximation of UMMSE error signal	�

��� Matrix Spectral Factorization Considerations

Conventionally� L�z	 �
P�

k��Lk z
�k� where L� is unit diagonal and lower triangular�

Consider a generalization with relative delays via linear prediction P�z	 � L���z	 applied
to ebk� the conventional linear predictor Pc�z	 applied to

Z�q	 ebk �
�
����

eb��keb��k�d�
���ebNtx�k�dNtx��

�
���� ���	



leads to the generalized predictor� P�z	 � Z���z	Pc�z	Z�z	� We can obtain the
triangular spectral factor or predictor as the limiting case as delays� 
� P�z	� strictly
lower triangular elements are noncausal Wiener �lters to estimate a signal component
in terms of the previous signal components� the diagonal elements are SISO prediction
error �lters of the resulting residual signals�

With triangular spectral factors and feedback �lters� we detect one symbol stream
over all time and then pass to the next symbol stream� With a conventional feedback
�lter� we process all symbols one after the other at a given time instant� and then pass
to the next time instant� The advantage of triangular factors�feedback� can incorporate
channel decoding in detection before use of symbols in feedback �leading to the stripping
approach of Verdu � M�uller or Varanasi � Guess��	 	 much more reliable feedback�
In practice� �nite relative delays between substreams su
ce�

��� Triangular MIMO DFE and VBLAST

With triangular feedback� MIMO DFE works as follows�
�� we apply a SIMO DFE to detect a substream� the design of the SIMO DFE considers
the remaining substreams as colored noise�
�� we subtract the detected and decoded substream from the RX signal and pass on to
the next substream�
For the �rst substream� all remaining streams are interferers� the last substream gets
detected in the single stream scenario� Hence� triangular MIMO DFE � extension of
VBLAST to the dynamic case� Here� the dynamics �temporal dispersion	 have been
introduced by linear convolutive precoding �introducing delay diversity	� Advantages�

� no ordering issue� can process streams in any order�

� higher diversity order� less dispersion of substream SNRs�

��� Practical Implementation of MIMO DFE

Although the complexity of a suboptimal receiver like the MIMO DFE can still be consid�
ered quite high� a practical approximation is possible as follows� One should consider the
Noise Predictive DFE form� In this case� the forward �lter is in fact the Linear MMSE
�LMMSE	 receiver� The backward �lter is then a MIMO noise prediction �lter� We sug�
gest to use the triangular MIMO predictor structure for reasons already mentioned� The
complexity of the MIMO predictor can be adjusted by adjusting the prediction order�
This gives performance in between that of the LMMSE receiver and that of the DFE�
The LMMSE receiver�forward �lter can be approximated by polynomial expansion�
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