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Abstract

The use of multiple transmitter and receiver antennas allows to transmit mul-
tiple signal streams in parallel and hence to increase communication capacity. To
distribute the multiple signal streams over the MIMO channel, linear space-time
codes have been shown to be a convenient way to reach high capacity gains with
a reasonable complexity. The space-time codes that have been introduced so far
are block codes, leading to the manipulation of possibly large matrices. To reduce
complexity, we propose to introduce convolutive codes, associated with MIMO fil-
ters. We investigate capacity, error exponents, matched filter bounds and diversity
for convolutive MIMO channels, with linear space-time coding systems based on
MIMO filters. We consider full rate and lower rate coding systems for various
scenarios of number of TX antennas versus number of RX antennas. Combined
convolutive/block coding schemes are also introduced.

1 Introduction

Spatial multiplexing has been introduced independently in a 1994 Stanford University
patent by A. Paulraj and by Foschini [1] at Bell Labs. Spatial multiplexing can be viewed
as a limiting case of Spatial Division Multiple Access (SDMA) in which the various mobile
users are colocated in one single user multi antenna mobile terminal. In that case, the
various users are no longer distinguishable on the basis of their (main) direction (DOA)
since all antennas are essentially colocated. Nevertheless, if the scattering environment
is sufficiently rich, the antenna arrays at TX and RX can see the different DOAs of the
multiple paths. One can then imagine transmitting multiple data streams, one stream
per path. For this, the set of paths to be used should be resolvable in angle at both TX
and RX. Without channel knowledge at the TX, the multiple streams to be transmitted
just get mixed over the multiple paths in the matrix channel. They can generally be
linearly recovered at the RX if the channel matrix rank equals or exceeds the number
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of streams. This rank equals the number of paths that are simultaneously resolvable at
TX and RX. The assumptions we shall adopt for the proposed approach are no channel
knowledge at TX, perfect channel knowledge at RX, frequency-flat channels for most of
the paper, full rate transmission (N; = Ni,), N, > Ny, such that the rank of the channel
possibly equals the number of streams Nj.

2 Linear prefiltering approach
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Figure 1: General ST coding setup.

A general ST coding setup is sketched in Fig. 1. The incoming stream of bits gets trans-
formed to N; symbol streams through a combination of channel coding, interleaving,
symbol mapping and demultiplexing. The result is a vector stream of symbols b con-
taining N, symbols per symbol period. The N streams then get mapped linearly to the
Ny, transmit antennas and this part of the transmission is called linear ST precoding.
The output is a vector stream of symbols aj containing N, symbols per symbol period.
The linear precoding is spatiotemporal since an element of by may appear in multiple
components (space) and multiple time instances (time) of a;. The vector sequence ay
gets transmitted over a MIMO channel H with N, receive antennas, leading to the sym-
bol rate vector received signal y, after sampling. The linear precoding can be considered
to be an inner code, while the nonlinear channel coding etc. can be considered to be
an outer code. As the number of streams is a factor in the overall bitrate, we shall call
the case Ny = Ny, the full rate case, while N; = 1 corresponds to the single rate case.
Instead of multiple antennas, more general multiple channels can be considered by over-
sampling, by using polarization diversity or other EM component variations, by working
in beamspace, or by considering in phase and in quadrature (or equivalently complex and
complex conjugate) components. In the case of oversampling, some excess bandwidth
should be introduced at the transmitter, possibly involving spreading which would then
be part of the linear precoding.

As we shall see below, channel capacity can be attained by a full rate system without
precoding (T(z) = I). In that case, the channel coding has to be fairly intense since it
has to spread the information contained in each transmitted bit over space (across TX
antennas) and time, see the left part in Fig. 2 and [13]. The goal of introducing the
linear precoding is to simplify (possibly going as far as eliminating) the channel coding
part [5]. In the case of linear dispersion codes [7],[8], transmission is not continuous
but packet-wise (block-wise). In that case, a packet of T vector symbols a) (hence a
Ni x T matrix) gets constructed as a linear combination of fixed matrices in which the



combination coefficients are symbols b,. A particular case is the Alamouti code which is
a full diversity single rate code corresponding to block length T'= N,, =2, N, = 1.
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Figure 2: Two channel coding, interleaving, symbol mapping and demultiplexing choices.

In this paper we shall focus on continuous transmission in which linear precoding
corresponds to MIMO prefiltering. This linear convolutive precoding can be considered as
a special case of linear dispersion codes (making abstraction of the packet boundaries) in
which the fixed matrices are time-shifted versions of the impulse responses of the columns
of T(z), see Fig. 1. Whereas in the absence of linear precoding, the last operation of the
encoding part is spatial demultiplexing (serial-to-parallel (S/P) conversion) (see left part
of Fig. 2), this S/P conversion is the first operation in the case of linear precoding, see
the right part of Fig. 2. After the S/P conversion, we have a mixture of channel coding,
interleaving and symbol mapping, separately per stream. The existing BLAST systems
are special cases of this approach. VBLAST is a full rate system with T(z) = Iy,
which leads to quite limited diversity. DBLAST is a single rate system with T(z) =
[1 274 ..., 2~ We=D]T which leads to full diversity (delay diversity). We would like to
introduce a prefiltering matrix T(z) without taking a hit in capacity, while achieving full
(spatial) diversity. The MIMO prefiltering will allow us to capture all diversity (spatial,
and frequential for channels with delay spread) and will provide some coding gain. The
optional channel coding per stream then serves to provide additional coding gain and
possibly (with interleaving) to capture the temporal diversity (Doppler spread) if there
is any. Finally, though time-invariant filtering may evoke continuous transmission, the
prefiltering approach is also immediately applicable to block transmission by replacing
convolution by circulant convolution.

3 Capacity
Consider the MIMO AWGN channel
Yy, =Ha; +v, = HT(q) by + vy (1)

where the noise power spectral density matrix is Spw(z) = 021, ¢7 by = bg_;. The
ergodic capacity when channel knowledge is absent at the TX and perfect at the RX
is given by:
C(Saa) = EH% f dZ—Zlﬂ det([ —|— U% HSa,a,(Z) HH)
= BEpge § Clndet(] + 5 HT(z) Spp(2) T'(z) HY) (2)
= Eus= § Elndet(l + pHT(z) T!(z) HY)
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where we assume that the channel coding and interleaving per stream leads to spatially
and temporally white symbols: Spp(2) = ofl, and p = Z—é The expectation Ep is
here w.r.t. the distribution of the channel. As in [4], we assume the entries H,; of
the channel to be mutually independent zero mean complex Gaussian variables with unit
variance (Rayleigh flat fading MIMO channel model). Teletar has shown [4] that for such
a channel model, the optimization of the capacity subject to the TX power constraint
#j $ dZ—Ztr(Saa(z)) < N,z0f leads to the requirement of a white (and Gaussian) vector
transmission signal Sqa(z) = of I. Combined with the whiteness of the vector stream
b; resulting from the channel encoding, this leads to the requirement for the prefilter to
be paraunitary: T(z)T!(z) = I to avoid capacity loss.

Motivated by the consideration of diversity also (see below), we propose to use the
following paraunitary prefilter

T(:) = D()Q N
D(z) = diag{l, 7y Wy D OHQ =T, Q5| = ﬁ

where @) is a (constant) unitary matrix with equal magnitude elements. Note that for
a channel with delay spread, the prefilter can be immediately adapted by replacing the
elementary delay z=! by 2~ for channel of length (delay spread) L. For the flat propa-
gation channel H combined with the prefilter T(z) in (3), symbol stream n (b, ;) passes
through the equivalent SIMO channel

Nt.r

ZZ_(i_l)H:,iQi,n (4)

=1

which now has memory due to the delay diversity introduced by D(z). It is important
that the different columns H.; of the channel matrix get spread out in time to get full
diversity (otherwise the streams just pass through a linear combination of the columns, as
in VBLAST, which offers limited diversity). The delay diversity only becomes effective by
the introduction of the mixing/rotation matrix ), which has equal magnitude elements
for uniform diversity spreading. The prefilter introduced in [14] is essentially the same as
the one in (3). However, the symbol stream by, in [14] is a subsampled stream, subsampled
by a factor Ny.. As a result, the system is single rate. The advantage in that case though
is that no interference between the rotated substreams occurs, which simplifies detection.

4 Matched Filter Bound and Diversity

The Matched Filter Bound (MFB) is the maximum attainable SNR for symbol-wise
detection, when the interference from all other symbols has been removed. Hence the
multistream MFB equals the MFB for a given stream. For VBLAST (T(z) = I), the
MFB for stream n is
MFB, = p|[H.,[[3 (5)
hence, diversity is limited to N,,. For the proposed T(z) = D(z) @ on the other hand,
stream n has MFB |
MFB, = p—— |[H||% (6)

i

hence this T(z) provides the same full diversity Ny, N, for all streams. Larger diversity
order leads to larger outage capacity.



5 Pairwise Probability of Error P,

The received signal is:
Y, = HT(q) by + v, =HD(q) Q by + vi = HD(q) cx + vy (7)

where ¢, = Qb = [c1(k) e2(k) ... cNm(k)]T. We consider now the transmission of the
coded symbols over a duration of T' symbol periods. The accumulated received signal is
then:

Y=HC+V (8)
where Y and V are N,, xT and C is Ny, xT'. The structure of C will become clear below.
Over a Rayleigh flat fading i.i.d. MIMO channel, the probability of deciding erroneously
C' for transmitted C is upper bounded by (see [5]):

P(C— )< (LA & (9

where  and ); are rank and eigenvalues of (C — C’)H(C — ('), and
01(0) — Cll(O) Cl(l) — Cll(l)

c-C' :i 0
0 ce 0 cNt.r(O) - C/Nt.r(o) cNt.r(l) - C/Nt.r(l) tee
(10)
Let i be the time index of the first error, and introduce e, = %b(ck — ¢}), then:
C—C'= | . o ] (11)
0 ... ... 0 GNM(Z')
Under the condition N
[T cli) #0 (12
n=1

the upper bound on the pairwise error probability becomes (maximized for a single error
event 7):

P(C ) < ([ leatify (&) (13

Nt.r
Hence, full diversity N,, Ny, is guaranteed, and the coding gain is: én;n H |en(i)|2. The
70
=1
condition (12) is well known in the design of lattice constellations (see [9], [10]), a field
based on the theory of numbers. A solution that satisfies our criteria of unitary matrix
and equal magnitude components of (), is the Vandermonde matrix:

1 6, ... oN=7!
I T B SO Pl
Q° = N . (14)
tx .
1 Oy, ... Oy, 7!

where the 6; are the roots of 0V — 7 =0, 7 = /—1.



5.1 Optimality for QAM constellations in the case N,, = 2™

For Ny, = 2™ (n; € Z), Q* also leads to satisfaction of (12) [9], and guarantees for any
constellation such that b,(z) — b/,(1) = a + jb € Z[j] (Z]j] = {a + jb|a,b € Z), with
b, — b} € (Z[j])=/0), that (N, N/ Hanl e,(1)) € Z[j]/0, and hence:

Nt.r 1 Nt.r
: (D> . 15
i Tl = (§-) (15

For finite QAM constellations with (2M)? points, any symbol can be written as: b,(i) =
d{(2l—1)+7(2p—1)} whered e R™ [,pe {—-M+1,—-M+2,...,M}. Then i(b”(l) —

V(i) = 20 4 jpl), Uy € {=2M +1,-2M +2,...,2M — 1} and o} = 24M=0E e
lower bound of (15), which is valid in fact for any Vandermonde matrix @) of the form in
(14) built with roots of a polynomial of order Ny, with coefficients in Z[j] and satisfying

a certain number of conditions [9] (hence @® is a special case of this family), becomes

Nt.r N N a
A2 tx 1 @ 4d? "
. A2 > — = )
gl;é%H len(i)]” > (sz > (Nm> (Mm?) (16)

n=1

In what follows, we consider an upper bound for the coding gain for any matrix ¢) with
normalized columns. The minimal product of errors ], len(i)]? is upper bounded by a
particular error instance corresponding to a single error in the b’s, when aLb(bl —bl) =

244y, where w,, is the vector with one in the nth
oy 0 0 0

Nt.r 4d2 th: Nt.r
) N2 < z 17
psllie0r= (5) Tl "

Now, given that EN“ Qo |2 = 1, then by applying Jensen’s inequality, we get

n=1
Nt.r 1 Nt.r
o |” < : 18
I 0wt < (57) (1)

Nt.r N N N
AN 1\ 4d? N\
. < (X - 19
anllicor =) (50) - () v

1

coefficient and zeros elsewhere, hence

Hence,

is an upper bound for the coding gain for any matrix ) with normalized columns. Now,
the intersection of the sets of matrices that lead to the lower bound (16) and the upper
bound (19) includes the unitary matrix )* given in (14), which hence achieves the upper

g AdE N\
bound on the coding gain: gzl;é%g len()]” = (Nmﬂb?> .
Remark1: The Jensen’s inequality (18) becomes an equality if and only if all the co-
efficients Qnn,,n = 1,..., Ny have the same module 1/v/N,. This holds for any
ng = 1,...,Ny. Hence we conclude that a necessay condition on any unitary matrix
() to maximize the coding gain is to have all equal magnitude coefficients. This is equiv-
alent to our condition to achieve the same maximum MFB for all streams (full diversity).
Remark2: In the case when Ny, # 2™ (and using ()°), the coding gain is closely related
to the size of the used QAM constellation, and is in general lower then the upper bound
given above.



6 ML Reception

In principle, we can perform Maximum Likelihood reception since the delay diversity
transforms the flat channel into a channel with finite memory. However, the number of
states would be the product of the constellation sizes of the Ny, streams to the power
Ny —1. Hence, if all the streams have the same constellation size |A|, the number of states
would be |A|Ne=(Nea=1) wwhich will be much too large in typical applications. Suboptimal
ML reception can be performed in the form of sphere decoding [11]. The complexity
of this can still be too large though and therefore suboptimal receiver structures will be
considered in the next section. Before continuing however, we wish to make a comparison
of the proposed approach with the full rate linear dispersion codes of Belfiore & Galliou
[8], based on Galois theory:

e both schemes have full rate with full diversity,

o design of one unitary matrix to optimize coding gain in our approach, need at
least two unitary matrices in their design and the coding gain optimization is more
involved,

e ML decoding of similar complexity if minimal block length (= Ny, ) is used in their
design.

7 MIMO DFE Reception

Let G(z) = HT(z) = HD(2) Q be the cascade transfer function of channel and precod-
ing. The matched filter RX is

zr = G'(q) y;, = G'(q) G(q) by + G'(q) vi = R(q) by, + G'(q) vs (20)
where R(z) = G'(2) G(2), and the psdf of G'(q) vy is 02 R(z). The DFE RX is then:
b, = — L(g) bi+ Flq) xx (21)
— ——

feedback feedback

where feedback L(z) is strictly “causal”. Two design criteria for feedforward and feedback

filters are possible: MMSE ZF and MMSE.

7.1 MIMO MMSE ZF DFE RX
Consider the matrix spectral factorization:
G'(2)G(z) = R(z) = Li(2) Y L(z) (22)

where L(z) = >, Ly, 2% with diag(Lo) = I (monic), ¥ > 0 is diagonal and constant.
Then F(z) = ¥7' L7(2), L(z) = L(z) — I. The total feedforward filter is a scaled
Whitened Matched Filter (WMF)

F(2)Gi(z) =272 ¥ 7L 1(2)Gl(2) = ©77 U(z) (23)
where U(z) = paraunitary/lossless/ WMF. The forward filter output
F(g)xi = L(q) by + F(¢)G'(g) vi = L(q) bi + e, (24)

where See(z) = o2¥7!. At detector output i: SNR; = pX;;. We can detect the by
elementwise by backsubstitution (feedback) and symbol-by-symbol detection.



7.2 MIMO MMSE DFE RX

Consider now the backward channel model based on LMMSE [3]:
b, = Bk + gk = SbX(Q) S?{%{(Q) Xk + gk (25)

where Sy (2) = Spp(2) GT(Z)G(Z) and Sxx(z) = GT(Z)G(Z) Spb(?) GT(Z)G(Z) +

02 G'(2)G(z). Hence Sy, (2) S)_(;((Z)N: R (z) with R(2) = G'(2)G(z)40? SBlb(Z) =

GT(Z)G(Z)—I—%[SO b, = R7'(q)x,+by. We get SBB(Z) = Sbb(z)—SbX(z)S;(;((z)S b(2) =

o2R7'(2). Apply again matrix spectral factorization:
R(z) = LI(2) Y L(2) (26)
then by = L™(¢) 3 L™1(q)x) + by. We get
F(q)x; = X' L T(¢)x = L(q)by — L(¢) by = L(q) by + e (27)
where See(z) = L(Z)R_l(Z)LT(Z) = 02371 At detector output ¢ again: SNR; =
p Y. In general

ZMMSE > ZMMSEZF = SNRfWMSE > SNRfWMSEZF

and even ~ SNRYMMSE — gNRMMSE _ 1~ GNRMMSEZE where UMMSE refers to
Unbiased MMSE.

7.3 Capacity Decomposition

For a given channel realization

C = 3= § Zlog,det(In,, +pG(2)G'(2))
= % $ d?z log, det(In,, + ,OGT(Z)G(Z))
= % $ d?z log, det(p RMMSE(Z ) = log, det(p SMMSE) (28)
Nt.r

= ) log, SNRMMSE =} “log, (1 + SNRIMMSE)

n=1 n=1

The total capacity = sum of capacities of Ny, substreams output by a UMMSE DFE,
taken as independent AWGN channels (Gaussian approximation of UMMSE error signal).

7.4 Matrix Spectral Factorization Considerations

Conventionally: L(z) = 3.7 Ly 7%, where Lg is unit diagonal and lower triangular.
Consider a generalization with relative delays via linear prediction P(z) = L™"(z) applied

to by: the conventional linear predictor P.(z) applied to

b1k

g b?,k—dl

Z(q) by = : (29)

ONvak—dn,, 1



leads to the generalized predictor:  P(z) = Z7'(2)P.(2)Z(z). We can obtain the
triangular spectral factor or predictor as the limiting case as delays — oo. P(z): strictly
lower triangular elements are noncausal Wiener filters to estimate a signal component
in terms of the previous signal components, the diagonal elements are SISO prediction
error filters of the resulting residual signals.

With triangular spectral factors and feedback filters: we detect one symbol stream
over all time and then pass to the next symbol stream. With a conventional feedback
filter: we process all symbols one after the other at a given time instant, and then pass
to the next time instant. The advantage of triangular factors/feedback: can incorporate
channel decoding in detection before use of symbols in feedback (leading to the stripping
approach of Verdu & Miiller or Varanasi & Guess..) = much more reliable feedback.
In practice: finite relative delays between substreams suffice.

7.5 Triangular MIMO DFE and VBLAST

With triangular feedback: MIMO DFE works as follows:

1. we apply a SIMO DFE to detect a substream, the design of the SIMO DFE considers
the remaining substreams as colored noise.

2. we subtract the detected and decoded substream from the RX signal and pass on to
the next substream.

For the first substream, all remaining streams are interferers, the last substream gets
detected in the single stream scenario. Hence, triangular MIMO DFE = extension of
VBLAST to the dynamic case. Here, the dynamics (temporal dispersion) have been
introduced by linear convolutive precoding (introducing delay diversity). Advantages:

e no ordering issue: can process streams in any order,

o higher diversity order, less dispersion of substream SNRs.

7.6 Practical Implementation of MIMO DFE

Although the complexity of a suboptimal receiver like the MIMO DFE can still be consid-
ered quite high, a practical approximation is possible as follows. One should consider the
Noise Predictive DFE form. In this case, the forward filter is in fact the Linear MMSE
(LMMSE) receiver. The backward filter is then a MIMO noise prediction filter. We sug-
gest to use the triangular MIMO predictor structure for reasons already mentioned. The
complexity of the MIMO predictor can be adjusted by adjusting the prediction order.
This gives performance in between that of the LMMSE receiver and that of the DFE.
The LMMSE receiver/forward filter can be approximated by polynomial expansion.
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