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ABSTRACT
User and Entity Behavior Analytics (UEBA) is key for managing
security risks on information systems and comprehending user ac-
tivities’ impact on the network infrastructure. However, accessing
network traffic and Web logs is challenging due to encryption or
decentralized systems. Qualifying activities also requires contextu-
alizing them according to the network’s topology, as it determines
potential exchanges and carries information about which services
are used. This complexity hinders learning behavioral patterns
when precise user action sequences are needed. We propose to
tackle these challenges with Graphameleon, an open-source Web
extension for capturingWeb navigation traces. Wemodel user activ-
ities in an RDF Knowledge Graph (KG), drawing from the UCO and
NORIA-O ontologies. With this approach, we are able to distinguish
analytics strategies implemented across different websites.

CCS CONCEPTS
• Information systems → Web data description languages;
• Computing methodologies → Knowledge representation
and reasoning; • Security and privacy → Network security.
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1 INTRODUCTION
Behavioral analysis in cybersecurity is a technique that analyzes
user, system, and network activities to identify andmitigate security
threats. It aims to understand normal behavior patterns and detect
anomalies that may indicate malicious activities. Understanding
the precise impact of user activity on network behavior involves
analyzing both the application logs and the network traffic. Unfor-
tunately, application logs can be unusable due to their privacy or
improper formatting. Similarly, network traffic can be encrypted
or out of reach for collection, resulting in the loss of information
about the user’s interaction with the platform and the attack sce-
nario [8]. In this work, we focus on the user-network-application
system where interactions occur through a Web interface. We ex-
tend the concept of trace-based reasoning [3] to the domain of Web
usage mining, considering the use of Knowledge Graphs (KGs) as
a mean to consistently represent Web topology and usage data.
More precisely, we address a new opportunity associated with the
emergence of data models in the fields of network infrastructure
(for the description of heterogeneous systems) and cybersecurity
(for the description and management of attacks and risks). We as-
sume that we can correlate descriptions of Web activities and usage
with the description of the structure of the Web itself, in order to
enhance the understanding and design of complex systems while
considering the user-system pair. Our approach further extends
Dynagraph, a system combining trace dumping tools with a Web
app for rendering graph data from traces [12] to learn interpretable
activity models in the form of Linked Data: the Graphameleon
Web extension collects user activity traces (network traffic, inter-
actions with the Web browser) during a Web navigation session
and serializes this data in RDF using the UCO [18] vocabulary. The
resulting data is then ingested into a KG to interpret the activity
traces at a semantic level and derive patterns (Petri nets). These
activity models could then be used to identify similar situations by
projecting them onto the KG and, based on this projection, obtain
contextual information by traversing the graph. The remainder of
this paper is organized as follows. Section 2 presents some related
work. In Section 3, we introduce our approach to capture knowl-
edge from Web navigation traces based on a three-layer activity
modeling and a data capture component. Section 4 describes our
experiments and evaluations. Finally, Section 5 concludes the pa-
per and discusses future work. We release the Graphameleon code
at https://github.com/Orange-OpenSource/graphameleon and we
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publish the Graphameleon dataset at https://github.com/Orange-
OpenSource/graphameleon-ds.

2 RELATEDWORK
Web usage mining has gained significant attention for its practical
insights into user behavior on the Web. Studies delve into diverse
areas such as data preprocessing methods [15], user identification
techniques [11], session recognition algorithms [5], and pattern
discovery methods [6]. In activity modeling and analysis, trace-
based reasoning [3] aids in creating tools for semantically inter-
preting digital services artifacts using controlled vocabularies and
relational data models. The representation of events and activities
within KGs is implemented across a range of data models, encom-
passing both domain-independent and domain-specific contexts:
process modeling and execution (Petri nets-related [7], HTTPin-
RDF [9]); causal analysis (FARO [17]); cybersecurity (UCO [18],
MITRE D3FEND [16]); network operations (NORIA-O [14]). It is
evident that (particularly in UCO), the analysis of attacks and vul-
nerabilities is primarily based on indicators of compromise through
the enumeration of artifacts from past situations. However, these
indicators are never correlated with the topology of networks and
services, or even the temporal structure between artifacts, which
ultimately provides a static description of situations and overlooks
the structure of activities (i.e. the strategy employed in its dynam-
ics). In this regard, we notably showcase with our proposal how to
incorporate the concept of navigation traces into UCO, thus simul-
taneously benefiting from cybersecurity knowledge and network
context recorded elsewhere (i.e. by cybersecurity analysts and net-
work operators) while ensuring a standardized representation of
the data. Additionally, we extend the utilization of process min-
ing [1] and conformance checking [10] to KGs, capitalizing on their
alignment with the principles of trace-based reasoning.

3 APPROACH
To achieve data collection in such a way that one could analyze
Web navigation traces within their network context or learn Web
navigation activity templates, we propose a two-step approach.
First, we utilize semantic modeling of user activities by leverag-
ing a KG and UCO. Second, we develop a Web browser plug-in
called Graphameleon, which captures data and serializes it in RDF.1
Figure 1 provides an overview of our approach, illustrating the
integration of Graphameleon in a processing pipeline. This pipeline
aims to derive activity models, using process mining and Petri nets
representation, for detecting Web navigation activity scenarios.

Semantic Modeling of User Activity. In the context of Web nav-
igation, the concept of activity lacks a precise definition, as its
interpretation heavily relies on the specific data and observation
scale chosen. For example, one could analyze interactions during
vehicle purchase on an e-commerce website or examine TCP packet
exchanges between the client and server in detail. Let us first con-
sider that an HTTP connection is established and a user-initiated
request from the browser client is sent to the server hosting website.
Most of the time, the requested document needs some additional

1We do not leverage the HTTP Archive (HAR) file format as it is incompatible with
streaming and requires advanced user skills [12].

resources like scripts, images, or other documents. Those depen-
dencies will lead to a set of sub-requests. From our perspective, this
action consists in navigating through a link in one single click (or ac-
cessing to the page through a URL), whereas from the Web browser
it can be seen as a sequence of requests. In this paper, we consider
this sequence as a so called "Micro-activity" trace. Then, exploring
the level above, we could simply consider a trace as a set of requests
and interactions. An interaction can be defined as any user-initiated
action that has an impact on a webpage (click on link, form filling,
etc.). We call such a trace a "Macro-activity". KGs help to homog-
enize data sources and address the challenge of interoperability.
While the conventional functioning of Web browsers already relies
on established standards and protocols, KGs can be beneficial when
integrating data from sources outside of the Web browser context.
We observe that UCO [18] appears to be well-suited as it enables
the representation of Web navigation activities at various scales,
including action cycles, individual actions, connections, protocols,
resources, domains, and IP addresses. For the design of the map-
ping, the principle is to maximize the reuse of concepts/properties
defined in UCO, and to match the fields and values captured at the
Web browser level with these concepts/properties whenever their
semantics align. An explanation of data model and the correspond-
ing mapping rules in RML syntax [4] are available in our repository
at https://github.com/Orange-OpenSource/graphameleon.

Data Collection with Graphameleon. We consider both the col-
lection of HTTP requests and user/Web browser interactions to
fully understand and analyze the user-network-application sys-
tem. Graphameleon applies request listeners to both the sending
and receiving processes at the background script level. This allows
for the interception of all browser requests to retrieve informa-
tion from the headers. This information includes URLs, associated
IP addresses and domains, user-agent header, timestamp values,
and fetch metadata request headers2. Fetch metadata allows us to
derive indirect knowledge from navigation traces. For instance,
the Sec-Fetch-Site indicates the relationship between a request
initiator’s origin and its target’s origin, thus providing informa-
tion about the network topology. Similarly, Sec-Fetch-Mode helps
differentiate user-initiated requests from sub-requests for loading
images and other resources. To abstract contextual elements and
reduce diversity in activities, we tokenize the URLs of requested
resources. This involves replacing arguments in the URLs with the
names of their respective parameters. Graphameleon also injects
content scripts into each of theWeb browser’s active tabs to capture
interactions between the user and the browser. These scripts apply
listeners to all interactive elements on the page, such as links, but-
tons, forms, etc. This approach reduces the impact on the browser
performance and prevents capturing unwanted interactions, such
as miss-clicks on non-interactive elements. To globally identify
interactions, we consider the recorded event type, the element and
the URL of the corresponding resource. When an element has an
𝑖𝑑 attribute, its identification is straightforward. In many cases,
webpage elements do not have identifiers, so it becomes necessary
to identify an element based on its absolute position within the
DOM hierarchy. This is done by calculating the absolute path of
the element from the root of the DOM, resulting in an identifier
2https://www.w3.org/TR/fetch-metadata/
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Figure 1: Overview of the data processing pipeline.
The Graphameleon Web extension captures and annotates user activity at the Web browser level. A process mining component derives activity models from the resulting RDF KG. These
models can be used to build a library of activity templates, which are then used by a conformance checking component to classify new activity traces as normal or abnormal activities.

like body > maindiv[2] > div > div > a. While this method
provides a deterministic way to identify elements without an 𝑖𝑑

attribute, it is important to note that the resulting hierarchical path
identifiers can be complex and difficult to interpret. Understanding
which element is being referred to solely based on its path identifier
is challenging without a capture of the webpage and the interaction
collection for context analysis. One potential solution is to inject
𝑖𝑑 attributes into webpage elements using listeners, but this may
not address the issue of 𝑖𝑑 stability between browsing sessions for
pages with dynamic content.

4 EXPERIMENTS AND EVALUATION
This section describes two experiments conducted using the ap-
proach outlined in Section 3. We publish the dataset and pro-
vide additional technical details at https://github.com/Orange-
OpenSource/graphameleon-ds.

Website complexity clustering. In this initial experiment, we seek
to understand to what extent the behavior of a user visiting a web-
site is crucial in creating a usable footprint subsequently leveraged
for anomaly detection. For this, we focus on the ability to study
the complexity of websites in terms of the number and the size
of the resources to be loaded. We study this complexity through
a Firefox desktop instance (anti-tracking ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑}) by
measuring the number of RDF triples generated by Graphameleon
(collect mode ∈ {𝑚𝑖𝑐𝑟𝑜,𝑚𝑎𝑐𝑟𝑜}, output mode = 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑧𝑒) during
the initial connection to a website (the website’s landing page),
across a set of websites. Currently, there is no study describing
well-known website complexity groups (clusters) but from a mar-
keting perspective (e.g. industry sector vs average request count
per landing page). We propose to use three categories based on the
extent of editorial content being used: One-Page, Encyclopedia and
Content-Heavy. We select three reference websites, one for each
category based on third-party expert opinions.

Using this setup, 27 data collections were performed (three
categories × three sites × three data collection setups). For data
collection in 𝑚𝑎𝑐𝑟𝑜 mode, we observe that the number of RDF
triples remain consistent regardless of the visited website. Re-
garding the𝑚𝑖𝑐𝑟𝑜 mode, the counts for a given anti-tracking pol-
icy configuration exhibit significant variability within each com-
plexity category. In this line of thought, Table 1 focuses on the
mean entity count for the ucobs:HTTPConnectionFacet (UHC)

Strict Standard Std. / Str.
UHC UIP UHC UIP UHC UIP

One-Page 61.0 4.0 63.5 7.0 1.04 1.8
Encyclopedia 46.7 6.3 127.7 41.7 2.73 6.6
Content-Heavy 37.0 6.3 60.7 14.7 1.64 2.3

Table 1: Average number of entities in micro mode.
Comparison of the average UHC and UIP entities count as a function of the complex-
ity level and of the anti-tracking policy. The following abbreviations apply: UHC =
ucobs:HTTPConnectionFacet entities count, UIP = ucobs:IPAddressFacet entities count.

and ucobs:IPAddressFacet (UIP) object classes, and for each sce-
nario. The comparison of the mean entity count values based on
the anti-tracking policy ("Std. / Str." column in Table 1) reveals an
increase in the average number of connections and remote servers
accessed when the anti-tracking rules are relaxed, regardless of
the complexity level. Based on these measurements, we conclude
on the correct functioning of Graphameleon and its suitability for
studying initial connection behaviors. While the current proposed
complexity categories might not be pertinent for website group-
ing due to limited sample size and content variability, the rise in
network exchanges under varied anti-tracking policies provides a
basis for future categorization by employed analytics strategies and
network topology.

Navigation trace classification. In this second experiment, our
goal is to classify Web navigation traces as either normal or abnor-
mal behaviors. Using macro-activity modeling (Section 3), process
mining [1] and conformance checking [10], we analyze the follow-
ing three scenarios. Base scenario (normal behavior): a user
accesses the website, logs in with a username and a password, nav-
igates to the "Sell a Book" page, fills out the form, and then returns
to the homepage in order to find the book. Alternative scenario
(different behavior): same as the Base scenario but uses a Single
Sign-On (SSO) for the authentication. XSS attack scenario (ab-
normal behavior): same as the Base scenario with a code injection
in the "Author" field of the "Sell a Book" page and returning to the
homepage where the injected script is executed.

We deployed a simulated online bookstore website in or-
der to maintain control over this experiment. We proceed with
the data collection of navigation traces data for each scenario
with Graphameleon (collect mode = 𝑚𝑎𝑐𝑟𝑜 , output mode =
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𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑧𝑒) in a Firefox desktop instance, then compute the ac-
tivity model from the saved trace using the PM4PY Process
Mining library [2] (process discovery ∈ {𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒, 𝐴𝑙𝑝ℎ𝑎, 𝐿𝑜𝑔-
𝑆𝑘𝑒𝑙𝑒𝑡𝑜𝑛, 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝐴𝑙𝑝ℎ𝑎𝑃𝑙𝑢𝑠}), and finally compute the fitness
of the activity model against the activity template by also using
PM4PY (process mining ∈ {𝑇𝑜𝑘𝑒𝑛𝐵𝑎𝑠𝑒𝑑𝑅𝑒𝑝𝑙𝑎𝑦,𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡}). The
base scenario, which corresponds to the behavior we define as
"normal", is used to create our reference model (activity template).

Base Alternative XSS Attack
Request 10 13 11
Interaction 18 14 18
Vertice 263 283 277
Edge 404 431 426

Table 2: Data collection statistics for the navigation trace
classification experiment.
Statistics from theGraphameleon user interface in terms of the number of network requests,
user interactions with the Web browser, nodes and edges of the resulting navigation graph.

Three data collections were conducted using this procedure. Ta-
ble 2 summarizes the statistics for the resulting navigation graph.
From a graph statistics perspective and with reference to the "base"
scenario, we observe that the "alternative" scenario involves fewer
interactions but more network transactions. This is because authen-
tication is streamlined with a single button click and delegated to
external entities. In the "XSS attack" scenario, interactions remain
constant, but requests increase by one due to an additional query
involved by the SQL injection step. Still for this same scenario, we
notice a slight variation in the fitness scores (average of 98% fitness,
calculated with the "normal" activity model as reference), which
also corresponds to the single additional request caused by the
SQL injection step. We further observe that this additional query is
easily identifiable through sequence alignment using the developed
vocabulary applied at the level of the Web extension to standardize
the interpretation of the traces. Reflecting on data collection and
semantic processing, we find that there is minimal lexical com-
pression of navigation trace data due to consistent formatting (e.g.
the request URL is consistently located using the "url" header).
However, this compression pertains more to interaction semantics.
Indeed, one challenge in aligning activity models stems from the
lack of a reliable method to identify HTML elements (especially
when lacking an explicit 𝑖𝑑) across browsers, sessions, and users.
This challenge becomes apparent when the DOM of page content
changes with each site visit, especially when dynamic ad insertions
occur.

5 CONCLUSION AND FUTUREWORK
In this work, we considered the combined use of KGs and Web
browser-level navigation trace collection as a means to capture
network behavior details and assist in modeling cyberattacks. This
led to the development of the concepts of micro-activity and macro-
activity for semantic representation of user activities. We also
created Graphameleon, an open-source Web extension available
at https://github.com/Orange-OpenSource/graphameleon for live
data collection and semantization of navigation traces at the Web
browser level. Analyzing the activity traces collected by this com-
ponent in various websites, we showed that the rise in network

exchanges under varied anti-tracking policies provides a basis for
future categorization by employed analytics strategies and network
topology. Through a complementary navigation trace classifica-
tion experiment, we showed how activity models could be derived
and analyzed leveraging Petri nets and conformance checking tech-
nique. We also highlighted the challenge in aligning activity models
from the lack of a reliable method to identify HTML elements across
browsers, sessions, and users. Future work will focus onWeb cartog-
raphy, behavior analytics, and anomaly detection in an adversarial
setting. This will include incorporating activity models as part
of anomaly context data for decision support applications using
graph embeddings [13]. Privacy concerns will also be explored in
order to evaluate to what extent the overall approach enables the
achievement of specific detection cases.
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