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A computing device trains a recurrent neural network
(RNN), using a balanced dataset, to predict whether logs
input to the RNN are indicative of respective successful
computer code or respective failed computer code, the
balanced dataset comprising positive log examples and
negative log examples from a continuous integration (CI)
pipeline, the positive log examples labelled as being indica-
tive of successful computer code, and the negative log
examples labelled as being indicative of failed computer
code. The computing device inputs a log to the RNN, and
monitors evolution of belief predictions of the RNN, as the
RNN is analyzing the log, according to successive regions of
the log. The computing devices determines, based on the
evolution of the belief predictions, that a given region of the
log meets a log fatal error criterion condition, and outputs an
indication of the given region.
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DEVICE, SYSTEM AND METHOD FOR
IMPLEMENTING A RECURRENT NEURAL
NETWORK TO DETERMINE A GIVEN
REGION OF A BUILD LOG THAT MEETS A
FATAL ERROR CRITERION CONDITION

FIELD

[0001] The present specification relates generally to recur-
rent neural networks, and specifically to a device, system
and method for implementing a recurrent neural network to
determine a given region of a build log that meets a fatal
error criterion condition.

BACKGROUND

[0002] Continuous Integration (CI) is a widely used tech-
nique for regularly integrating programming code changes
from many developers into software projects. Programming
code changes (amongst other possibilities, such as timers,
manual actions, and the like) may be input to a CI pipeline
to trigger CI builds (e.g. output by the CI pipeline). A CI
build may comprise a set of actions that ensure a set of
conditions is met (e.g., a respective set of programming code
compiles, syntax of the programming code is respected, and
the like). CI systems of large companies may process
thousands to tens of thousands, and more, of programming
code changes to generate thousands to tens of thousands, and
more builds per day. However, a portion of a build may fail
because a code change may be buggy (e.g. due to a devel-
oper error) and/or because of infrastructure instabilities (e.g.
often non-deterministic failures), amongst other possibili-
ties. In practice, between 10% and 20% of builds may fail.
Identifying the root cause of failures may be time-consum-
ing and does not scale with a large number of failures.

SUMMARY

[0003] A first aspect of the present specification provides
a method comprising: training, via a computing device, a
recurrent neural network (RNN), using a balanced dataset, to
predict whether build logs input to the RNN are indicative
of respective successful builds or respective failed builds,
the balanced dataset comprising positive build log examples
and negative build log examples from a continuous integra-
tion (CI) pipeline, the positive build log examples labelled
as being indicative of successful builds, and the negative
build log examples labelled as being indicative of failed
builds; inputting, via the computing device, a build log to the
RNN; monitoring, via the computing device, evolution of
belief predictions of the RNN, as the RNN is analyzing the
build log, according to successive regions of the build log;
determining, via the computing device, based on the evo-
Iution of the belief predictions, that a given region of the
build log meets a build log fatal error criterion condition;
and outputting, via the computing device, an indication of
the given region.

[0004] At the method of the first aspect, the balanced
dataset may comprise an equal number of the positive build
log examples and the negative build log examples.

[0005] At the method of the first aspect, the build log may
be output by the CI pipeline and labelled as being indicative
of a failed build.

[0006] At the method of the first aspect, monitoring evo-
Iution of the belief predictions of the RNN according to the
successive regions of the build log may comprise monitoring
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a prediction of the RNN that the build log is indicative of a
successful build or a failed build on a character-by-character,
word-by-word basis or a line-by-line basis or a region-by-
region basis.

[0007] At the method of the first aspect, a region, of the
successive regions of the build log, may comprise one or
more of: at least one character of the build log; at least one
word of the build log; and at least one line of the build log.
[0008] At the method of the first aspect, the build log fatal
error criterion condition may comprise: the belief predic-
tions falling below a given threshold at the given region, and
an output of the RNN being indicative that the build log is
indicative of a failed build.

[0009] At the method of the first aspect, the balanced
dataset may comprise an about equal number of the positive
build log examples and the negative build log examples, and
the build log fatal error criterion condition may comprise:
the belief predictions falling below 0.5 at the given region,
and an output of the RNN being indicative that the build log
is indicative of a failed build.

[0010] At the method of the first aspect, the build log fatal
error criterion condition may comprise: a derivative of the
belief predictions being at a minimum at the given region,
and an output of the RNN being indicative that the build log
is indicative of a failed build.

[0011] At the method of the first aspect, the given region
may comprise a plurality of lines of the build log. At the
method of the first aspect, the indication of the given region
may identify the plurality of lines.

[0012] The method of the first aspect may further com-
prise initiating a process for repairing a failed build of the
build log, in a region of the failed build indicated by the
given region.

[0013] A second aspect of the present specification pro-
vides a computing device comprising: a controller; and a
computer-readable storage medium having stored thereon
program instructions that, when executed by the controller,
cause the computing device to perform a set of operations
comprising: training a recurrent neural network (RNN),
using a balanced dataset, to predict whether build logs input
to the RNN are indicative of respective successful builds or
respective failed builds, the balanced dataset comprising
positive build log examples and negative build log examples
from a continuous integration (CI) pipeline, the positive
build log examples labelled as being indicative of successful
builds, and the negative build log examples labelled as being
indicative of failed builds; inputting a build log to the RNN;
monitoring evolution of belief predictions of the RNN, as
the RNN is analyzing the build log, according to successive
regions of the build log; determining, based on the evolution
of the belief predictions, that a given region of the build log
meets a build log fatal error criterion condition; and output-
ting an indication of the given region.

[0014] At the computing device of the second aspect, the
balanced dataset may comprise an equal number of the
positive build log examples and the negative build log
examples.

[0015] At the computing device of the second aspect, the
build log may be output by the CI pipeline and may be
labelled as being indicative of a failed build.

[0016] At the computing device of the second aspect,
monitoring evolution of the belief predictions of the RNN
according to the successive regions of the build log may
comprise monitoring a prediction of the RNN that the build
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log is indicative of a successful build or a failed build on a
character-by-character, word-by-word basis or a line-by-line
basis or a region-by-region basis.

[0017] At the computing device of the second aspect, a
region, of the successive regions of the build log, may
comprise one or more of: at least one character of the build
log; at least one word of the build log; and at least one line
of the build log.

[0018] At the computing device of the second aspect, the
build log fatal error criterion condition may comprise: the
belief predictions falling below a given threshold at the
given region, and an output of the RNN being indicative that
the build log is indicative of a failed build.

[0019] At the computing device of the second aspect, the
balanced dataset may comprise an about equal number of the
positive build log examples and the negative build log
examples, and the build log fatal error criterion condition
may comprise: the belief predictions falling below 0.5 at the
given region, and an output of the RNN being indicative that
the build log is indicative of a failed build.

[0020] At the computing device of the second aspect, the
build log fatal error criterion condition may comprise: a
derivative of the belief predictions being at a minimum at the
given region, and an output of the RNN being indicative that
the build log is indicative of a failed build.

[0021] At the computing device of the second aspect, the
given region may comprise a plurality of lines of the build
log. At the computing device of the second aspect, the
indication of the given region may identify the plurality of
lines.

[0022] At the computing device of the second aspect, the
set of operations may further comprise initiating a process
for repairing a failed build of the build log, in a region of the
failed build indicated by the given region.

[0023] A third aspect of the present specification provides
a computer-readable storage medium having stored thereon
program instructions that, when executed by a computing
device, causes the computing device to perform a method
comprising: training, via the computing device, a recurrent
neural network (RNN), using a balanced dataset, to predict
whether build logs input to the RNN are indicative of
respective successful builds or respective failed builds, the
balanced dataset comprising positive build log examples and
negative build log examples from a continuous integration
(CD) pipeline, the positive build log examples labelled as
being indicative of successful builds, and the negative build
log examples labelled as being indicative of failed builds;
inputting, via the computing device, a build log to the RNN;
monitoring, via the computing device, evolution of belief
predictions of the RNN; as the RNN is analyzing the build
log, according to successive regions of the build log; deter-
mining, via the computing device, based on the evolution of
the belief predictions, that a given region of the build log
meets a build log fatal error criterion condition; and output-
ting, via the computing device, an indication of the given
region.

[0024] At the method of the third aspect, the balanced
dataset may comprise an equal number of the positive build
log examples and the negative build log examples.

[0025] At the method of the third aspect, the build log may
be output by the CI pipeline and labelled as being indicative
of a failed build.

[0026] At the method of the third aspect, monitoring
evolution of the belief predictions of the RNN according to
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the successive regions of the build log may comprise moni-
toring a prediction of the RNN that the build log is indicative
of a successful build or a failed build on a character-by-
character, word-by-word basis or a line-by-line basis or a
region-by-region basis.

[0027] At the method of the third aspect, a region, of the
successive regions of the build log, may comprise one or
more of: at least one character of the build log; at least one
word of the build log; and at least one line of the build log.
[0028] At the method of the third aspect, the build log fatal
error criterion condition may comprise: the belief predic-
tions falling below a given threshold at the given region, and
an output of the RNN being indicative that the build log is
indicative of a failed build.

[0029] At the method of the third aspect, the balanced
dataset may comprise an about equal number of the positive
build log examples and the negative build log examples, and
the build log fatal error criterion condition may comprise:
the belief predictions falling below 0.5 at the given region,
and an output of the RNN being indicative that the build log
is indicative of a failed build.

[0030] At the method of the third aspect, the build log fatal
error criterion condition may comprise: a derivative of the
belief predictions being at a minimum at the given region,
and an output of the RNN being indicative that the build log
is indicative of a failed build.

[0031] At the method of the third aspect, the given region
may comprise a plurality of lines of the build log. At the
method of the third aspect, the indication of the given region
may identify the plurality of lines.

[0032] The method of the third aspect may further com-
prise initiating a process for repairing a failed build of the
build log, in a region of the failed build indicated by the
given region.

[0033] A fourth aspect of the present specification pro-
vides a method comprising: training, via a computing
device, a recurrent neural network (RNN), using a balanced
dataset, to predict whether logs input to the RNN are
indicative of respective successful computer code or respec-
tive failed computer code, the balanced dataset comprising
positive log examples and negative log examples for corre-
sponding computer code, the positive log examples labelled
as being indicative of successful computer code, and the
negative log examples labelled as being indicative of failed
computer code; inputting, via the computing device, a log to
the RNN; monitoring, via the computing device, evolution
of belief predictions of the RNN, as the RNN is analyzing
the log, according to successive regions of the log; deter-
mining, via the computing device, based on the evolution of
the belief predictions, that a given region of the log meets a
log fatal error criterion condition; and outputting, via the
computing device, an indication of the given region.
[0034] At the method of the fourth aspect, the balanced
dataset may comprise an equal number of the positive log
examples and the negative log examples.

[0035] At the method of the fourth aspect, the log may be
labelled as being indicative of corresponding failed com-
puter code.

[0036] At the method of the fourth aspect, monitoring
evolution of the belief predictions of the RNN according to
the successive regions of the log may comprise monitoring
a prediction of the RNN that the log is indicative of
successful computer code or failed computer code on a
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character-by-character, word-by-word basis or a line-by-line
basis or a region-by-region basis.

[0037] At the method of the fourth aspect, a region, of the
successive regions of the log, may comprise one or more of:
at least one character of the log; at least one word of the log;
and at least one line of the log.

[0038] At the method of the fourth aspect, the log fatal
error criterion condition may comprise: the belief predic-
tions falling below a given threshold at the given region, and
an output of the RNN being indicative that the log is
indicative of corresponding failed computer code.

[0039] At the method of the fourth aspect, the balanced
dataset may comprise an about equal number of the positive
log examples and the negative log examples, and the log
fatal error criterion condition may comprise: the belief
predictions falling below 0.5 at the given region, and an
output of the RNN being indicative that the log is indicative
of corresponding failed computer code.

[0040] At the method of the fourth aspect, the log fatal
error criterion condition may comprise: a derivative of the
belief predictions being at a minimum at the given region,
and an output of the RNN being indicative that the log is
indicative of a corresponding failed computer code.

[0041] At the method of the fourth aspect, the given region
may comprise a plurality of lines of the log. At the method
of the fourth aspect, the indication of the given region may
identify the plurality of lines.

[0042] The method of the fourth aspect may further com-
prise initiating a process for repairing corresponding failed
computer code of the log, in a region of the corresponding
failed computer code indicated by the given region.

[0043] A fifth aspect of the present specification provides
a computing device comprising: a controller; and a com-
puter-readable storage medium having stored thereon pro-
gram instructions that, when executed by the controller,
cause the computing device to perform a set of operations
comprising: training a recurrent neural network (RNN),
using a balanced dataset, to predict whether logs input to the
RNN are indicative of respective successful computer code
or respective failed computer code, the balanced dataset
comprising positive log examples and negative log examples
from a continuous integration (CI) pipeline, the positive log
examples labelled as being indicative of successful com-
puter code, and the negative log examples labelled as being
indicative of failed computer code; inputting a log to the
RNN; monitoring evolution of belief predictions of the
RNN, as the RNN is analyzing the log, according to suc-
cessive regions of the log; determining, based on the evo-
Iution of the belief predictions, that a given region of the log
meets a log fatal error criterion condition; and outputting an
indication of the given region.

[0044] At the computing device of the fifth aspect, the
balanced dataset may comprise an equal number of the
positive log examples and the negative log examples.
[0045] At the computing device of the fifth aspect, the log
may be output by the CI pipeline and may be labelled as
being indicative of corresponding failed computer code.
[0046] At the computing device of the fifth aspect, moni-
toring evolution of the belief predictions of the RNN accord-
ing to the successive regions of the log may comprise
monitoring a prediction of the RNN that the log is indicative
of successful computer code or a failed computer code on a
character-by-character, word-by-word basis or a line-by-line
basis or a region-by-region basis.
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[0047] At the computing device of the fifth aspect, a
region, of the successive regions of the log, may comprise
one or more of: at least one character of the log; at least one
word of the log; and at least one line of the log.

[0048] At the computing device of the fifth aspect, the log
fatal error criterion condition may comprise: the belief
predictions falling below a given threshold at the given
region, and an output of the RNN being indicative that the
log is indicative of corresponding failed computer code.
[0049] At the computing device of the fifth aspect, the
balanced dataset may comprise an about equal number of the
positive log examples and the negative log examples, and
the log fatal error criterion condition may further comprise:
the belief predictions falling below 0.5 at the given region,
and an output of the RNN being indicative that the log is
indicative of corresponding failed computer code.

[0050] At the computing device of the fifth aspect, the log
fatal error criterion condition may comprise: a derivative of
the belief predictions being at a minimum at the given
region, and an output of the RNN being indicative that the
log is indicative of corresponding failed computer code.
[0051] At the computing device of the fifth aspect, the
given region may comprise a plurality of lines of the log. At
the computing device of the fifth aspect, the indication of the
given region may identify the plurality of lines.

[0052] At the computing device of the fifth aspect, the set
of operations may further comprise initiating a process for
repairing corresponding failed computer code of the log, in
a region of corresponding failed computer code indicated by
the given region.

[0053] A sixth aspect of the present specification provides
a computer-readable storage medium having stored thereon
program instructions that, when executed by a computing
device, causes the computing device to perform a method
comprising: training, via the computing device, a recurrent
neural network (RNN), using a balanced dataset, to predict
whether logs input to the RNN are indicative of respective
successful computer code or respective failed computer
code, the balanced dataset comprising positive log examples
and negative log examples for corresponding computer
code, the positive log examples labelled as being indicative
of successful computer code, and the negative log examples
labelled as being indicative of failed computer code; input-
ting, via the computing device, a log to the RNN; monitor-
ing, via the computing device, evolution of belief predic-
tions of the RNN, as the RNN is analyzing the log, according
to successive regions of the log; determining, via the com-
puting device, based on the evolution of the belief predic-
tions, that a given region of the log meets a log fatal error
criterion condition; and outputting, via the computing
device, an indication of the given region.

[0054] At the method of the sixth aspect, the balanced
dataset may comprise an equal number of the positive log
examples and the negative log examples.

[0055] At the method of the sixth aspect, the log may be
labelled as being indicative of corresponding failed com-
puter code.

[0056] At the method of the sixth aspect, monitoring
evolution of the belief predictions of the RNN according to
the successive regions of the log may comprise monitoring
a prediction of the RNN that the log is indicative of
successful computer code or failed computer code on a
character-by-character, word-by-word basis or a line-by-line
basis or a region-by-region basis.
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[0057] At the method of the sixth aspect, a region, of the
successive regions of the log, may comprise one or more of:
at least one character of the log; at least one word of the log;
and at least one line of the log.

[0058] At the method of the sixth aspect, the log fatal error
criterion condition may comprise: the belief predictions
falling below a given threshold at the given region, and an
output of the RNN being indicative that the log is indicative
of corresponding failed computer code.

[0059] At the method of the sixth aspect, the balanced
dataset may comprise an about equal number of the positive
log examples and the negative log examples, and the log
fatal error criterion condition may comprise: the belief
predictions falling below 0.5 at the given region, and an
output of the RNN being indicative that the log is indicative
of corresponding failed computer code.

[0060] At the method of the sixth aspect, the log fatal error
criterion condition may comprise: a derivative of the belief
predictions being at a minimum at the given region, and an
output of the RNN being indicative that the log is indicative
of a corresponding failed computer code.

[0061] At the method of the sixth aspect, the given region
may comprise a plurality of lines of the log. At the method
of the sixth aspect, the indication of the given region may
identify the plurality of lines.

[0062] The method of the sixth aspect may further com-
prise initiating a process for repairing corresponding failed
computer code of the log, in a region of the corresponding
failed computer code indicated by the given region.

BRIEF DESCRIPTIONS OF THE DRAWINGS

[0063] For a better understanding of the various examples
described herein and to show more clearly how they may be
carried into effect, reference will now be made, by way of
example only, to the accompanying drawings in which:
[0064] FIG. 1 depicts a system for implementing a recur-
rent neural network to determine a given region of a build
log that meets a fatal error criterion condition, according to
non-limiting examples.

[0065] FIG. 2 depicts a device for implementing a recur-
rent neural network to determine a given region of a build
log that meets a fatal error criterion condition, according to
non-limiting examples.

[0066] FIG. 3 depicts a flowchart of a method for imple-
menting a recurrent neural network to determine a given
region of a build log that meets a fatal error criterion
condition, according to non-limiting examples.

[0067] FIG. 4 depicts the system of FIG. 1 implementing
aspects of a method for implementing a recurrent neural
network to determine a given region of a build log that meets
a fatal error criterion condition, according to non-limiting
examples.

[0068] FIG. 5 depicts the system of FIG. 1 implementing
yet further aspects of a method for implementing a recurrent
neural network to determine a given region of a build log
that meets a fatal error criterion condition, according to
non-limiting examples.

[0069] FIG. 6 depicts an example of a build log, according
to non-limiting examples.

[0070] FIG. 7 depicts an example of a graph representing
belief prediction of a recurrent neural network while ana-
lyzing a build log, according to non-limiting examples.
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[0071] FIG. 8 depicts an example of a graph representing
a derivative of a belief prediction of a recurrent neural
network while analyzing a build log, according to non-
limiting examples.

[0072] FIG. 9 depicts the system of FIG. 1 implementing
yet further aspects of a method for implementing a recurrent
neural network to determine a given region of a build log
that meets a fatal error criterion condition, according to
non-limiting examples.

DETAILED DESCRIPTION

[0073] A CI pipeline is understood to receive code
changes, timed actions, manual actions, amongst other pos-
sibilities, as input and outputs to generate builds. A build log
is associated with a build. Determining why a build has
failed may be performed manually by investigating a build
log. In general, a build log is understood to comprise outputs
of commands included in a build. However, as builds can be
thousands to tens of thousands of lines of code, or more,
build logs are similarly large, and hence investigating a build
log can be cumbersome and time consuming.

[0074] Furthermore, builds and corresponding build logs
are generally output from a CI pipeline, and a build log may
indicate only whether a corresponding build was successful
or has failed.

[0075] In addition, investigation of a build log of a cor-
responding failed build is subject to bias by a developer
reviewing the build log. In particular, a developer attempts
to identity a location of a root cause of a failure in the build,
and different developers may determine different locations
in the build for the failure. While cross-validation may be
performed to increase the confidence of identification of the
location of the failure, such a process may be time consum-
ing, may not yield consistent results, and may not be
feasible, in practice, due to cost. For example, cross-vali-
dation may refer to multiple developers investigating the
same build, and different developers may end up with
different conclusions on the failed build.

[0076] As such, provided herein is a computing device
that trains a recurrent neural network (RNN) to predict
whether build logs input to the RNN are indicative of
respective successful builds or respective failed builds. The
RNN is trained (e.g. in a training mode) using a balanced
dataset of positive build log examples and negative build log
examples from a CI pipeline, the positive build log examples
labelled as being indicative of successful builds, and the
negative build log examples labelled as being indicative of
failed builds. However, regions of the negative build log
examples that caused a failure of corresponding builds are
generally not identified in the balanced dataset. Put another
way, in the balanced data set, lines and/or regions of a root
cause of a failure are not identified. Hence, the balanced data
set is relatively simply to produce and labelling thereof is
generally binary in nature. A positive build log example is
generally labelled as corresponding to a successful build
(e.g. a positive build log example may be labelled as “1”),
and a negative build log example is generally labelled as
corresponding to a failed build (e.g. a negative build log
example may be labelled as “0”). However, any labelling
scheme is within the scope of the present specification.
Indeed, it is understood that such a balanced dataset may be
easier to generate than a dataset of builds and/or build logs
with their root cause locations identified.
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[0077] Once the RNN is trained, build logs from the CI
pipeline may be input to the RNN and the RNN may
generally output an indication only of whether a build log
corresponds to a successful build or a failed build. Such an
indication and/or output by the RNN may be referred to as
a belief prediction (which may be interchangeably referred
to as a prediction), indicating a “belief”” and/or prediction by
the RNN as to whether a build log corresponds to a suc-
cessful build or a failed build. For example, using a scale of
0 to 1, where 0 indicates a failed build, and 1 indicates a
successful build, the RNN may output a value (e.g. a belief
prediction) between 0 and 1, which indicates a belief pre-
diction by the RNN of the build log corresponding to a
successful build or a failed build. In general, presuming
equal, and/or about equal, respective numbers of positive
build log examples and negative build log examples, values
(e.g. belief predictions) greater than 0.5 may indicate a
successful build, and values (e.g. belief predictions) less
than 0.5 may indicate a failed build. However, presuming the
balanced dataset is large (e.g. more than 100 to 1000
examples each of positive build log examples and negative
build log examples), values output by the RNN tend to be
greater than 0.9 for successful builds and less than 0.1 for
failed builds. Indeed, as the number of positive build log
examples and negative build log examples of the balanced
dataset increase, the more output of the RNN may converge
towards “1” for successful builds, and “0” for failed builds.
[0078] Once the RNN is trained, the computing device
may input a build log from the CI pipeline into the RNN (e.g.
the RNN operated in a normal mode and/or an analysis
mode). In particular, the computing device may input a build
log of a corresponding build that has failed, as indicated by
the CI pipeline.

[0079] However, while the RNN is analyzing the build log
of the failed build, the computing device monitors evolution
of belief predictions of the RNN, according to successive
regions of the build log, in particular from a first region to
a last region (e.g. from beginning to end) of the failed build
log. In some examples, monitoring of the RNN may occur
on a line-by-line basis and/or the successive regions may
include as few as one line of the build log. In general,
evolution of belief predictions of the RNN generally refers
to how a prediction of the RNN changes over time, and/or
on a region-by-region basis, as the RNN is analyzing a build
log.

[0080] Monitoring of the belief prediction may occur by
way of a process that may be referred to as instrumentation,
for example by monitoring internal processes of the RNN to
receive intermediate results of the belief prediction and/or
output of the RNN. In particular, monitoring of the belief
prediction may occur via an instrumentate engine imple-
mented by the computing device, and which interfaces with
the RNN to monitor evolution of the belief prediction of the
RNN as the RNN is analyzing a build log, for example in a
sequence from beginning to end of the build log.

[0081] In particular, the RNN generally analyzes a build
log on a region-by-region, and/or line-by-line basis, and/or
word-by-word basis and/or on a character-by-character
basis, starting with a first character and/or first word and/or
first line and/or first region, and ending with a last character
and/or last word and/or last line and/or last region of the
build log. Put another way, as a build log is generally text,
and/or a sequence of characters and/or words and/or lines
and/or regions, the RNN analyzes characters and/or words
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and/or lines and/or regions in the sequence, from beginning
to end, and makes intermediate belief predictions of whether
the build log corresponds to a successful build log or a failed
build log upon analysis of each character and/or word and/or
line and/or region in the sequence. As such the belief
prediction may evolve over time and/or as the RNN analyzes
characters and/or words and/or lines and/or regions in the
sequence. Hence, for example, and using the 0 to 1 scale as
previously described, initially an RNN may assign a belief
prediction of “0.5” to a build log as, initially, from the
RNN’s perspective, the build log has an equal chance of
corresponding to a successful build or a failed build (e.g., as
a balanced data is used to train the RNN). As characters
and/or words and/or lines and/or regions of the sequence are
analyzed (e.g. in a sequence of the build log), in a sequence
from beginning to end of the build log, the initial belief
prediction may change from 0.5 towards 1 or 0, depending
on whether each character and/or word and/or line and/or
region indicates possible success or failure of the corre-
sponding build. Furthermore, the belief prediction of the
RNN may increase and/or decrease as the RNN is analyzing
the sequence of characters and/or words and/or lines and/or
regions of a build log. Hence, for example, the instrumentate
engine may output a graph, and the like, of belief prediction
of the RNN as a function of character number and/or word
number and/or line number and region number of the build
log.

[0082] The computing device may determine, based on the
evolution of the belief predictions of the RNN for a build log
(e.g. as represented by a graph, and the like, output by the
instrumentate engine) that a given region of the build log
meets a build log fatal error criterion condition and hence
may include an indication of a root cause of the failure of the
corresponding build. Put another way, the identified given
region of the build log may correspond to a region of the
corresponding build that includes a root cause of the failure
of the build.

[0083] In one example, such build log fatal error criterion
conditions may include, but is not limited to, the belief
predictions falling below a given threshold, such as 0.5 at a
given region, and an output of the RNN being indicative that
the build log is indicative of a failed build (e.g. the final
belief prediction is below 0.5).

[0084] In another example, such build log fatal error
criterion conditions may include, but is not limited to, a
derivative of the belief predictions being at a minimum at the
given region (e.g. a negative slope), and an output of the
RNN being indicative that the build log is indicative of a
failed build (e.g. the final belief prediction is below 0.5).
[0085] In some examples, the given region may comprise
one line, however in other examples the given region may
comprise a plurality of lines. Regardless, a given region that
meets a build log fatal error criterion condition may gener-
ally be identified by the computing device as a region of the
build log that indicates where a root cause that lead to a
failure of the corresponding build is located.

[0086] The computing device may output an indication of
the given region, for example over a computer network, such
that users of the computer network have immediate access to
the indication of the given region. For example, the indica-
tion of the given region may identify a line and/or lines of
the build log that indicates where a failure of the corre-
sponding build occurred. Furthermore, the computing
device may output the indication of the given region to a
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computer terminal, and the like, of a developer so that the
developer may repair the corresponding build as the indi-
cation based on the identification of the line and/or lines of
the build log that indicates where a failure of the corre-
sponding build occurred.

[0087] In some examples, as the device, system and/or
method provided in the present specification may indicate,
in a build log, where a root cause that lead to a failure of a
corresponding build is located, program repair algorithms,
and the like, may be used to focus on a location where the
root cause occurred, instead of all locations indicated by the
build log where errors occurred. Put another way, as many
and/or most failures indicated by the build log may be
non-fatal, and only one may be fatal, focusing a program
repair algorithm on a location where the root cause of a
failure occurred, while ignoring locations corresponding to
non-fatal errors, may save time and/or processing resources.
[0088] FIG. 1 depicts a system 100 for implementing a
recurrent neural network (RNN) to determine a given region
of a build log that meets a fatal error criterion condition
which may mitigate and/or reduce at least a portion of the
aforementioned technical challenges. The components of the
system 100 are generally in communication via communi-
cation links which are depicted in FIG. 1, and throughout the
present specification, as double-ended arrows between
respective components. The communication links include
any suitable combination of wireless and/or wired commu-
nication networks and, similarly, the communication links
may include any suitable combination of wireless and/or
wired links.

[0089] The system 100 will furthermore be described with
respect to engines. As used herein, the term “engine” refers
to hardware (e.g., a processor, such as a central processing
unit (CPU), graphics processing unit (GPU), an integrated
circuit or other circuitry) or a combination of hardware and
software (e.g., programming such as machine- or processor-
executable instructions, commands, or code such as firm-
ware, a device driver, programming, object code, etc. as
stored on hardware). Hardware includes a hardware element
with no software elements such as an application specific
integrated circuit (ASIC), a Field Programmable Gate Array
(FPGA), a PAL (programmable array logic), a PLA (pro-
grammable logic array), a PLD (programmable logic
device), etc. A combination of hardware and software
includes software hosted at hardware (e.g., a software mod-
ule that is stored at a processor-readable memory such as
random access memory (RAM), a hard-disk or solid-state
drive, resistive memory, or optical media such as a digital
versatile disc (DVD), and/or implemented or interpreted by
a processor), or hardware and software hosted at hardware.
[0090] In particular the system 100 comprises a computing
device 102 in communication with a database 104 and a
computer device and/or terminal 106 which, as depicted,
may comprise a display screen 108 and an input device 110.
In general, the computing device 102 implements an RNN
112 and an instrumentate engine 114. While not labelled as
such, the RNN 112 may be provided in the form of an engine
and more specifically an RNN engine. The RNN 112 may
comprise any suitable RNN, and which may include, but is
not limited to, a long short-term memory network (LSTM),
gated recurrent units (GRUs), bidirectional RNNs, attention
mechanisms, and the like, amongst other possibilities.
[0091] As depicted, the system 100 further comprises a CI
pipeline 118 into which one or more inputs and/or program-
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ming code changes 119 are input and corresponding builds
120 (e.g. software builds) are output, along with correspond-
ing build logs 121. In general, the CI pipeline 118 outputs
builds 120 and corresponding build logs 121, which may be
stored at the database 104. In some examples, the CI pipeline
118 outputs the builds 120 to the database 104, and/or the CI
pipeline 118 outputs failed builds 120 (and successful builds
120) to the database 104, for example along with corre-
sponding build logs 121. For example, the CI pipeline 118
may further output an indication of whether a build 120 is
successful or has failed. However, the CI pipeline 118
generally performs any suitable functionality of a CI pipe-
line.

[0092] While only one database 104 is depicted, the sys-
tem 100 may comprise any suitable number of databases,
and/or any other suitable memories, which store build logs
in any suitable format.

[0093] As depicted, the builds logs stored at the database
104 include positive build log examples 122, comprising
build logs 121 corresponding to successful builds 120, and
negative build log examples 122, comprising build logs 121
corresponding to failed builds 120, for example as deter-
mined by output from the CI pipeline 118. The build log
examples 122, 124 may respectively comprise respective
build logs 121 corresponding to positive/successful builds
120, and negative/failed builds 120. Hence, for example, a
positive build log example 122 comprises a list of outputs of
commands included in a successful build 120, as stored in a
corresponding build log 121, and a negative build log
example 124 comprises a list of outputs of commands
included in a failed build 120, as stored in a corresponding
build log 121. In general, the list of outputs of the commands
for the build log examples 122, 124 are provided in a
sequence that correspond to a sequence of the commands in
a build 120. Hence, a first line of a build log example 122,
124 may correspond to an output of a first command of a
build 120, and a last line of a build log example 122, 124
may correspond to an output of a last command of the build
120.

[0094] The positive build log examples 122 may be stored
with an indication that the corresponding build succeeded
(e.g. such as “17) and negative build log examples 124 may
be stored with an indication that the corresponding build
failed (e.g. such as “0”).

[0095] Respective numbers of the positive build log
examples 122 and the negative build log examples 124 as
stored at the database 104 may be any suitable number.
However, as will be presently described, the positive build
log examples 122 and the negative build log examples 124
may be used to train the RNN 112, and the number of the
positive build log examples 122 and the negative build log
examples 124 used to train the RNN 112 may be equal,
and/or about equal and/or about the same. Indeed, an equal
number, and/or about an equal number, of the positive build
log examples 122 and the negative build log examples 124
may form a balanced dataset. In particular, a balanced
dataset of the positive build log examples 122 and the
negative build log examples 124 may comprise an equal
number of the positive build log examples 122 and the
negative build log examples 124, which may be used to train
the RNN 112. Indeed, an equal number of positive build log
examples 122 and negative build log examples 124 that
forms a balanced dataset used to train the RNN 112 may
ensure that output from the RNN 112 (e.g. a belief predic-
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tion) that is greater than 0.5 indicates a successful corre-
sponding build for a build log 121 input to the RNN 112, and
output from the RNN 112 (e.g. a belief prediction) that is
less than 0.5 indicates a failed corresponding build 120 for
a build log 119 input to the RNN 112.

[0096] However, whether the balanced dataset includes
exactly the same number of the positive build log examples
122 and the negative build log examples 124 may depend on
how many of the positive build log examples 122 and the
negative build log examples 124 are in the balanced dataset.
For example, a balanced data set of tens of thousands of the
positive build log examples 122 and the negative build log
examples 124 may have an about the same, but not exactly
the same, number of the positive build log examples 122 and
the negative build log examples 124, though the respective
numbers of the positive build log examples 122 and the
negative build log examples 124 may be within 0.1% of each
other, and the like. In general, the larger the balanced data,
the less important it is that the respective numbers of the
positive build log examples 122 and the negative build log
examples 124 be the same. However, respective numbers of
the respective numbers of the positive build log examples
122 and the negative build log examples 124 may be
generally chosen such that output from the RNN 112 (e.g. a
belief prediction) that is greater than 0.5 indicates a suc-
cessful corresponding build for a build log 121 input to the
RNN 112, and output from the RNN 112 (e.g. a belief
prediction) that is less than 0.5 indicates a failed correspond-
ing build 120 for a build log 121 input to the RNN 112. As
will be presently explained, with a balanced dataset, it is
understood that an initial belief prediction of RNN 112 may
be 0.5 and/or about 0.5.

[0097] Indeed, it is understood that such a balanced data-
set may be easier to generate than a dataset of builds and/or
build logs with their root cause locations identified. Indeed,
it is understood that the balanced data set may comprise the
positive build log examples 122 and the negative build log
examples 124, the positive build log examples 122 labelled
as being indicative of successful builds, and the negative
build log examples 124 labelled as being indicative of failed
builds, but without any indication of a location where a root
cause of failure occurred.

[0098] The instrumentate engine 114 may generally be
configured to monitor evolution of the belief prediction of
the RNN 112 as the RNN 112 is analyzing a build log 121
using, for example, any suitable instrumentation process for
monitoring internal states of an RNN. For example, the
instrumentate engine 114 may be based on software such as
PyTorch™, Tensor Flow™, and the like, but specifically
adapted to monitor internal states of the RNN 112 as the
RNN 112 is analyzing a build log. In particular, the instru-
mentate engine 114 is generally configured to communicate
with the RNN 112 to receive, and store (e.g. in cache and/or
memory of the computing device 102), a belief prediction of
the RNN 112 as the RNN 112 processes each line and/or
portion of a build log 121. In some examples, such func-
tionality may be at least partially incorporated into the RNN
112, and/or at least a portion of the instrumentate engine 114
and the RNN 112 may be combined. However, it is under-
stood that the present specification does not require that an
RNN be modified, but rather the monitoring functionality as
described herein may be solely incorporated into the instru-
mentate engine 114. It is understood that when the RNN 112
completes an analysis of a build log 121, the instrumentate
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engine 114 may return a value of the prediction associated
with each line and/or portion of a build log 121 input to the
RNN 112.

[0099] The instrumentate engine 114 may output a graph,
and the like, indicative of the evolution of the belief pre-
diction of the RNN 112 analyzing a build log 121. However,
the output of the instrumentate engine 114 may be in any
suitable format (e.g., including, but not limited to, a list of
values, key-value pairs, and the like, amongst, other possi-
bilities).

[0100] Based on the evolution of the belief prediction of
the RNN 112, the computing device 102 may determine, that
a given region of a build log 121 meets a build log fatal error
criterion condition, described in more detail below with
respect to FIG. 7 and FIG. 8. In general, such a region may
correspond to a region of a build 120 where a failure
occurred. Hence, when such a region is identified, repair of
the build 120 may occur. Put another way, such a region may
correspond to a region of a build 120 where a root cause of
a failure is located, and hence, when such a region is
identified, repair of the build 120 may occur by repairing the
root cause.

[0101] As such, the computing device 102 may output an
indication of the given region of a build log 121 that
correspond to a region of a build 120 where a failure
occurred, for example to the computer device and/or termi-
nal 106. Indeed, the computer device and/or terminal 106
may be in communication with the computing device 102
via a computer network 126, as represented in FIG. 1 by the
communication link between the computing device 102 and
the computer device and/or terminal 106. Put another way,
the computing device 102 may output an indication of a
given region of a build log 121 corresponding to a region of
a build 120 where a failure occurred, for example over the
computer network 126, such that users of the computer
network 126 have immediate access to the indication of the
given region. It is understood that the term “users” in this
context may include the computer device and/or terminal
106.

[0102] For example, the computer device and/or terminal
106 may comprise a computer terminal operated by a
developer (not depicted), who may be tasked with repairing
builds 120, for example via interacting with the display
screen 108 and the input device 110. Hence, when an
indication of a region of a build log 121 is received at the
computer device and/or terminal 106, such a region indi-
cating a corresponding region of a build 120 where a root
cause of a failure occurred, the developer may access the
build 120 and repair the corresponding region of the build
120.

[0103] Alternatively, the computer device and/or terminal
106 may comprise an automated and/or assistive code repair
computing device which may repair a code of a build 120
and/or assist a developer with repairing programming code
of'a build 120, when an indication of a region of a build log
121, that corresponds to a region of a build 120 where a
failure occurred, is received at the computer device and/or
terminal 106. Indeed, in these examples, the computer
device and/or terminal 106 may implement one or more
machine learning algorithms trained to repair code in such
regions.

[0104] Attention is next directed to FIG. 2 which depicts
details of the computing device 102. As shown in FIG. 2. In
particular, while the computing device 102 is depicted as
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implementing both the RNN 112 and the instrumentate
engine 114, it is understood that one or more of the RNN 112
and the instrumentate engine 114 may be implemented at
any suitable combination of computing devices, including,
but not limited, to one or more servers, one or more cloud
computing devices, and the like, and the computing device
102 may interface with such other computing devices to
train the RNN 112 and/or monitor a belief prediction of the
RNN 112.

[0105] Alternatively, and/or in addition, the computing
device 102 may comprise one or more computing devices,
and/or one or more servers and/or one or more cloud
computing devices, and the like. Alternatively, and/or in
addition, the computing device 102 may comprise one or
more personal computers and/or one or more laptops, and/or
any other suitable computing device.

[0106] In the depicted example of FIG. 1, the computing
device 102 includes at least one controller 202, such as a
central processing unit (CPU) or the like. The controller 202
is interconnected with a memory 204 storing an application
206, the memory 204 implemented as a suitable non-
transitory computer-readable medium (e.g. a suitable com-
bination of non-volatile and volatile memory subsystems
including any one or more of Random Access Memory
(RAM), read only memory (ROM), Electrically Erasable
Programmable Read Only Memory (EEPROM), flash
memory, magnetic computer storage, and the like). The
controller 202 and the memory 204 are generally comprised
of one or more integrated circuits (ICs).

[0107] The controller 202 is also interconnected with a
communication interface 208, which enables the computing
device 102 to communicate with the other components of
the system 100, for example via a suitable communication
network and/or the computer network 126. The communi-
cation interface 208 therefore may include any suitable
components (e.g. network interface controllers (NICs), radio
units, and the like) to communicate via any suitable network.
The specific components of the communication interface
208 may be selected based upon the nature of a network used
to communicate, and/or local communication between com-
ponents of the system 100, and the like.

[0108] While not depicted in FIG. 2, the computing device
102 can also include input and output devices connected to
the controller 202, such as keyboards, mice, display screens,
and the like (not shown) but which may include, but are not
limited to, the display screen 108 and the input device 110.
[0109] The components of the computing device 102
mentioned above can be deployed in a single enclosure, or
in a distributed format. In some examples, therefore, the
computing device 102 may include a plurality of processors,
either sharing the memory 204 and communication interface
208, or each having distinct associated memories and com-
munication interfaces. As such, it is understood that the
memory 204, and/or a portion of the memory 204, may be
internal (e.g. as depicted) or external to the computing
device 102; regardless, the controller 202 is understood to
have access to the memory 204.

[0110] The memory 204 also stores computer-readable
programming instructions, executable by the controller 202,
in the form of various applications, including the application
206. As will be understood by those skilled in the art, the
controller 202 executes the instructions of the application
206 (and any other suitable applications) in order to perform
various actions defined by the instructions contained therein
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including, but not limited to, the blocks of a method
described with respect to FIG. 3. In the description below,
the controller 202, and more generally the computing device
102, are understood to be configured to perform those
actions. It will be understood that they are so configured via
the execution (by the controller 202) of the instructions of
the applications stored in memory 204. Put another way, the
computing device 102 is understood to comprise the con-
troller 202; and a computer-readable storage medium (e.g.
the memory 204) having stored thereon program instructions
(e.g. the application 206 and/or any other suitable modules,
and the like stored at the memory 204 as described hereafter)
that, when executed by the controller 202, cause the com-
puting device 202 to perform a set of operations comprising
the blocks of a method described with respect to FIG. 3.
[0111] As depicted, the memory 204 further stores an
RNN module 224 which comprises computer-readable pro-
gramming instructions for implementing the RNN 112, for
example when processed by the controller 202.

[0112] As depicted, the memory 204 further stores an
instrumentate module 226 which comprises computer-read-
able programming instructions for implementing the instru-
mentate engine 114, for example when processed by the
controller 202.

[0113] As depicted, the memory 204 further stores one or
more build log fatal error criterion conditions 228 which
comprises computer-readable programming instructions for
determining whether a given region of the build log meets a
build log fatal error criterion condition, based on the evo-
Iution of the belief predictions output by the instrumentate
engine 114.

[0114] While the RNN module 224, the instrumentate
module 226, and the one or more build log fatal error
criterion conditions 228 are depicted as being separate from
the application 206, in other examples, one or more of the
RNN module 224, the instrumentate module 226, and the
one or more build log fatal error criterion conditions 228,
may be a component of the application 206.

[0115] Attention is now directed to FIG. 3 which depicts
a flowchart representative of a method 300 for implementing
a recurrent neural network to determine a given region of a
build log that meets a fatal error criterion condition. The
operations of the method 300 of FIG. 3 correspond to
machine readable instructions that are executed by a com-
puting device 102, and specifically a controller 202 of a
computing devices 102. In the illustrated example, the
instructions represented by the blocks of FIG. 3 are stored at
the memory 204 for example, as the RNN module 224, the
instrumentate module 226, and the one or more build log
fatal error criterion conditions 228. The method 300 of FIG.
3 is one way in which the controller 202 and/or the com-
puting devices 102 and/or the system 100 may be config-
ured. Furthermore, the following discussion of the method
300 of FIG. 3 will lead to a further understanding of the
system 100, and its various components.

[0116] The method 300 of FIG. 3 need not be performed
in the exact sequence as shown and likewise various blocks
may be performed in parallel rather than in sequence.
Accordingly, the elements of method 300 are referred to
herein as “blocks” rather than “steps.” The method 300 of
FIG. 3 may be implemented on variations of the system 100,
as well.

[0117] At a block 302, the controller 202 and/or the
computing device 102, trains the RNN 112 using a balanced
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dataset, to predict whether build logs input to the RNN 112
are indicative of respective successful builds 120 or respec-
tive failed builds 120. As has already been described, the
balanced dataset generally comprises positive build log
examples 122 and negative build log examples 124 from the
Cl pipeline 118, the positive build log examples 122 labelled
as being indicative of successful builds 120, and the negative
build log examples 124 labelled as being indicative of failed
builds 120.

[0118] Such labelling of the positive build log examples
122 and the negative build log examples 124 may occur via
the CI pipeline 118, which may out the positive build log
examples 122 and the negative build log examples 124 and
label the positive build log examples 122 and the negative
build log examples 124 accordingly as being respectively
indicative of successful builds 120 and failed builds 120.
[0119] In general, the balanced dataset may comprise an
equal number of the positive build log examples 122 and the
negative build log examples 124. However, when the bal-
anced dataset is large, for example greater than 10,000
positive build log examples 122 and negative build log
examples 124, respective numbers of the positive build log
examples 122 and the negative build log examples 124 of the
balanced data set may be about equal, for example within
0.1% of each other, and/or within 1% of each other, and/or
within any other suitable range of each other.

[0120] However, as has been previously described, respec-
tive numbers of the positive build log examples 122 and the
negative build log examples 124 of the balanced data set
may be generally chosen such that output from the RNN 112
(e.g. a belief prediction) that is greater than 0.5 indicates a
successful corresponding build for a build log input to the
RNN 112, and output from the RNN 112 (e.g. a belief
prediction) that is less than 0.5 indicates a failed correspond-
ing build for a build log input to the RNN 112.

[0121] However, when respective numbers of the positive
build log examples 122 and the negative build log examples
124 are not equal, a value, above and below which output of
the RNN 112 is respectively indicative of a corresponding
build 120 being a successful build 120 or a failed build 120,
may be adjusted accordingly. For example, when the bal-
anced dataset comprises 60% positive build log examples
122 and 40% negative build log examples 124, output from
the RNN 112 (e.g. a belief prediction) that is greater than 0.4
may indicate a successful corresponding build for a build log
input to the RNN 112, and output from the RNN 112 (e.g.
a belief prediction) that is less than 0.4 may indicate a failed
corresponding build for a build log input to the RNN 112.
[0122] Inparticular, at the block 302, the RNN 112 may be
operated in a training mode, and the positive build log
examples 122 and the negative build log examples 124 may
be provided to the RNN 112 as training input, while respec-
tive labels thereof (e.g. “1” or “0) may be provided to the
RNN 112 as training output. Hence, the RNN 112 is gen-
erally trained to determine whether a build log input to the
RNN 112 is indicative of a successful build or a failed build,
and hence output an indication thereof. It is understood that
the RNN 112 is not specifically trained to identify, and
output, a region of a build log that includes a root cause of
a failure of a corresponding build.

[0123] It is further understood that the controller 202
and/or the computing device 102 may collect the positive
build log examples 122 and the negative build log examples
124 from the database 104. Alternatively, and/or in addition,
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the controller 202 and/or the computing device 102 may
collect the positive build log examples 122 and the negative
build log examples 124 from the CI pipeline 118.

[0124] At a block 304, the controller 202 and/or the
computing device 102, inputs a build log 121 to the RNN
112.

[0125] Such an input of a build log 121 to the RNN 112 is
understood to occur after the RNN 112 is trained at the block
302.

[0126] Furthermore, such an input of a build log 121 to the
RNN 112 is understood to occur while the RNN 112 is in a
normal mode and/or an analysis mode (e.g. different from
the training mode).

[0127] Furthermore, the build log 121 input to the RNN
112 is understood to be output by the CI pipeline 118, and
labelled as being indicative of a failed build 120; alterna-
tively, and/or in addition, such a failed build 120 may be
labelled as a failed build 120. Such labelling may occur via
the CI pipeline 118 similar to the labelling of the positive
build log examples 122 and the negative build log examples
124.

[0128] Put another way, the build log 121 input to the
RNN 112 is understood to be output by the CI pipeline 118
which also outputs the positive build log examples 122 and
the negative build log examples 124.

[0129] At a block 306, the controller 202 and/or the
computing device 102, monitors evolution of belief predic-
tions of the RNN 112, as the RNN 112 is analyzing the build
log, according to successive regions of the build log. Such
regions may comprise characters and/or words and/or
groups of words of the build log, and/or lines and/or groups
of lines of the build log, and the like.

[0130] Furthermore, it is understood that the RNN 112
begins analysis of the build log at a beginning of the build
log, and/or a first character and/or first word of the build log,
and/or a first line of the build log, and ends analysis of the
build log at an end of the build log, and/or a last character
and/or last word of the build log, and/or a last line of the
build log. Hence, the RNN 112 is understood to perform the
analysis of the build log according to sequence of characters
and/or words and/or lines, and the like, of the build log, the
sequence beginning with a first character and/or first word
and/or first line of the build log, and ending with a last
character and/or last word and/or last line of the build log.
[0131] In a particular example, the instrumentate engine
114 may monitor the RNN 112 to determine internal states
of'the RNN 112 as the RNN 112 analyzes such sequence of
characters and/or words and/or lines and/or regions of the
build log input to the RNN 112 in the sequence of characters
and/or words and/or lines, and the like, of the build log.
However, such monitoring evolution of the belief predic-
tions of the RNN 112 may occur in any suitable manner,
using any suitable process and/or engine, and/or component
of the application 206, and the like. For example, such
monitoring is understood to occur during an “inference
phase” of the RNN 112, for example before the RNN 112
outputs a final belief prediction.

[0132] For example, monitoring evolution of the belief
predictions of the RNN 112 according to the successive
regions of the build log may comprise monitoring a predic-
tion of the RNN 112 that the build log is indicative of a
successful build 120 or a failed build 120 on a character-
by-character and/or word-by-word basis or a line-by-line
basis or a region-by-region basis. In particular, a region, of
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the successive regions of the build log, may comprise one or
more of: at least one character of the build log; at least one
word of the build log; at least one line of the build log;
and/or any other suitable groups of characters and/or words
and/or lines and/or regions.

[0133] In general, the evolution of the belief predictions of
the RNN 112 may be represented by a graph, and the like,
indicating change and/or evolution of the belief predictions
RNN 112 over time, and/or as a function of characters and/or
words and/or lines and/or regions, in the sequence, of the
build log input to the RNN 112. While present examples are
described with respect to the instrumentate engine 114
outputting such a graph, and the like, it is understood that the
instrumentate engine 114 may output a belief prediction of
the RNN 112 on a character-by-character basis and/or a
word-by-word basis and/or a line-by-line basis or a region-
by-region basis, and the controller 202 and/or the computing
device 102 may collect such output and build the evolution
of the belief predictions of the RNN 112 accordingly (e.g. in
the form of a graph and/or any other suitable format).
[0134] At a block 308 the controller 202 and/or the
computing device 102, determines, based on the evolution of
the belief predictions, that a given region of the build log
meets a build log fatal error criterion condition 228.
[0135] In some examples, a build log fatal error criterion
condition 228 may comprise: the belief predictions falling
below a given threshold at the given region, and an output
of the RNN 112 being indicative that the build log is
indicative of a failed build (e.g. the RNN 112 may output a
value less than the given threshold).

[0136] Alternatively, and/or in addition, a build log fatal
error criterion condition 228 may comprise: the belief pre-
dictions falling below a given threshold at the given region
and does not later increase above the given threshold and/or
never again crosses the given threshold and/or does not
again cross the given threshold. Put another way, a build log
fatal error criterion condition 228 may comprise the belief
predictions falling below a given threshold at the given
region. falls below the given threshold, and does not later
increase above the given threshold and/or never again cross
the given threshold and/or does not again cross the given
threshold

[0137] Insome examples, when the balanced dataset com-
prises an equal number of the positive build log examples
122 and the negative build log examples 124, such a given
threshold of a build log fatal error criterion condition 228
may be 0.5.

[0138] Put another way, when the balanced dataset com-
prises an equal, and/or an about equal number, of the
positive build log examples 122 and the negative build log
examples 124, a build log fatal error criterion condition 228
may comprise: the belief predictions falling below 0.5 at the
given region, and an output of the RNN 112 being indicative
that the build log is indicative of a failed build 120.
[0139] However, the given threshold may be any suitable
value, and may depend on relative numbers of the positive
build log examples 122 and the negative build log examples
124 as has been previously described.

[0140] Hence, in these examples, when the RNN 112
outputs a final belief prediction that is below the given
threshold, the given region of the build log where the belief
prediction falls below the given threshold may indicate a
region of the corresponding build 120 where the correspond-
ing build 120 failed.

Jan. 23, 2025

[0141] Alternatively, and/or in addition, a build log fatal
error criterion condition 228 may comprise: a derivative of
the belief predictions being at a minimum at the given
region, and an output of the RNN being indicative that the
build log is indicative of a failed build. Indeed, a negative
derivative generally indicates a negative slope of a graph,
and hence when a derivative of the belief predictions is at a
minimum, such a derivative may indicate that the belief
prediction decreased in a given region of the derivative, and
hence the given region of the build log where the derivative
is negative may indicate a region of the corresponding build
120 where the corresponding build 120 failed.

[0142] However, such build log fatal error criterion con-
ditions 228 may be combined in any given manner.

[0143] For example, evolution of the belief predictions
may include several regions where respective derivatives
thereof are negative, but only one of the regions may
correspond to a region where the belief predictions also
dropped below a given threshold. Hence, when there are two
or more regions where respective derivatives thereof are
negative, the given region that corresponds to a region of a
build 120 that caused the build 120 to fail may be the region
where the belief predictions also dropped below a given
threshold.

[0144] Furthermore, the given region identified at the
block 310 may comprise a plurality of lines of the build log
input to the RNN 112 at the block 304. However, it is
understood that such a plurality of lines of the given region
is less than a total number of lines of the build log input to
the RNN 112. In some examples, the plurality of lines of the
given region may be less than 10% of the total number of
lines of the build log input to the RNN 112, and/or the
plurality of lines of the given region may be less than 5% of
the total number of lines of the build log input to the RNN
112, the plurality of lines of the given region may be less
than 1% of the total number of lines of the build log input
to the RNN 112. In some examples, the given region
identified at the block 310 may comprise as few as one line.

[0145] Indeed, the number of the plurality of characters
and/or words and/or lines of the given region may depend on
the training of the RNN 112, and/or a number of the positive
build log examples 122 and the negative build log examples
124 of the balanced dataset. Indeed, in some examples, the
larger a number of the positive build log examples 122 and
the negative build log examples 124 of the balanced dataset,
the smaller the number of lines of the given region. Fur-
thermore, it is understood that the training RNN 112 may
occur according to a given “step size”, where training RNN
112 occurs according to analysis of a given number (e.g., a
step size) of characters and/or words and/or lines; hence, the
number of the plurality of characters and/or words and/or
lines of the given region may correspond to such a step size.

[0146] At a block 310, the controller 202 and/or the
computing device 102, outputs an indication of the given
region.

[0147] For example, the indication of the given region
may identify a plurality of lines of the build log that
correspond to the given region. In some examples, the
indication may be in a format of “Line N to M”, where “N”
is a line number of a first line of the given region, and “M”
is line number of a last line of the given region number.
However, the indication of the given region may be in any
suitable format.
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[0148] In some examples, the indication may also include
a probability that the given region identifies the region of the
build log that corresponds to a root cause of the failure of the
corresponding build 120. Such a probability may be deter-
mined from the evolution of the belief prediction in the
given region that meets a build log fatal error criterion
condition 228. Such a probability may be determined at the
block 308, for example. For example, when there are two or
more regions where respective derivatives thereof are at
minim a (e.g. negative) and/or a local minima, a probability
may be assigned to each region as to whether a respective
region corresponds to a root cause of the failure of the
corresponding build 120. For example, in one of the two or
more regions, the evolution of the belief prediction may fall
from above a given threshold (e.g. of 0.5) to below the given
threshold, while in others of the two or more regions the
evolution of the belief prediction may be above or below the
given threshold, but may not cross the given threshold. In
these examples, the region where the evolution of the belief
prediction falls below the given threshold may be assigned
a higher probability of corresponding to a root cause of the
failure of the corresponding build 120 than the other regions,
and may be identified as the given region of the block 308.

[0149] Furthermore, the indication may be output to the
computing device and/or terminal 106, as previously
described, along with an identifier of one or more of the
build log input to the RNN 112 at the block 304 and/or the
corresponding build 120, such that the build log and/or the
corresponding build 120 may be retrieved (e.g. from the
database 104) for repair.

[0150] Alternatively, and/or in addition, the indication
may be output to the computing device and/or terminal 106,
as previously described, along with one or more of the build
log input to the RNN 112 at the block 304 and/or the
corresponding build 120.

[0151] Furthermore, the indication may be output to the
computing device and/or terminal 106, as previously
described, and such an output may initiate a process for
repairing the corresponding build 120. For example, a code
change, and the like, to repair the build 120 may be input to
the CI pipeline 118, and corresponding build, as repaired,
may be output by the CI pipeline 118, which does not and/or
is successful.

[0152] Hence, the method 300 may further comprise, the
controller 202 and/or the computing device 102 initiating a
process for repairing a failed build of the build log (of the
block 304), in a region of a failed build indicated by the
given region. Indeed, such a process may be initiated by the
controller 202 and/or the computing device 102 via output-
ting the indication at the block 310 and/or such a process
may be initiated by the controller 202 and/or the computing
device 102 in place of outputting the indication at the block
310. Such a process may include, but is not limited to,
outputting the indication at the block 310 along with a
command to cause the process for repairing the failed build
to occur at the computing device and/or terminal 106. In
some of these examples, the failed build may be output to the
controller 202 and/or the computing device 102 with the
indication and/or the command. In some examples, the
command may be output in place of the indication, and/or
the command may include the indication. In yet further
examples, the process for repairing the failed build may
occur at the computing device 102.
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[0153] Furthermore, the indication of the given region
may be output over the computer network 126, such that
users of the computer network 126 have immediate access to
the indication of the given region and/or such that a process
for repairing the corresponding build 120 may be initiated.
[0154] Attention is next directed to FIG. 4, FIG. 5, FIG. 6,
FIG. 7, FIG. 9 and FIG. 9, which depict an example of the
method 300. FIG. 4, FIG. 5 and FIG. 9 are substantially
similar to FIG. 1, with like components having like numbers.
[0155] With reference to FIG. 4, training of the RNN 112
is depicted (e.g. at the block 302 of the method 300). In
particular, the computing device 102 has collected a bal-
anced dataset 402 from the database 104 comprising (e.g. an
equal number of) positive build log examples 122 and
negative build examples 124, and is inputting the positive
build log examples 122 and negative build examples 124
into the RNN 112 while the RNN 112 is in a training mode.
[0156] With attention next directed to FIG. 5, it is under-
stood that the training of FIG. 4 has occurred and hence FIG.
5 follows, in time from FIG. 5. In FIG. 5, a particular input
and/or particular programming code changes 501 are input
to the CI pipeline 118 which outputs a corresponding build
502. It is further understood that the CI pipeline 118 deter-
mines that the build 502 fails, and hence the build 502 is
labelled with a label 503 of “FAIL”. The CI pipeline 118
furthermore outputs a corresponding build log 504 to the
database 104 which, as depicted is also labelled with the
label 503 of “FAIL”. As depicted, the CI pipeline 118 further
stores the labelled failed build 502 and the labelled build log
504, at the database 104. It is further understood that the
label 503 may comprise a number of less than 0.5, and/or
any other number indicating the build 502 has failed.
[0157] Alternatively, and/or in, the build log 504 may be
stored with an indication, that the corresponding build 502
failed but without strictly being labelled with the label 503.
[0158] The computing device 102 may retrieve the build
log 504 corresponding to the failed build 502 from the
database 104, and input the build log 504 into the RNN 112
(e.g. at the block 304 of the method 300).

[0159] In some examples, the computing device 102 may
retrieve build logs that correspond to failed builds periodi-
cally to perform the remainder of the method 300 that occurs
after the training of the RNN 112, and/or the computing
device 102 may retrieve build logs that correspond to failed
builds as such build logs are populated at the database 104.
In some examples, the CI pipeline 118 may store (e.g. at the
database 104) build logs of any builds input to the CI
pipeline 118, along with indications of whether correspond-
ing builds failed or succeeded, and the computing device
102 may process only those build logs corresponding to
failed builds; put another way, the computing device 102
may filter build logs corresponding to failed builds from
build logs corresponding to successful builds.

[0160] As depicted, the RNN 112 analyzes the build log
504 and outputs a belief prediction 506 (e.g. a result) of
“0.03” indicating that the build log 504 corresponds to a
failed build 502 (e.g. the belief prediction 506 is less than a
given threshold of, for example, 0.5). Such an output does
not identify a region of the build log 504 that identifies
where a root cause of the failure occurs in the build 502.
[0161] However, as depicted, while the RNN 112 analyzes
the build log 504 according to a sequence of characters
and/or words and/or lines and/or regions, in a sequence from
beginning to end, the instrumentate engine 114 communi-
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cates with the RNN 112 to determine internal states of the
RNN 112, for example to monitor (e.g. at the block 306 of
the method 300) evolution of belief predictions of the RNN
112, as the RNN 112 is analyzing the build log 504,
according to successive regions of the build log 504.
[0162] In particular, the instrumentate engine 114 deter-
mines intermediate belief predictions 510 of the RNN 112,
while the RNN 112 analyzes the build log 504 according to
the sequence of lines of the build log 504. Put another way,
the instrumentate engine 114 may receive and/or retrieve
intermediate belief predictions 510 from the RNN 112,
while the RNN 112 analyzes the build log 504 according to
the sequence.

[0163] As depicted, the instrumentate engine 114 outputs
data 512 indicating an evolution of the belief predictions 510
of the RNN 112.

[0164] Attention is next directed to FIG. 6 which depicts
an example of the build log 504. As depicted, the build log
comprises regions of lines 1 to N, lines N+1 to M, lines M+1
to P, lines P+1 to R, and lines R+1 to END.

[0165] Lines 1 to N are generally represented by ellipses
that are understood to indicate command outputs where it is
understood no failure occurs, and includes a command
output of “CONTACT SERVER”. Hence, in a region of lines
1 to N no failure occurs in the corresponding build 502.
[0166] Lines N+1 to M include a command output of
“FAILED TO CONNECT TO SERVER” (e.g. a failure
occurs) and “RETRY”. Hence, in a region of lines N+1 to M,
a failure occurs in the corresponding build 502.

[0167] Lines M+1 to P include command outputs of
“SERVER SUCCESSFULLY CONTACTED” and “RUN-
NING TESTS”, with ellipses therebetween representing
command outputs where no failure occurs, as well as a
command output of “TEST 1 SUCCESS”. Hence, in a
region of lines M+1 to P, the failure indicated by lines N+1
to M is understood to be corrected at the build 502. Put
another way, the failures indicated by lines N+1 to M were
not fatal and/or not the root cause of a failure of the build
502.

[0168] Lines P+1 to R include a command output of
“TEST 2 FAILED”, as wells further lines represented by
ellipses. Hence, in a region of lines P+1 to R a failure occurs
in the corresponding build 502.

[0169] Lines R+1 to End include command outputs rep-
resented by ellipses, where it is understood that no specific
failure may occur and/or failures due to the failure indicated
by lines P+1 to R may occur. Hence, in a region of lines P+1
to R no failures occur and/or no failures corresponding to a
root cause of the failure of the corresponding build 502 may
occur.

[0170] Attention is next directed to FIG. 7, which depicts
a graph 700 corresponding to the data 512 representing the
evolution of the belief predictions of the RNN 112, as the
RNN 112 is analyzing the sequence of the build log 504, for
example on a line-by-line basis. As such, the graph 700
comprises a belief prediction of the RNN 112 as a function
of line number of the build log 504. In particular, the regions
of the lines of the build log 504 as depicted in FIG. 6 are
indicated, and specifically lines 1 to N, lines N+1 to M, lines
M+1 to P, lines P+1 to R, and lines R+1 to END. Dashed
lines are used in FIG. 7 to better indicate such regions.
[0171] Atline 1, the belief prediction is initially at 0.5 (e.g.
due to the balanced data set having equal and/or about equal
numbers of positive build log examples 122 and negative
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build log examples 124), and as no failures occur in the
region of lines 1 to N, the belief prediction increases. It is
further understood that the value of 0.5 represents the given
threshold below which an output of the RNN 112 may
represent a failure of the corresponding build 502, in par-
ticular when the output does not later increase above the
given threshold and/or never crosses the given threshold.
[0172] However, as in the region of lines N+1 to M, a
failure occurs, in the region of lines M to N+1 to M, the
belief prediction decreases, and indeed drops below the
given threshold of 0.5.

[0173] Conversely, as in the region of lines M+1 to P, the
failure of the region of lines N+1 to M is corrected, in the
region of lines M+1 to P, the belief prediction again
increases to above the given threshold of 0.5.

[0174] However, as in the region of lines P+1 to R, another
failure occurs, in the region of lines P+1 to R, the belief
prediction decreases and drops below the given threshold of
0.5.

[0175] Finally, in the region of lines R+1 to End, the
failure of the region of lines P+1 to R is not corrected, and
in the region of lines R+1 to End, the belief prediction
continues to decrease, for example to 0.03, the value of the
final belief prediction 506 output by the RNN 112. Put
another way, the belief prediction of the RNN 112 falls
below the given threshold, and does not later increase above
the given threshold and/or never again cross the given
threshold and/or does not again cross the given threshold.
However, the belief prediction of the RNN 112 falling below
the given threshold, and not later increasing above the given
threshold and/or never again crossing the given threshold
and/or not again crossing the given threshold may be indi-
cated by an output of the RNN being indicative that the build
log is indicative of a failed build.

[0176] Comparing the graph 700 to a build log fatal error
criterion condition 228 of the belief predictions falling
below a given threshold and does not later increase above
the given threshold and/or never crosses the given threshold,
which in FIG. 7 is understood to be 0.5, it is understood that
the given region determined at the block 308 of the method
300 may comprise the region of lines P+1 to R, and not the
region of lines N+1 to M, as, while the belief prediction
decreases in both regions, the belief predictions fall below
the given threshold of 0.5 in the region in the region of lines
M+1 to P, the belief prediction again crosses the given
threshold to above the given threshold, while in the region
of lines P+1 to R, the belief prediction does not again cross
the given threshold and/or remains below the given thresh-
old.

[0177] It is further understood that the graph 700 is
indicative of an example how given regions of lines of the
build log 504 may be selected for consideration of meeting,
or not meeting, a build log fatal error criterion condition 228.
For example, regions corresponding to groups of lines that
are between changes in slope of the belief predictions of the
RNN 112 may be selected, such as regions between peaks of
the graph 700.

[0178] However, it is understood that the graph 700 is
merely meant to illustrate certain features of an evolution of
belief predictions of the RNN 112, and that the graph 700
may include more noise and/or more changes in slope than
that depicted in FIG. 7. Hence, in some examples, regions
corresponding to groups of lines that are between inversions
of a slope of the belief predictions of the RNN 112 may be
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selected based on such inversions in slope meeting given
criteria, such as the slope increasing or decreasing, on
average for at least a given number of lines (e.g. such as at
least 20 lines, at least 50 lines, at least 100 lines, amongst
other possibilities) before inverting. In other examples,
regions corresponding to groups of lines that are between
inversions of a slope of the belief predictions of the RNN
112 may be selected based on a running average of the slope
(e.g. of at least a given number of lines, such as at least 20
lines, at least 50 lines, at least 100 lines, amongst other
possibilities) inverting, and the like. It is furthermore under-
stood that the graph 700 may represent a moving average of
belief predictions of the RNN 112, such that high frequency
noise is filtered from the graph 700. Furthermore, any
suitable technique may be used one or more of smooth an
evolution of belief predictions of the RNN 112, filter noise,
and/or high frequency noise, from an evolution of belief
predictions of the RNN 112, and the like.

[0179] Attention is next directed to FIG. 8, which depicts
another graph 800 corresponding the data 512 representing
the evolution of the belief predictions of the RNN 112, as the
RNN 112 is analyzing the sequence of the build log 504, for
example on a line-by-line basis. As such, the graph 800
comprises a derivative of belief predictions of the RNN 112
as a function of line number of the build log 504. For
example, the graph 800 may represent derivatives of the
belief predictions of the graph 700. Hence, like the graph
700, at the graph 800 the regions of the lines of the build log
504 as depicted in FIG. 6 are indicated, and specifically lines
1 to N, lines N+1 to M, lines M+1 to P, lines P+1 to R, and
lines R+1 to END. Dashed lines are used in FIG. 8 to better
indicate such regions.

[0180] In particular, and with reference to both the graph
700 and graph 800, in the region of lines 1 to N, a slope of
the graph 700 is constant and increasing, and hence the
derivative of this region at the graph 800 is a constant value
corresponding to the slope in this region. However, at the
graph 700, in the region of lines N+1 to M, the slope inverts
from increasing to decreasing, and hence a local minima 802
occurs in the derivative in the region of lines N+1 to M, as
seen in the graph 800.

[0181] Conversely, at the graph 700, in the region of lines
M+1 to P, the slope again inverts, but from decreasing to
increasing, and hence a local maxima 804 occurs in the
derivative, as seen in the graph 800.

[0182] Again with reference to the graph 700, in the region
of'lines P+1 to R, the slope again inverts from increasing to
decreasing, however in a manner faster than in the region of
the lines N+1 to M, hence another local minima 806 occurs
in the derivative, as seen in the graph 800, that is less than
the local minima 802.

[0183] Finally, and again with reference to the graph 700,
in the region of lines R+1 to End, the slope changes again
but indicates a slower decrease in the belief predictions than
in the region of lines P+1 to R, hence another local maxima
808 occurs in the derivative, as seen in the graph 800.
[0184] Comparing the graph 800 to a build log fatal error
criterion condition 228 of derivatives of the belief predic-
tions being at a minima, it is understood that the given region
determined at the block 308 of the method 300 may com-
prise the region of lines P+1 to R, and not the region of lines
N+1 to M, as the local minima 806 of the derivative of the
region of lines P+1 to R is smaller than the local minima 802
of the derivative of the region of lines N+1 to M.

Jan. 23, 2025

[0185] However, the graph 800 alone may not be enough
to determine the given region of the block 308. Hence, when
there are two or more local minima as in the graph 800, data
corresponding to the graph 700 may also be processed to
determine in which of the regions of the two or more local
minima the belief prediction also fell below a given thresh-
old such as 0.5, with the region where the belief prediction
also fell below the given threshold selected as the given
region of the block 308.

[0186] Alternatively, and/or in addition, probabilities of a
region corresponding a root cause of a failure of the corre-
sponding build 502 may be assigned, on the basis of which
of the local minima 802, 806 is smaller, and/or on the basis
of in which of the regions the belief prediction falls below
the given threshold. For example, with reference to the
graphs 700, 800, the region of lines P+1 to R may be
assigned a probability of 95%, and the region of lines N+1
to M may be assigned a probability of 5%. Hence, the region
of'lines P+1 to R may be selected as the given region of the
block 308.

[0187] Attention is next directed to FIG. 9 which depicts
the computing device 102 determining (e.g. at the block 308
of the method 300), from the data 512 representing the
evolution of the belief predictions, that a given region of the
build log 504 meets a build log fatal error criterion condition
228 comprises the lines P+1 to R, as described with respect
to FIG. 7 and FIG. 8. As depicted an arrow labelled “228”
indicates that a given region of the build log 503 meets a
build log fatal error criterion 228.

[0188] FIG. 9 further depicts the computing device 102
outputting (e.g. at the block 310 of the method 300) an
indication 902 of the given region (e.g. comprising text
“Lines P+1 to R”) to the computing device and/or terminal
106, along with the build log 504, the build 502 and a
command 904 for initiating a process for repairing the build
502, as previously described.

[0189] It is understood that once the build 502 is repaired,
for example by correcting the portion of the build 502 that
caused “TEST 2” to fail, as indicated by the Lines P+1 to R
of the build log 504, the build 502 may be again input to the
CI pipeline 118.

[0190] It is further understood that the build log 404 may
be stored at the database 104 as a negative build log example
124 and used for later training of the RNN 112. Indeed, as
examples of positive and negative build logs continue to
increase at the database 104, the RNN 112 may undergo
periodic retraining using such examples.

[0191] Indeed, the identification of regions of build logs,
using the method 300, that correspond to root cause failures
of corresponding builds may also be used by components of
the system 100 to generally improve and/or repair other
builds 120, for example before being input to the CI pipeline
118. For example, the identification of regions of build logs,
and repairs thereof, may be used to train one or more
machine learning algorithms of an automated code repair
computing device, and builds 120 may be input to such an
automated code repair computing device prior to being input
to the CI pipeline 118. In this manner, code corresponding
to failures for which the automated code repair computing
device is trained to repair, may be repaired prior to being
input to the CI pipeline 118.

[0192] Furthermore, training of the RNN 112 may occur
periodically, for example using a last given number of
examples of positive and negative build logs, (e.g. a last
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1000 examples of positive and negative build logs, a last
10,000 examples of positive and negative build logs,
amongst other possibilities), while older examples of posi-
tive and negative build logs may be discarded and/or deleted
from the database 104, for example to save memory of the
database 104.

[0193] Hence, provided herein is a device, system and
method for implementing a recurrent neural network to
determine a given region of a build log that meets a fatal
error criterion condition model. It is understood that the
device, system and method provided herein may have an
advantage of using a training data set (e.g. a balanced data
set), for an RNN, of positive and negative build log
examples, that excludes identification of regions of failure in
the negative build log examples. Put another way, the
training data set excludes identification of specific regions of
failures in build logs and/or excludes examples of failure
lines and/or failure regions, and the like, of a build log.
Rather, the RNN is trained using training data set of full
positive and negative build log examples such that the RNN
may specifically identify a region of failure in a new build
log based on a believe prediction evolution of the RNN.

[0194] It is further understood that the device, system and
method provided herein may lead to significant reduction of
processing resource usage, for example at least at the
computer device and/or terminal 106, and the like. In
particular, if a build log alone were used to repair a corre-
sponding failed build via the computer device and/or termi-
nal 106, significant processing resources may be expended
via the computer device and/or terminal 106 in identifying
a region of a root cause of a failure of the build so that the
root cause can be repaired, as compared to when the device,
system and method provided herein is used to identify a
region of a root cause of a failure of the build. Similarly,
significant time would be wasted via the computer device
and/or terminal 106 in identifying a region of a root cause of
a failure of the build so that the root cause can be repaired,
as compared to when the device, system and method pro-
vided herein is used to identify a region of a root cause of
a failure of the build. As a real world example, in a large
organization, on the order of 1 to 2 million failed builds may
occur per year; identifying a root cause of a failed build may
take about 10 minutes. Using an example, of 2 million failed
builds, identifying the root causes may take a total of more
than 33,000 hours in the year, with corresponding processing
resources utilized, and which may be obviated using the
device, system and method provided herein.

[0195] It further understood that while present examples
are directed to build logs of a CI pipeline, the device, system
and method provided herein may be adapted for other types
of'logs that include success/failure labels and/or positive and
negative log examples including, but not limited to CI logs,
test logs, production logs, transaction logs, etc. For example,
the method 300 may be adapted to: training, via the com-
puting device 102, a recurrent neural network (RNN), using
a balanced dataset, to predict whether logs input to the RNN
are indicative of respective successful computer code or
respective failed computer code, the balanced dataset com-
prising positive log examples and negative log examples of
corresponding computer code, the positive log examples
labelled as being indicative of successful computer code,
and the negative log examples labelled as being indicative of
failed computer code; inputting, via the computing device, a
log to the RNN; monitoring, via the computing device,
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evolution of belief predictions of the RNN, as the RNN is
analyzing the log, according to successive regions of the log;
determining, via the computing device, based on the evo-
Iution of the belief predictions, that a given region of the log
meets a log fatal error criterion condition; and outputting,
via the computing device, an indication of the given region.
A log fatal error criterion condition may be similar to a build
log fatal error criterion condition 228, but applied to logs
other than build logs.

[0196] As should by now be apparent, the operations and
functions of the devices described herein are sufficiently
complex as to require their implementation on a computer
system, and cannot be performed, as a practical matter, in the
human mind. In particular, computing devices, and the like,
such as set forth herein are understood as requiring and
providing speed and accuracy and complexity management
that are not obtainable by human mental steps, in addition to
the inherently digital nature of such operations (e.g., a
human mind cannot interface directly with a recurrent neural
network, amongst other features and functions set forth
herein).

[0197] In this specification, elements may be described as
“configured to” perform one or more functions or “config-
ured for” such functions. In general, an element that is
configured to perform or configured for performing a func-
tion is enabled to perform the function, or is suitable for
performing the function, or is adapted to perform the func-
tion, or is operable to perform the function, or is otherwise
capable of performing the function.

[0198] It is further understood that instance of the term
“configured to”, such as “a computing device configured to
... 7, “a processor configured to . . . a controller
configured to . . . 7, and the like, may be understood to
include a feature of a computer-readable storage medium
having stored thereon program instructions that, when
executed by a computing device and/or a processor and/or a
controller, and the like, may cause the computing device
and/or the processor and/or the controller to perform a set of
operations which may comprise the features that the com-
puting device and/or the processor and/or the controller, and
the like, are configured to implement. Hence, the term
“configured to” is understood not to be unduly limiting to
means plus function interpretations, and the like.

[0199] It is understood that for the purpose of this speci-
fication, language of “at least one of X, Y, and Z” and “one
or more of X, Y and Z” can be construed as X only, Y only,
Z only, or any combination of two or more items X, Y, and
Z (e.g., XYZ, XY, YZ, X7, and the like). Similar logic can
be applied for two or more items in any occurrence of “at
least one . . . ” and “one or more . . . ” language.

[0200] Unless the context of usage unambiguously indi-
cates otherwise, articles “a,” “an,” and “the” should not be
interpreted as meaning “one” or “only one.” Rather such
articles should be interpreted as meaning “at least one” or
“one or more.” Similarly, when the terms “the” or “said” are
used to refer to a noun previously introduced by the indefi-
nite article “a” or “an,” “the” and “said” mean “at least one”
or “one or more” unless the usage unambiguously indicates
otherwise.

[0201] The terms “about™, “substantially”, “essentially”,
“approximately”, and the like, are defined as being “close
t0”, for example as understood by persons of skill in the art.
In some examples, the terms are understood to be “within
10%,” in other examples, “within 5%”, in yet further
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examples, “within 1%”, in yet further examples “within
0.5%”, and in yet further examples “within 0.1%”.

[0202] Persons skilled in the art will appreciate that in
some examples, the functionality of devices and/or methods
and/or processes described herein can be implemented using
pre-programmed hardware or firmware elements (e.g., appli-
cation specific integrated circuits (ASICs), electrically eras-
able programmable read-only memories (EEPROMs), etc.),
or other related components. In other examples, the func-
tionality of the devices and/or methods and/or processes
described herein can be achieved using a computing appa-
ratus that has access to a code memory (not shown), which
stores computer-readable program code for operation of the
computing apparatus. The computer-readable program code
could be stored on a computer readable storage medium,
which is fixed, tangible and readable directly by these
components, (e.g., removable diskette, CD-ROM, ROM,
fixed disk, USB drive). Furthermore, it is appreciated that
the computer-readable program can be stored as a computer
program product comprising a computer usable medium.
Further, a persistent storage device can comprise the com-
puter readable program code. It is yet further appreciated
that the computer-readable program code and/or computer
usable medium can comprise a non-transitory computer-
readable program code and/or non-transitory computer
usable medium. Alternatively, the computer-readable pro-
gram code could be stored remotely but transmittable to
these components via a modem or other interface device
connected to a network (including, without limitation, the
Internet) over a transmission medium. The transmission
medium can be either a non-mobile medium (e.g., optical
and/or digital and/or analog communications lines) or a
mobile medium (e.g., microwave, infrared, free-space opti-
cal or other transmission schemes) or a combination thereof.
[0203] Persons skilled in the art will appreciate that there
are yet more alternative examples and modifications pos-
sible, and that the above examples are only illustrations of
one or more examples. The scope, therefore, is only to be
limited by the claims appended hereto.

What is claimed is:

1. A method comprising:

training, via a computing device, a recurrent neural net-
work (RNN), using a balanced dataset, to predict
whether logs input to the RNN are indicative of respec-
tive successful computer code or respective failed
computer code, the balanced dataset comprising posi-
tive log examples and negative log examples for cor-
responding computer code, the positive log examples
labelled as being indicative of successful computer
code, and the negative log examples labelled as being
indicative of failed computer code;

inputting, via the computing device, a log to the RNN;

monitoring, via the computing device, evolution of belief
predictions of the RNN, as the RNN is analyzing the
log, according to successive regions of the log;

determining, via the computing device, based on the
evolution of the belief predictions, that a given region
of'the log meets a log fatal error criterion condition; and

outputting, via the computing device, an indication of the
given region.

2. The method of claim 1, wherein the balanced dataset

comprises an equal number of the positive log examples and
the negative log examples.
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3. The method of claim 1, wherein the log is labelled as
being indicative of corresponding failed computer code.

4. The method of claim 1, wherein monitoring evolution
of the belief predictions of the RNN according to the
successive regions of the log comprises monitoring a pre-
diction of the RNN that the log is indicative of successful
computer code or failed computer code on a character-by-
character, word-by-word basis or a line-by-line basis or a
region-by-region basis.

5. The method of claim 1, wherein a region, of the
successive regions of the log, comprises one or more of: at
least one character of the log; at least one word of the log;
and at least one line of the log.

6. The method of claim 1, wherein the log fatal error
criterion condition comprises: the belief predictions falling
below a given threshold at the given region, and an output
of the RNN being indicative that the log is indicative of
corresponding failed computer code.

7. The method of claim 1, wherein the balanced dataset
comprises an about equal number of the positive log
examples and the negative log examples, and the log fatal
error criterion condition comprises: the belief predictions
falling below 0.5 at the given region, and an output of the
RNN being indicative that the log is indicative of corre-
sponding failed computer code.

8. The method of claim 1, wherein the log fatal error
criterion condition comprises: a derivative of the belief
predictions being at a minimum at the given region, and an
output of the RNN being indicative that the log is indicative
of a corresponding failed computer code.

9. The method of claim 1, wherein the given region
comprises a plurality of lines of the log.

10. The method of claim 9, wherein the indication of the
given region identifies the plurality of lines.

11. The method of claim 1, further comprising initiating
a process for repairing corresponding failed computer code
of the log, in a region of the corresponding failed computer
code indicated by the given region.

12. A computing device comprising:

a controller; and

a computer-readable storage medium having stored

thereon program instructions that, when executed by

the controller, cause the computing device to perform a

set of operations comprising:

training a recurrent neural network (RNN), using a
balanced dataset, to predict whether logs input to the
RNN are indicative of respective successful com-
puter code or respective failed computer code, the
balanced dataset comprising positive log examples
and negative log examples from a continuous inte-
gration (CI) pipeline, the positive log examples
labelled as being indicative of successful computer
code, and the negative log examples labelled as
being indicative of failed computer code;

inputting a log to the RNN;

monitoring evolution of belief predictions of the RNN,
as the RNN is analyzing the log, according to suc-
cessive regions of the log;

determining, based on the evolution of the belief pre-
dictions, that a given region of the log meets a log
fatal error criterion condition; and

outputting an indication of the given region.
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13. The computing device of claim 12, wherein the
balanced dataset comprises an equal number of the positive
log examples and the negative log examples.

14. The computing device of claim 12, wherein the log is
output by the CI pipeline and labelled as being indicative of
corresponding failed computer code.

15. The computing device of claim 12, wherein monitor-
ing evolution of the belief predictions of the RNN according
to the successive regions of the log comprises monitoring a
prediction of the RNN that the log is indicative of successful
computer code or a failed computer code on a character-by-
character, word-by-word basis or a line-by-line basis or a
region-by-region basis.

16. The computing device of claim 12, wherein a region,
of the successive regions of the log, comprises one or more
of: at least one character of the log; at least one word of the
log; and at least one line of the log.

17. The computing device of claim 12, wherein the log
fatal error criterion condition comprises: the belief predic-
tions falling below a given threshold at the given region, and
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an output of the RNN being indicative that the log is
indicative of corresponding failed computer code.

18. The computing device of claim 12, wherein the
balanced dataset comprises an about equal number of the
positive log examples and the negative log examples, and
the log fatal error criterion condition comprises: the belief
predictions falling below 0.5 at the given region, and an
output of the RNN being indicative that the log is indicative
of corresponding failed computer code.

19. The computing device of claim 12, wherein the log
fatal error criterion condition comprises: a derivative of the
belief predictions being at a minimum at the given region,
and an output of the RNN being indicative that the log is
indicative of corresponding failed computer code.

20. The computing device of claim 12, further comprising
initiating a process for repairing corresponding failed com-
puter code of the log, in a region of corresponding failed
computer code indicated by the given region.

#* #* #* #* #*
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